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Abstract

Lung cancer survival prediction is a critical task in healthcare, where accurate and
timely predictions can significantly impact patient outcomes. In hospital settings, new
patient data is constantly generated, requiring predictive models to adapt without
forgetting previously learned knowledge. This challenge is intensified by the need to
seamlessly integrate complex multimodal data, such as imaging, DNA, and patient
records. Traditional Deep Learning (DL) models, while powerful, often suffer from
catastrophic forgetting during incremental learning, further complicating the task of
reliable survival prediction in dynamic environments. To address these challenges, we
introduce a hybrid Continual Learning (CL) framework that integrates Elastic Weight
Consolidation (EWC) with replay-based modules, including EWC Experience Replay
(ER), Instance-Level Correlation Replay (EICR), and Class-Level Correlation Replay
(ECCR). The ER module preserves knowledge by replaying representative samples from
previous data, mitigating interference from new data. The EICR module ensures the
retention of fine-grained feature patterns through inter-instance relationship modeling,
while the ECCR module consolidates global knowledge across tasks using random triplet
probabilities to preserve inter-class correlations. Together, these components create a
robust framework, addressing catastrophic forgetting while enhancing adaptability for
real-time survival prediction. Another critical challenge is the limitations of
Convolutional Neural Networks (CNNs), which tend to miss ground-glass opacities or
tiny tumor features in CT and PET images due to their reliance on datasets similar to
their pretraining data. To overcome this, we propose a Swin Transformer (SwinT)-based
method to extract critical features, addressing CNN shortcomings in such multimodal
scenarios. Additionally, XLNet-permutation enriches multimodal analysis by effectively
handling small DNA datasets and capturing latent patterns, whereas Fully Connected
Network (FCN) process clinical features. A cross-attention fusion mechanism integrates
clinical, CT, PET, and DNA data, producing a robust survival prediction model. The
final prediction is guided by FCN and Cox Proportional Hazards (CoxPH) techniques,
achieves state-of-the-art performance with a 7.7% concordance index (C-Index)
improvement (0.84), a mean absolute error (MAE) reduction to 140 days, and
minimized forgetting to 0.08. Ablation studies demonstrate the importance of the DNA
modality, cross-attention mechanism, and CL strategies, advancing adaptive survival
prediction and stability.

1 Introduction 1

Lung cancer is one of the most common malignancies worldwide and accounts for 18% 2

of cancer-related deaths [1]. In the field of lung cancer survival analysis medical data 3

such as clinical (patient observation data), Computed tomography (CT), Positron 4

emission tomography (PET), and DNA genomic mutation single nucleotide 5

variants(SNV), Heterozygous (HETE), and Homozygous (HOMO) is essential for the 6

early detection, monitoring, diagnosis and treatment of this disease.Traditionally, 7

radiologists and medical experts rely on visual inspection of medical images to identify 8

tumor instances or other relevant factors, often supplemented by patient history and 9

experimental records. This process is time-intensive and prone to inaccuracies, as 10

survival time predictions and treatment decisions are frequently influenced by clinicians 11

subjective knowledge and experience. While DL models have been employed to improve 12

prediction accuracy, they face notable challenges. CNNs, for instance, struggle with 13

detecting small or multiple tumor instances in high-resolution medical images [2, 3]. 14

Additionally, the integration of heterogeneous data sources, such as clinical, imaging, 15

and genomic datasets, further complicates survival prediction due to differences in 16
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feature representation. 17

An equally critical challenge in survival prediction lies in the application of CL, 18

where models must incorporate new data without overwriting prior knowledge a 19

phenomenon termed catastrophic forgetting [4]. CL methods have emerged as a 20

promising solution, enabling models to maintain and adapt existing knowledge while 21

processing new tasks [5]. Existing CL strategies can be broadly categorized into 22

regularization-based methods [6, 7], structure-based approaches [8–11], and replay-based 23

techniques [12–14]. Replay-based methods, in particular, mimic human learning by 24

selectively storing and reviewing past experiences, offering a computationally efficient 25

way to alleviate forgetting. Classical replay techniques [13], such as Experience Replay, 26

have demonstrated impressive performance by replaying a mix of previous and current 27

tasks to reinforce learned patterns. However, conventional methods often overlook 28

critical aspects, such as preserving the instance-level and class-level correlations 29

essential for maintaining structural consistency across tasks. Additionally, when the new 30

data are large or complex, replay-based methods with memory buffers alone can fall 31

short. In such cases, EWC offers a complementary solution, particularly when 32

integrated with replay-phase strategies. 33

To address these gaps, this study proposes a hybrid CL framework combining EWC 34

with replay-based modules: ER, EICR, and ECCR. Each module serves a distinct 35

purpose: ER ensures the retention of fundamental knowledge by replaying a mix of past 36

and current tasks, promoting gradual and stable learning, EICR maintains consistency 37

at the instance level by constructing a correlation matrix that captures inter-instance 38

relationships, preserving structural information critical to individual data points, and 39

ECCR reinforces class-level consistency by leveraging contrastive learning principles, 40

particularly using random triplet mechanisms (anchor, positive, and negative) to 41

maintain clear boundaries between classes, ensuring distinctions like tumor and 42

non-tumor regions are preserved over time. This combination enables a robust 43

mechanism to mitigate catastrophic forgetting while ensuring scalability for complex 44

data. 45

Our approach integrates these strategies with FCN for maintaining clinical features 46

sequecnces with other modalaties and SwinT for feature extraction, enhancing the 47

detection of critical tumor features such as ground-glass opacities and small tumor 48

instances from CT and PET images. Moreover, XLNet-permutation is employed to 49

effectively handle small DNA datasets, uncovering latent genomic patterns that enrich 50

multimodal survival prediction. Finally, a cross-attention fusion mechanism integrates 51

clinical, CT, PET, and DNA data, ensuring comprehensive and robust survival 52

predictions via CoxPH modeling. The overall framework is shown in Fig 2. In summary, 53

there are primary highlights of our research: 54

• We introduced a hybrid CL framework that integrates EWC with Replay-phase 55

mechanisms, addressing catastrophic forgetting and enabling dynamic adaptation 56

for lung cancer survival prediction. 57

• We developed three complementary replay and EWC-based mechanisms ER, 58

EICR, and ECCR within the hybrid framework. ER retains fundamental 59

knowledge, EICR preserves inter-instance relationships, and ECCR maintains 60

robust class-level boundaries, collectively enhancing scalability for large or 61

complex datasets. 62

• We employed a SwinT-based feature extraction method that significantly improves 63

the detection of critical lung cancer features, including ground-glass opacities and 64

small tumor instances in CT and PET scans. 65

• Leveraged XLNet-permutation to effectively process small DNA datasets, 66
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uncovering latent genomic patterns and enriching the multimodal survival 67

prediction framework. 68

• Inspired by cross-attention fusion techniques, we developed a novel cross-attention 69

strategy to integrate clinical, CT, PET, and DNA data, ensuring comprehensive 70

survival prediction using CoxPH modeling with real-time adaptability through CL 71

techniques. 72

• We conducted a thorough ablation study and comparative evaluation with 73

state-of-the-art models, demonstrating the superior performance and robustness of 74

the proposed hybrid CL-based multimodal framework. 75

This paper is organized as follows: Section 2 reviews related work in survival 76

prediction and continual learning. Section 3 discusses this research background. 77

Section 4 describes the proposed framework and methodological innovations. 78

Experimental setup are presented in Section 5, Experimental results and evaluations are 79

presented in Section 6, followed by conclusions and future directions in Section 7. 80

2 Related work 81

Lung Cancer in survival prediction 82

Survival prediction for lung cancer is critical for guiding personalized treatment 83

strategies and improving patient outcomes. Lung cancer research focuses on predicting 84

survival time, recommending optimal treatments, and providing comprehensive 85

prognosis insights based on clinical and imaging data. A notable advancement in this 86

domain was made by Sesen et al. [15], who utilized the LUCADA dataset to develop a 87

framework for predicting 1-year survival rates while simultaneously recommending 88

treatment plans for lung cancer patients. Building on this, Yu et al. [16] improved 89

survival prediction by modeling survival distributions as a series of dependent tasks. 90

They used sequential regressors to capture the temporal relationships in survival data, 91

thus enhancing the accuracy of predictions. Paul et al. [17] further demonstrated the 92

potential of deep learning in survival prediction by extracting features from CT images 93

of lung cancer patients using CNNs and applying a nearest neighbor classifier for 94

survival estimation. This integration of imaging features has paved the way for 95

leveraging high-resolution imaging data in survival prediction tasks. Similarly, 96

advancements in combining imaging with multimodal datasets have strengthened 97

survival prediction frameworks, as demonstrated in broader studies addressing cancer 98

survivability [18]. While these works emphasize the importance of data-driven modeling 99

in lung cancer survival prediction, they also reflect the challenges of integrating diverse 100

data types and maintaining consistency in predictions across heterogeneous datasets. 101

The continued refinement of imaging techniques, multimodal integration, and 102

personalized modeling is essential for improving the clinical applicability of survival 103

prediction frameworks in lung cancer. 104

Advancements in Deep Learning for Survival Prediction 105

DL has emerged as a transformative approach in survival prediction, providing 106

enhanced capabilities for handling complex medical data. Traditional survival models 107

like Cox regression often struggle to capture nonlinear relationships in high-dimensional 108

data. To address this limitation, neural networks have been adapted to optimize Cox’s 109

negative partial likelihood, leading to improved or comparable performance in survival 110

predictions, particularly when analyzing challenging medical imaging data [19,20]. 111
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Recent advancements include CNN-based survival models that integrate DL with 112

clinical outcomes. For example, Zhu et al. introduced DeepConvSurv, a model that 113

combines CNNs with Cox regression to predict survival from regions of interest (ROIs) 114

in lung cancer histology images, offering hazard rate predictions at a patch level [21]. 115

Similarly, Mobadersany et al. developed Survival CNNs, leveraging high-power fields 116

(HPFs) from ROIs to provide patient-level survival predictions by aggregating median 117

risks [22]. Further enhancing these techniques, Yao et al. proposed Deep Attention 118

