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Abstract  

While strong associations of structural magnetic resonance imaging (sMRI) with preterm 

birth and post-menstrual age (PMA) have been reported, such associations for functional 

MRI (fMRI) have been considerably weaker. We studied the associations of the aperiodic 

parameters of neonatal fMRI Blood-oxygen-level-dependent (BOLD) signal power spectrum 

with preterm birth and PMA at scan using task-free fMRI data from the Developing Human 

Connectome Project (dHCP). First, we studied the associations of the aperiodic parameters of 

the BOLD signal from pre- and postcentral gyri with preterm birth and mapped the 

associations with PMA, postnatal age, and sex. Second, we used machine learning regression 

to predict PMA and postnatal age with 90 cortical and subcortical regions of interest (ROIs). 

We found clear differences between preterm and full-term groups, as well as males and 

females. Furthermore, our machine learning model predicted the age variables with relatively 

high accuracy (mean test R² = 0.20 – 0.41). 
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Introduction  

Brain development during gestation and after birth is rapid.1 The brain undergoes sequential, 

coordinated and hierarchical development that is also reflected in functional brain networks 

during the neonatal period and infancy.2 Previous work has demonstrated the presence and 

patterns of major brain networks functional connectivity in fetuses3 as well as in preterm4–7 

and term infants.8,9 The maturation of motor and sensory systems occurs early10, and in 

infants, cortical functional networks exhibit large confinement to primary sensory and motor 

areas, suggesting a perception-action task-related functional network architecture.10,11  

Preterm birth (birth before 37 weeks of gestation) is a common condition, occurring in about 

1 in 10 births globally.12 It is associated with an increased likelihood for multiple adverse 

health outcomes in later life including brain, cognitive, and neural impairments.4,13–15 

Considering brain maturation, preterm birth has been associated with altered brain 

development as younger gestational age at birth predicts smaller brain volumes16–20 and 

higher diffusivity in the prefrontal, parietal, motor, somatosensory, and visual cortices, likely 

suggesting delayed maturation of these cortical areas.21 Prior research has also demonstrated 

sex-specific alterations in preterm brain.22 In addition to the neural correlates of preterm 

birth, studies have unraveled relationships of many key steps of brain development with 

increasing postmenstrual age (PMA) at scan. However, the strength of the associations found 

in the earlier studies varies by brain metric. For instance, the associations between PMA and 

structural magnetic resonance imaging (MRI) metrics are quite strong (R2 ~ 0.7)23,24 while 
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functional MRI (fMRI) measures have shown much weaker associations (R2 ~ 0.04).25 There 

is therefore a need for more accurate brain maturation assessment in neonates. 

Electrophysiological activity of the brain exhibits both periodic (or oscillatory) and aperiodic 

(non-oscillatory) properties. The overall level of aperiodic activity, and how it changes as a 

function of frequency can be modelled with two parameters: offset and exponent, 

respectively.26 The parameters change as a function of age,  with the exponent decreasing in 

infants27, and both exponent and offset decreasing during the early-childhood28,29 and early-

adulthood.30 Based on these EEG studies, we propose that the parameters of aperiodic brain 

activity could serve as markers for the pace of (functional) brain maturation. Given that 

aperiodic brain activity is assumed to be ‘scale-free’ (i.e., it is not restricted to a specific 

temporal scale)31, age-related changes could also be detected using aperiodic parameters of 

the resting-state functional MRI (rs-fMRI) blood-oxygen-level-dependent (BOLD) signal. 

While the utility of parameterizing brain activity in terms of its periodic and aperiodic 

components has been demonstrated in numerous electrophysiological studies26,27,32,33, the 

methodology has not been widely adopted for the analysis of fMRI datasets. 

In the current study, we parameterized the aperiodic components of the rs-fMRI BOLD signal 

power spectra, filtered to a narrowband of 0.01–0.15 Hz, from 90 cortical and subcortical 

regions of interest (ROIs) in terms of their exponent and offset. We then mapped the 

associations between the parameters pertaining to the pre- and postcentral gyri and preterm 

birth, and postmenstrual and postnatal age as well as sex were included to linear mixed effect 

models. Finally, we performed data driven machine learning based regression to predict 

postmenstrual and postnatal age from the parameters of all ROIs. Based on previous 

electrophysiological studies27–29,34 and diffusion tensor imaging studies in preterm infants21, 

we hypothesized that the postmenstrual and postnatal ages of neonates are negatively 

associated with aperiodic parameters and that preterm born neonates have higher aperiodic 

parameters compared to term-born neonates, reflecting a delayed neural developmental 

processes in preterm born neonates. 

