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SUMMARY 11

Protein aggregates are a hallmark of neurodegenerative disease, yet the molecular processes 12

that control their appearance are still poorly understood. In particular, it is unknown to what 13

degree the development of aggregates in one cell is triggered by nearby aggregated cells, as 14

opposed to cell-autonomous processes. Here we develop a cell-level computational model to 15

test alternative hypotheses of disease progression from human data and demonstrate its appli- 16

cability in the primary tauopathy Progressive Supranuclear Palsy. From brain slices stained for 17

aggregated tau, we quantify the contribution of cell-to-cell and cell-autonomous processes to the 18

proliferation of aggregates across different brain regions and disease stages. We find that the 19

triggering of aggregation by nearby aggregated cells, over distances in the order of 100µm, is 20

the major driver of disease progression. Our computational model can then simulate interven- 21

tions to evaluate potential therapeutic strategies in a virtual reconstruction of a human primary 22

neurodegenerative tauopathy. 23

KEYWORDS 24

Highlights 25

1. A minimal mathematical model can reproduce tissue-level aggregate accumulation pat- 26

terns in silico at cellular resolution. 27

2. Cell-to-cell interactions determine aggregate patterns in progressive supranuclear palsy 28

(PSP). 29

3. Cell-to-cell interactions are not limited to nearest neighbours, but act over a millimetre- 30

scale. 31

4. Reducing cell-to-cell interactions or cell vulnerability, rather than targeting cell-autonomous 32

processes, is a potential disease-modifying therapeutic strategy. 33

INTRODUCTION 34

The association between misfolded, aggregating proteins and neurodegenerative diseases is 35

well established1,2. Even though aggregating proteins are diverse and the aggregated structures 36
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they give rise to are specific to disease3, there are common principles of pathogenesis at the 37

molecular and cellular level. These principles include the intrinsic ability of aggregating protein 38

species to self-replicate4, their ability to overwhelm or avoid protein quality control and removal 39

mechanisms5, and the potential to spread between cells6–8. It has been shown that both aggre- 40

gate self-replication and spreading occur in animal models9–11. However, in most cases it has 41

yet to be shown for human neurodegenerative diseases which is the critical – or rate-limiting – 42

process. This is essential to guide therapeutic strategies to slow or arrest disease progression. 43

A quantitative model of the molecular drivers of disease is required, that works at the spatiotem- 44

poral scale of human disease12. 45

Protein aggregation plays a central role across a spectrum of neurodegenerative diseases 46

and has been studied in detail in vitro 4,13,14. Yet, the cellular and molecular processes found to 47

control aggregate formation under such controlled conditions have proven difficult to relate to 48

disease emergence and the pattern and pace of pathology observed in human disease15. Math- 49

ematical modelling of disease progression can bridge this gap, to link macroscopic patterns of 50

progression to cellular and molecular processes. For example, models of selective vulnerability 51

and connectivity can recover the brain-wide patterns of regions becoming affected in sequence 52

over the course of different diseases16. Using such models, the rates of general classes of 53

pathological processes have been quantified10, and the interaction of beta-amyloid and tau ag- 54

gregation in Alzheimer’s disease (AD)17 has been elucidated. To date, these models of human 55

disease have focused mainly on macroscale modelling, informed by whole brain imaging meth- 56

ods such as PET, MEG and MRI scanning18–20. This limits the conclusions that can be drawn 57

about molecular and cellular mechanisms, and the applicability in drug development, which by 58

its nature acts at the molecular level. New modelling approaches are therefore required that 59

accommodate micro- and meso-scale processes. 60

With the advance of digital pathology and AI-facilitated automated classification of aggregated 61

cell types21, cellular-level resolution of neuropathological changes can now be obtained and 62

quantified at scale21,22. Such digital data with cellular resolution opens the door for models to 63

investigate the rates of within-cell aggregation and cell-to-cell interactions. 64

Here, we present a model to link cellular aggregation patterns observed at the tissue level to 65

underlying molecular processes. To achieve this, we use a minimal model of aggregation in a 66

cell, and then allow cells to interact with each other to trigger aggregation. We apply this model 67

to data from the primary tauopathy Progressive Supranuclear Palsy (PSP). Unlike Alzheimer’s 68

Disease, PSP is associated with the aggregation of misfolded 4-repeat (4R) tau23, independent 69

of the aggregation of a second misfolded protein (e.g. amyloid-beta in Alzheimer’s disease). 70

PSP therefore provides an ideal test-bed for our approach, with its high clinicopathological cor- 71

relation, and the high propensity of its 4R-tau to aggregate. Moreover, tau pathology in PSP 72

follows a stereotypical sequential pattern, as described by Kovacs et al.24. We anticipate the 73

lessons learned here will enable us to model Alzheimer’s Disease and other aggregation-related 74

neurodegenerative diseases in the future. 75

We first introduce the mathematical model and demonstrate its behaviour when the different 76

processes dominate. We then use an automated histological approach to capture the spatial 77

aggregate patterns of histopathological images from 12 brain regions in 11 PSP cases, across 78

disease stages24 (Table S1). The digitised information from nuclei and aggregated cell location 79

is then used in our model to determine the relative contribution of molecular processes that gave 80

rise to the observed patterns. This allows us to determine the rate-limiting steps in protein aggre- 81

gation and progression, and investigate how the contribution of cell-to-cell and cell-autonomous 82

processes to the proliferation of aggregates varies across brain regions and over the course of 83

disease. 84
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RESULTS 85

Modelling cell-level aggregate formation 86

A number of processes are needed to describe cellular level patterns of aggregate formation in 87

neurodegenerative diseases such as PSP. The key processes of aggregate formation are: (i) ini- 88

tiation, de-novo formation of aggregates without the involvement of existing aggregates; (ii) mul- 89

tiplication, formation of new aggregates triggered by existing aggregates, for example via frag- 90

mentation; and (iii) growth, growth of existing aggregates by addition of further proteins. These 91

processes couple together into a minimal reaction network that produces auto-catalytic ampli- 92

fication of aggregates, a feature observed for tau and across disease-associated proteins4,25. 93

Protein synthesis and aggregate removal also play important roles in cellular aggregation, re- 94

sulting in two distinct states for a cell: stable (healthy) and runaway aggregation (diseased)5,26. 95

In our model in silico system, we included the following core features: cells are in a sta- 96

ble state unless triggered to switch to a runaway aggregation state, either by a random cell- 97

autonomous event, or by influence from other cells in the runaway aggregation state. This switch 98

can occur when aggregate self-replication overwhelms clearance, or when significant amounts 99

of preformed seed enter the cell5. Once triggered, a cell accumulates aggregates. There is 100

evidence that aggregates are present at low concentrations in healthy states without triggering 101

runaway aggregation27. This may represent a stable state in which aggregate production and 102

removal are in balance26. We therefore assume that the large aggregate deposits visible in his- 103

tological stains occur only in cells that have switched to the runaway aggregation state, and we 104

refer to these as aggregated cells throughout. 105

Aggregated cells are capable of triggering aggregation in other cells. This could occur by 106

transfer of aggregates via axonal connections that act as seeds, or by less direct means such 107

as inducing inflammation28, Fig. 1A. The parameters of this model include a rate-constant for 108

cell-autonomous triggering (ka), a rate-constant for cell-to-cell triggering (ks), and a character- 109

istic length scale of cell-to-cell triggering (σ). As the cell-to-cell triggering process couples the 110

behaviour of cells across space, we also refer to this process as spatial coupling. 111

We assume that the ability of an aggregated cell to trigger aggregation decays with distance 112

as a normal distribution, with a standard deviation σ equivalent to the length scale of cell-to-cell 113

triggering. A normal distribution describes the situation where triggering occurs by a randomly 114

diffusing species, but may also be used as an approximation for how the average number of 115

axonal connections varies with distance. As we show later, the exact choice of the functional 116

form of the distance dependence does not affect our conclusions (Fig. S8). This description 117

allows us to capture the different possible mechanisms for the evolution of the spatial aggregate 118

patterns, often referred to as spreading. We avoid this term given the potential confusion as 119

to whether it refers to the increase of the size of the region affected by pathology or the actual 120

transfer of aggregated species. 121

Finally, to reflect recent biological insights29,30, we allow for a variable vulnerability term that 122

defines the probability of a given cell being triggered, and reflects other biological process, such 123

as different monomer expression levels or a varying ability to remove aggregates. 124