Multiple Instance Survival Learning (DeepAttnMISL), utilizing attention-based 119

aggregation for whole-slide image (WSI) feature learning [23]. This approach addressed 120

the limitations of patch-level predictions by clustering WSI patches into more 121

meaningful groupings, ensuring robust patient-level hazard rate estimation. 122

Building on these DL advancements, techniques such as Multiple Instance Learning 123

(MIL) have further enhanced survival prediction, especially in weakly supervised 124

settings where only patient-level labels are available. MIL frameworks often employ 125

CNNs to generate instance-level embeddings, followed by aggregation networks that 126

compute bag-level predictions. For instance, Wang et al. applied recalibrated MIL to 127

gastric cancer classification [24], while Liu et al. utilized landmark-based MIL for brain 128

disease diagnosis [25]. The integration of MIL with DL has enhanced survival modeling 129

by facilitating the analysis of large-scale datasets and enabling the aggregation of 130

complex patterns from ROIs or patches. Aggregation methods in MIL have evolved 131

from naive approaches, such as averaging or selecting extreme hazard rates, to more 132

sophisticated trainable techniques. Non-trainable methods, while computationally 133

simple, fail to capture intricate interrelations between patches. In contrast, trainable 134

aggregation methods, such as RNN-based and attention-based techniques [24,26,27], 135

have shown superior performance in representing the survival function by learning the 136

underlying relationships within the data. Despite significant advancements, existing 137

DL-based frameworks often struggle with the effective integration of multimodal data, 138

such as clinical, imaging, and genomic information. To address these challenges, our 139

proposed multimodal model leverages FCN for clinical data, SwinT for imaging data, 140

XLNet for genomic data, and a cross-attention mechanism to facilitate seamless 141

integration across modalities, followed by FCN refinement within the CoxPH framework 142

for prediction. While these innovations enhance survival predictions, existing models 143

face persistent difficulties in adapting to continuously evolving datasets without 144

overwriting prior knowledge. This limitation highlights the critical need for CL 145

strategies, which are discussed in the next section. 146

Continual Learning in Survival Prediction 147

CL focuses on the progressive acquisition of knowledge from an ever-growing stream of 148

data while retaining previously learned information. This capability is vital in 149

real-world scenarios, where survival prediction models must adapt to evolving datasets 150

without compromising the knowledge gained from prior tasks [4, 28,29]. However, a 151

significant challenge in CL is catastrophic forgetting, where neural networks tend to lose 152

previously acquired knowledge when trained on new tasks. To address this issue, 153

researchers have developed several CL strategies, which can be broadly categorized into 154

regularization-based, structure-based, and replay-based methods. 155

(i)Regularization-Based Methods: These approaches mitigate forgetting by constraining 156

changes to model parameters during new task learning. Methods like EWC [30] 157

introduce a quadratic penalty to balance parameter updates for old and new tasks. 158

Similarly, Synaptic Intelligence [31] identifies parameters critical to previous tasks and 159

penalizes their changes. Learning without Forgetting [7] employs knowledge distillation 160

to transfer knowledge into a smaller model while retaining prior information. (ii) 161

Structure-Based Methods: These methods allocate specific model components to 162
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individual tasks, isolating knowledge to prevent interference. Progressive Neural 163

Networks [8], for example, introduce separate networks for new tasks while leveraging 164

earlier models for assistance. Although effective in reducing forgetting, these methods 165

demand significant computational and memory resources due to the need for additional 166

storage of task-specific parameters [9, 11, 32]. (iii) Replay-Based Methods: Replay-based 167

methods alleviate forgetting by selectively replaying stored samples from previous tasks 168

during training. Approaches like Experience Replay [13] combine stored and current 169

data in mini-batches to train the model. Extensions like Dark Experience Replay [14] 170

incorporate knowledge distillation to preserve the consistency of model logits over time. 171

Variants such as Gradient Sample Selection [33] and Hard Anchor Learning [34] enhance 172

the rehearsal process by prioritizing critical samples or introducing anchoring objectives 173

to retain key information. Unlike conventional methods that rely solely on replay 174

strategies, our approach overcomes the limitations posed by large-scale data. As 175

memory size grows, traditional replay methods become less efficient and scalable. By 176

incorporating EWC, we mitigate this issue through selective parameter regularization, 177

reducing dependency on memory buffer size while enhancing knowledge retention. 178

To address the unique challenges of survival prediction in multimodal data, we 179

propose a hybrid CL framework that combines the strengths of EWC and replay 180

strategies. This framework introduces three key modules ER, EICR, and ECCR—to 181

enhance adaptability and robustness. The ER Module merges EWC’s 182

parameter-regularization capabilities with replay-based sample rehearsals. It calculates 183

the total loss as the sum of the standard loss for new data and the EWC loss, which 184

penalizes changes to parameters deemed important by the Fisher Information Matrix 185

(FIM). This mechanism balances the retention of previous knowledge and the 186

integration of new information. The EICR Module emphasizes maintaining 187

instance-level consistency by constructing a correlation matrix that captures 188

inter-instance relationships within the replay buffer. This matrix encodes structural 189

information critical to preserving the alignment of feature representations of individual 190

samples across tasks. The loss function is designed to penalize deviations from these 191

relationships during incremental learning, ensuring fine-grained control over forgetting 192

at the instance level. Additionally, the ECCR Module preserves class-level interactions 193

by leveraging triplet-based learning. For each sample, an anchor, a positive (from the 194

same class), and a negative (from a different class) are selected. The triplet loss ensures 195

that the anchor-positive pair is pulled closer together while the anchor-negative pair is 196

pushed further apart in the feature space. This mechanism not only maintains clear 197

class boundaries, such as distinguishing tumor from non-tumor regions, but also 198

reinforces the model’s understanding of inter-class relationships over time. 199

Each module (ER, EICR, and ECCR) integrates seamlessly into the overarching 200

process, which operates through four critical phases: training, replay, prediction, and 201

memory buffering. These phases collectively ensure the model’s ability to adapt to new 202

datasets while preserving prior knowledge. By addressing the limitations of existing CL 203

frameworks with advanced loss mechanisms tailored to each module, our hybrid 204

approach fosters robust and adaptive survival prediction models designed for the 205

complexities of multimodal data. 206

3 Background 207

Since lung cancer is one of the leading causes of cancer related deaths worldwide, early 208

and precise survival projections are crucial for enhancing patient outcomes and clinical 209

judgment. These forecasts are essential for directing treatment decisions and improving 210

care plans. A crucial component of this process is the TNM staging system, developed 211

by the American Joint Committee on Cancer (AJCC) and the International Union 212
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Against Cancer (UICC) [35]. This globally recognized system assesses the severity and 213

spread of cancer in the body, where T describes the size of the tumor, N represents the 214

spread to nearby lymph nodes, and M indicates metastasis to other body parts. In 215

addition to TNM staging, other patient-specific attributes such as gender, age, smoking 216

status and amount, survival time, and overall clinical stage play a critical role in 217

survival prediction. Together, these multimodal data points offer a comprehensive view 218

of a patient’s condition, enabling clinicians to make informed decisions about treatment 219

strategies. However, leveraging these diverse data types to predict patient survival poses 220

significant challenges in dynamic hospital environments. New patient data, including 221

imaging, DNA, and updated medical records, is generated daily, requiring predictive 222

models to adapt continually without losing prior knowledge. Conventional models for 223

DL, while effective in processing complex datasets, often struggle with catastrophic 224

forgetting where learning from new data overwrites previously acquired knowledge. This 225

limitation undermines the reliability of survival predictions and hampers the integration 226

of multimodal data in rapidly evolving clinical settings. To address this, hybrid CL 227

strategies have emerged as a promising solution. Replay-based methods, which use 228

memory buffers to retain critical information from previous data, are particularly 229

effective for incremental learning. However, replay-based approaches alone may not be 230

sufficient when the new data is big or complicated, such as when imaging, DNA profiles, 231

and behavioral records are combined to predict lung cancer. [36]. In these situations, 232

EWC offers a complementary approach, preserving important parameters from previous 233

tasks by penalizing updates to critical weights. When integrated with replay-phase 234

strategies, EWC enhances the model’s ability to adapt to new data while maintaining 235

prior knowledge, ensuring more robust and reliable performance. For instance, imagine 236

a hospital managing the care of a lung cancer patient. Integrating TNM stages, imaging 237

data, and behavioral attributes such as smoking history into a predictive model could 238

help clinicians project the patient’s five-year survival probability, enabling timely 239

interventions and tailored care. Without robust hybrid CL strategies, the model’s 240

predictions might falter as it struggles to balance new and existing knowledge. By 241

combining replay-based methods with EWC, these challenges can be mitigated, 242

advancing the field of survival prediction and ensuring predictive models remain reliable, 243

adaptable, and effective in modern healthcare environments. 244

Another challenge is accurate feature extraction from medical imaging is critical for 245

lung cancer survival prediction, as CT and PET scans provide valuable insights into 246

tumor size, texture, and spread. Although, traditional methods, particularly those 247

relying on CNNs, face significant limitations. CNNs are quite good at seeing patterns in 248

pictures, but they frequently have trouble capturing microscopic or subtle features like 249

tiny cancers or ground-glass opacities, which are crucial in lung cancer diagnosis and 250

prognosis. The challenge arises because these models are typically pretrained on 251

datasets like ImageNet, which do not capture the complex, specialized features found in 252

medical imaging. This makes them less effective for medical applications, where the 253

data has unique characteristics that require tailored models. Additionally, CNNs tend 254

to focus primarily on local features, resulting in the loss of adjacent pixel and vertex 255

information when images are resized or processed. This can hinder the detection of 256

critical tumor features embedded in the broader anatomical context. For instance, as 257

illustrated in Fig 1, a comparison of CNN models such as MobileNetV4, ResNet-50, 258

VGG19, and EfficientNetV4 reveals suboptimal performance in capturing fine-grained 259

medical imaging features between ImageNet. Feature visualization maps for these 260

models demonstrate their dominant focus on high-level patterns rather than the 261

intricate details needed for precise lung cancer analysis. 262

To overcome these limitations, advanced techniques like the SwinT offer a promising 263

alternative. Unlike Vision Transformers (ViT), which employ global attention across the 264
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Fig 1. Comparison of feature extraction performance across CNN models (MobileNetV4, ResNet-50, VGG19, and
EfficientNetV4) trained on ImageNet versus a medical imaging dataset. The visualization maps highlight the differences in
feature focus, with ImageNet-trained models demonstrating limited sensitivity to fine-grained details.