Materials and methods  

The current study used preprocessed data released as part of the Developing Human 

Connectome Project (dHCP) data release 3.0, and the methods are described in detail 

previously.25 
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Research participants were prospectively recruited as part of the dHCP, an observational, 

cross-sectional Open Science programme approved by the UK National Research Ethics 

Authority (14/LO/1169). Written consent was obtained from all participating families prior to 

imaging. Term-born neonates were recruited from the postnatal wards and approached on the 

basis of being clinically well. Preterm-born neonates were recruited from the neonatal unit 

and postnatal wards. Neonates were not approached for study inclusion if there was a history 

of severe compromise at birth requiring prolonged resuscitation, a diagnosed chromosomal 

abnormality, or any contraindication to MRI scanning (e.g., due to incompatible implants). 

No neonates included in the final study group required treatment for a clinically significant 

brain injury. The latest data release includes a total of 887 datasets from 783 neonates 

including healthy term-born neonates, preterm neonates and neonates at high risk for atypical 

neurocognitive development.35 

Participants 

The openly available dHCP data set (third release) consists of 887 rs-fMRI scans from 783 

neonatal research subjects between 26-45 weeks of post-menstrual age (359 females), 205 of 

whom were born preterm. Minor incidental findings were not considered an exclusion 

criterium. For a more detailed description of the data set, see Edwards et al.35 105 scans were 

flagged for failed fMRI quality control and excluded from the current analyses. Further, 129 

scans were from non-singleton participants, and excluded from current analyses to not cause 

indirect information leakage. Finally, we only included the last non-flagged scan from each 

participant, resulting in 605 unique, non-flagged scans from singleton participants. The 

FOOOF model fit failed for six participants, for which reason the analyses were performed 

on a subset of 599 participants (276 female, PMA 27–45 weeks), 116 of them preterm-born. 

For a more detailed characterization of the subset used in analyses, see Table 1. 

Table 1. Characteristics of participants included in the analyses. 

 N % Mean SD Range 

Gestational age at 
birth (weeks) 

599  38.4 3.9 23.0–42.7 

Postmenstrual age 
at scan (weeks) 

599  40.8 2.4 27.4–44.7 

Postnatal age at 599  2.5 3.5 0.0–19.6 
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scan (weeks) 

Birth weight (kg) 599  3.1 0.9 0.5–4.8 

Head 
circumference at 
scan (cm) 

578*  34.8 2.3 21.3–39.5 

DVARS z-score 599  -0.17 0.85 -2.5–2.3 

Birth condition      
term 483 80.6    

preterm 116 19.4    
Sex      

male 323 53.9    
female 276 46.1    

Abbreviations: N = number of participants; SD = standard deviation *Head circumference of 0.0 cm was reported for 
21 participants, who were excluded from computation of statistics for corresponding row of this table. 
 

fMRI data acquisition and preprocessing 

The MR imaging was carried out using a 3T Philips Achieva scanner running modified 

Release 3.2.2 software. The length of the fMRI acquisition was 15 minutes, and was collected 

with parameters: TE/TR = 38/392 ms, 2300 volumes, with an acquired spatial resolution of 

2.15 mm isotropic.35 Participants were scanned non-sedated using Neonatal Brain Imaging 

System (NBIS), consisting of a dedicated 32-channel array coil and a positioning device.36 

The functional data imaging acquisition used optimized multiband sequence tuned for 

neonatal participants37 with phase optimized multiband pulses used throughout.38 For detailed 

descriptions of the automated processing pipeline and the motion and distortion correction 

techniques applied to all dHCP open access pre-processed fMRI data, see Fitzgibbon et al.39 

and Andersson et al.40–43 

Derived brain measures 

An algorithmic method known as FOOOF (Fitting Oscillations and One-Over-F) for 

parameterizing the power spectrum into periodic and aperiodic component parameters has 

been suggested.26 While the periodic component is characterized by such parameters as its 

center frequency, power and bandwidth, the 1/f-like aperiodic component is characterized by 

its offset and exponent parameters. The performance of the algorithm in characterizing neural 

power spectra has been validated against both simulated power spectra with known ground 
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truth and human expert labeling on real EEG and simulated data, demonstrating low error 

rate on both test arrangements.26 

The FOOOF algorithm parameterizes the power spectrum into its periodic and aperiodic 

components by creating an initial fit of the aperiodic component and subtracting it from the 

total power spectrum resulting in a flat spectrum, from which in an iterative process maxima 

are identified as peaks and used for fitting gaussians which are then subtracted from the 

flattened spectrum. When no further peaks surpassing a threshold value can be identified, a 

final periodic multi-gaussian model is fit using all maxima thus identified. The periodic 

model is subtracted from the original spectrum, resulting in a noisy aperiodic component, to 

which the final aperiodic model is fit. The aperiodic model specifically is characterized by 

offset and exponent parameters as per the following formula: 

���� � � � log������  (1) 

Where F refers to frequency, b to the offset parameter and X to the exponent variable. 

Notably, power values are presented in a logarithmic scale, for which reason negative offset 

values are possible. 