The behaviour of the model is demonstrated in Fig. 2 for a simple cell arrangement and under 125

a variety of conditions. We will first discuss how to quantify the distribution patterns of aggregated 126

cells that emerge from this model and how the different processes influence them. We go on 127

to analyse data from PSP patients to quantify rates for the different processes modelled, and 128

identify the rate-limiting steps. Finally, we use simulations on a virtual reconstruction of PSP 129

brain tissue to illustrate how aggregated cell distributions evolve over the course of the disease, 130

and to assess how varying the rates of disease processes would influence the outcome. 131
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Figure 1: Schematic of the in-vivo cellular model for protein aggregation and our data por-
cessing pipeline. (A) In our model, the basic unit is a cell. Within each cell, once aggregation is
triggered, aggregates rapidly accumulate. Aggregation can be triggered cell-autonomously (rate
ka, units of inverse time), and additionally aggregated cells can trigger aggregation in other cells
(as a model for e.g. transfer of seeds or indirectly mediated triggers), with a length-dependent
coupling strength between cells (rate ks in units of inverse time, length dependence σ in units
of length). How susceptible to being triggered a cell is, is determined by its vulnerability. As
the simulation proceeds, we track the aggregation state of each cell over time. (B) Outline
of the extraction of relevant information (nuclei and aggregated cell positions) from images of
histopathological brain slices. Initially, only the grey matter is selected, then image segmentation
detects aggregated cells and nuclei, and finally the cell position and cell state is reconstructed
virtually. Scale bar in B: 5 mm (left), 50 µm (middle), and 5 mm (right).
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Development of spatial measures to distinguish mechanisms 132

Brain slices from neurodegenerative disease contain a wealth of information, not just on the 133

quantity of neuronal tangles and other deposits of aggregated protein, but also on the spatial 134

distribution of these structures. This spatial distribution varies in different brain regions, and at 135

different stages of disease. From the spatial distribution of aggregated cells it is possible to 136

infer mechanistic information on the strength of cell-to-cell interactions, their length dependence 137

and the importance of de-novo formation of aggregated structures compared to the formation 138

triggered by nearby aggregated cells. However, extracting this information is non-trivial given 139

the complexity of the images, the regional variation in brain structure (differences between brain 140

regions, white and grey matter, cortical bands etc.) and the intrinsic stochasticity of the patterns. 141

We therefore developed means to extract the relevant information from patient data. 142

As a first step, the histopathological images are processed, as detailed in the Methods, to 143

automatically determine the position of aggregated cells and nuclei, Fig. 1B. These nuclei and 144

aggregated cell positions are used in the remainder of this work; they can be directly compared 145

to the output of our model. We now use our model to investigate different strategies to extract 146

mechanistic information. A key property of the experimental data is that it captures only a single 147

end-stage time point. This means that we will only be able to determine ratios of rates, rather 148

than the rates directly. Nonetheless, this can still provide key mechanistic insight, as it is only 149

the relative rate of processes that determines their importance in governing disease progression 150

and thus makes them potential therapeutic targets. It is possible to estimate the absolute rate 151

values from the duration of disease. 152

To decrease the complexity of the analysis process, we now discuss the results at two length 153

scales separately. We will first demonstrate the measures developed on simulated data and then 154

move on to applying them to patient data. 155

Nearest-neighbour distributions to investigate interactions between adjacent cells 156

We first focus on the fraction of aggregated cells in the immediate neighbourhood of an ag- 157

gregated cell, which can be assessed at the shortest length scale reliably accessible from 158

histopathological images. We use a local measure in the form of the nearest neighbour dis- 159

tance (NND), which is the distance from one aggregated cell to the next nearest aggregated cell, 160

and compare this to the NND for all cells. Determining the NND for all aggregated cells or nuclei 161

in a brain slice yields a NND distribution. 162

In Fig. 2 (panels i-iii in each condition) we have simulated a number of different scenarios for 163

a simple arrangement of cells (random distribution of cells, with a denser band running through 164

the centre). In Fig. 2 (panels iv-vi for each condition) we show the resulting NND distributions, 165

which differ between scenarios permitting mechanistic conclusions to be drawn form the NND 166

distribution. The most pronounced differences between scenarios are expected when few cells 167

contain aggregates; as the fraction of aggregate cells increase the NND distributions for different 168

mechanisms naturally converge as they become fully aggregated. We derived analytical expres- 169

sions for the distribution of aggregates in the limits no spatial coupling and short range spatial 170

coupling, which are shown superimposed on the example distributions in Fig. 2. 171

Briefly, when the appearance of new aggregated cells is spatially random with no triggering by 172

other aggregated cells, the NND distribution of aggregated cells is much higher than the NND of 173

all cells (Fig. 2A.iv-vi). At the other extreme, when the new aggregated cells are formed predom- 174

inantly by an aggregated cell triggering its direct neighbours the NND distributions of aggregated 175

cells closely resemble the NND distributions of all cells (Fig. 2B.iv-vi). By contrast, when cell- 176

triggering acts over longer distances, the NND of aggregated cells again resemble the case 177

where no triggering takes place (Fig. 2C.iv-vi). The NND distributions are thus a simple measure 178
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for the amount of cell-to-cell triggering occurring over short length scales, between directly adja- 179

cent cells. More advanced measures, such as the radial distribution function discussed below, 180

provide additional information at longer length scales. 181

Millimetre length scale features can distinguish mechanisms 182

The analysis of NND distributions described above cannot distinguish the case in which cell-to- 183

cell coupling is important but long-range (Fig. 2C) from one in which formation of aggregated cells 184

is purely random via a cell-autonomous process (Fig. 2A). While the short-range distributions are 185

comparable in both cases (Fig. 2A,C panels iv-vi), at the mm length scale the difference in spatial 186

feature size is clearly apparent (Fig. 2A,C panels i-iii). 187

To quantify the spatial features at these longer length scales, we select two measures: the 188

radial distribution function (RDF) and the locally averaged Aggregated cells Per Nucleus (APN) 189

value. The APN is defined as the local fraction of aggregated cells as a function of the local 190

cell density. The radial distribution function is a commonly used measure to quantify spatial 191

distributions. By contrast, the APN value was developed in this work to help interpret the features 192

of the aggregated cell distribution, exploiting variation in the underlying distribution of nuclei. A 193

plot of APN vs cell density encodes mechanistic information, on how different cell densities affect 194

aggregate formation. Cell densities vary over a mm length scale in brains, for example due to 195

the presence of cortical layers, which can be exploited to gain mechanistic insights. 196

The APN value represents a fraction of aggregated cells, rather than an absolute number. 197

This means it does not capture spatial features due to variations in cell density in a system where 198

the rate of aggregate formation is unaffected by cell density. This is the case for example when 199

only cell-autonomous formation takes place. However, when cell density affects aggregation, for 200

example when cell-to-cell triggering depends on the separation of cells, we expect that these 201

features will be captured in an APN vs nucleus density plot. Indeed, this is confirmed by our 202

simulations: when cell coupling is important, denser regions show a higher fraction of aggregated 203

cells due to the stronger coupling between the more closely packed cells (Fig. 2B,C, panels viii); 204

whereas if there is no cell coupling, the APN values are the same in regions of different density 205

(Fig. 2A.viii). 206

The RDF measures relative density along the radial axis. In its usual physical application, the 207

RDF is normalised by the overall density such that an RDF value of 1 at a particular distance 208

reflects a random arrangement. In our case we instead normalise the RDF to the overall density 209

of cells, rather than the overall density of aggregated cells. This means the value of the RDF 210

now denotes the fraction of cells aggregated at a particular distance from another aggregated 211

cell. We also include the RDF expected in a random arrangement, the horizontal line, to highlight 212

the degree of clustering compared to a random arrangement. In the no spatial coupling case we 213

find, as expected, that the measured RDF is constant and overlaps with the RDF for a random 214

arrangement (Fig. 2A.vii). 215

By contrast, in the short range coupling case, we find that the RDF peaks at short distances, 216

with values close to 1 denoting fully aggregated regions (Fig. 2B.vii). The cluster size of densely 217

aggregated cells is also visible from the extent of the peaks to hundreds of µm in Fig. 2B.vii. In 218

the long-range spatial coupling case, the RDF still clearly peaks above the RDF of a random 219

arrangement. The effect is much less pronounced than in the short range coupling case; even 220

the centre of clusters are not close to being fully aggregated. The different conditions show 221

clearly distinct patterns in the RDF, allowing us to infer mechanisms. 222
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Figure 2: Simulation and analysis of intra-brain region patterns under varying spatial cou-
pling conditions and fraction of cells aggregated. (A) Patterns observed with no spatial
coupling across three fractions of aggregated cells: 2%, 5%, and 20%. (B) Patterns with short-
range spatial coupling across the same fractions: 2%, 5%, and 20%. (C) Patterns with long-
range spatial coupling across the same fractions: 2%, 5%, and 20%. In each panel, the top left
sub-panels show 2D spatial patterns at different fraction aggregated, the top right sub-panels
display the corresponding nearest neighbour distance distribution (grey histogram) with the an-
alytical expression in the random limit (blue line) and the direct nearest neighbour coupling limit
(red line), the bottom left sub-panels present the normalised radial distribution function (points)
with the fully random distribution shown as a solid line (see Method for definition), and the bot-
tom right sub-panels illustrate the aggregate-per-nucleus values in regions of varying nucleus
density. Scale bar on panels i-iii: 500 µm. The simulation parameters for this figure are provided
in Simulation parameters.
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Cell types and vulnerability 223