entire image, the SwinT introduces Shifted Window Attention to partition images into 265

non-overlapping windows and apply self-attention locally within these regions. This 266

localized attention mechanism allows the SwinT to efficiently capture fine details, such 267

as tiny tumors, while also preserving the ability to learn long-range dependencies across 268

the image. This architectural advantage is particularly relevant for medical imaging 269

tasks, as it enables the detection of small tumor features within a larger anatomical 270

structure critical for accurate staging and treatment planning in lung cancer. 271

Furthermore, the SwinT’s ability to adapt to diverse medical imaging datasets ensures 272

that models are not limited by biases inherent in pretrained datasets like ImageNet. By 273

incorporating such cutting-edge techniques, this research aims to enhance imaging 274

feature extraction and ultimately improve lung cancer survival prediction in real-world 275

clinical settings including CL strategies. 276

4 Method 277

This study introduces a novel hybrid CL strategy that combines EWC and 278

Replay-based methods within a multimodal network, enabling incremental updates of 279

model parameters and refinement of survival predictions for lung cancer patients. The 280

framework integrates both previously trained knowledge and newly acquired CT, PET, 281

clinical, and DNA data. Our approach employs an enhanced feature extraction 282

mechanism based on the SwinT, which effectively addresses the limitations of 283

conventional CNN models pre-trained on datasets like ImageNet, which often fail to 284

capture critical features, such as ground details and multiple tumor instances in CT and 285

PET scans. Additionally, we leverage permutation-based XLNet techniques to learn 286

contrastive patterns in DNA data, mitigating the challenges posed by the limited size of 287

DNA datasets within the context of large-scale multimodal data. Clinical data are 288

processed through an FCN network for sequential learning. To achieve adaptive and 289

accurate survival prediction, we integrate clinical, CT, PET, and DNA data using a 290

cross-attention fusion mechanism, which is further complemented by FCN through 291

CoxPH modeling and a robust CL framework. The methodological overview of the 292

proposed framework is illustrated in Fig 2. 293

Fig 2. Overview of the proposed method. The framework is designed to address catastrophic forgetting in CL through a
four-phase structure: training, replay, prediction, and memory buffer. During the training phase, the model sequentially
learns from the current task data, organized into mini-batches. Concurrently, previously learned data stored in the memory
buffer is retrieved and replayed using three hybrid EWC-based replay modules Experience, Instance-Level, and Class-Level
Correlation replay which mitigate forgetting by locking important weights, applying penalties, and preserving inter-instance
and inter-class relationships. Preprocessing operations are applied to both current and replayed data to enhance diversity
and ensure compatibility. After the replay phase, the memory buffer is updated with representative samples from the current
task, selected based on the CL strategy to maintain a compact yet informative buffer. The updated model then transitions
to the prediction phase, where it estimates lung cancer survival probabilities. The legend in the upper-right corner provides
additional visual guidance.
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Hybrid Incremental Learning Process 294

The process begins by training the base model using clinical, CT, PET, and DNA data. 295

Clinical and imaging data are processed through FCN, SwinT, and XLNet, with a 296

cross-attention mechanism integrating all modalities into the CoxPH framework for 297

seamless prediction. During this phase, a replay memory (RM) buffer is initialized to 298

store previously learned data, ensuring that valuable knowledge is preserved. As new 299

data becomes available, it is preprocessed and used to update the memory buffer, where 300

both old data (from previous training) and new data (from the most recent batch) are 301

stored. The model retrains incrementally using data from the memory buffer, which 302

includes both old and new data, to prevent catastrophic forgetting. The loss function 303

during incremental training consists of two key components: the standard loss, which is 304

based on the new data, and the EWC loss, which penalizes significant changes in the 305

model’s weights to preserve previously learned knowledge. The total loss is calculated as: 306

Ltotal = Lnew + λ
∑
i

Fi(θi − θ∗i )
2 (1)

Where: 307

• Lnew is the standard loss for the new data. 308

• λ is a hyperparameter controlling the strength of the EWC penalty. 309

• Fi is the Fisher information for the i-th model parameter, which reflects the 310

importance of that parameter in retaining knowledge. 311

• θi is the current value of the parameter, and θ∗i is the value from the original 312

model. 313

In addition to EWC, techniques such as ER, EICR, and ECCR are integrated into 314

the training process. The ER module aids in replaying representative samples from the 315

memory buffer, mitigating the interference from new data by ensuring that important 316

past information is not lost. The EICR module preserves fine-grained feature patterns 317

by constructing a correlation matrix that captures inter-instance relationships, helping 318

maintain structural information critical to individual data points. The ECCR module 319

consolidates global knowledge by preserving inter-class relationships, achieved through 320

balanced sampling and a triplet loss function that ensures clear boundaries within 321

classes. FIM plays a crucial role in EWC by determining the significance of each 322

parameter’s adjustment. It does this by calculating the second-order derivatives of the 323

loss function with respect to each parameter, guiding the penalty for weight changes 324

during incremental learning. This hybrid CL framework ensures that the model adapts 325

to new data while retaining knowledge from previous tasks. At the conclusion of this 326

process, the CoxPH model is used to predict the 5-year survival probability for each 327

patient. This process is depicted in Fig 3, and a detailed explanation of each hybrid 328

technique is provided in Fig 4. 329

Fig 3. Overview of the Hybrid continual learning flowchart for incremental survival prediction.

Continual Learning Approaches 330

In lifelong learning, a critical challenge lies in addressing catastrophic forgetting, where 331

a model loses essential knowledge about previously learned tasks as it incorporates new 332

data. This issue becomes particularly significant in scenarios requiring continual data 333

integration over time, as the influx of new data risks exceeding the capacity of the 334
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memory buffer, which is designed to store only a limited subset of representative 335

samples from prior tasks. For lung cancer survival prediction, where CL strategies 336

remain largely unexplored, effectively managing memory constraints while ensuring 337

adaptability to evolving data is vital. This requires innovative methods to maintain a 338

balance between retaining past knowledge and learning from new patient data without 339

compromising prediction accuracy. In our approach, we proposed a hybrid CL 340

framework to tackle these challenges by combining replay-based mechanisms with EWC. 341

Specifically, we integrate three types of hybrid techniques: ER, EICR, and ECCR. 342

These methods aim to balance learning from new data while preserving essential 343

knowledge from previous tasks by applying selective penalties on parameter updates 344

and leveraging correlations among instances and classes. When new patient data arrives, 345

it is first preprocessed and added to the memory buffer alongside representative samples 346

from previously encountered data. During the retraining phase, the model jointly learns 347

from this combined dataset, ensuring that the replayed data prevents catastrophic 348

forgetting. The memory buffer selectively retains data based on importance, and 349

penalties are applied to sensitive model parameters to protect previously learned 350

features. This replay-based strategy enables the model to adapt to new data while 351

maintaining performance on prior data. 352

Finally, during the prediction phase, the updated model predicts survival 353

probabilities using the fused information from multiple modalities (clinical, DNA, CT, 354

and PET). This comprehensive workflow, illustrated in Fig 2, shows the interplay of the 355

memory buffer, replay mechanisms, and prediction phase. Furthermore, Fig 4 details 356

the inner workings of the three hybrid CL techniques, which we discuss in the 357

subsequent sections. 358

EWC Experience Replay Module 359

In this module, we applied a hybrid approach combining EWC and replay strategies to 360

address the challenges of CL in our framework. Specifically, we interleaved past patient 361

data stored in a memory buffer with newly acquired data during each training batch. 362

This approach enabled our model to retain prior knowledge while simultaneously 363

integrating novel information, effectively mitigating catastrophic forgetting, as 364

visualized in Fig 4. By revisiting historical instances alongside new data, we preserved 365

essential patterns from prior tasks while adapting to new data. To implement this, we 366

used experience replay to retrieve representative samples from the memory buffer and 367

combined them with the current task data in each batch [13]. This ensured consistency 368

in predictions across tasks. Additionally, we applied EWC regularization to safeguard 369

model parameters critical to previously learned tasks. Together, these techniques 370

reinforced both instance-level retention and parameter stability. The hybrid loss 371

function we designed combines the ER consistency objective with EWC regularization 372

as follows: 373

LER = E(x,y)∼Mt
[ℓ(y, fθ(x))] + λ

∑
i

Fi(θi − θ∗i )
2 (2)

• The first term E(x,y)∼Mt
[ℓ(y, fθ(x))] was used to calculate the cross-entropy loss 374

for predictions fθ(x) based on past data samples (x, y). This ensured the 375

retention of instance-level information from prior tasks during sequential training. 376

• The second term λ
∑

i Fi(θi − θ∗i )
2 incorporated the EWC regularization 377

penalty, where we used the FIM Fi to quantify parameter importance for previous 378

tasks. By penalizing updates to critical parameters θi, deviations from their 379

original values θ∗i were minimized, preserving task-specific knowledge. 380
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To compute Fi, we precomputed the FIM at the end of each task and stored it for 381

subsequent training phases [37]. The batch construction dynamically mixed newly 382

acquired and replayed data, ensuring consistent representation across all training 383

sessions. By designing this balanced loss and training strategy, we observed a significant 384

reduction in performance degradation during task transitions, demonstrating the 385

efficacy of this module in retaining both local and global feature patterns. Our ER 386

module successfully enabled the model to learn continuously while maintaining robust 387

survival prediction capabilities for lung cancer patients. This hybrid approach ensured 388

the integration of historical and new knowledge, addressing the complexities of 389

multimodal datasets [12,30,38]. 390

Fig 4. Visualization of the three types of EWC-based continual learning modules. The figure illustrates the ER Module,
where past data is interleaved with new data during training to preserve knowledge. The EICR Module focuses on
maintaining correlations at the instance level, ensuring model consistency for individual data samples. Lastly, the ECCR
Module preserves class-level relationships by ensuring that class-specific knowledge is retained. These modules are designed
to mitigate catastrophic forgetting, facilitating the continuous learning process across multiple training sessions.