For each time series representing a ROI specific BOLD signal, we estimated and 

parameterized the power spectrum between 0.01 and 0.15 Hz using multitaper44 spectral 

analysis, and the FOOOF algorithm (Python implementation version 1.1.0), resulting in 

parameters for the periodic and aperiodic components of the signal, as well an R² score for 

the goodness of fit for each ROI. For a summary on frequency range selection in earlier 

studies on BOLD signal, see e.g., Glerean et al.45 As the frequency range of interest was so 

narrow, we set the minimum width of oscillation peaks to 0.001 Hz while specifying no 

maximum width. Based on earlier work studying the characteristics of the BOLD signal 

power spectrum, we set the threshold value for oscillatory peaks to 1.5 SD over the mean, as 

well as the maximum number of peaks to find to two.46 

Linear mixed effect regression models  

Statistical analyses were performed using RStudio (2022.07.1+554) and JASP (2022, version 

0.16.3). To estimate the associations between the aperiodic parameters (exponent or offset) of 

fMRI BOLD signal and preterm birth, sex, PMA at scan and postnatal age, the lmer function 

from afex package of RStudio was used.  Linear mixed effects regression model analyses 

were performed using maximum likelihood estimation. Fixed effects were PMA at scan, 
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postnatal age, sex, and premature birth as well as hemisphere (right/left). Interaction terms 

with ROI (precentral gyri / postcentral gyri) were included. In addition, in the offset model 

(Model 2) exponent was included as a fixed effect to control the possible effects of exponent 

changes on offset values. The intercepts of subjects were modeled as random effects, 

including random slopes for the motion outliers. The linear mixed effects regression models 

had the following structure: 

Model 1: Exponent ∼ PMA at scan*ROI + Age*ROI + Sex*ROI + Prematurity*ROI 

+ Hemisphere + (1 + Motion | ID) 

Model 2: Offset ∼ PMA at scan*ROI + Age*ROI + Sex*ROI + Prematurity*ROI + 

Hemisphere + Exponent + (1 + Motion | ID) 

PMA at scan means the postmenstrual age (PMA) of the neonate at scan (weeks; z-

transformed) and Age means the postnatal age of the child (weeks; z-transformed). Sex 

means the sex of the child (male = 0, female = 1) and Prematurity means term versus preterm 

birth (term-born = 0, preterm = 1; postmenstrual age at birth < 37 weeks). ROI means region-

of-interest, either postcentral (= 0) or precentral (= 1) gyri and Hemisphere means left (= 0) 

or right (= 1) side of the brain. Motion means the number of motion-compromised volumes 

(outliers based on DVARS; z-transformed). In Model 2, the exponent was z-transformed. 

The models were originally run with only main effects of independent variables included, but 

as interaction terms with ROI were added into the models, the fit of the models improved 

(based on lower Akaike information criterion (AIC) and statistically significant result of 

likelihood ratio test before vs. after interaction term inclusion). The Prematurity variable had 

moderate correlation with other age variables (for correlation matrix of all variables included 

in models: see Figure S1 in Supplemental file 1), but lower AIC (when Prematurity was 

included) supported the inclusion of the Prematurity as a predictor. Likelihood ratio test 

(Prematurity not included vs. included) was not statistically significant in Model 1 (p = 0.09) 

and in Model 2 (p = 0.06). Possibility of singularity of the models were checked, and not 

detected. 

Further, the model assumptions were visually assessed for both models. At first, the Q-Q plot 

of the Model 1 showed slightly S-shaped pattern, while other visual assessments supported 

normal distribution of the residuals. After residual outlier detection and exclusion (± 3SD, N 

= 26), the Q-Q plot improved. In Model 2, visual assessments supported normal distribution 
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of the residuals and the need for outlier exclusion was not established. For more information 

about model diagnostics, please see Figures S2-S5 and Tables S1-S2 in Supplemental file 1. 

Finally, to plot the association between PMA and exponent / offset, quadratic term for PMA 

(PMA2) were added to Model 1 and 2 (see “Quadratic Mixed Effect Models” in Supplemental 

file 1). 

Linear regression models 

To map the estimates of Prematurity (term-born = 0, preterm = 1) for aperiodic parameters 

(exponent or offset) of fMRI BOLD signal across 90 different cortical and subcortical brain 

areas, the linear models following the formulas of the linear mixed effect regression models 

described above were used. For more detailed description, see “Linear Regression Models” in 

Supplemental file 1. 

Machine learning models 

The machine learning based data-analysis was performed using Python 3.8.347 in conjunction 

with external libraries Numpy 1.23.548, Pandas 2.0.349, Neurokit2 0.2.750 and Scikit-learn 

1.2.2.51 The script used for performing the machine learning based regression analyses is 

available in https://gitlab.utu.fi/ilksuu/fmri_aperiodic_parameters_neonatal_age_prediction. 

