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Abstract1

Background: Effective control of infectious diseases relies heavily on understanding trans-2

mission dynamics and implementing interventions that reduce the spread. Non-pharmaceutical3

interventions (NPIs), such as mask-wearing, social distancing, and quarantining, are vital tools4

in managing outbreaks where vaccines or treatments are limited. However, the success of NPIs5

is influenced by human behavior, including compliance with guidelines, and attitudes such as6

beliefs about the effectiveness of interventions. In this study, we applied an innovative proximity-7

based experimentation platform to generate empirical data on behaviors and attitudes and their8

effect on disease transmission. Our platform uses a smartphone application that enables the9

spread of a digital pathogen among participants via Bluetooth during open-world ”experimen-10

tal epidemic games”. This creates an environment for epidemiology field experimentation where11

researchers can control transmission mechanics and collect full ground-truth datasets.12

Methods: Our study employed the ”epidemic” app to investigate the impact of risk per-13

ception and compliance to NPIs on pathogen transmission. Involving nearly 1,000 participants14

in a two-weeks long epidemic game at Wenzhou-Kean University (WKU) in China, the app15

generated a multimodal dataset, which allowed us to develop and parameterize Susceptible-16

Exposed-Infected-Recovered (SEIR) models. We quantified the extent by which behavioral17

factors, such as risk perception and compliance with quarantine, and strength of intervention18

strategies influence disease transmission. The model incorporates time-varying transmission19

rates that reflect changes in attitudes and behavior, and we calibrated it using the empirical20

data from the epidemic game to provide critical insights into how variations in NPI compliance21

levels affect outbreak control.22

Findings: The findings reveal that adherence to NPIs alone, which is influenced by changes23

in behavior and attitudes, may not result in the expected reduction in transmission, illustrating24

the complex interplay between behavioral factors and epidemic control. Moreover, the model25

further shows that changes in risk perception coupled with NPI adherence could significantly26

reduce infection levels as well as susceptibility.27

Interpretation: Our study highlights the usefulness of experimental epidemic games to28

generate realistic datasets, and the importance of integrating behavioral dynamics into epidemi-29

ological models to enhance the accuracy of predictions and the effectiveness of public health30

interventions during infectious disease outbreaks.31

Keywords: Experimental Game, Epidemiological Modeling, Reproduction Number, Human Be-32

havior, Behavioral attitude, Non-pharmaceutical Intervention.33
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Research in Context34

Evidence before this study35

We conducted a comprehensive review of the existing literature to evaluate the current state of36

knowledge regarding empirically-informed infectious disease modeling, with a particular focus on the37

role of human behavior and non-pharmaceutical interventions (NPIs) in mitigating disease transmis-38

sion. Our search spanned databases such as PubMed, MEDLINE, and Web of Science, targeting pub-39

lications up to March 1, 2024, using keywords including “infectious disease modeling,” “simulation,”40

”experimental game,” “human behavior,” “non-pharmaceutical interventions,” and “epidemiology.”41

While a substantial body of research explores the influence of human behavior on disease dynamics,42

there is a notable gap in studies that integrate large-scale mobility and behavioral data collected43

with smartphone apps within open-world environments, such as a university campus. Most existing44

studies fail to incorporate the complexity of real-time human behavioral responses and NPIs, which45

are crucial for accurately modeling the dynamics of disease transmission in such contexts.46

Added value of this study47

This study is the first to use our proximity-based experimentation platform to conduct an epi-48

demic game in a large-scale university setting while integrating human behavioral factors and NPIs49

into a mechanistic modeling framework. By employing a flexible, time-varying transmission rate50

model, our research highlights the impact of human behavior and NPIs on pathogen spread dynam-51

ics. This novel approach provides a more accurate and nuanced depiction of real-world transmission52

scenarios, as observed during the proximity-based experiment. Through the integration of empirical53

data from nearly 1,000 participants, combined with detailed model simulations and rigorous sen-54

sitivity analyses, we offer insights into how timely and coordinated interventions, alongside public55

compliance, can significantly influence the trajectory of an outbreak. This study underscores the56

necessity of adaptive strategies in outbreak management and presents a robust framework that can57

inform and enhance future public health planning and response efforts.58

Implications of all the available evidence59

Our findings underscore the pivotal role of experimental and computational approaches for60

generating realistic outbreak datasets and integrating behavioral dynamics and NPIs into epidemi-61

ological models. This results in significantly more accurate models that then can become valuable62

tools for public health planning. The study provides a solid foundation for refining models with63

additional complexities, such as age-based behaviors, and offers a framework for optimizing outbreak64

management and future pandemic preparedness.65
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1 Introduction66