EWC Instance-Level Correlation Replay Module 391

We implemented the EICR module to maintain and enhance unique cross-modal 392

relationships at the instance level, particularly those between diverse modalities such as 393

CT, PET, clinical data, and DNA features. By integrating EWC regularization with 394

instance-level replay, this module ensures the retention of critical inter-instance 395

information during training, effectively mitigating catastrophic forgetting. 396

For this purpose, we constructed a correlation matrix C ∈ Rn×n to capture both 397

individual instance information and their relationships across modalities. Each instance 398

fi in the feature representation set F = {f1, f2, . . . , fn} was processed using a 399

high-dimensional correlation function φ to compute pairwise correlations: 400

ϕ : F → C ∈ Rn×n, (3)
401

Cij = φ(fi, fj), Cij ∈ R, (4)

where φ represents the relationship between feature embeddings fi and fj . To 402

capture complex relationships inherent in multimodal data, we applied a high-order 403

Taylor expansion of the Gaussian radial basis function (RBF) as follows [39]: 404

φ(fi, fj) = exp(−γ∥fi − fj∥2) ≈
P∑

p=0

exp(−2η)
2ηp p!

(fi · fT
j )p, (5)

where η is a tunable parameter controlling the smoothness of correlations, and p 405

defines the order of the expansion. This enhanced function allows the module to capture 406

intricate dependencies among modalities, such as the interplay between DNA mutation 407

patterns and tumor features in CT or PET scans, as well as time-series trends in clinical 408

data. 409

To mitigate forgetting, we aligned correlation structures between prior training 410

states and current data representations. The following hybrid loss function was 411

employed to optimize this alignment: 412

LEICR = Efθ(x)∼Mt

(
1

2
∥CC − CP ∥2

)
+ λ

∑
i

Fi(θi − θ∗i )
2, (6)

where CP and CC denote the correlation matrices from prior and current training 413

states, respectively. The first term measures the frobenius norm of the difference 414
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between the matrices, ensuring that instance-level relationships are preserved across 415

tasks [40]. The second term incorporates EWC regularization, where λ scales the 416

importance of regularization, Fi represents the FIM [37], and θ∗i denotes the initial 417

values of parameters from earlier tasks. During implementation, we stored correlation 418

matrices for each modality in the memory buffer and dynamically updated them during 419

training. For example, DNA data correlations were computed to emphasize mutation 420

patterns, while CT and PET features highlighted tumor intensity or spatial relationships. 421

Clinical data, processed through an FCN network, captured sequential trends, such as 422

progression markers over time. At the end, this module ensures the preservation of 423

critical cross-modality relationships, such as correlations between specific mutations and 424

tumor growth, during task transitions. As illustrated in Fig 4, the process includes 425

correlation matrix computation, feature embedding alignment, and EWC regularization. 426

By leveraging the EICR module, our framework adapts effectively to new datasets while 427

retaining essential information for accurate survival predictions in lung cancer patients. 428

EWC Class-Level Correlation Replay Module 429

In this stage of our experiments, we developed the ECCR module to preserve 430

class-specific knowledge across different patient groups, ensuring consistent survival 431

prediction for categories such as early-stage and late-stage cancer patients. To achieve 432

this, we combined EWC with a triplet-based correlation mechanism tailored to our 433

multimodal dataset, which includes CT, PET, clinical, and DNA data. This approach 434

allowed us to maintain class-level distinctions while learning new data without 435

catastrophic forgetting [30]. We implemented a triplet mechanism where, for each 436

anchor xi (e.g., a patient with early-stage cancer), we selected a positive sample xj 437

(another early-stage patient) and a negative sample xk (a late-stage patient), as shown 438

in Fig 4. This setup allowed us to retain both intra-class similarities and inter-class 439

differences. For example, CT and PET tumor intensity patterns were used as 440

anchor-positive pairs within the same class, while DNA mutations or clinical time-series 441

data helped distinguish anchor-negative pairs. The triplet loss was computed as follows: 442

Distϕ(xi, xj) = ∥ϕ(xi)− ϕ(xj)∥2, Distϕ(xi, xk) = ∥ϕ(xi)− ϕ(xk)∥2, (7)

where ϕ(x) represents the fused feature embedding obtained through cross-attention 443

layers processing data from all modalities. To ensure meaningful class-level separation, 444

we applied a semi-hard triplet selection strategy, where negative samples xk were chosen 445

such that: 446

Distϕ(xi, xj) < Distϕ(xi, xk) < Distϕ(xi, xj) + ϵ, (8)

with ϵ defining the margin. For example, genomic variations were used to find 447

samples that were similar but not identical within the same class. In our 448

implementation, the triplet mechanism was complemented with a probabilistic alignment 449

strategy. For each triplet, we computed the class-level probability distribution as: 450

pijk(ϕ) =
exp(−Distϕ(xi, xj)/τ)

exp(−Distϕ(xi, xj)/τ) + exp(−Distϕ(xi, xk)/τ)
, (9)

where τ is the temperature parameter. This probabilistic distribution helped us 451

measure how well class separability was maintained across training updates. To align 452

prior and current training phases, we minimized the Kullback-Leibler divergence 453

between Bernoulli distributions derived from past (PP ) and current (PC) class-level 454

probabilities [41]: 455
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LECCR = E(xi,xj ,xk)∼Mt

∑
ijk

DKL(Pijk(ϕ
P ) ∥ Pijk(ϕ

C))

 . (10)

This loss ensured the preservation of key class-level patterns during training. In our 456

framework, we combined the ECCR loss with EWC to protect critical weights from past 457

tasks: 458

LEWC = λ
∑
i

Fi(θi − θ∗i )
2, (11)

where θi and θ∗i represent the current and prior weights, respectively, and Fi denotes 459

fisher information for each parameter. 460

Finally, the combined objective function for training included the survival prediction 461

loss LCoxPH, along with replay and regularization terms: 462

LAll = LCoxPH + αLEWC + βLER + γLEICR + δLECCR, (12)

where α, β, γ, and δ are hyperparameters that balance the contributions of each 463

term. Specifically: - LER represents the ER loss for direct replay of past data. - LEICR 464

is the instance-level correlation replay loss. - LECCR is the class-level correlation replay 465

loss, as described above in the hybrid loss function. Our experimental setup involved 466

extracting multimodal features from CT and PET images using a SwinT, which 467

captured spatial and intensity-based tumor characteristics. DNA data, including 468

mutation metrics, was processed using XLNet to learn latent genomic features, while 469

clinical data, such as lab records and vital signs, was modeled using FCN networks to 470

capture temporal patterns. These features were fused using a cross-attention mechanism 471

to create a unified embedding. The embeddings were then processed through the ECCR, 472

ER, and EICR modules, where the ECCR ensured class-level correlation learning by 473

maintaining intra-class similarity and inter-class dissimilarity. The output of these 474

modules was passed to the FCN, which further processed the learned features. Finally, 475

during the prediction phase, the model used the CoxPH loss function (LCoxPH) to 476

compute survival probabilities, with guidance from the hybrid loss function. The 477

integrated mechanisms of ER, EICR, and ECCR played critical roles in preserving 478

important patterns from previous tasks while enabling the incorporation of new patients 479

information [42]. By preserving class-level relationships and aligning past and current 480

knowledge through EWC-based regularization [30], the model ensures that it does not 481

forget previously learned survival patterns while adapting to new data. This process 482

enables the model to predict the 5-year survival probability for each patient, with stable 483

and accurate predictions over time. 484

Clinical Modality Processing with FCN 485

We utilized 16 clinical features, including demographic, clinical staging, and behavioral 486

factors, for survival prediction. These features were preprocessed using standard tabular 487

techniques. In our process, FCN is designed to generate a token embedding 488

(token dim = 64) that aligns with other modalities. The 16 clinical features 489

(input dim = 16) pass through the FCN, which progressively reduces dimensionality 490

across layers with 512, 256, 128, and finally 64 neurons. Each layer incorporates batch 491

normalization for stability, ReLU for non-linearity, and Dropout (0.3) to minimize 492

overfitting. This hierarchical structure captures increasingly abstract features, ensuring 493

efficient feature representation. The final 64-dimensional token was chosen empirically 494

to balance computational efficiency and performance. Its compatibility with other 495

modalities, which also output 64-dimensional tokens, we ensured seamless integration 496
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during multimodal fusion. Mathematically, given the input X ∈ RN×D, where N is the 497

batch size (32 samples per batch) and D = 16 is the feature dimension, the FCN 498

reduces D through hierarchical transformations as follows [43]: 499

fout = Wk · σ (Wk−1 · σ (. . .W1 ·X + b1) + bk−1) + bk (13)

Where: Wi, bi represent the weights and biases of the i-th layer, σ is the ReLU 500

activation function, fout ∈ RN×64 is the final token embedding. 501

These embedding tokens effectively represent the clinical features while maintaining 502

consistency with the token outputs from other modalities. These tokenized clinical 503

features are subsequently passed to the cross-attention fusion block, where they are 504

integrated with the tokenized outputs from CT, PET, and DNA data. This 505

cross-modality integration enhances the survival prediction model by combining 506

temporal insights from the clinical data with spatial features from imaging modalities 507

and genomic data, ultimately improving the survival prediction process. The stage of 508

FCN in the framework is illustrated in Fig 2. 509

DNA Modality Processing with XLNet 510

In our multimodal framework, we used XLNet to process DNA features, such as the 511

counts of SNVs, HOMO, and HETE variants, to extract meaningful patterns for lung 512

cancer prediction. To enable this, we configure XLNet with specific parameters to 513

capture complex dependencies in the genomic data. The model is configured with a 514

vocabulary size based on the number of unique tokens from the data. We set the 515

number of layers to 6, with 4 attention heads in each layer. Each attention head has a 516

dimensionality of 8, and the inner layer dimension (for the feed-forward layer) is set to 517

32, which ensures the model can capture intricate relationships between DNA features. 518

The dimensionality of the model we set to 32, which directly determines the size of the 519

embedding space for each token. We employed permutation-based autoregressive 520

modeling, where the model predicts each token xt conditioned on the previous tokens in 521

a randomly permuted sequence for learning the pattern of data. The task is formulated 522

as: 523

pθ(xzt |xz<t) (14)