We predicted the participants’ PMA and postnatal age as target variables using a supervised 

machine learning regression model. For each target variable, we trained and tested a 

regression model with either exponent, offset or both kinds of parameters pertaining to all 

ROIs as predictors using repeated and nested 10-fold cross-validation algorithm. To control 

for the effect of preterm birth, we trained and tested the regression models separately for the 

full sample and term-born only participants. In addition to the exponent and offset parameters 

of the aperiodic component of the power spectra of the BOLD signals, no additional 

predictors were introduced to the machine learning models. Performing the machine learning 

based regression analysis separately using three sets of predictors (i.e., offset, exponent and 

both) on two subsets (term-born only and all participants) of the data in predicting two 

different age target variables (postnatal and postmenstrual age at scan) resulted in 12 

predictive models in total. 

We used ElasticNet52, an l1- and l2-regularized linear regression model to make predictions 

on the target variables and rank the predictors for interpretation using the models’ beta 
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coefficients. While l1-regularized regression (aka. LASSO) performs feature selection by 

enforcing sparsity, thus making the model more interpretable, it can lead to model instability 

if the features are highly correlated, which typically is the case with neuroimaging data.53 In 

contrast, ElasticNet accomplishes a grouping effect via l2-regularization, which is known to 

correct the instability-inducing tendency for arbitrary choice between correlated predictors54 

and is considered a standard predictive algorithm in machine learning based neuroimaging 

studies.53 ElasticNet finds the optimal model coefficients by minimizing β in the following 

formula: 

min� � �

��
� |�β � y|�

� �  α � ρ|β|�
� � ���� – 
�

�
� � |β|�

�  (2) 

Where β stands for the beta coefficients or “weights” of the model, α stands for the overall 

regularization strength and ρ stands for the ratio of l1-norm used in the regularization. 

To estimate the models’ predictive performance on previously unseen data with low bias and 

variance, we utilized 10-times repeated non-stratified nested k-fold cross-validation 

algorithm, with 10 outer and 5 inner folds for the purpose of grid search -based 

hyperparameter tuning, the hyperparameters in question being the ”α” and ”ρ” in the 

ElasticNet formula (2) (i.e., ”alpha” and ”l1_ratio” respectively, in the scikit-learn 

implementation). The beta coefficients of the trained models were averaged over folds and 

ranked based on average coefficient value for the purpose of feature importance analysis. For 

a discussion on the rationale for using nested cross-validation for unbiased model evaluation, 

see, e.g., Cawley and Talbot.55 

Prior to fitting the ElasticNet model, the data was standardized by subtracting the mean and 

scaling to unit norm – a recommended preprocessing step that is considered to have the effect 

of increasing the interpretability of the model.53 This preprocessing operation was performed 

in runtime and separately for each cross-validation fold in order to avoid data leakage from 

test set to the model, which could occur if such preprocessing was performed prior to splitting 

the data. 

Data availability  

The data that support the findings of this study are openly available in The National Institute 

of Mental Health Data Archive at https://nda.nih.gov/edit_collection.html?id=3955, reference 

number 3955. 
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Results  

The aperiodic fit was generally acceptable across the ROIs, but it was highest for 

somatosensory areas (Figure 1). There was also a trend of poorer fits towards the inferior 

parts of the brain that may be due to poor signal to noise ratio in those regions.39 

 

 

Figure 1 The FOOOF model fit group mean R2 values across the AAL areas. 

 

Effects of postmenstrual age at scan 

Postmenstrual age at scan was positively associated with the offset (estimate 0.06, SE 0.01, p 

< 0.001). Further, interaction effects showed that this association was statistically 

significantly dependent on ROI ((Table 1B: estimate 0.04, SE 0.01, p < 0.001). This means 

that the increase of one standard deviation (SD) in child PMA predicted a +0.06 change in 

offset in postcentral gyri and a +0.10 change in precentral gyri. In quadratic model, 

association between PMA and offset was nearly linear as presented in Figure S1 in 

Supplemental file 3. 

The main effect of PMA at scan was not statistically significantly associated with the 

exponent, but its interaction effect with ROI was statistically significant (Table 1A: estimate 

–0.03, SE 0.01, p = 0.002). This means that there was a crossover interaction, i.e., the 

association between PMA and exponent was dependent on the ROI. In postcentral gyri, the 

increase of one SD in child PMA predicted +0.02 change in exponent, while in precentral 

gyri, the corresponding change was negligible, –0.01. To see the relationship between 

predicted aperiodic parameters and child PMA, see Figure S2 in Supplemental file 3. In 
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quadratic model, association between PMA and exponent was reverse U-shaped as presented 

in Figure S3 in Supplemental file 3. 

Effects of postnatal age 

The negative association between child’s postnatal age and exponent was statistically 

significant (Table 2A: estimate –0.17, SE 0.03, p < 0.001). This association did not differ 

statistically significantly between the pre- and postcentral gyri, meaning that the increase of 

one SD in postnatal age predicts –0.17 change in exponent in both ROIs. 