The advent of new digital technologies has significantly transformed infectious disease research,67

including both epidemiological data collection and modeling. In particular, mobile applications68

(apps) can leverage the sensing and communication capabilities of smartphones and wearable devices69

for generating large amounts of real-time data at multiple levels. During the COVID-19 pandemic,70

apps were used for participatory surveillance, population-level tracking, individual risk assessment,71

individual screening, digital contact tracing, and education [1]. Several years before the pandemic, we72

started working on a proximity-based app called Operation Outbreak (OO) that facilitates immersive73

engagement in ”mock” outbreaks that take place in real-life settings, such as schools and conferences,74

enhancing our understanding of outbreak dynamics and response strategies thanks to its capacity75

to incorporate naturalistic human behavior and controlled transmission mechanics [2, 3]. The OO76

mobile application is freely accessible on Google and Apple app stores [4, 5], and it is supported by a77

scalable cloud backend and web-based administration and analytics tools. This app enables a digital78

infection that spreads through participants’ mobile phones via Bluetooth, triggering a ”synthetic”79

outbreak that participants can respond realistically to by endowing the app with appropriate reward80

or incentive mechanisms to various participants’ actions. The early example of the ”Corrupted Blood81

incident” virtual pandemic in the World of Warcraft massive multiplayer online role playing game82

(MMORPG) back in 2007 prompted epidemiologists [6] to consider MMORPGs and other virtual83

games as settings where individual human behavior in response to pathogen spread could be studied84

experimentally rather than via modeling assumptions, issues of external validity notwithstanding85

[7]. The OO app was initially motivated by infectious disease education and pandemic preparedness,86

as the original version of the app was designed to support an immersive educational experience in87

middle and high schools centered around public health, outbreak response, and societal roles during88

health emergencies [8]. While this continues to be one of the main thrusts of the project [12], here89

we used a customized version of the OO app and backend to more specifically target epidemiology90

experimentation and research [18], by generating valuable data that informs epidemiological models91

and providing insights into pathogen transmission dynamics [19, 20, 21, 22].92

In this study, we conducted a proximity-based ”experimental epidemic game” at the cam-93

pus of Wenzhou-Kean University (WKU), an international Chinese-American institution of higher-94

education established by Kean University of New Jersey in the Zhejiang province of eastern China95

[9], which we will call the WKU game (or experiment) for short for the remainder of the paper.96

The aims of the WKU game were to generate a comprehensive outbreak dataset, explore spread of97

the simulated pathogen, and assess behavioral responses within the naturalistic environment of a98

college campus given a ground-truth transmission model in the app. Planning began in early fall99

2023, with strategic recruitment of WKU students as organizers and facilitators. Our primary ob-100

jectives were to engage at least 1,000 students over a two-week observational period and to integrate101

features representing individual behavioral actions within the experimentation framework. Drawing102

on methodologies from past (proximity-based) epidemic games at institutions like Colorado Mesa103

University and Brigham-Young University [3], we reached high participation rates (nearly a quarter104

of the enrolled students) through a comprehensive campus information campaign and incentivization105

strategies. In preparation for this experiment, we advanced the underlying technology in the app,106

including the incorporation of the open-source Herald proximity library [10] and migration to the107
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Flutter framework [11], enhancing the app’s compatibility, adaptability and scalability [3].108

Epidemiological modeling, when integrated with human behavior, serves as a foundational109

tool for evaluating the impact of non-pharmaceutical interventions (NPIs) on disease dynamics110