Here, pθ denotes the probability of predicting the token xzt at position zt, given the 524

preceding tokens xz<t. This permutation-based approach allows XLNet to model 525

bidirectional context efficiently by learning from all possible orderings of the sequence. 526

By leveraging a multi-head attention mechanism to capture different aspects of 527

relationships between tokens at various positions. The attention mechanism in each 528

layer represented as: 529

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (15)

where Q is the query matrix, K is the key matrix, V is the value matrix, and dk is 530

the dimension of the key vectors. In our configuration, we use 4 attention heads, with 531

each head having a dimensionality of 8, allowing the model to capture diverse 532

relationships between the features, such as SNVs, HOMO, and HETE variants. The 533

multi-head mechanism enables the model to learn complex dependencies at multiple 534

levels of granularity. Through the self-attention mechanism, it learns latent patterns in 535

the DNA data by attending to different parts of the input sequence. The self-attention 536

layer updates the input embeddings by calculating: 537

g(m)
zt ← Attention(Q = g(m−1)

zt ,KV = h
(m−1)
z<t ; θ) (16)
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h(m)
zt ← Attention(Q = h(m−1)

zt ,KV = h
(m−1)
z<t ; θ) (17)

We utilized the iterative update process for both the query stream and content 538

stream, which progressively refine the embeddings at each layer. The learned latent 539

patterns are crucial for understanding the relationships between different genomic 540

features. After processing the DNA data through multiple XLNet layers, the final 541

output embeddings h
(M)
zt are projected into a 64-dimensional space through a linear 542

transformation. This transformation is performed by a fully connected layer, as 543

presented: 544

h(M)
zt →Wh(M)

zt + b (18)

where the output embeddings are multiplied by a learned weight matrix 545

W ∈ Rdmodel×64, followed by an optional bias term b ∈ R64. This ensures that the final 546

embedding dimension matches the required token size of 64. The final tokens are passed 547

into the cross-attention fusion block, where they are merged with embeddings from 548

other modalities, such as CT/PET and clinical, for multimodal integration, as shown in 549

Fig 5. This fusion allows the model to leverage complementary information across 550

modalities to improve prediction accuracy. 551

Fig 5. XLNet architecture for DNA data. This figure illustrates the model applied to DNA data, including SNV, HOMO,
and HETE counts. Then it tokenizes the input sequence and uses permutation-based autoregressive training to capture
dependencies among features. A Two-Stream Self-Attention mechanism, consisting of a Query Stream for prediction and a
Content Stream for context encoding, is applied to generate contextual token representations. These enriched token
embeddings are then fused with other modality embeddings for prediction analysis.

CT and PET Modality Processing with SwinT 552

We implemented the SwinT model as an efficient approach for processing 553

high-resolution medical images, such as CT and PET scans. It addresses the limitations 554

of ViT, particularly in terms of computational complexity, while offering improved 555

performance in classifying fine-grained object details compared to traditional CNNs. 556

This makes SwinT particularly well-suited for medical imaging tasks, where high 557

accuracy in identifying complex structures, such as ground objects and tumors in 558

CT/PET scans, is crucial [44]. We begin the input shape and preprocessing of CT/PET 559

image with a shape of [1, 160, 128, 128], where:1 represents the batch size, 160 is the 560

depth (number of slices), and 128× 128 are the spatial dimensions of each slice. The 561

patch embedding of The image is divided into non-overlapping patches of 4× 4 pixels, 562

resulting in tokens of shape [N,C], where N = 160× 128× 128/42 = 4096 patches and 563

C is the initial feature dimension. Each patch is flattened and projected to a 564

higher-dimensional space via a linear embedding layer. In the Window Multi-Head 565

Self-Attention (W-MSA) operation we computes attention within fixed windows, 566

reducing complexity. Attention is calculated within windows of size M ×M , reducing 567

computational complexity to linear with respect to the number of patches: 568

OW-MSA = 2M2hwC (19)

After each W-MSA block, in Shifted Window Multi-Head Self-Attention (SW-MSA) 569

windows are shifted to capture cross-window dependencies. This introduces quadratic 570

complexity: 571

OSW-MSA = 4hwC2 (20)

These steps enhance both local and global context modeling. After processing through 572

several SwinT blocks, the output tokens are passed through a Multi-Layer Perceptron 573
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(MLP) to refine features, followed by Layer Normalization for dimensionality reduction. 574

Finally, token embeddings h
(M)
zt are projected into a 64-dimensional space using a fully 575

connected layer. This is performed by multiplying the embeddings with a learned 576

weight matrix W ∈ Rdmodel×64, where dmodel is the feature dimension before projection, 577

followed by an optional bias term b ∈ R64. This ensures the output token size is reduced 578

to 64, making it compatible for integration into downstream tasks like survival 579

prediction: 580

h(M)
zt ×W + b (21)

After tokenization and projection, the features from both CT and PET modalities are 581

passed into a cross-attention fusion block , which combines the features with clinical, 582

imaging, and mutation data. where the features from both modalities are merged using 583

attention mechanisms. This fusion ensures that the combined representations are more 584

informative and relevant for the downstream survival prediction task. The 585

methodological overview of this process is illustrated in Fig 6. 586

Fig 6. The overall architecture of the Swin Transformer adapted for CT and PET scan analysis. The architecture consists of
two successive Swin Transformer blocks, each designed to process image patches from CT and PET scans, enabling the
extraction of multi-scale feature representations. The hierarchical structure enhances the model’s efficiency in handling
high-resolution medical images by reducing computational complexity. The figure also illustrates the shifted window strategy
for computing self-attention, which helps the model capture long-range dependencies and fine-grained details, such as tumors
and ground objects, across different regions of the dicom slices.

Cross-Attention Fusion Block 587

In our survival prediction framework, inspired by recent works such as [45], the 588

cross-attention block is employed to integrate clinical, DNA, CT, and PET data by 589

capturing dependencies both within and across these modalities. The data from each 590

modality is first formatted into a consistent L×D structure, where L is the number of 591

tokens or features, and D represents the feature dimension. Specifically, the CT and 592

PET images are split into patches, tokenized, and flattened, resulting in a sequence of 593

tokens (of length Limg), where each token represents a patch encoded into 594

D-dimensional space. For clinical and DNA tabular data, individual attributes or 595

features are embedded directly into Ltab ×D, ensuring that all modalities share a 596

common format, making cross-attention feasible. 597

The core of the cross-attention mechanism utilizes this unified structure to link 598

information across modalities. The non-local operation within the cross-attention block 599

is defined as: 600

λkr = g(ui
k)

⊤h(vjr) (22)

where ui
k ∈ RD×1 represents the k-th feature embedding of modality i, and 601

vjr ∈ R1×D represents the r-th feature embedding of modality j, with g and h as learned 602

transformations that optimize compatibility between the features of the modalities. 603

Here, i ̸= j ensures cross-modal interactions, such as between CT data and clinical 604

attributes or PET data and DNA features. 605

To compute the attention map P (i,j) that captures the relevance between tokens 606

from different modalities, we calculate: 607

P (i,j) = [γkr](L×L) , γkr =
exp(λkr)∑L
k=1 exp(λkr)

(23)
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Each element γkr represents the attention score between a pair of tokens from 608

different modalities, capturing the degree of relevance between them. 609

Once the attention weights are calculated, these cross-modal connections are used to 610

refine the features by aggregating relevant information across modalities. For each pair 611

of modalities, the feature representations are updated as follows: 612

Ci = l(Ui)P
(i,j), Cj = l(Uj)P

(i,j) (24)

where Ci and Cj represent the fused feature representations of each modality, and 613

l(Ui) and l(Uj) denote learned transformations applied to the feature matrices Ui and 614

Uj , respectively. The resulting features are adjusted by non-negative coefficients βi and 615

βj to preserve their individual relevance. 616

Finally, the fused output of the cross-attention block is obtained by concatenating 617

the refined features: 618

Z(i,j) = Si ⊕ Sj (25)

where Si and Sj are the enhanced, modality-specific feature maps, and ⊕ represents 619

the concatenation operation. This cross-attention-based fusion enables our model to 620

utilize the comprehensive, interrelated feature representations from both image and 621

tabular modalities. The output of the cross-attention, represented by the fused features 622

Z(i,j), is passed to the FCN phase for further processing. The FCN layer refines these 623

multimodal features and extracts relevant patterns for survival prediction. The 624

mechanism of cross-attention fusion is displayed in Fig 7. 625

Fig 7. Illustration of the cross-attention mechanism for multimodal data fusion. clinical, DNA, CT, and PET data are
embedded into a unified feature space. Cross-modal attention is computed between feature pairs, updating and refining
modality-specific representations, which are then concatenated for further processing by the FCN in the survival prediction
model.