In the simplest model all cells are assigned the same vulnerability, i.e. the same resistance 224

against being triggered to aggregate. This is the assumption used throughout the majority of this 225

work. However, to account for the fact that a number of different cell types are involved in the 226

accumulation of aggregates and that there is increasing evidence for further heterogeneity in the 227

vulnerability within a given cell type31, we also explored the effect of varying the vulnerability of 228

individual cells (Fig. S9). We tested two types of vulnerability distributions: 1) at the one extreme 229

we use a Bernoulli distribution where a cell can only have one of two vulnerability values, high 230

or low; this could account for the presence of different cell types. 2) at the other extreme we use 231

a uniform distribution, to model a continuum of vulnerability in the system. Our assumption of 232

vulnerability imposed on individual cells does not depend on cellular location. 233

The results from simulating different vulnerability distributions show no qualitative changes in 234

the NND distribution, RDF, or APN values at given fractions of aggregated cells. This means that 235

conclusions about the dominant mechanism remain robust even when vulnerability distributions 236

are not modeled in detail. The length scale of the cell-to-cell coupling, σ, appears to be weakly 237

coupled to the vulnerability, thus the absolute values of this parameter are expected to be less 238

accurate in the absence of an accurate measure of cell vulnerability variation. 239

Having established the spatial features in simulation, we next consider post-mortem data 240

from people with PSP. 241

Mechanistic information from PSP brains on different length scales 242

The aggregates are identified from the brain slice images by image analysis and then classified 243

into different subtypes, tufted astrocytes (TA), which are formed in astrocytes, coiled bodies (CB), 244

which are formed in glial cells, and neurofibrillary tanlges (NFT), which are formed in neurons, 245

by a machine learning algorithm22. Their positions, as well as all nucleus positions, are recorded 246

and will be used in the subsequent analysis. This process is performed on all images, across 247

stages and brain regions. For details see Methods. 248

Random distribution dominates at cell-level length scales 249

The NND distributions show that there is little coupling between directly adjacent cells and the 250

RDFs show little variation on the length scale of ∼ 100 µm, regardless of brain region and stage 251

of the disease (Fig. 3D, I, N, and 4A). This finding rules out a mechanism where an aggregated 252

cell simply triggers aggregation only in its closest neighbours (Fig. 2B). Therefore mechanisms 253

that are expected to transfer aggregates only to directly neighbouring cells to induce aggrega- 254

tion there, such as tunnelling nanotubes32, are unlikely to be dominant processes. This leaves 255

two other possibilities: The simplest is that appearance of new aggregated cells is fully cell- 256

autonomous, also at longer length scales, and cells become aggregated independently of any 257

aggregated cells in their vicinity (Fig. 2A). This explanation of course would be somewhat at 258

odds with the hypothesis of seeding, i.e. the ability of preformed aggregated tau to induce the 259

aggregation in new cells, observed in many model systems, as well as the observation of expo- 260

nential amplification of tau concentrations in disease. The other mechanistic interpretation is that 261

inter-cell transmission does happen, but the ability of an aggregated cell to induce aggregation in 262

other cells is not limited to those cells close by and instead decays only slowly with distance from 263

the aggregated cell (as in the simulated example in Fig. 2C). In this scenario aggregated cells 264

are still responsible for triggering the aggregation, but at short length scales this aggregation 265

pressure is essentially spatially uniform and the location of newly aggregated cells is governed 266

by stochastic effects, such as the cells’ differing vulnerabilities to become aggregated. 267
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To better understand the pathogenesis at short distances we also investigated the NND of 268

aggregated cells in different aggregated cell types separately (TAs, CBs and NFTS). The distribu- 269

tions resemble those observed for all aggregated cells, consistent with the previous mechanistic 270

conclusions (Fig. S5A-C). Finally, we computed the nearest neighbour distance across different 271

aggregated cell subtypes, that is the distance between for example tufted astrocytes and the 272

nearest coiled body (Fig. S5D-I). We can compute the average NND for a random arrangement 273

of cell types and a random appearance of aggregated cells. If there was increased triggering 274

from one type to another, for example if most NFTs were formed by triggering from a TA, then 275

we would expect a lower than predicted cross-NND in the corresponding plot. In practice, we 276

find that the average NND between two different types is slightly larger than the prediction for 277

a random arrangement of cell types and aggregated cells (i.e. above the line of equivalence in 278

Fig. S5). This indicates that specific arrangement of cell types, not appearance of aggregated 279

cells, dominates these patterns and there is no evidence for preferential coupling from one cell 280

type to another. 281

Intra-brain-level aggregated cell distributions are not consistent with cell-autonomous 282

triggering but imply long-range coupling 283

While nearest neighbour distributions are a good measure for the spatial distributions at short 284

length scales, to quantify the aggregated cell distributions at the longer mm-level length scales, 285

more complex measures that can quantify spatial features need to be employed. 286

In Fig. 2 above we showed that the locally averaged fraction of aggregated cells (or APN 287

value) and radial distribution function (RDF) are two measures that display different features 288

depending on the mechanism that dominates the appearance of aggregated cells. In Fig. 3A, F 289

and K we show the APN value across a brain slice, for 3 example datasets at different disease 290

stages. In Fig. 3C, H and M we show the corresponding average APN value in high and low 291

density cell regions. A more detailed plot, for these and additional datasets, is shown in Fig. S6. 292

In all of these images, the APN value is clearly higher in the dense cell regions than the less 293

dense cell regions. This observation cannot be explained with a simple cell-autonomous model, 294

even when allowing for cell density-dependent vulnerability as discussed below. The observation 295

is however consistent with a simple cell-to-cell coupling model, where the coupling two cells is 296

stronger the closer together they are. 297

The behaviour of the RDF is also in agreement with these conclusions based on the APN 298

value. The RDF values are significantly above the value for a random arrangement (dashed red 299

line in Fig. 3E, J, and O). This suggests that cell-to-cell coupling plays a significant role at longer 300

length scales, reinforcing the idea that aggregation is not merely a local event but is influenced 301

by spatial interactions extending beyond immediate neighbours. We now move beyond these 302

qualitative observations to extract the parameters of our model that best describe the data by 303

fitting. 304

Estimating parameters from the data 305

Using our model we can identify which molecular mechanism dominates in human disease, 306

and quantify the rate constants that best match the patient data. In order to do so we use 307

the cell positions given by the histopathological images to reconstruct a virtual brain slice in 308

silico. We can then run simulations on this specific cellular distribution to determine which set of 309

parameter values best describe the experimental data. This allows us to determine the relative 310

importance of cell-autonomous over cell-to-cell triggering processes, given by the ratio of the 311

cell-autonomous triggering rate and the rate-constant for cell-to-cell triggering ka/ks, as well as 312

the spatial coupling radius σ. 313
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Figure 3: Comparison between real brain data and simulation results. Panels (A)–(O) show
comparisons between real brain data and simulations across different brain regions and the
disease stages defined by Kovacs et al.24. (A), (F), and (K) display the rolling average aggregate
density from real data, while (B), (G), and (L) show the corresponding simulations using the best
fit parameters. (C), (H), and (M) show the aggregate-per-nucleus (APN) values in both low and
high nucleus density regions, for the patient data (black) and the simulations (blue, mean of 10
simulations, error bar is standard error of the mean). (D), (I), and (N) show the nearest neighbour
distance distributions for the patient data (black histogram), the simulations (blue histogram, from
a single simulation), the analytical expression in the random limit (black line, see Method for
the derivation) and the direct nearest neighbour coupling limit (green line, see Method for the
derivation). (E), (J), and (O) show the radial distribution function for the patient data (black) and
simulations (blue, from a single simulation) with the fully random RDF shown in dashed red. The
patient data are from the temporal cortex at Kovacs stage 3 (A-E), premotor cortex at stage 4
(F-J), and primary motor cortex at stage 6 (K-O). Panels (P) and (Q) show two simulation misfits
to the patient data in (K), with the coupling radius set to 1/8 of the best fit value and the ratio
ks/ka set to 10 times the best fit value in (P), coloured red in (R-S) and the cell-to-cell coupling
switched off while leaving the other parameters unchanged in (Q), coloured purple in (R-S). (R)
compares APN values, (S) compares nearest neighbour distributions, and (T) compares radial
distribution functions between the misfits and data. Scale bar = 2 mm.
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APN histograms, rather than the full 2D images, were used to evaluate the match of simula- 314

tions to data. This is motivated in part by the intrinsic stochasticity to the aggregation process: 315

which cell will be triggered, either by cell-autonomous processes or cell-to-cell coupling, is to 316

some degree a random process. This means that individual realisations of each simulation will 317

yield slightly different results (Fig. S7). This reflects the biological situation and similar stochas- 318

ticity would be observed in the experimental data if it were possible to produce an exact repeat. 319