[3, 19, 21, 24]. The WKU proximity-based epidemic game combined open-world data with an epi-111

demiological framework to study pathogen spread within a largely closed population. This inter-112

disciplinary approach aims to contribute valuable insights into epidemiological modeling and public113

health preparedness, focusing on behavioral responses and the effectiveness of interventions in con-114

taining and mitigating disease outbreaks [3, 20, 23, 25]. Researchers have used online behavioral115

experiments to try to measure and model the effect of individuals’ preferences and decisions on116

adoption of protective measures and disease dynamics [26, 27, 28]; however, such experiments often117

reduce complex human behavior to simple abstract decisions that may not resonate with participants’118

real-world concerns or priorities and may fail to reflect the complex social contexts and disease ex-119

posure patterns that influence behavior in realistic environments. Our approach has the advantage120

of providing an open-world experimentation framework with high degree of mechanistic realism for121

the transmission processes and a naturalistic environment able to capture inter-individual variation122

in real-world social settings [18]. The idea of conducting real-world ”simulations” or experiments to123

study disease transmission has been explored before by projects like FluPhone [13] in 2010, and more124

recently, SafeBlues [14]. Both used Bluetooth sensing in mobile phones to spread virtual pathogens125

through a network of participants, but thanks to advances in mobile technology over the last decade,126

we were able to construct a new platform with a significantly greater potential for customization and127

scale than any earlier projects we are aware of.128

Numerous studies have examined the impact of NPIs on pathogen transmission, providing crit-129

ical insights into how measures such as social distancing, mask-wearing, and isolation can alter the130

course of an epidemic [29, 30]. For instance, SIRS models have demonstrated that the attributes131

of a pathogen, particularly its basic reproduction number (R0), significantly influence the long-term132

epidemiological outcomes of transmission reduction efforts [31, 32]. Pathogens with high R0 values133

may exhibit only temporary reductions in transmission rates, with minimal impact on the epidemic’s134

overall dynamics [41]. Additionally, other studies have highlighted the importance of seasonality135

and immunity in shaping medium- to long-term epidemic dynamics. These studies suggest that136

intermittent application of NPIs may lead to delayed but potentially larger secondary transmission137

peaks, underscoring the complexity of public health responses. The interaction between NPIs and138

pathogen characteristics necessitates ongoing evaluation and adjustment of intervention strategies to139

effectively address unexpected outcomes [32, 33, 34, 35].140

Incorporating behavioral factors into epidemiological models significantly enhances our under-141

standing of disease dynamics by elucidating the complex interplay between human behavior and142

pathogen transmission [30, 36]. Traditional models often overlook the variability in human behavior,143

treating responses to outbreaks as static or uniform. However, this approach does not fully account144

for the adaptive nature of individual and collective actions in response to evolving risk perceptions145

and public health interventions. Our study tries to address these challenges by integrating behavior146

as a dynamic variable, where individuals adjust their adherence to NPIs based on the perceived sever-147

ity of the outbreak and their personal risk assessment (that is influenced by real-time factors such148

as disease prevalence, peer influence, and the effectiveness of public health communication) [30, 36].149

Using the dataset generated from the WKU game, our model not only captures the immediate impact150
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of NPIs such as social distancing and mask-wearing but also considers the feedback loops between151

behavioral adaptations and disease dynamics [37, 38]. This approach provides a more realistic and152

nuanced understanding of pathogen transmission, reflecting the complex interplay between human153

actions and epidemiological outcomes [36, 37]. While our model advances the field by incorporating154

these dynamic behavioral factors, we acknowledge the ongoing challenge of fully capturing the spec-155

trum of human behavior, which underscores the need for continuous refinement and development in156

this area of research [39, 40].157

Our modeling framework integrates these insights by utilizing data-driven approaches to sim-158

ulate pathogen transmission and assess the impact of various interventions, such as quarantine,159

isolation, and face masks [24]. By leveraging mobile app technology, our platform allows for a de-160

tailed examination of how individual decisions—such as mask wearing, social distancing, or isolating161

when symptomatic—affect transmission dynamics within the controlled environment of the game, in162

turn embedded in the open-world setting of a college campus. The models were calibrated using data163

from the WKU game, enabling a precise analysis of transmission dynamics and the effectiveness of164

different interventions. This approach not only enhances our understanding of disease dynamics but165

also underscores the importance of timely interventions and compliance with preventive measures in166

mitigating outbreaks.167

This study focuses on establishing a foundation for comprehensive models that can guide public168

health policies and strategies to prevent and reduce infectious disease outbreaks. The data gener-169

ated from the WKU game was analyzed using a conceptual epidemiological modeling approach that170

integrates human attitudes, behaviors, and NPIs to disentangle and quantify the impact of these171

factors on pathogen spread. By fitting the model to the empirical data from our experimental game,172