Fully Connected Network Phase 626

In this FCN phase, we refines multimodal feature embeddings from the cross-attention 627

module into a predictive representation for survival analysis. The FCN comprises three 628

dense layers, each progressively reducing dimensionality and capturing intricate 629

relationships within the integrated data. Between these layers, dropout layers with a 630

rate of 0.3 are applied to mitigate overfitting and enhance the model’s robustness on 631

unseen data. The final dense layer produces a feature vector using linear activation, 632

which is sent to the CoxPH model for 5-year survival prediction. This structured 633

pipeline, illustrated under the prediction process in Fig 2, ensures comprehensive risk 634

stratification by leveraging multimodal data. The approach aligns with the design 635

principles of robust multimodal deep learning frameworks such as those discussed 636

in [46,47]. 637

Cox Proportional-Hazard Workflow 638

We implemented the CoxPH model, a cornerstone of survival analysis, to process the 639

feature vector derived from the FCN and estimate 5-year survival probabilities. The 640

hazard function is expressed as: 641

h(t) = h0(t) exp(β
⊤X), (26)
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where h0(t) is the nonparametric baseline hazard, β is the vector of learned 642

regression coefficients, and X is the FCN-generated feature vector. The survival 643

probability S(t) is computed as: 644

S(t) = exp
(
−H0(t) exp(β

⊤X)
)
, (27)

with H0(t), the cumulative baseline hazard, estimated using methods like the 645

Breslow estimator. We utilized the CoxPH model semi-parametrically, as it does not 646

require specific distributional assumptions about survival times, ensuring flexibility 647

across diverse datasets [48,49]. Integrated into our continual learning (CL) framework, 648

the CoxPH model dynamically adapts to new patient data while preserving critical 649

knowledge from prior data. We used techniques such as EWC [30] and experience 650

replay [50] to ensure that new learning does not overwrite essential model parameters. 651

For example, when incorporating new features, we recalibrated the baseline hazard h0(t) 652

without disrupting existing regression coefficients β, maintaining stable survival 653

prediction accuracy. Leveraging the PyCox library [51] (An algorithmic 14 summary is 654

presented below.), we integrated the CoxPH model with FCN outputs to enable seamless 655

functionality and facilitate periodic updates, enhancing the flexibility and adaptability 656

of our survival prediction framework. This implementation combines semi-parametric 657

modeling with dynamic learning capabilities, making it particularly effective for our 658

multimodal survival prediction pipeline. By continuously learning from both clinical 659

and imaging data, the framework ensures stability in previously learned parameters 660

while maintaining consistent performance over time. As illustrated in Fig 2, under the 661

prediction section, our continual learning approach enables accurate estimation of 662

5-year survival probabilities while supporting robust adaptability to new data. 663

Algorithm 1 CL Workflow for Lung Cancer Survival Prediction

Require: Dataset D (training and new data), epochs e, batch size b, regularization
strength λ

Ensure: Trained model and CL adaptation
1: Import necessary libraries (e.g., PyCox, Torch)
2: Load and preprocess dataset: Dtrain ← train data,Dnew ← new data
3: Initialize the CoxPH model with input dimension matching Dtrain

4: Train the CoxPH model on Dtrain

5: Features: Dtrain[0]
6: Time-to-event: Dtrain[1]
7: Event indicator: Dtrain[2]
8: Optimize model with hyperparameters: epochs e = 200, batch size b = 64
9: Evaluate model on Dnew

10: Compute prediction score: S ← score(Dnew)
11: Output: print(New data score: S)
12: Apply CL with a hybrid method:
13: Regularization technique: EWC with Replay (EWC R)
14: Regularization strength: λ = 1000

5 Experimental Setup 664

Dataset: We accessed a comprehensive dataset from aihub [52], comprising records of 665

5,053 lung cancer patients. Among these, 3,770 patients had complete clinical, CT, 666

PET, and DNA data, alongside detailed survival investigation timelines spanning up to 667

four years. However, DNA mutation data was available for only 412 patients. To 668
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address this limitation, we utilized XLNet, a transformer-based model, to learn and 669

encode patterns from the available DNA data, rather than directly training the model 670

on the sparse DNA information. This pretraining step generated meaningful 671

representations of DNA features, which were subsequently integrated into the 672

multimodal framework, alongside clinical, CT, and PET data. For evaluation, we 673

divided the dataset into three subsets. The primary training dataset included 3,358 674

patients (D 3358P), incorporating clinical, CT, PET, and XLNet-derived DNA 675

embeddings. To test the model’s CL capabilities, two additional datasets were 676

constructed to simulate incremental data updates. The first set consisted of 200 patients 677

(D 200P), and the second included 212 patients (D 212P), these retaining equivalent 678

real DNA mutation data alongside the other modalities. This multi-dataset strategy 679

allowed us to effectively evaluate the model’s adaptability, ensuring it could integrate 680

new knowledge while maintaining stability in previously learned survival patterns. 681

Clinical Data Preprocessing: In the data preprocessing phase, we handled four 682

distinct modalities: clinical data, CT and PET images, and DNA mutation data. For 683

clinical data, we utilized 16 features, including essential variables like patient records 684

(PatientID, Gender, Age, survival time, deadstatus event, overall stage, and clinical 685

stages (TNM), along with attributes such as smoking status and smoking amount. 686

Common tabular preprocessing techniques were applied, including outlier detection 687

using the Zscore method, one-hot encoding for categorical variables, and normalization 688

to ensure data consistency. Redundant information, such as description, histology, and 689

FILE NAME, were dropped. The target variables were identified as survival time’ and 690

deadstatus event which were crucial for survival prediction and then feed into the FCN. 691

CT/PET Data Preprocessing: We developed a comprehensive preprocessing 692

pipeline for CT and PET imaging data to ensure the input is standardized and 693

optimized for downstream analysis using the SwinT model. First, we configured the 694

target dimensions for the images, setting each slice to 128x128 pixels and the depth to 695

160 slices. These specifications ensured consistent input dimensions for all scans, which 696

is crucial for effective processing by the SwinT. We loaded the DICOM files for each 697

patient and sorted the slices based on their SliceLocation metadata to preserve the 698

anatomical sequence. Each slice was resized to the target spatial resolution using 699

bilinear interpolation (a 2x2 grid neighboring pixels), while the 3D volumes were 700

padded or interpolated to match the desired depth. For scans with fewer slices, we 701

applied padding with appropriate background values (-2000 for CT scans and 0 for PET 702

scans) to maintain anatomical integrity. If the number of slices exceeded the target 703

depth, we used cubic spline interpolation (cubic polynomial between data pixels points) 704

to compress the scans, ensuring they retained their structural relevance. Finally, the 705

processed volumes were reshaped into a uniform format of [1, 160, 128, 128], suitable for 706

feeding into the SwinT. To enhance generalization and minimize overfitting, we applied 707

random data augmentations to the 3D volumes. These included horizontal and vertical 708

flips, small random rotations (±10 degrees), and the addition of Gaussian noise to 709

simulate real-world variability in imaging data. After augmentation, the data was 710

normalized to a [0, 1] range to ensure consistency in pixel intensity values, which aids in 711

stabilizing the training process for the DL model. The preprocessed data was split into 712

training, validation, and testing subsets with an 80-10-10 split. This ensured a 713

representative distribution across all subsets, avoiding any bias in the model’s 714

evaluation. The processed CT and PET images were then stored as files for efficient 715

loading and reuse during training. The prepared 3D image volumes were fed into the 716

SwinT for learning. 717
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DNA Data Preprocessing: The DNA data preprocessing workflow involves 718

systematically preparing raw genomic information contained in tsv files for integration 719

into our learning framework. This process ensures that genomic features are accurately 720

extracted, cleaned, normalized, and formatted for downstream modeling. The input 721

data comprises multiple tsv files, each representing a single patient’s genetic data. 722

These files include information, which identifies the variant type, and ZYGOSITY, 723

which describes whether a variant is homozygous (HOMO) or heterozygous (HETE). 724

The goal of the preprocessing is to summarize these genetic variations into meaningful 725

metrics while addressing data inconsistencies and ensuring compatibility with our lung 726

cancer pipelines. First, we read all files and loaded them into a pandas DataFrame, 727

where any empty lines or encoding issues are resolved. A series of cleaning operations 728

follow, including the removal of rows with missing or invalid entries in the TYPE or 729

ZYGOSITY. If a file is found to be empty or contains no valid data after cleaning, it is 730

filled with nearby mean values to maintain the integrity of the dataset. Thern from the 731

cleaned data, three critical genomic features for lung cancer are extracted for each 732

patient: the count of single nucleotide variants (SNVs), HOMO, and HETE variants. 733

SNVs are counted based on rows where the TYPE column contains SNV, while the 734

counts of HOMO and HETE are derived from the ZYGOSITY. These metrics are key 735

indicators in understanding genetic variations, particularly in cancer genomics, as they 736

provide insights into mutation burdens and genetic heterogeneity within tumors. After 737

feature extraction, normalization is performed to standardize the values across patients. 738

Using min-max scaling, the raw counts of SNVs, HOMO, and HETE variants are 739

transformed to a scale between 0 and 1. This step ensures that genomic features have 740

comparable influence when combined with other data modalities, such as clinical and 741

imaging data. Finally, we saved the processed and normalized data into a summary file. 742

Finally, the data are fed into the XLNet for further processes of latent pattern study. 743

Throughout all preprocessing steps, patient IDs were synchronized across modalities 744

to maintain data integrity and prevent mismatched entries. This alignment ensured 745

consistency during training, evaluation, and CL, where new data undergoes similar 746

preprocessing pipelines to integrate seamlessly with the existing data. 747

Pre-training Setting: All experiments were conducted using a default pre-training 748

configuration of 200 epochs unless specified otherwise. To optimize model performance, 749

we employed the AdamW optimizer with a batch size of 32, ensuring efficient weight 750

updates and regularization. The implementation was carried out using the PyTorch 751

framework, leveraging its flexibility for model design and training. The computational 752

setup included 2 NVIDIA GeForce RTX 3070 GPUs, 64 GB of RAM, and an Intel(R) 753

i9-10900 processor, providing sufficient resources for handling complex computations 754

and ensuring smooth training. This configuration was chosen to balance efficiency and 755

scalability while maintaining consistent results across investigations. 756

Evaluation Setting on Survival Prediction: To assess the performance of our 757

CL-based multimodal framework, we employed widely recognized metrics, including the 758

concordance index (C-index), which measures the predictive accuracy of survival models 759

by evaluating the concordance between predicted and actual survival times [53], and 760

Mean Absolute Error (MAE), which quantifies the average magnitude of errors between 761

predicted and observed survival times [54]. For the evaluation of CL, we utilized key 762

criteria: Baseline Performance (BP, accuracy on the initial dataset), New Data 763

Performance (NDP, accuracy on new, unseen data), Knowledge Retention (KR, ability 764

to retain previously learned information), and Forgetting (Fg, degree of degradation in 765

earlier learned tasks) [28,30]. Additionally, we compared our framework against 766

state-of-the-art multimodal survival prediction models to highlight its effectiveness. An 767
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ablation study was conducted to analyze the contribution of each modality and the 768

cross-attention mechanism within the CL workflow, providing deeper insights into the 769

impact of individual components. 770

6 Results and Discussion 771

Ablation studies 772

In the ablation study, we conducted a series of performances of the proposed CL 773

framework for lung cancer survival prediction by incrementally modifying its 774

components. These experiments evaluate the effectiveness of strategies such as EWC, 775

replay mechanisms, cross-attention fusion, and the inclusion of DNA embeddings. To 776

ensure fair comparisons, all experiments are conducted with the same hyperparameters: 777

batch size of 32, the AdamW optimizer, learning rate of 1e-4, and weight decay of 1e-4. 778