In practice this means that simulations are unlikely to match the data cell-for-cell even if the 320

model fully captured all biological processes taking place. However, higher level features, such 321

as those described by the NND distribution, the RDF or the APN value for different cell density 322

regions, are less affected by this stochasticity and therefore better suited for inference. We use 323

the APN histogram here, but other measures, such as the radial distribution function, can also 324

be used. The results of using RDF for inference are consistent with those presented here and 325

are shown in the supplementary information (Fig. S12). 326

As shown for the example images in Fig. 3, the best fit simulations match the data not only at 327

the level of the spatial measures of APN value in high and low density regions, NND distributions 328

and RDF, but also surprisingly well at the 2D image level, see Fig. 3 B,G and L compared to 329

Fig. 3 A, F and K. Some discrepancy between the empirical data and the best fit simulations at 330

the level of the 2D images in Fig. 3 is due to stochasticity, as discussed above. We also rec- 331

ognize that our model may not capture all the intricacies of the spatial dynamics of aggregation 332

and cell interaction. However, it can explain the major features of the data well, with the best 333

fit rate constants being consistent across samples (further details see next section). To put into 334

perspective the goodness of fit, we show two misfits in Fig. 3 P-T. In Fig. 3P we have forced the 335

coupling radius to be 100 µm and the rate ratio of cell-to-cell trigger and cell-autonomous trigger 336

to be 10000 (compared to a best fit value of 800 µm and 1000), whereas in Fig. 3Q aggregation 337

is triggered only by the cell-autonomous process and there is no cell-to-cell coupling. The dis- 338

crepancy between the misfits and the empirical data is clear across all measures, highlighting 339

that neither can explain the experimentally observed data. 340

Trends across disease stages and brain regions 341

In Fig. 4 we summarise the conclusions across stages and brain regions for our dataset, which 342

includes 11 patients, each with up to 11 brain regions (detailed numbers see Tab. S1). We show 343

both the results of a direct, model-free analysis of the data, Fig. 4A-C, and of the model best fits, 344

Fig. 4D, E. 345

We find that the average NND is close to that predicted when there is no coupling between 346

nearest neighbours, at all disease stages and in all brain regions, see Fig. S13A. Zooming 347

out to longer length scales reveals evidence for spatial effects. At mm length scales, there is 348

significant variation in cell density, so the dependence of the APN value on cell density contains 349

mechanistic information. Fig. 4A and B show the ratio of the APN value in high and low nucleus 350

density regions, grouped either by stage (A) or by brain region (B). Values above 1 denote that 351

cells in high nucleus density regions are more prone to aggregate than in low nucleus density 352

regions. This is the case at all stages from stage 3 onwards and is most pronounced in stages 5 353

and 6. The same trend is observed for the RDF, see Fig. S13B. When grouped by brain region, 354

most brain regions also display a higher aggregation propensity in denser cell regions, although 355

errors are larger given the lower number of samples in each group. The STN is an exception, 356

with APN ratio = 1, which might reflect biological distinctions of interest, or result from its very 357

small volume and specific cellular conformation. The occipital lobe is the only region with APN 358

ratio below 1. This may reflect its status as the last region to develop significant tau-pathology 359

under the Kovacs staging system. Consistent with this hypothesis, we show in our more detailed 360

analysis below that the small number of aggregated cells present in the OC is not sufficient for 361
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cell-to-cell coupling effects to be important. 362

In summary, the model-free analysis shows that aggregated cells in the immediate vicinity of 363

a cell play little role in determining its aggregation state, yet on 100s of µm to mm the density 364

and fraction aggregated of the surrounding cells has a significant influence. Given the apparent 365

importance of cell density in determining aggregation propensity, we further investigated the 366

potential mechanistic origins of this effect. There are two basic scenarios: either cells in dense 367

regions more vulnerable to aggregate, or the vulnerability of dense regions is simply a result of 368

the fact that it is easier for cells to couple when they are close together. The ratio of the APN 369

value of low and high cell density regions at different disease stages can answer this question: 370

if the effect of high cell density regions were to simply increase the vulnerability of cells, and 371

there was no cell-to-cell coupling effect, one would expect high cell density regions to be more 372

aggregated at any fraction aggregated. By contrast, if the effect was due to the easier triggering 373

of aggregation between closely packed cells, rather than an increased vulnerability in the dense 374

regions, we would expect the difference in APN value between high and low density cell regions 375

to become more pronounced the more aggregated the system is. This is because at low fraction 376

aggregated, cell-to-cell coupling is of lower importance so the differences between low and high 377

cell density regions would not be as pronounced. By plotting the ratio of the APN value in the low 378

and high cell density regions against the total fraction of aggregated cells, Fig. 4C, we see that 379

the experimental data fall into the latter category. There is a noticeable increase in the difference 380

between low and high cell density regions as more aggregated cells accumulate. In fact, under 381

low aggregate conditions, there are relatively fewer aggregated cells in high cell density regions, 382

implying that if there is a vulnerability difference between high and low cell density regions, high 383

cell density regions are less, rather than more, vulnerable. 384

These findings support our choice of model for of a spatially uniform vulnerability and a cell- 385

to-cell coupling determined by cell separation. Using this model to fit the data by matching APN 386

histograms (See Method Sec. Parameter inference for fitting details), as outlined in the above 387

section, we show that indeed the observed patterns can be matched. We thus obtain best fit 388

values for both the relative importance of cell-autonomous over cell-to-cell triggering processes, 389

given by the ratio ks/ka (Fig. S10), as well as the spatial coupling radius σ (Fig. S11, S12). 390

The ratio ka/ks is an estimate for the overall fraction aggregated at the point where cell-to- 391

cell coupling begins to dominate over cell-autonomous trigger, which we refer to as the switch 392

fraction. As derived in the methods, ka/ks is an approximate expression for the switch fraction. 393

We show a simplified derivation of this quantity in the methods. Fig. 4D &E shows that the 394

switch fraction across all stages and all brain regions is on the order of 0.001, or 0.1% of cells 395

aggregated. Fig. 4C, shows that most brain regions have already exceeded the switch fraction 396

at the time of measurement, with the exception of the OC, which is the last brain region involved 397

in the disease progression. STN is a notable outlier in Fig. 4E, due to its early involvement in 398

disease24. The resulting extensive cell death33 renders our models, which do not include cell 399

death, unable to fully explain the patterns. In Fig. 4F we show the simulated accumulation of 400

aggregated cells over time, from an aggregate free state, to one that has 5% of cells aggregated 401

(corresponding approximately to the highest levels of aggregation observed in patient data), in 402

a virtual reconstruction of a typical brain slice. Two phases can be identified, corresponding to 403

the cell-autonomous phase before the switch fraction is reached, and the cell-to-cell phase after 404

the switch fraction is reached. Note the much faster rate of increase in the latter parts of the 405

cell-to-cell phase. We assume constant rates and vulnerability over time for this plot, in reality 406

ageing effects may be important in particular in determining the time of onset and progression in 407

the cell-autonomous phase, as discussed as part of the limitations section below. 408

These findings imply that it is very unlikely that a single cell-autonomous event triggers dis- 409

ease progression. Instead, they predict that many cell-autonomous aggregation events take 410

place before cell-to-cell mechanisms become dominant when on the order of 0.1% of cells are 411
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already aggregated. 412