we validated its accuracy and identified key parameters driving transmission dynamics. Sensitivity173

analyses and contour plots further highlight the importance of timely interventions, demonstrating174

how individual behavior and NPIs can significantly reduce infection rates. This research not only175

advances our theoretical understanding of socio-epidemiological interactions but also offers practical176

guidance for managing infectious diseases across diverse settings.177

The paper is organized as follows: Section 2 describes the compartmental model we employed178

to mathematically represent disease transmission during the WKU game, which includes a variable179

transmission rate to capture adaptive behavioral factors and strength of NPIs. This section also180

calibrates the model with data from the two-week long WKU game. Section 3 provides an examina-181

tion of the model that focuses on the occurrence and stability of disease-free and endemic equilibria,182

as well as the possibility of other complex dynamics. Results on the impact of behavior and NPIs183

are also presented in this section. Section 4 includes global uncertainty and parameter sensitivity184

analyses to evaluate the model’s robustness and identify critical parameters influencing transmission185

dynamics. Section 5 presents the results of numerical simulations and insights gained from global186

parameter sensitivity studies. Finally, Section 6 summarizes the study’s findings and discusses the187

implications for public health strategies and future research paths.188
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Figure 1: Students engaging with the smartphone app simulating pathogen transmission and disease
progression during the epidemic game at Wenzhou-Kean University (WKU) (top). Screenshots of
the app, showing (from left to right) the home page with healthy and sick avatars, a pop-up message
prompting students to choose whether to quarantine/isolate for the day, and the home page interface
while in quarantine/isolation (bottom). These visuals illustrate the interactive features of the app,
which are integral to collecting behavioral and epidemiological data during the WKU game.
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Figure 2: Materials used to promote the experimental epidemic game at WKU and facilitate student
enrollment into the activity. Section of an informational micro-site about WKU game with links to
the registration form and WeChat group (left). Manual page detailing the use of the app and the
features specific to the WKU game (center), and flier describing the final prizes to be awarded to
top-scoring students (right).

2 Methods189

2.1 Experimental design190

We designed the WKU experimental epidemic game to study human behavior and NPIs during191

an infectious disease outbreak. Experimental games constitute a novel approach that has been applied192

in fields such as public health and climate science and it is gaining recognition as a valuable source of193

behavioral data for research [16, 17, 15]. The app spreads the digital pathogen using an underlying194

”ground-truth” transmission model that assigns a probability of infection to each proximity contact195

between a susceptible and an infectious user (refer to the appendix for details) and informs users196

of their simulated health status (asymptomatic, mild and severely ill, recovered, and deceased) via197

an animated avatar and changes in the color of the app’s user interface (UI). A key difference with198

prior experimental games is the open-world, naturalistic setting of our experiment, which allows for199

a highly immersive experience and enables students to adopt behaviors during our experiment such200

as socially distancing to reduce their chances of infection, very closely mirroring real-life.201

Furthermore, we considered how to gamify health-related decision-making in the app in such a202

way that students would need to make choices in the experiment on a regular basis, mirroring conflict203

between individual and group benefits, just like in a real outbreak. Based on these considerations, we204

implemented a point-based system in which students could collect points by deciding to ’quarantine205

/ isolate’ or not at the beginning of each day and then use those points to purchase virtual masks206

and rapid diagnostic kits through a ’shop’ feature within the app. Of course, it would not have been207
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reasonable to ask students to quarantine/isolate by physically restricting their movement, instead,208

they quarantined/isolated by selecting a button in the app, which made their avatars invisible to209

nearby participants (both quarantine and isolation used the same mechanics, the difference in using210

one term of the other refers to whether the student was in an asymptomatic state or not at the211

moment of their selection.) The goal of the point system was to provide a quick mechanism for212

students to get points without distracting them from their daily school activities, but still offering a213

sense of personal investment in the experiment, as their points informed a school-wide leaderboard214

that was used to award prizes to the top-scoring students once the experiment ended. See Fig. 1215

for pictures of the students using the app and some screen captures depicting its main screen and216

quarantine/isolate feature.217

We also planned and implemented a pre-experiment stage to engage a substantial portion of218

the student body, employing a multifaceted strategy across various communication platforms (see219

Fig. 2). This strategy included the design of a dedicated informational website, the formation of220