Evaluation metrics include C-Index, MAE (in days), KR, and Fg, as shown in Table 1. 779

The component-wise evaluations are discussing below: 780

HCLmNet (Proposed): The full framework integrates a FCN for clinical, SwinT for 781

CT/PET feature extraction, XLNet for generating DNA embeddings, cross-attention for 782

multimodal fusion, and CoxPH for survival prediction. Combined with both EWC and 783

replay mechanisms, this configuration achieves the best results, with a C-Index of 0.84, 784

MAE of 140 days, KR of 0.86, and minimal Fg at 0.08. The superior performance 785

underscores the importance of integrating all these elements for effective survival 786

prediction. 787

Without CL Mechanism: Eliminating both EWC and replay mechanisms leaves 788

the model susceptible to catastrophic forgetting, resulting in degraded performance. 789

The C-Index drops to 0.78, MAE increases to 180 days, and KR decreases to 0.25, while 790

Fg increases to 0.83. This highlights the critical role of CL in preserving knowledge 791

during incremental updates. 792

Without DNA Modality: For checking the diversity of input data we removed the 793

DNA modality. Then the framework processes clinical, CT and PET features only. 794

Consequently, the C-Index falls to 0.81, MAE rises to 155 days, and KR drops 795

significantly to 0.66, with Fg increasing to 0.26. These results emphasize the 796

significance of DNA data in improving predictive accuracy. 797

Embedding with Raw DNA Features: Here, we replaced the XLNet embeddings 798

with raw DNA mutation features eliminates pretrained DNA representations, leading to 799

poorer performance. The C-Index decreases to 0.79, MAE increases sharply to 260 days, 800

KR drops to 0.64, and Fg rises to 0.19. This demonstrates the advantages of leveraging 801

advanced integrating for DNA data. 802

Using Concatenation Instead of Cross-Attention: In this variant we replaces 803

cross-attention with feature concatenation, which removes the dynamic alignment and 804

weighting of multimodal inputs. The resulting C-Index is 0.80, MAE increases to 168 805

days, and KR drops to 0.65, with Fg increasing significantly to 0.35. The findings 806

underline the superiority of cross-attention for multimodal fusion. 807
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CL Replay method apply Instead of EWC: In this configuration, the framework 808

retains only the replay mechanism, relying on a memory buffer to revisit past examples 809

during training. However, without EWC, which regularizes parameters by preserving 810

critical weights, the model becomes susceptible to information leakage, where significant 811

features from earlier tasks are not adequately preserved in subsequent updates. This 812

results in incomplete learning dynamics, as the loss function struggles to balance 813

between past and new data. Consequently, the model achieves a C-Index of 0.82, MAE 814

of 155 days, KR of 0.63, and Fg of 0.16. While the replay mechanism demonstrates the 815

ability to mitigate forgetting to some extent by reintroducing prior data, it lacks the 816

parameter-level protection that EWC provides, leading to suboptimal retention of old 817

information. This highlights the importance of combining replay with other CL 818

techniques for robust knowledge preservation and minimal catastrophic forgetting. 819

CL EWC method apply Instead of Replay: In this setting, EWC is applied as 820

the sole CL mechanism, removing the replay buffer entirely. EWC works by introducing 821

a parameter regularization term in the loss function, which penalizes deviations from 822

previously important weights. This helps retain critical features of earlier tasks by 823

anchoring the model parameters to previously learned distributions. Due to that, the 824

model achieves a C-Index of 0.83, MAE of 190 days, KR of 0.71, and Fg of 0.45. While 825

EWC effectively minimizes forgetting by preserving parameter stability, its performance 826

is limited in scenarios with significant distribution shifts in incoming data. Without 827

replay, the model lacks the ability to refresh its understanding of earlier data, which can 828

lead to over-reliance on parameter constraints and a higher MAE (see Table 1). This 829

highlights the complementary nature of replay and EWC: while EWC stabilizes 830

parameters for knowledge retention, replay reinforces memory by revisiting earlier 831

examples, ensuring a more comprehensive learning process. The results emphasize the 832

importance of combining these techniques to balance robust parameter protection and 833

dynamic memory reinforcement, particularly in complex multimodal learning tasks. 834

Table 1. Ablation Study for Lung Cancer Survival Prediction Framework

Datasets Used: D 3358P, D 200P, and D 212P
Model Variant C-Index (↑) MAE (Day ↓) Knowledge

Retention
Forgetting

(↓)
HCLmNet (Proposed) 0.84 140 0.86 0.08
p CL Mechanism 0.78 180 0.25 0.83
p DNA Modality 0.81 155 0.66 0.26
Raw DNA Features → XLNet 0.79 260 0.64 0.19
Concatenation → Cross-Attention 0.80 168 0.65 0.35
CL Replay → EWC 0.82 155 0.63 0.16
CL EWC → Replay 0.83 190 0.71 0.45

Notes: - C-Index (↑): Higher values indicate better discriminative ability. - MAE (↓): Lower values reflect higher accuracy
in survival time prediction. - Knowledge Retention: Performance retention metric post-training with new data. - Forgetting:
Measures performance degradation on old data.

This ablation study highlights the critical role of each component within the CL 835

framework, underlining the significance of combining various mechanisms to achieve 836

optimal performance. Our full framework, which integrates EWC , replay, 837

cross-attention fusion, and XLNet-learned DNA embeddings, and CoxPH consistently 838

outperformed all other model variants across key metrics, visualized in Fig 8. 839

Specifically, the inclusion of EWC and replay ensured a strong balance between 840

knowledge retention and minimizing forgetting, while the cross-attention mechanism 841

facilitated effective interaction between modalities. The integration of DNA embeddings 842
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contributed to the model’s ability to capture complex patterns from genetic data, 843

strengthening its overall performance. In contrast, removing any of these components 844

led to a noticeable degradation in model performance. For example, excluding the 845

replay mechanism or using raw DNA features instead of embeddings resulted in higher 846

forgetting and decreased knowledge retention, as observed in the increased MAE and 847

reduced C-Index scores. These findings reinforce the importance of each individual 848

design choice and demonstrate how the synergy of all techniques enhances the 849

framework’s capability for incremental learning. Ultimately, the ablation study validates 850

our approach, showcasing its robustness in retaining previously learned knowledge while 851

adapting to new data without significant falling down in the performance. 852

Fig 8. Ablation Study Results: Comparison of C-Index, KR, and Fg Across Variants. The proposed HCLmNet improves the
C-Index by 7.7%, demonstrating better learnability. KR rises from 0.25 to 0.86, and Fg drops significantly by 90%,
highlighting the effectiveness of combined replay and EWC strategies. Removing DNA modality and cross-attention notably
affects performance, underscoring their importance.

Main Results and Analysis 853

We conducted a comprehensive evaluation of our lung cancer survival prediction 854

framework, leveraging three datasets: D 3358P for training and D 200P and D 212P 855

for evaluation and CL. The base model was initially trained on the D 3358P dataset 856

for 200 epochs using a batch size of 32, an Adam optimizer, a learning rate of 1× 10−4, 857

and a weight decay of 1× 10−4. It achieved a training loss of 0.894 and a validation 858

loss of 1.259, as visualized in Fig 9. This indicates the model’s ability to identify 859

patterns effectively during training, demonstrating convergence and stability. 860

Fig 9. Baseline Model: Training and Validation loss over epochs.

Subsequently, the base model was evaluated on the D 200P dataset, comprising 861

diverse lung cancer patients with varying ages and cancer subtypes. The evaluation 862

yielded a C-Index of 0.7656 and an MAE of 189.4293, which are reasonable given 863

the complexity of predicting 5-year survivability. The survival probability graph in 864

Fig 10, reflects this capability, showing a natural decline in survivability as the timeline 865

progresses. This trend aligns with clinical observations, highlighting the model’s 866

predictive reliability for a general lung cancer cohort. The evaluation thus validated the 867

base model’s capability to generalize well across unseen data. 868

Fig 10. Baseline Evaluation: Survival probability trends over 5 years for 86 Patients. The plot shows the probability for 86
lung cancer patients over 5 years. Each point represents an individual patient’s survival prediction at specific time intervals,
with distinct colors for each patient. The plot illustrates a realistic decline in survival probability over days.

To analyze the effectiveness of the CL framework, we introduced two incremental 869

datasets: D 200P and D 212P. These datasets were incorporated sequentially into the 870

pipeline to simulate real-world scenarios where new patient data continuously becomes 871

available. The incremental learning module was designed to preprocess incoming data 872

and leverage CL strategies to assimilate this knowledge while preserving previously 873

learned patterns. The model underwent an additional 200 epochs of training on the 874

combined dataset using the same configuration as the base training phase. This resulted 875

in significantly improved metrics, with the training loss reduced to 0.0339 and the 876

validation loss to 0.0324 (Fig 11). These low loss values suggest the model effectively 877

adapted to new information without overfitting or degradation in performance. 878
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Fig 11. CL Model: Training and Validation loss over epochs.

In terms of predictive metrics, our HecmNet framework achieved a C-Index of 879

0.8456 and an MAE of 140.4233, showcasing improved accuracy and discriminative 880

ability compared to the base model. The survival prediction graphs, we plotted for 881

patients over a 5-year timeline, exhibit smoother and more realistic trajectories with 882

reduced variance between predicted probabilities and expected outcomes. This 883

improvement is evident from Fig 12, where the survival probabilities for different 884

patient groups more accurately align with clinical expectations. The CL framework 885

effectively mitigated forgetting, preserved knowledge retention, and adapted to new 886

data, ensuring that the model maintained high accuracy for both previously seen and 887

newly introduced patients. 888

Fig 12. CL Evaluation: Survival probability trends Over time for 86 patients. The plot presents survival probability
direction for 86 lung cancer patients, tracked over a period of 5 years. Each data point represents the survival prediction for
an individual patient at specific intervals, with distinct colors indicating each patient’s unique trend. As new data is
introduced and the model is trained with both previous and new data, the resulting evaluation shows smoother survival
trajectories with reduced variability. This illustrates the effectiveness of the CL strategies in accurately predicting survival
outcomes while minimizing noise and ensuring consistency across patient-specific survival paths.