The negative effect of postnatal age on offset was not statistically significant. However, its 

interaction effect with ROI was statistically significant (Table 2B: estimate –0.02, SE 0.01, p 

= 0.048). The result indicates that an increase of one standard deviation in postnatal age 

decreases the difference in offset values between the precentral and postcentral gyri by –0.02, 

resulting in the region-related difference disappearing at approximately 20 weeks of postnatal 

age. To see the relationship between predicted aperiodic parameters and child postnatal age, 

see Figure S1 in Supplemental file 3. 

Effects of prematurity 

Prematurity was negatively associated with the exponent (Table 2A: estimate = –0.17, SE 

0.08, p = 0.036). This means that exponent values were statistically significantly smaller (–

0.17 difference) in neonates born preterm compared to term-born neonates.  

Prematurity was nearly statistical significantly associated to offset (Table 2B: estimate -0.09, 

SE 0.05, p = 0.057). If true, this would mean that offset values are in general 0.09 smaller in 

preterm neonates compared to term born neonates. However, the interaction effect of 

prematurity and ROI was statistically significant (Table 2B: estimate 0.06, SE 0.03, p = 

0.048), indicating that effect of prematurity is even weaker in precentral gyri. To see the 

differences in predicted aperiodic parameters between the term-born versus preterm neonates 

visualized, see Figure 2. 

To see the cortical and subcortical projected estimates of prematurity from the linear 

regression models (exponent / offset) across all 90 different brain areas, please see the Figure 

3. After FDR correction, effect of prematurity on aperiodic exponent remained statistically 

significant only in two brain areas: right hippocampal (adjusted p = 0.009) and right 

parahippocampal (adjusted p = 0.029) areas. No statistically significant effects of prematurity 
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on aperiodic offset remained in any of the brain areas. All estimates, their p values, and FDR 

corrected p values are presented in Table S1 and S2 in Supplemental file 3. 

 Figure 2 Predicted aperiodic parameters (conditioned on random effects) in term-born 

vs. preterm neonates and females versus males from the pre- and postcentral gyri. (A) 

Aperiodic exponents. (B) Aperiodic offsets. 
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 Figure 3 Estimates from linear models for preterm birth (0 = term-born, 1 = preterm), 

projected onto cortex and subcortex. (A) Aperiodic exponent. (B) Aperiodic offset. 

Effects of sex 

In females, aperiodic exponents were smaller (Table 2A: estimate = –0.09, SE 0.03, p = 

0.006) and aperiodic offsets higher compared to males (Table 2B: estimate = 0.04, SE 0.02, p 

= 0.038). No statistically significant interactions between child’s sex and ROI were found. 

Regional and hemisphere-specific differences 

The offset values were higher in precentral gyri when compared to postcentral gyri (Table 

2B: estimate 0.12, SE 0.01, p < 0.001). There was no statistically significant association 
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between ROI (postcentral / precentral gyri) and exponent. In the right hemisphere, offset 

values were negligibly 0.01 higher than in left hemisphere (Table 2B: estimate = 0.01, SE = 

0.01, p = 0.048). Exponent values were not associated with the side of the hemisphere 

(right/left).  

 

 

 

Table 2. Results of the linear mixed-effects regression model for exponent (Table 2A) and 
Offset (Table 2B). 

Table 2A Estimate SE df t value p value 

Intercept  1.89 0.03 640 69.59 < 0.001 

PMA at scan  0.02 0.02 611 0.87 0.385 

ROI  0.01 0.01 1771 1.65 0.099 

Postnatal age  -0.17 0.03 611 -6.04 < 0.001 

Sex  -0.09 0.03 632 -2.76 0.006 

Prematurity  -0.17 0.08 631 -2.11 0.036 

Hemisphere  0.01 0.01 1770 1.66 0.098 

PMA 
at scan : ROI  

-0.03 0.01 1776 -3.12 0.002 

Postnatal age : R
OI  

-0.01 0.01 1772 -1.26 0.208 

Sex : ROI  0.02 0.01 1770 1.44 0.150 

Prematurity : ROI
  

0.03 0.03 1771 1.05 0.295 

Table 2B Estimate SE df t value p value 

Intercept  -3.50 0.02 749 -209.47 < 0.001 

PMA at scan  0.06 0.01 653 4.07 < 0.001 

ROI  0.12 0.01 1795 12.16 < 0.001 

Postnatal age  -0.02 0.02 664 -1.42 0.156 

Sex  0.04 0.02 700 2.08 0.038 

Prematurity  -0.09 0.05 686 -1.91 0.057 

Hemisphere  0.01 0.01 1794 1.98 0.048 

PMA 
at scan : ROI  

0.04 0.01 1799 4.88 < 0.001 

Postnatal age : R
OI  

-0.02 0.01 1794 -1.98 0.048 

Sex : ROI  0.02 0.01 1793 1.87 0.062 

Prematurity : ROI
  

0.06 0.03 1794 1.98 0.048 
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Machine learning results 

Predictive model performance was estimated separately using only offset-based predictors, 

only exponent-based predictors, and both types of predictors at once. Performance was also 

estimated separately for postnatal age and PMA at the time of scan as target variables, as well 

as for subset of the data containing only the term-born participants and all participants to 

control for the effect of preterm birth. For an estimate of the model’s generalization ability, 

the mean values of the repeatedly cross-validated test and train set performance estimates 

over the cross-validation folds were reported in terms of the coefficient of determination (R²) 

and the mean absolute error (MAE) in weeks of age. For the performance estimates for each 

of the different analysis settings, see Table 3 A-C. 