The change in dominant mechanism suggests that different therapeutic interventions may be 413

effective at specific stages of the disease. When the aggregate fraction is below the switch frac- 414

tion, therapies should target cell-autonomous mechanisms. Once the switch fraction is exceeded 415

in a brain region, interventions should focus on cell-to-cell coupling mechanisms. Note however 416

that some interventions, such as reduction of the tau concentration could affect both processes 417

equally, and that in practice it may be hard to administer therapies early enough to affect the 418

cell-autonomous phase. Below, we will demonstrate that targeting the wrong mechanism results 419

in negligible effects on aggregate accumulation. 420

Our model fits also determine the coupling radius, i.e. the characteristic length scale over 421

which cells can trigger aggregation on other cells. However, the current dataset does not provide 422

strong constraints on its value. The coupling radius most consistent with the data is in the range 423

of several hundred µm to 1 mm (Fig. S11 and S12), implying that cell-to-cell coupling extends well 424

beyond nearest neighbours but still resulting in spatial heterogeneity within a brain region. Note, 425

that this value was obtained under the assumption of constant vulnerability and a significant 426

variation in vulnerability could lead to a lower value of the coupling radius. The fact that no 427

independent quantitative measurement of vulnerability exists however means that we can only 428

report an effective coupling radius for the assumption of constant vulnerability. By contrast, the 429

switch fraction is independent of vulnerability, so its value is applicable also in the case of varying 430

vulnerability. 431
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Figure 4: Model-free analysis and fitted parameters from all patient data. (A) Box plots
summarizing the ratios in APN values across different nucleus density regions for each stage. (B)
Box plots summarizing the ratios in aggregate-per-nucleus (APN) values across different nucleus
density regions for each brain region. For (A) and (B), the box represents the interquartile range
(IQR), encompassing the middle 50% of the data with edges at the first and third quartiles.
Whiskers extend to 1.5 times the IQR from the quartiles to show the data range, while points
outside these whiskers are plotted as outliers. (C) Correlation between the APN ratio in high-
and low-density regions against the fraction of aggregated cells. The red line represents the
fitted linear curve for the scattered points. Each point is color-coded by brain region, using the
same color scheme as shown in panel (B). (D) Violin plots summarizing the switch fraction for
each stage. (E) Violin plots summarizing the switch fraction across different brain regions (F)
Fraction of aggregated cell over time, from onset (no aggregates) up to the fraction aggregated
seen in stage 6 (≈ 5% aggregated). Circles denote simulations based on the cell positions from
the brain slice shown in Fig. 3K. The solid black line is switch fraction, the dotted black line is the
time when the simulated fraction aggregated reaches switch fraction. Blue and red denote times
before and after switch time, respectively.
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Simulating effectiveness of therapeutic strategies 432

Having determined the rate constants of the individual processes in the preceding section, we 433

can now use these insights to simulate how aggregated cell distributions may have evolved in 434

a virtual reconstruction of each brain. Crucially we can also investigate how the distributions 435

would be affected if a therapeutic intervention to slow a specific process were administered at 436

different stages of the disease. We illustrate this using the primary motor cortex of a stage 6 437

patient in Fig. 5. A common initial state, t0, corresponds to 1.8% fraction aggregated or Kovacs 438

stage 3-4 (Fig S1A), from which we start simulations under 3 conditions: with the best fit rate 439

constants determined from the patient data, Fig. 5A-D, with the cell-to-cell triggering rate lowered 440

by 50%, Fig. 5E-H, with the cell-autonomous triggering rate lowered by 50%, Fig. 5I-L, and 441

with the vulnerability lowered by 50%, Fig. 5M-P. The simulations are all run for the amount 442

of time it takes the unaltered conditions to reach the late stage disease state observed in the 443

patient data. A clear slowing in the accumulation of aggregated cells is achieved with a 50% 444

reduction of either the cell-to-cell triggering rate or the vulnerability. By contrast, lowering the 445

cell-autonomous triggering rate by 50% leaves the progression essentially unchanged. This 446

highlights that the cell-autonomous triggering rate becomes essentially irrelevant for the overall 447

rate of progression, and therefore a poor drug target, once a certain fraction of aggregated cells 448

have formed. It also showcases how modelling and simulation can be used to investigate the 449

effect of altering different microscopic processes. 450

Limitations and future directions 451

There are several potential limitations and areas for optimization in our model. In particular, we 452

focussed on developing a minimal model that captures the dominant features, thus the current 453

framework does not explicitly include the effects of cell death, the detailed dynamics of intracellu- 454

lar aggregate formation and removal, the role of different types and sizes of aggregated species 455

and the ageing processes. The current model can explain well the aggregated cell patterns seen, 456

and infer the relative importance of general classes of mechanisms, such as cell-autonomous 457

and cell-to-cell triggers. However, a detailed time-course and description of disease onset may 458

require the effects of ageing to be included. Effects of ageing are likely to be reflected as an 459

increase in the rates or in vulnerability in our model34–37. This would compress the time-course 460

shown in Fig. 4F at later times and lead to a more sudden increase in the rate of aggregation, still 461

consistent with late onset and rapid progression of disease. Furthermore, to describe in detail 462

the effect of some therapeutic interventions, such as anti-aggregation drugs, a more detailed 463

model of intracellular aggregate formation will have to be included. To this end, further devel- 464

opment of the model will incorporate aggregate removal processes and their role in triggering 465

intracellular aggregation, providing a more detailed link to the molecular-level processes within 466

cells26. 467

In addition to more detailed links to molecular aggregation processes, future extensions of 468

this work will focus on broadening the applicability of our model to other neurodegenerative 469

diseases, such as Alzheimer’s and Parkinson’s disease. It will be particularly valuable to ex- 470

plore whether the disease mechanisms highlighted in progressive supranuclear palsy (PSP) are 471

consistent across other tauopathies and proteinopathies. Such expansions could enhance our 472

understanding of these complex diseases and inform general therapeutic strategies. 473
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Figure 5: Simulations on virtual reconstruction of brain region. (A-D) A virtual reconstruction
of cell positions from measurements of brain slices allows us to simulate how the aggregate
distributions may have evolved since the onset of the disease. (E-H) Temporal dynamics of the
simulation based on cell positions from (A) with a 0.5-fold rate of cell-to-cell triggering. (I-L)
Temporal dynamics of the simulation based on cell positions from (A) with a 0.5-fold rate of cell-
autonomous triggering. (M-P) Temporal dynamics of the simulation based on cell positions from
(A) with a 0.5-fold of vulnerability. The same initial state at t0 is used in all conditions, t1 is half
way between t0 and Now, t2 71% of the way. Scale bar = 2 mm
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Conclusions 474

In conclusion, we have developed a framework to derive mechanistic information of human 475

tauopathy from digital pathology data processed to detect aggregated cell and nuclear posi- 476

tions. We applied these to tau aggregated cells in post mortem tissue from people with PSP. To 477

demonstrate the mechanistic information of these measures and allow for more detailed analysis 478

of patient data, we use a simulation model of cellular aggregation. Although aggregation appears 479

random at short ranges, a spatial coupling effect is revealed at longer distances, on the order 480

of millimetres. In particular, there is increased propensity to aggregate in dense cell regions at 481

the later stages of PSP, consistent with the cell-to-cell triggering mechanism being dependent on 482

the spatial separation of cells. All these observations are successfully explained by our minimal 483

model in which an aggregated cell can trigger aggregation in a healthy cell, a process that is 484

easier the closer cells are closer together. The fact that this approach works and can predict the 485

aggregated cell patterns observed in human brains is surprising and demonstrates that two sim- 486

ple microscopic mechanisms underpin the aggregation in PSP. Finally, using the mechanisms 487

determined from the data, we showcase in simulations how alterations of specific rates would 488

affect the disease progression. This type of modelling can thus form the basis of prediction of 489

drug efficacy for novel therapies to treat or prevent neurodegeneration. 490
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Methods 491

Image analysis pipeline 492

We utilised an image analysis pipeline (Fig. S4) to analyze immuno-stained brain images ob- 493

tained from the Cambridge Brain Bank. We first segmented the grey matter parts of the images, 494

followed by colour deconvolution to separate signals from different targets, which in our case are 495

aggregated cells and cell nuclei. We then identified aggregated cells and cell nuclei by thresh- 496

olding the colour intensity and removed artefacts. The identified aggregated cells and cell nuclei 497

are characterised by several metrics, such as the size, the eccentricity, and the x,y position in 498

the 2-dimensional plane. All the details of the feature extraction can be found in the work by 499

Pansuwan et al.22. The extracted features of the objects are then further processed into nearest 500

neighbour distance distribution (NNDD) plots and rolling density plots. 501

Nearest neighbour analysis 502

To study the spatial arrangement at short distances, we use nearest neighbour distance distribu- 503

tion (NNDD). This is achieved using the cdist function from Python’s scipy.spatial.distance 504

package to calculate the distance between every possible pair of points from a lost of the posi- 505

tions of aggregated cells or nuclei. After calculating all the distances, we sort them for each point 506

to identify the nearest neighbour distance for each point. 507

NND distribution for a purely cell-autonomous system 508

The nearest-neighbour distance (NND) distribution describes the probability of finding the near- 509

est aggregated cell at a distance r from a reference point, assumed here to be the origin. This 510

is derived in two parts: (1) the probability of no aggregated cells within a radius r, and (2) the 511

probability density of finding an aggregated cell in the ring r → r + dr. 512

Part 1: No Aggregated cells Within Radius r In the cell-autonomous limit, cell aggregation 513

events are random and independent, following a Poisson distribution. The expected number of 514

events within a circle of radius r is λ = πr2D, where D is the overall aggregated cell density. The 515

probability of finding no aggregated cells within radius r is: 516

P (X = 0 within radius r) = P (X ≤ 1|λ = πr2D) ∝ e−πr2D.