Overall, these results emphasize the importance of each component within the 889

framework. The base model demonstrated strong foundational capabilities, while the 890

continual learning approach significantly enhanced performance by balancing knowledge 891

retention and adaptation. This evaluation highlights the framework’s robustness, 892

scalability, and practical applicability in predicting lung cancer survival outcomes, 893

ensuring clinically meaningful predictions for a wide range of patients. 894

Comparison with State of the Art Architecture 895

To assess our suggested model (HCLmNet) efficiency for lung cancer survival prediction, 896

we compared it against several state-of-the-art survival models using the D 3358P and 897

D 200P datasets. The results demonstrate that our model outperforms traditional and 898

advanced methods in terms of both discriminative ability (C-index) and accuracy 899

(MAE). Our HCLmNet achieved a C-index of 0.76 and an MAE of 189 days, 900

significantly surpassing baseline models like CoxPH (C-index 0.65, MAE 247) and 901

DeepSurv (C-index 0.67, MAE 252). Advanced models such as Trans-Surv, which 902

integrates transformer-based survival modeling, reported a C-index of 0.71 and MAE of 903

258, falling short of our model’s results. Similarly, models incorporating cross-attention 904

mechanisms, like Cross-Attention-LSTM (C-index 0.64, MAE 277), underperformed 905

compared to HCLmNet, depicted in Table 2. 906

The superior performance of our model is attributed to its hybrid CL approach, 907

which effectively leverages multiple modalities (clinical, DNA, CT, and PET) and 908

balances retention of past knowledge with integration of new information. Additionally, 909

the incorporation of cross-attention in the fusion layer optimizes feature alignment 910

between modalities, ensuring robust survival predictions. This mechanism is crucial in 911

enhancing the model’s understanding of patient-specific interactions, leading to 912

improved discriminative power. Furthermore, the use of advanced loss functions, such as 913

the CoxPH-based loss, aligns survival prediction with real-world clinical outcomes, 914

contributing to the reduction in prediction errors (MAE). The results underscore 915

HCLmNet’s robustness and adaptability, particularly when predicting survival 916

probabilities over extended periods like five years. 917

December 12, 2024 24/31

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 16, 2024. ; https://doi.org/10.1101/2024.12.14.24319041doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.14.24319041
http://creativecommons.org/licenses/by/4.0/


Table 2. Comparison of Recent State-of-the-Art Models for Lung Cancer
Survival Prediction with base Model.

Datasets Used: D 3358P and D 200P
Model Modality C-index (↑) MAE (↓)
CNNs-CoxPH Clinical + CT + PET 0.65 247
DeepSurv Clinical + DNA + CT + PET 0.67 252
RSF Clinical + DNA + CT + PET 0.52 250
DeepHit Clinical + DNA + CT + PET 0.55 248
FCN-SwinT-CoxPH Clinical + DNA + CT + PET 0.45 278
Cross-Attention-LSTM Clinical + CT + PET 0.64 277
Cox-Time Clinical + DNA + CT + PET 0.68 255
Trans-Surv Clinical + DNA + CT + PET 0.71 258
HCLmNet(Proposed) Clinical + DNA + CT + PET 0.76 189

Notes: C-index values closer to 1 indicate better discriminative ability, while lower
MAE (Day) values indicate better accuracy in survival time prediction. The table
compares models using different modalities to enhance lung cancer survival predictions
over the traditional CoxPH baseline.

In summary, our proposed HCLmNet establishes a new benchmark for survival 918

prediction in lung cancer, delivering improved prediction accuracy and discriminative 919

ability while addressing the limitations of traditional models. 920

Assessment of Incremental Learning Strategies in Lung Cancer 921

Survival Prediction 922

To evaluate the effectiveness of our CL strategies, we compared various state-of-the-art 923

survival prediction models, focusing on their BP, NDP, NR, and Fg rates. The results 924

demonstrate that our proposed HCLmNet outperforms other models across all CL 925

metrics. HCLmNet achieves a high C-index of 0.84 and a remarkably low MAE of 140 926

days. Its BP (0.76) and NDP (0.83) highlight its ability to adapt to new data efficiently, 927

while its superior KR (0.86) and minimal Fg (0.08) underscore the robustness of its 928

hybrid CL mechanisms. The hybrid CL strategy we employed in HCLmNet combines 929

EWC and replay-based approaches to balance plasticity and stability. EWC mitigates 930

catastrophic forgetting by constraining updates to important weights, while the replay 931

mechanism ensures retention of previously learned information by revisiting a curated 932

memory buffer. Additionally, instance-level and class-level correlation modules enhance 933

HCLmNet’s ability to align features across modalities (clinical, DNA, CT, and PET), 934

improving the model’s overall stability and adaptability. 935

Fig 13 and Table 3 illustrate the CL evaluation, showing how HCLmNet maintains 936

superior performance in baseline, new data, knowledge retention, and forgetting 937

compared to other models. These findings highlight the effectiveness of the proposed 938

framework in retaining critical knowledge and accurately predicting lung cancer survival. 939

Fig 13. Continual Learning Evaluation: Baseline, New Data, KR, and Fg for Various Models.

Computational Complexity Evaluation of Prognostic Models 940

In our experiments, we evaluated the computational complexity (CC) of various 941

prognostic models for lung cancer using inference time (ms/sample) and FLOPS (G) as 942
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Table 3. Evaluation of Continual Learning Approaches for Lung Cancer Prognostic Models

Datasets Used: D 3358P, D 200P, and D 212P
Model C-index (↑) MAE (↓) Baseline

Performance
NDP Knowledge

Retention
Forgetting

(↓)
CNNs-CoxPH 0.65 258 0.65 0.60 0.63 0.25
DeepSurv 0.70 252 0.70 0.68 0.67 0.19
RSF 0.72 250 272 0.70 0.69 0.45
DeepHit 0.75 248 275 0.73 0.72 0.23
FCN-SwinT-CoxPH 0.78 245 0.78 0.77 0.76 0.13
Cross-Attention-LSTM 0.77 244 0.77 0.76 0.75 0.17
Trans-Surv 0.76 204 0.76 0.74 0.73 0.15
HCLmNet(Proposed) 0.84 140 0.76 0.83 0.86 0.08

Notes: C-index values closer to 1 indicate better discriminative ability, while lower MAE (Day) values indicate better
accuracy in survival time prediction. Forgetting (↓) represents the drop in performance on old data after learning new data
(lower values are better).

metrics, as summarized in Table 4. The CNNs-CoxPH model, with an inference time of 943

0.01 and 0.5 GFLOPS, was the most lightweight baseline but lacked the capacity to 944

model complex multimodal interactions. DeepSurv and RSF required slightly higher 945

computational resources at 0.1 and 0.05, with 3 and 2 GFLOPS, respectively, offering 946

better multimodal data representation. DeepHit demonstrated increased complexity 947

with 0.2 and 6 GFLOPS, reflecting the cost of incorporating advanced learning 948

mechanisms. Models designed for domain-specific data, such as TransMIL (histology 949

and genomics) and MOTCat (genomics and pathology), showed significantly higher 950

computational demands, with TransMIL at 3.5 and 120 GFLOPS, and MOTCat at 4.0 951

and 140 GFLOPS, highlighting the cost of domain-specific feature extraction. The 952

FCN-SwinT-CoxPH model, which integrates SwinT for multimodal feature extraction, 953

required 5.0 and 250 GFLOPS, reflecting the computational expense of advanced 954

feature integration. Similarly, the Cross-Attention-LSTM model achieved a balance 955

between efficiency and complexity, with 2.0 and 100 GFLOPS, leveraging efficient data 956

fusion mechanisms. Our proposed model, HCLmNet, exhibited the highest 957

computational cost at 6.0 and 300 GFLOPS. This reflects its hybrid CL framework, 958

combining replay-based memory and EWC with cross-attention mechanisms to ensure 959

robust adaptation and accurate survival predictions. Despite its higher computational 960

demands, HCLmNet offers exceptional potential for scenarios requiring robust 961

multimodal integration and adaptive learning. 962

7 Conclusion 963

This study introduces a hybrid CL multimodal framework designed to address the 964

critical challenge of catastrophic forgetting in lung cancer survival prediction. By 965

integrating EWC with replay-based strategies (ER, EICR, and ECCR), the framework 966

adapts to new data while retaining prior knowledge. Leveraging SwinT-based feature 967

extraction enhances the detection of critical features, such as ground-glass opacities and 968

multiple tiny tumor instances with complex places, and XLNet-permutation effectively 969

processes limited DNA datasets by learning latent data patterns. The proposed model 970

outperforms state-of-the-art approaches, achieving a 7.7% improvement in C-Index 971

(0.84), reducing MAE to 140, and significantly minimizing forgetting to 0.08. These 972

results demonstrate its superior ability to deliver accurate and adaptive survival 973

predictions in dynamic medical contexts. To further advance in this work, future 974

research will focus on enhancing training efficiency through optimized DICOM image 975
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Table 4. Computational Complexity Evaluation of Prognostic Models for Lung Cancer

Datasets Used: D 3358P, D 200P, and D 212P
Model Modality Inference Time (ms/sample) FLOPS (G)
CNNs-CoxPH Clinical + CT + PET 0.01 0.5
DeepSurv Clinical + CT + PET 0.1 3
RSF Clinical + CT + PET 0.05 2
DeepHit Clinical + CT + PET 0.2 6
TransMIL [55] Histology + Genomics 3.5 120
MOTCat [56] Genomics + Pathology 4.0 140
FCN-SwinT-CoxPH Clinical + DNA + CT + PET 5.0 250
Cross-Attention-LSTM Clinical + CT + PET 2.0 100
HCLmNet (Proposed) Clinical + DNA + CT + PET 6.0 300

Notes: Inference Time refers to the time taken to process a single sample. FLOPS (G) represents the computational cost in
billions of floating-point operations per second. Proposed model values are based on enhanced multimodal integration and
CL efficiency.

preprocessing and integrating federated learning to enable decentralized and scalable 976

deployment in real-world healthcare environments. Finally, these findings signify a 977

critical progression toward designing adaptive and dependable systems for predicting 978

lung cancer survival outcomes. 979
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