The cross-validated mean performance scores associated with the different settings of input 

and output variables demonstrate moderate to relatively high test performance for all such 

settings (Test R²’s 0.20–0.41). Offset predictors yielded generally somewhat higher 

performance estimates (0.24–0.36) for predicting both types of target variable than exponent 

predictors (0.20–0.36). Unsurprisingly the models trained with both types of predictors at 

once performed better than either type separately (0.24–0.41). As for the target variables, the 

models predicting postnatal age seem to perform better on term-born only subsample (0.36–

0.40) as compared to full sample (0.22–0.24), whereas models predicting PMA seem to 

perform better on full sample (0.20–0.41) than term-only subsample (0.31–0.35), with the 

exception of exponent predictor model predicting PMA (0.20). Comparing mean train 

performance scores to test performance scores demonstrates some amount of model 

overfitting despite the regularization mechanism inherent to the ElasticNet. 
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For the purpose of model interpretation via feature importance analysis, Figures S2 and S3 in 

Supplemental file 2 display the top-ranking positive and negative mean ElasticNet 

coefficients, while Figure 4 displays all mean ElasticNet coefficients projected onto 

corresponding regions of interest on the cortex and subcortex, across all cross-validation 

folds for each of the analysis settings on full-term subjects. For complete reports on 

ElasticNet mean coefficient values for each analysis setting, see Figures S4-11 in 

Supplemental file 2. 

 

 

Table 3. Cross-validated performance estimates. Reported in terms of mean R² and MAE (in 
weeks). N = 599 neonates (483 term-born). 

Table 3A Cross-validated performance estimates for analyses predicting postnatal and 
postmenstrual age at scan using offset features. 
 term-born 

postnatal 
full sample 
postnatal 

term-born 
postmenstrual 

full sample 
postmenstrual 

Train R² 0.502 0.309 0.475 0.502 

Test R² 0.363 0.238 0.320 0.350 

Train MAE 0.740 1.828 0.955 1.286 

Test MAE 0.826 1.884 1.075 1.420 

Table 3B Cross-validated performance estimates for analyses predicting postnatal and 
postmenstrual age at scan using exponent features. 
 term-born 

postnatal 
full sample 
postnatal 

term-born 
postmenstrual 

full sample 
postmenstrual 

Train R² 0.483 0.299 0.436 0.393 

Test R² 0.358 0.224 0.307 0.204 

Train MAE 0.749 1.822 0.983 1.369 

Test MAE 0.821 1.886 1.077 1.513 

Table 3C Cross-validated performance estimates for analyses predicting postnatal and 
postmenstrual age at scan using both offset and exponent features. 
 term-born 

postnatal 
full sample 
postnatal 

term-born 
postmenstrual 

full sample 
postmenstrual 

Train R² 0.579 0.318 0.565 0.668 

Test R² 0.403 0.243 0.354 0.411 

Train MAE 0.673 1.805 0.864 1.043 

Test MAE 0.789 1.868 1.039 1.319 
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Figure 4 Model beta coefficients for predicting the age of term-born participants on 

different analysis settings, projected onto cortex and subcortex. (A) predicting postnatal 

age with offsets. (B) Predicting postmenstrual age with offsets. (C) Predicting postnatal age 

with exponents predictors. (D) Predicting postmenstrual age with exponents.  

Discussion  

In this cross-sectional study, we used the aperiodic parameters of the BOLD signal power 

spectrum as a prospective index of brain maturation. Prematurity associated with lower 

offsets and exponents of aperiodic activity compared to term-born neonates. This reflects a 

flatter distribution of aperiodic signal activity (i.e., flattening power spectrum) across 

frequencies. The difference between preterm vs. term-born neonates was narrowly non-
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significant in offsets (p = 0.057) and significant in exponents (p = 0.036). The offsets were 

positively associated with PMA and negatively with postnatal age while for the exponents the 

association with PMA was not statistically significant and the association to postnatal age 

was strongly negative. Our findings indicate an increase in aperiodic activity with 

postmenstrual aging, followed by a decrease in the postnatal period (as presented in Figures 

S1 & S3 in Supplemental file 3). Finally, in our data driven machine learning based analyses, 

we observed relatively strong associations (R²’s 0.20–0.41) between aperiodic parameters of 

rs-fMRI BOLD signal and neonate age, demonstrating the feasibility of the methodology for 

studying functional brain maturation. 