Part 2: Aggregated cell in the Ring r → r + dr The probability of finding exactly one aggre- 517

gated cell in the ring r → r + dr is: 518

P (X = 1 in ring r → r + dr) = P (X = 1|λ = 2πrDdr) ≈ 2πrDdr,

valid for dr → 0. 519

Final NND Distribution Combining these, the NND distribution is: 520

P (NND ∈ [r, r + dr]) = 2πrDe−πr2Ddr.

This describes the NND distribution for randomly distributed aggregated cells. 521

In the opposite limit, when an aggregated cell triggers its direct neighbours and there is 522

negligible cell-autonomous aggregation, then the brain effectively partitions into fully aggregated 523
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and non-aggregated regions. The density of aggregated cells in the aggregated regions is simply 524

the density of all cells, so in this limit the NND distribution is again given by the same functional 525

form, 2πrDce
−πr2Dcdr, except that the relevant density is that of cells, Dc rather than the overall 526

aggregate density as in the cell-autonomous limit. 527

Radial distribution function as a mm-length scale spatial measure 528

The radial distribution function (RDF) describes how density varies with the radial distance r from
a reference particle. It can be defined as

g(r) =<
dnr

2πrdr
>,

where dnr is the number of particles within a ring of radius r, and width dr. We use RDF to char- 529

acterize the mm-length scale aggregated cell and nucleus distributions. We also compute the 530

normalized RDF defined as gnorm(r) =
gagg(r)

gnuc(r)
, where gagg(r), and gnuc(r) are RDF of aggregated 531

cells and nuclei, respectively. Unlike the more standard definitions of the RDF, this normalised 532

RDF achieves a values of 1 at distances where the system is fully aggregated. Moreover, the 533

normalisation by the RDF of cells also removes contributions to the aggregate spatial patterns 534

from the non-uniform spatial arrangement of cells. This is crucial to obtain RDFs that are in- 535

terpretable between different brain slices and images which all display different geometries. To 536

perform these calculations, we use the Python package rdf2d, which computes the RDF based 537

on the positions of the aggregated cells or nuclei. This function takes the particle positions 538

and a distance interval (dr=50 µm) to group the distances for analysis, returning two outputs: 539

g(r), which contains the calculated RDF values, and r (radii), which are the distances at which 540

the RDF is evaluated. These results are stored in a dictionary, with both the RDF values and 541

corresponding radii for further analysis or storage. 542

Intra-brain region analysis 543

Preparation of rolling-density data To quantify the density variation on a length scale larger 544

than the cell level but smaller than a full brain region, we first need to smooth the discrete 545

detection of aggregated cells over space. To compute the local density within a brain slice, we 546

use a rolling density calculation. We divide the brain slices into regions according to a grid and 547

calculate the density of the aggregated cells in each 100 µm by 100 µm region. We select 100 548

µm as the window size to avoid (i) a too large window size that removes relevant spatial features, 549

and (ii) a too small window size that results in stochastic variation of density. By testing various 550

window sizes (see Fig. S14), we established that a window of 100 µm achieves the best fitting 551

results. Finally, to further smooth the image, we calculate the rolling density. To do so, we 552

select one grid and average the density values of the 7 by 7 grids area that surrounds it. The 553

nucleus and aggregated cell densities for each brain slice are all rolling-average pre-processed 554

and stored for latter usage. 555

Segmentation based on nucleus density We plot the histogram of the rolling-averaged nu- 556

cleus densities and then fit the histogram with a Gaussian distribution. We classify the den- 557

sities into three groups based on the Gaussian distribution: high, medium, and low densities. 558

The boundaries of each group were chosen based on the fitted Gaussian distribution.The first 559

boundary was set to be the µ − 2σ, where µ and σ are the mean and standard deviation of the 560

Gaussian distribution, respectively. The data below the first boundary is ignored to exclude the 561

background. The second and third boundaries are set to be the mean plus/minus half of the 562
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standard deviation of the Gaussian distribution. The coarse-grained nucleus regions are then 563

used as a mask to separate aggregated cells into different nucleus density regions. This allows 564

us to compare aggregated cell densities in different nucleus density regions, which provides an 565

additional measure to characterise the aggregated cell distribution. 566

APN distribution and APN as a function of nucleus density Aggregate-per-nucleus (APN) 567

value can capture local aggregation percentage without being affected by variations in cell den- 568

sity. It is calculated by dividing the rolling average density of aggregated cells by that of total cells. 569

One of the important characteristics of APN value is that it can distinguish cell-autonomous and 570

non-cell-autonomous mechanisms when there is variation of cell density in the system. For a 571

cell-autonomous system, no matter how dense the cells are, the aggregated cell number will 572

always be proportional to the total cell number, since the cell-autonomous mechanism, by def- 573

inition, is independent of cell-to-cell separation. This gives rise to a homogeneous APN value 574

even if cell density varies. By contrast, when there is spatial coupling, high-cell-density regions 575

have larger APN values than low-density regions. Since we can segment the brain slice by the 576

cell density, the APN value can be computed for different cell densities and used as a guide to 577

mechanisms. 578

Pseudo-temporal axis 579

To understand the temporal evolution of the disease, a temporal dimension for the neuropatho- 580

logical data is needed. However, due to the variability of individuals, a universal time axis across 581

all post-mortem data is impossible. Despite such limitations, the well-defined neuropathological 582

staging system can give us an estimation of the disease progression. It was found that the se- 583

quential distribution of pathology is associated with the clinical severity in PSP24. In addition to 584

this established staging, we also use the fraction of aggregated cells to put different brain regions 585

and individuals on a common axis of pathological severity. 586

Model construction 587

To capture the effect of the cell distribution in each individual, we build a model for protein ag- 588

gregation in a tissue. Fig. 1 shows the schematics of such a model. Within the cell, in vitro 589

protein aggregation mechanisms, including primary nucleation, growth and multiplication, gov- 590

ern the proliferation of protein aggregates. These aggregate formation processes may compete 591

with removal processes. When the balance shifts to net accumulation of aggregates, or if there 592

is a significant seeding event, the cell enters a runaway aggregation state5,26. Based on the de- 593

tailed mathematical treatment in e.g. Thompson et al.26 we here coarse-grain this into a switch 594

between a healthy and a runaway aggregation state. Between cells, spatial coupling factors, 595

such as seed transfer or inflammation, allow cells in the runaway aggregation state to exert an 596

aggregation pressure on other cells to also switch from the healthy to the runaway aggregation 597

state. In this aspect our model closely mirrors the Susceptible-Infected-Recovered (SIR) mod- 598

els of epidemiology38–40, although we do not include a Recovered state and the probability of 599