WeChat groups for seamless communication, and the distribution of both digital and physical flyers221

to effectively disseminate information. A pivotal component of this strategy was the use of a registra-222

tion form managed by the local organization team, allowing for the systematic collection of student223

details and facilitating insights into participation trends through regular updates. Integration with224

WeChat further enhanced communication channels, enabling efficient handling of inquiries and fos-225

tering active engagement among participants; this approach to data collection has proven effective226

[42, 43, 44]. Moreover, incentives such as extra-curricular credits and a point-based system within227

the app were implemented with the aim of incentivize sustained involvement and fostered a com-228

petitive environment through the school-wide leaderboard and post-game rewards. Thanks to this229

comprehensive approach, over 1,000 students (a quarter of WKU’s enrollment in 2023) responded230

to be interested in the WKU game. As expected, a fraction of those students dropped eventually,231

resulting in Ntotal = 794 students participating in the WKU game. A separate manuscript currently232

in preparation delves into the methodological aspects of the WKU field behavioral experiment, pro-233

viding in-depth details on how it was planned, promoted, and carried out by a team of WKU students234

[45].235

2.2 Statistical analysis236

The data were, first of all, analyzed using a simple statistical approach to understand the237

patterns of the experiment’s dynamics. Fig. 3 (a) displays the average number of infections per238

hour, revealing specific times of day with heightened transmission activity. Fig. 3 (b) presents the239

daily total infections (brown line) along with a 7-day moving average (purple line), which smooths240

out short-term fluctuations to highlight longer-term trends. Fig. 3 (c) shows the estimated effective241

reproduction number (Reff ), with gray points representing the estimated values, error bars indicating242

the 95% confidence intervals, and a smoothed trend black line, offering insights into the transmission243

potential over time. The red dashed line at Reff = 1 serves as a critical threshold, indicating244

whether the infection is spreading (if Reff > 1) or declining (if Reff < 1). We used the serial interval245

information for COVID-19 from China as a proxy for the serial interval of the app-based outbreak,246

properly scaled to account for the two-week duration of the experiment [46]. These data provide247

view of infection dynamics, peak transmission periods, and the impact of interventions on outbreak248
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control.249

Even though network epidemiology is not the methodological approach we followed in this250

manuscript, we conducted some basic statistical analyses on the contact network and transmission251

tree that resulted from the WKU game. First of all, these analyses revealed that a fraction of the252

participants (198) did not seemingly make any contacts with anybody else. Upon closer examination,253

we discovered that most of those participants were using a brand of Android smartphones that was254

not compatible with the Bluetooth library in the app. Therefore, we removed those 198 participants,255

and further removed 122 participants who had interacted for less than 5 minutes in total during the256

14 days of the WKU game and 2 participants who formed an isolated dyad. We used the remaining257

Nnetwork = 472 = 794 − 198 − 122 − 2 in all subsequent network analyses (see Fig A4). We applied258

Taube et al. [47] methodology that characterizes the superspreader epidemiology in the transmission259

tree of any real outbreak by calculating two tree statistics, the proportion of cases causing super260

spreading events and the dispersion parameter. In the case of the WKU data (Fig A4), we found261

that it closely mirrors patterns seen in outbreaks from biological pathogens (refer to the Appendix262

for details). This result provides support for the external validity of the data from WKU game.263

Survey responses captured basic demographics of the participating students, and their percep-264

tions of quarantine/isolation benefits and costs, adapted from H1N1 pandemic research [50]. Detailed265

daily counts of within-app quarantine, isolation, mask purchases, and rapid diagnostic test use pro-266

vided a detailed view of decision-making during the epidemic game. Note that only participants who267

downloaded the app and registered were included in the analysis, as the app tracked interactions268

solely among active participants.269

The appendix provides a summary of the survey responses, which were not used in our present270

analyses, but we are planning to incorporate in follow-up work to this manuscript. This compre-271

hensive dataset is a valuable resource for epidemiological research, health policy evaluation, and272

public health, enhancing our understanding of outbreak dynamics and human behavioral responses273

[3, 48, 49, 51, 52], and it is available on a Zenodo public repository (see Declarations section for the274

repository URL.)275

2.3 Conceptual model framework276

We employed an SEIR (Susceptible-Exposed-Infectious-Recovered) model framework [53, 54] to277

investigate pathogen transmission dynamics within a controlled university environment, specifically278