Postmenstrual age and aperiodic parameters 

During gestation, there is a proliferation of neuroblasts and synaptogenesis, ultimately 

leading to the capability of neurons to fire repetitive action potentials. Additionally, 

spontaneous neural activity begins to occur in mid-gestation (approximately at gestation 

week 18).56,57 Given that asynchronous signals (i.e., offset) have been identified as a principal 

source of BOLD responses58 and further, electrophysiological power shifts have been shown 

to be reliable predictor of neuronal spikes59, our results could reflect increasing neuronal 

firing rates as a function of postmenstrual age during gestation.  

We chose the somatosensory regions for closer examination as they are known to be among 

the regions that mature early.3 Offset values were higher in precentral compared to 

postcentral gyri, indicating greater power of the BOLD signal in the precentral gyri. 

Considering offset as an indirect proxy of neural activity, this suggests higher neural activity 

in the precentral (motor) gyri compared to postcentral (somatosensory) gyri. However, this 

difference narrows down after birth as postnatal age increases. We observed an increase in 

exponent values in the postcentral gyri as a function of PMA while in precentral gyri, no 

noticeable change was detected. This suggests that the aperiodic activity distribution steepens 

in the postcentral gyri as a function of postmenstrual age. Given that  in previous EEG 

studies, flattening of the power spectrum has been linked to postnatal aging27–30,34, our results 

could indicate earlier maturation of the precentral (motor) gyri compared to postcentral 

(somatosensory) gyri during gestation. This aligns with an earlier diffusion tensor imaging 

study of preterm newborns, which found higher fractional anisotropy and lower diffusivity in 

motor tracts compared to sensory tracts, reflecting earlier white matter maturation of motor 

system compared to sensory pathways.60 
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It is important to note that our study focused on changes in the low-frequency power 

spectrum of the BOLD signal (0.01–0.15 Hz), and caution is warranted when comparing our 

results to prior EEG literature. However, previous studies on fractional low-frequency 

fluctuation (fALFF) activation in adults have reported negative correlations between age and 

the fALFF activation in adults61,62, and fALFF activation has been demonstrated to be a valid 

predictor of age in children.63 These findings suggest a trend towards less prominent low-

frequency fluctuations as a function of age also in the BOLD-signal. Additionally, we found 

slightly higher offset values in the right hemisphere compared to the left hemisphere, 

indicating greater power of the BOLD signal in the right hemisphere. However, it should be 

noted that the difference was negligible, only 0.01. Previous studies align with our findings, 

suggesting earlier maturation of the right hemisphere, as cortical folding occurs earlier in the 

right hemisphere in fetuses. Furthermore, a general functional dominance (except for 

linguistic stimuli) of the right hemisphere has been described in fetuses, neonates and 

preterm-born infants.64 

Postnatal age and aperiodic parameters 

Our finding of decreasing exponent values (flattening power spectrum) as a function of 

postnatal age is consistent with several previous EEG studies, such as a longitudinal study in 

infants27,  and several cross-sectional studies during early childhood to adolescence28,29 and 

into early-adulthood.30 However, these associations between age and aperiodic parameters are 

not necessarily linear throughout the lifespan, as McSweeney et al.34 demonstrated quadratic 

age-related changes of offset and exponent values during the childhood (in 4-11 year-olds). 

Our findings suggest that after birth, in the very early stages of brain maturation, the 

distribution of aperiodic activity (power of BOLD signal) on different frequencies changes 

(flattens). This could reflect the emergence of more widespread or global neural processes 

during aging, or as discussed above, changes in brain volume or myelination. In EEG, 

changes in the steepness of the slope of power spectrum have been thought to reflect cortical 

synaptic excitation–inhibition (E–I) balance65, undergoing changes from the very early stages 

of development onwards.66 In animal studies, a steeper spectral slope (higher exponent) has 

been correlated to reduced E-I balance in macaque and rat cortices, possibly due to greater 

gamma-aminobutyric acid (GABA) synapse density.65 The aperiodic exponent has been 

implicated in pathology in Attention Deficit Hyperactivity Disorder (ADHD)67,68 and autistic 

traits.69 An optimal E-I balance may play a crucial role in typical brain development, as 
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medical treatment has been shown to lead to the “normalization” of E-I balance (exponent) in 

ADHD children.68 More studies examining the age-related changes of the periodic and 

aperiodic parameters of the fMRI BOLD signal, especially longitudinal ones, are required. 

Preterm birth and aperiodic parameters 

In our study, we observed smaller exponents in preterm neonates compared to term-born 

neonates indicating a more flattened BOLD power distribution across frequencies. Parallel 

trend was seen with offsets, but the association did not reach statistical significance.  Given 

the increasing trend in exponent values during postmenstrual aging, our findings likely reflect 

the shorter duration of pregnancy in preterm compared to term-born neonates. Our finding is 

consistent with previous fMRI BOLD signal study demonstrating altered low-frequency 

fluctuation amplitudes in preterm newborns, particularly in the motor and primary sensor 

cortices.70 As discussed earlier, a flattened power spectrum, at least according to prior EEG 

literature, may indicate a shift towards excitation, reflecting the changes in the E-I balance. 