”infection” is dependent on the spatial separation, which is fixed. Furthermore, we can assign 600

different vulnerabilities to cells, reflecting the fact that different cell types are present and that 601

each cell may have a different level of resistance against protein aggregation. The following are 602

the detailed explanation of each mechanism we consider. 603

Triggering Triggering is the switching of a cell from the healthy state to the runaway aggrega- 604

tion state. This switch may for example occur when aggregate production outweighs removal26, 605
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or in the case when removal processes are negligible, when the first self-replicating aggregate 606

appears either by nucleation or seeding5,41. Our model is agnostic to the type of trigger and 607

includes it as a stochastic process. 608

Spatial coupling factors There is ample experimental evidence that pathology and, at least 609

in model systems, also aggregated species can be transferred from one cell to another, for 610

example along axonal connections, but potentially also through extracellular space42,43. In order 611

to model this potential of cells in the runaway aggregating state to trigger healthy cells in a 612

general manner, we define an aggregation pressure. This is used to compute the probability 613

to trigger a healthy cell and depends on the relative positions of the cells involved. Between 614

brain regions, information on the connectivity exists, but on the length scales studied in this 615

work, a determination of the connectivity of each individual cell is far out of reach of current 616

experimental techniques. Thus, we define an aggregation pressure that depends only on the 617

spatial separation of two cells. The overall aggregation pressure on a given healthy cell is then 618

computed by considering the aggregation pressures of all aggregated cells in its vicinity. 619

For the majority of this work, we assume an aggregation pressure that is Gaussian in the 620

distance between the aggregated and the healthy cell. The aggregation pressure on a cell i in 621

each time step ∆t is then defined as ps = 1− e−λi, where λi =
1

2πσ2ks∆tΣje
−

d2ij

2σ2 xj is the average 622

aggregation events per time step ∆t, where σ is the Gaussian diffusion radius, dij is the pairwise 623

distance between cell i and j, xj is the value quantifying whether cell j is aggregated (xj = 1) or 624

not (xj = 0), and ks is the rate of cell-to-cell triggering. To ensure our conclusions are general, 625

we also show that changing the functional form of this effect does not change our conclusions, 626

see Modelling cell-level aggregate formation. 627

Selective vulnerability Our model also incorporates the selective vulnerability of each cell. 628

Though the definition of selective vulnerability varies in different contexts44, here we define the 629

selective vulnerability as the cell’s ability to resist the switch to a runaway aggregation state, by 630

both cell-autonomous or external triggers (Fig. 1A). Mathematically, we define the vulnerability 631

constant vi as a value between 0 and 1 for each cell i, which simply multiplies the probability of 632

triggering to produce an updated probability that takes into account the vulnerability. In future, it 633

may be possible to estimate the values of vi, for example through spatial transcriptomics coupled 634

with a detailed understanding of which genes are govern vulnerability. As such data are however 635

not yet available, in our model, we consider a number of different vi distributions, such as vi = 636

const. or vi = U(0, 1), where U(0, 1) is the uniform distribution between 0 and 1. 637

Simulation parameters 638

The simulation parameters for Fig. 2, S8, & S9 are as follows. We simulate a box containing 639

10,002 cells. The code generates a random spatial distribution of cells while controlling the 640

average cell-to-cell distance, which is set to 27.3 µm, a value chosen based on measurements 641

from the data. A higher density (or smaller average distances) is imposed in the middle third of 642

the y-axis range, with an average cell-to-cell distance 0.8 times shorter than in the other sections. 643

The x-coordinates are randomly and uniformly distributed across the entire x-axis range while 644

the y-coordinates are adjusted randomly within each density band. 645

Mechanistic parameters are chosen to represent different spatial coupling conditions. For 646

no spatial coupling, ks/ka = 0.001 is used. For short-range and long-range spatial coupling, 647

ks/ka = 10000 is applied with σ = 40 µm for short-range coupling and 400 µm for long-range 648

coupling. Periodic boundary conditions are assumed for the simulation. 649
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Parameter inference 650

Our computational model not only identifies the dominant molecular mechanisms but also allows 651

us to quantify their rate constants using simulation based inference. To do so, we reconstruct 652

a virtual brain slice in silico based on the cell positions from a histopathological image and 653

then compare simulations on this cell arrangement with experimental data using various spatial 654

measures from the data and the simulation. The unknown parameters to be determined are 655

the rate of cell-autonomous triggering (ka), rate of cell-to-cell triggering (ks) and the cell-to-cell 656

coupling radius (σ). 657

Because our data is an endpoint measure rather than a time-course, we can only determine 658

the ratio of rate constants, not their absolute values. We are thus left with parameters ks/ka and 659

σ to be fit. To perform the fits, we run simulations with a combination of parameters {ks/ka ∈ 660

[0.001, 0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000, 100000]} ⊗ {σ (µm) ∈ [50, 100, 200, 400, 600, 800]}. At 661

each set of parameters we perform 10 repeats of the simulation, to account for stochasticity. To 662

find the best fit of ks/ka, we compare the histogram of APN values (all the histograms discussed 663

are normalised to 1) from the data and the simulation. We define the error of each repeat of the 664

parameter set as the mean of bin-by-bin squared difference between the APN histogram of this 665

repeat and the data. We then compute the mean error across 10 repeats. The two-dimensional 666

plots of the mean error across different {ks/ka} ⊗ {σ} are shown in Fig. S10. Additionally, we 667

used the nearest neighbour distribution to establish a lower bound for the spatial coupling radius 668

σ (Fig. S11). 669

Although other readouts can be compared, such as RDF (see Fig. S12), we select APN 670

histogram and nearest neighbour distribution as our readouts for fitting because of their richness 671

in mechanistic information. 672

Given the lack of independent data on vulnerability to aggregation, we assume a constant 673

vulnerability in this analysis. However, the vulnerability and cell-to-cell coupling radius are cou- 674

pled, leading to some uncertainty in the coupling radius due to the uncertainty in vulnerability. 675

More specifically, a system with strongly varying vulnerability and a short coupling radius and a 676

system with a weakly varying vulnerability and a large coupling radius give rise to similar pat- 677

terns of aggregation, see Fig. S9. The assumption of a constant vulnerability for all cells thus 678

produces an upper bound estimate for the coupling distance. 679

Derivation of the switch fraction 680

Let f(t) be the fraction of aggregated cells. The rate at which f(t) is increased due to cell 681

autonomous processes is simply proportional to the fraction of unaggregated cells, thus 682

df(t)

dt cell-aut
= ka(1− f(t)). (1)

The contribution from cell-to-cell triggering is significantly more complex as it depends on the 683

specific patterns of aggregated cells. However, for a spatially uniform system it can be assumed 684

to be proportional to both the fraction of aggregated cells and the fraction of unaggregated cells, 685

giving 686

df(t)

dt cell-to-cell
= ksf(t)(1− f(t)). (2)

Note the similarity here to the auto-catalytic amplification term in a Fisher-KPP equation, as used 687

in10. The two rates are equal at the switch fraction f(t) = fs thus ksfs = ka giving an estimate for 688

the switch fraction simply as the ratio of the rate constants as quoted in the main text. 689
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38. Saramäki, J., and Kaski, K. (2005). Modelling development of epidemics with dynamic 867

small-world networks. JOURNAL OF THEORETICAL BIOLOGY 234, 413–421. doi:10. 868

1016/j.jtbi.2004.12.003. 869

39. Shafiei, G., Bazinet, V., Dadar, M., Manera, A. L., Collins, D. L., Dagher, A., Borroni, B., 870

Sanchez-Valle, R., Moreno, F., Laforce, R., Graff, C., Synofzik, M., Galimberti, D., Rowe, 871

J. B., Masellis, M., Tartaglia, M. C., Finger, E., Vandenberghe, R., de Mendonca, A., Tagli- 872

avini, F., Santana, I., Butler, C., Gerhard, A., Danek, A., Levin, J., Otto, M., Sorbi, S., Jiskoot, 873

L. C., Seelaar, H., van Swieten, J. C., Rohrer, J. D., Misic, B., Ducharme, S., Degeneration, 874

F. L., and In, G. F. D. (2023). Network structure and transcriptomic vulnerability shape atro- 875

phy in frontotemporal dementia. BRAIN 146, 321–336. doi:10.1093/brain/awac069. 876
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Supplementary Material 918

Inter-brain-level analysis of PSP brains 919

The APN value per brain region is calculated for each patient, categorised by Kovacs stages24. 920

The relative aggregate amounts in different regions are approximately maintained across stages 921

(Fig. S1A). A logarithmic plot of the APN value (Fig. S1 B-M) reveals consistent increase across 922

brain regions. However, the real temporal interval between stages has not yet been determined. 923

It is known that gliosis may lead to the increase of cell density with the progression of neurode-

Figure S1: Inter-brain-level analysis reveals aggregated cells increase with stage. (A) The
fraction aggregated per brain region in different disease stages. The red line is the switch fraction
calculated from ks/ka = 1000 (B-M) Fraction aggregated over staged for different brain regions.
ρ represents the Pearson correlation coefficient.