WKU through the experimentation platform and the app; see full model in Fig. 4. Our model279

incorporates multiple transmission pathways, accounting for both asymptomatic and symptomatic280

exposure, and captures the quarantine/isolation statuses of individuals. The population is assumed281

to be constant in size and homogeneous in structure, assumptions that are justified given the two-282

week duration of the experiment during a class semester and the residential nature of the WKU283

campus. Beyond these simplifying assumptions, the model allows for variations in vulnerability and284

transmissibility, thus reflecting the complex and heterogeneous nature of real-world disease spread.285

A key feature of our model is its integration of human behavior as a dynamic factor that286

influences transmission rates. We assume that during the experimental game, participants’ adherence287

to NPIs—such as mask-wearing, social distancing, and isolation—is driven by their perception of288

infection risk, which evolves in response to changes in infection severity and prevalence within the289
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Figure 3: Extended time series analysis of infection dynamics during the WKU game (a) Hourly
average number of infections, highlighting periods of heightened transmission activity throughout
the day. (b) Daily total infections (red line) accompanied by a 7-day moving average (blue line) to
smooth short-term fluctuations and reveal longer-term trends. (c) Estimated effective reproduction
number (Reff ), where gray points represent the estimated Reff values, error bars denote the 95%
confidence intervals, and the black line indicates the smoothed trend. The red dashed line at Reff = 1
marks the critical threshold, above which the infection is spreading and below which it is declining.
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simulated environment. This feedback loop between behavior and transmission dynamics is crucial for290

accurately modeling the spread of infectious diseases in real-world scenarios where human decisions291

play a pivotal role. It is important to distinguish this post-experiment SEIR model with human292

behavior feedback from the model used by the app to drive the transmission during the experiment.293

We fit the parameters of the former using only the data gathered from the experiment, and we set294

the ”ground-truth” parameters of the latter beforehand to ensure that the experimental game would295

take place within the desired time and case-count bounds.296

Our app platform provides a unique experimental environment that generates rich datasets,297

including detailed records of contact tracing, participant behaviors, quarantine/isolation status, in-298

fection events, and (simulated) disease outcomes. By leveraging these data, we were able to construct299

a model to quantify the impact of various intervention strategies, such as contact tracing protocols,300

quarantine/isolation measures, and NPIs, on pathogen transmission. The model’s flexibility allows301

us to represent different NPIs mathematically, capturing how these interventions collectively reduce302

transmission. Additionally, our framework considers the dynamic nature of behavior, where indi-303

viduals can alter their adherence to NPIs based on perceived risks and evolving conditions within304

the proximity-based experimental game. This approach provides a comprehensive tool for assessing305

the effectiveness of public health interventions and informs strategies for outbreak management and306

pandemic preparedness. The insights gained from integrating the experimental data into our SEIR307

model not only advance theoretical understanding but also offer practical guidance for controlling308

infectious disease outbreaks in educational settings and beyond.309

2.4 Model simplification310

We used a simulation-based inference framework for epidemiological dynamics to fit our model311

to the experimental data, as proposed by [59]. The analysis focuses on a specific scenario of model (1)312

within a closed domain (WKU campus). To streamline the model, we used coupling dynamics by313

combining quarantine/isolation and non-quarantine/non-isolation compartments due to their similar314

dynamic nature (except for the constant and flexible transmission rate) [83].315

This simplification is justified by the analogous behavior of the full and sub-models, as well as the316

ability to capture human behavior and NPIs through a flexible transmission rate described in equation317

(1). Consequently, the simplified model retains the same incidence function and flexible transmission318

rate, with varying parameters P and C representing risk perception from participants and cumulative319

cases, respectively, which are key in changing the transmission behavior. This approach allows us320

to assess the influence of human behavior and intervention strategies on pathogen transmission321

during the WKU game. By analyzing data from the experiment, we can evaluate the effectiveness322

of different control measures and understand the role of human behavior and attitudes in mitigating323

outbreaks. Furthermore, numerical assessments and sensitivity analyses of the model’s parameters324

provide insights into the robustness of our findings and model assumptions. Therefore, the simplified325

version of the model (depicted in Fig. A6), which maintains the same incidence function as in the326

full-model, while using flexible transmission rate, is given by:327

13

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.14.24318955doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.14.24318955