Prior research has shown that preterm-born children often face delay in inhibition abilities, 

though most behavioral studies suggest that they catch up with their peers by late 

childhood.71 Alternatively, smaller exponents may reflect more rapid postnatal neural 

maturational processes in preterm versus term-born neonates. Follow-up studies are needed to 

investigate whether the trajectory of aperiodic parameters continues to evolve throughout the 

lifespan. 

Sex and aperiodic parameters 

We observed smaller exponents and higher offsets in females compared to males. Sex-

dependent differences in brain development have been described in previous studies, 

including increased functional connectivity of the visual association network in female 

infants25 and higher fractional anisotropy in females within the posterior and temporal white 

matter in 5-year- olds.72 Our findings align with these studies, tentatively suggesting faster 

brain maturation (stronger flattening of the power spectrum) in females. Further studies are 

needed to examine whether these sex-specific differences persist into later childhood. 
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Machine learning based age prediction 

In our machine learning based analysis, we found that both aperiodic parameters of the 

BOLD signal can be used to predict neonate age with moderate to relatively high 

performance (R²’s 0.20–0.41). The offset parameter generally yielded slightly higher 

prediction performance estimates than the exponent parameters, and using both kinds of 

parameters further improved the prediction performance estimates. We used machine 

learning to provide support for aperiodic parameters as a viable measure of brain maturation 

and this approach has connections to an emerging field aims to predict age from the brain 

images. Previously, Kardan et al.73, predicted infants’ postnatal age from rs-fMRI data as a 

regression task with high performance (median R2 = 0.51), but it should be noted that the 

dataset differed from that of the present study, especially in that the subjects’ ages were 

considerably higher and spanned a wider range (8–26 months). Majority of preceding studies 

in predicting neonate or infant age have been performed using structural24,74,75 or multi-

modal76–78 MRI data. The few studies focusing on predicting neonate or infant age using 

functional MRI are mostly implemented as classification tasks79,80, with Smyser et al.80 also 

modeling age from gestation at term age as a regression task. Regarding regional associations 

between rs-fMRI and age, Dosenbach et al.81 found anterior prefrontal cortex and precuneus 

to contribute most to age predictions on older subjects between 7 to 30 years. Brain age 

prediction has many potential uses as means to gain insights to normal development and the 

brain age estimates in turn can be used as predictor for various brain conditions and disorders, 

to be further used in clinical context.82,83  Systematic bias in age estimations has been 

reported84, inviting for more comprehensive models to be used to avoid overestimation of age 

in young subjects.  

Limitations 

It should be noted that our study design is cross-sectional and therefore no assumptions about 

individual changes in the pace of brain maturation can be made. However, owing to our large 

sample size, we are confident that our group-level findings are generalizable to a larger 

population. While the cross validated test performance estimates demonstrate relatively high 

generalization ability of the model, it should be noted that the training performances are 

considerably better, implying overfitting despite model regularization.85 Among new-born 

infants, sleep-wake patterns start to evolve soon after birth, first changing rapidly during the 

first few months after birth from relatively quiet and active sleep phases to structured non-
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rapid eye-movement and rapid eye-movement sleep.86–88 Their sleep is dispersed unevenly 

throughout the day89 and uncertainty as to the state of wakefulness or the stage of sleep at the 

time of scan can complicate the interpretation of fMRI.53 Because such effect is very difficult 

to avoid in this age group, we assume that changes in aperiodic parameters are related to 

aging, premature birth, and sex of the neonates. It has been demonstrated that functional 

connections strongly related to age as a target variable are more intercorrelated than expected 

by chance, providing redundant information ultimately resulting in unreliable weights.90 

While our study used BOLD signal parameters as features, rather than functional 

connections, similar limitation may apply to the interpretability of our analysis as well. 

Finally, in our data set, the variation of the postnatal age in neonates was low, due to the 

choice of performing the scans close to birth. This led to highly skewed distribution of the 

infant age data. However, the visually inspected diagnostics of the linear regression models 

were acceptable. 

Conclusions 

In this study we showed differences in aperiodic parameters of rs-fMRI BOLD signal in 

preterm vs term-born neonates and between males and females. We also demonstrated the 

applicability of those aperiodic parameters for the purpose of machine learning based neonate 

age prediction with relatively high performance (R² = 0.41) and identified the most important 

ROIs to that end. Based on our results, we consider the rs-fMRI BOLD signal and its 

aperiodic component a viable functional brain metric for quantifying brain maturation in 

neonates. In addition to that, we hope that our results will enable more precise surveying of 

the neural origins of developmental conditions and disorders. 
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