924

generative diseases45. We observed similar trends of cell density increase with disease stage 925
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Patient ID Sex Stage Brain regions
1 Male 2 FC,OC,CBM,S1,M1,PMC,PC,TC,ACC,STN,GP,STR
2 Female 2 FC,OC,CBM,S1,PMC,PC,TC,ACC,STN,GP,STR
3 Male 3 FC,OC,CBM,S1,M1,PMC,PC,STN,GP,STR
4 Female 3 FC,OC,CBM,S1,M1,PMC,PC,TC,ACC,STN,GP,STR
5 Male 4 FC,OC,CBM,S1,M1,PMC,PC,TC,ACC,STN,GP,STR
6 Male 4 FC,OC,CBM,S1,M1,PMC,PC,TC,ACC,STN,STR
7 Female 5 FC,CBM,S1,M1,PMC,PC,ACC,STN,GP,STR
8 Female 5 FC,OC,CBM,S1,M1,PMC,PC,TC,ACC,STN,GP,STR
9 Male 5 OC,CBM,S1,M1,PMC,PC,ACC

10 Male 6 FC,OC,CBM,S1,M1,PMC,PC,TC,ACC,STN,GP,STR
11 Female 6 FC,OC,CBM,S1,PMC,TC,ACC,STN,GP,STR

Table S1: Summary of patient information.

FC Frontal cortex
OC Occipital cortex

CBM Cerebellum
S1 Primary somatosensory cortex
M1 Primary motor cortex

PMC Premotor cortex
PC Parietal cortex
TC Temporal cortex

ACC Anterior cingulate cortex
STN Substantia nigra
GP Globus pallidus
STR Striatum
PSP Progressive supranuclear palsy
AD Alzheimer’s disease
NFT Neurofibrillary tangle
CB Coiled body
TA Tufted astrocyte

Table S2: List of abbreviations.

in our data. The mean cell densities increase from ∼ 1000/mm2 to ∼ 1400 /mm2, a 1.4-fold in- 926

crease, from stage 2 to stage 6 (Fig. S2). This increase fold also matched the value in AD (about 927

1.2 fold increase)45. Per-brain-region analysis also shows there is a correlation between nucleus 928

density and stage in most brain regions (PMC, S1, OC, STR, M1, ACC, PC), while other brain 929

regions (STN, GP, CMB) show no correlation or negative correlation (Fig. S2). Investigation of 930

the effect on different cell-types shows that it is predominantly oligodendrocytes that contribute to 931

the growth of the aggregated cell percentage, whereas neuronal and astroglial aggregates show 932

only a mild increase with stage (Fig. S3A-L). This finding suggests that it is oligodendroglial cells 933

that shape the overall evolution of pathology in the disease, which is also consistent with the 934

recent genome wide study46. 935
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Figure S2: Densities of cell with stage in different brain regions. (A) The fraction aggregated
per brain region in different disease stages. The box represents the interquartile range (IQR),
encompassing the middle 50% of the data with edges at the first and third quartiles. Whiskers
extend to 1.5 times the IQR from the quartiles to show the data range, while points outside these
whiskers are plotted as outliers. (B-M) Nucleus density over stage of different brain regions. ρ
represents the Pearson correlation coefficient.
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Figure S3: APN values for different cell types across disease stages Coiled Bodies (CBs),
which form in oligodendrocytes, are shown in blue, Tufted Astrocytes (TAs), which form in astro-
cytes, are shown in red and Neurofibrillary Tangles (NFTs) which form in neurons are shown in
green.
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Figure S4: Image analysis pipeline of brain slices. (A) The region of grey matter is segmented
(Scale bar = 5 mm). (B) Thresholding and shape classifiers are applied to identify aggregates
and nuclei (Scale bar = 50µm). (C) Features of aggregated cells and nuclei, such as size and
the spatial locations, are extracted. (D) Finally, a feature-tailored image can be reconstructed
(Scale bar = 5 mm). (E & F) Aggregated cell/nucleus features can be further analysed: nearest
neighbour distance distribution and rolling density plots can characterize aggregated cell/nucleus
patterns on different length scales.
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Figure S5: NND distribution within and across different aggregated cell subtypes. The
theoretical average NNDD is plotted against the value determined for each brain slice. The
theoretical average NNDD for A-C is calculated assuming a random distribution of that particular
aggregated cell subtype. The theoretical average NNDD for D-I is calculated assuming a random
distribution of the latter aggregated cell subtype. For example, the NFT-CB cross-type NNDD
uses the theoretical random distribution of CB.
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Figure S6: Correlation between APN values and nucleus density with disease stage. (A-E)
APN plots for example brain images from Kovacs stage 2 (A), stage 3 (B), stage 4 (C), stage 5
(D) and stage 6 (E). Scale bar = 2 mm. (F-J) Corresponding nucleus density regions of (A-E).
High density region: yellow; moderate density region:green; low density region: cyan. (K-O)
Pixel-wise correlation plots between (A-E) and (F-J) and their corresponding histograms in two
axes. Different colours show different nucleus density regions.
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Figure S7: Comparison of repeats of an example simulation. Each row represents one
realization of the simulation with the same parameter set. Each row contains the following: 2D
patterns of the aggregated cell rolling-average density (far left), APN values in different density
regions (middle left), NND distributions (middle right), and RDF (far right).
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Figure S8: Simulation of aggregation dynamics with exponential decay spatial coupling
dependence The simulation conditions are the same as in Fig. 2 except that the spatial coupling
has distance dependence has been changed to e−d/σ . Thus the spatial coupling strength at a
distance of 0 matches between the normal distribution used in the main text, see e.g. Fig. 2) and
the exponential decay used here. Scale bar on panels i-iii: 500 µm. The simulation parameters
for this figure are provided in Sec. Simulation parameters.
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Figure S9: Simulation of aggregation dynamics for Bernoulli and uniform distributions of
vulnerability. The simulation conditions are the same as in Fig. 2 except for vulnerability values.
(A-C) There are two groups of cells with distinct vulnerability values: one group with a value
of 0.1, comprising 95% of the population, and another group with a value of 1, comprising 5%
of the population. (D-E) the vulnerability distribution is uniform on [0, 1], U(0, 1). Scale bar on
panels i-iii: 500 µm. The simulation parameters for this figure are provided in Sec. Simulation
parameters.
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Figure S10: Parameter inference through APN histograms. Each panel shows the two-
dimensional plots of the mean error across different parameter sets (see Parameter inference
for the definition of error). The figure shows the analysis of 20 brain slices arranged in 5 stages,
each with 4 panels per stage. Each column represents a distinct brain region: from left to right
PMC, M1, PC, and S1.
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Figure S11: Inference through NNDD. Each panel shows the two-dimensional plots of the mean
error across different parameter sets (see Parameter inference for the definition of error). The
figure shows the analysis of 20 brain slices arranged in 5 stages, each with 4 panels per stage
(corresponding to the same brain slices as in Fig. S10). Each column represents a distinct brain
region: from left to right PMC, M1, PC, and S1.
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Figure S12: Inference through RDF. Each panel shows the two-dimensional plots of the mean
error across different parameter sets (see Parameter inference for the definition of error). The
figure shows the analysis of 20 brain slices arranged in 5 stages, each with 4 panels per stage
(corresponding to the same brain slices as in Fig. S10). Each column represents a distinct brain
region: from left to right PMC, M1, PC, and S1.
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Figure S13: More model-free analysis from the patient data. (A) Average aggregate nearest
neighbour distance determined in patient data, compared to that of a random distribution (R2 =
0.99). The red curve represents the scenario where the measured values match the theoretical
values. (B) Box plots showing the ratio between average value of the radial distribution function
up to a distance of 1 mm and the average value of hypothetical radial distribution function up to a
distance of 1 mm when aggregated cells are randomly distributed, grouped by stage. Values of
the average RDF above 1 denote an increased clustering of aggregated cells within clusters of
approximately 1 mm. This can be observed at all stages from stage 3 onward. In earlier stages,
the number of aggregated cells is too low to draw clear conclusions. The box represents the
interquartile range (IQR), encompassing the middle 50% of the data with edges at the first and
third quartiles. Whiskers extend to 1.5 times the IQR from the quartiles to show the data range,
while points outside these whiskers are plotted as outliers.
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Figure S14: Comparison of different sizes of rolling density window (A)-(C) Varying rolling
density window size from 10 µm to 200 µm from three example brain slices. In each panel,
the top sub-panels show images of different window sizes. The bottom sub-panels shows the
two-dimensional plots of the mean error across different parameter sets (see Methods) for the
definition of error. Scale bar = 2 mm. 43
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