Figure 4: Flow chart for the model defined by equation (1) for pathogen transmission dynam-
ics within the WKU setting. Solid arrows indicate the transitions between compartments, with
the associated per capita flow rates shown next to each arrow. The model partitions the total
population into ten compartments: non-quarantine susceptible (Snq), quarantine susceptible (Sq),
non-quarantine exposed (Eni), isolated exposed (Ei), non-isolated asymptomatically infected (Ani),
isolated asymptomatically infected (Ai), non-isolated symptomatically infected (Ini), isolated symp-
tomatically infected (Ii), recovered (R), and deceased (D) individuals. The state variables and
parameters are defined in Table A1, and parameters values in Table A2.
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dS
dt = −λ(t)S + ωR,

dE
dt = λ(t)S − σE,

dA
dt = σE − (θ + γ)A,
dI
dt = γI − (τ + δ)I,

dR
dt = θA+ τI − ωR,

dD
dt = δI.

(1)

The sub-model (1) was augmented with an time-varying variables, “P”, measuring the partici-328

pants’ perception of risk regarding the number of symptomatic cases, so that329

dP
dt = δI −mP. (2)

where m represents the mean duration of participants’ reaction to the number of infections.330

In addition, we used a time-varying transmission rate introduced by He et al. [56], which is331

also known as effective (flexible) transmission rate, denoted by β(t). It accounts for intervention332

actions (modeled as a step function) and the reduction in contacts among individuals in response333

to the proportion of cases, reflecting the epidemic’s severity. This variable transmission rate β(t) is334

formulated in equation (3) below335

β(t) = β0(1 − ϵ(t))
(
1 − P (t)

N

)ζ
. (3)

Here, the parameter ϵ represents interventions’ strength and ζ aims to capture individuals’ response336

intensity. Within this framework, the parameter P denotes risk perception. The individuals’ percep-337

tion of risk increases with the number of infections, while decreasing over time, as reflected by the338

two terms in equation (2). The parameters β and ϵ are stepwise functions of time.339

The dynamics between intervention strength (ϵ), response intensity (ζ), and risk perception340

(P ) are critical for understanding and predicting disease spread. Adaptive behavioral responses,341

influenced by real-time changes in perceived risk, significantly shape epidemic trajectories, and our342

parameter choices can be justified as follows:343

• Intervention Strength (ϵ): Represents the impact of public health measures, as the result of344

their intrinsic effectivity but modulated by disease severity and compliance. Higher perceived345

severity typically increases ϵ, as it induces compliance with preventive actions.346

• Response Intensity (ζ): Measures variability in individual responses to perceived infection347

risk, often influenced by cultural and personal factors. As ζ increases with social awareness348

and effective communication, disease transmission would decrease from a baseline given by the349

level of risk perception in the population.350
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• Risk Perception (P ): Individuals’ perception of risk can respond to many factors, from351

pathogen infectivity, information access, and pre-existing attitudes. Heightened P can boost352

preventive adherence but may also lead to panic or misinformation, complicating control efforts.353

Obviously, the relationship between these three parameters and their effect on disease transmission354

is potentially very complex. We have reached a tractable model by adopting equations (2) and (3)355

making the flexible transmission rate dependent on ϵ, ζ, and P . In turn, P , with its dependence356

on the number of infections, I, and a built-in progressive decrease reflecting peoples’ physiological357

traits such as forgetfulness and normalization, introduces these additional important elements into358

the transmission dynamics. Although simple, this framework has been applied extensively to model359

real outbreaks with satisfactory results [39, 55, 56, 85, 86].360

Note that individuals in quarantine and isolation are restricted from further spreading the361

disease. As such, they do not contribute to transmission, and therefore, λ(t) in this case is defined362

as λ(t) = β(t)
(

Ani+αIni

N

)
, where α serves as the modification parameter representing the reduced363

infectiousness. Also, our model assumes a Poisson process due to the low frequency of (simulated)364

fatal cases, which aligns well with the Poisson distribution’s suitability for rare events. This approach365

is standard in epidemiological modeling for low-frequency events (see references [63, 71] for similar366

applications).367

The mechanism of time-varying flexible transmission rate allows for the inclusion of human368

behavioral components, which have a considerable impact on disease dynamics. Specifically, we369

adopted a mechanistic transmission rate function based on prior studies [55, 56] to include individual370

behavioral actions. We consider three factors: (i) a time-varying risk perception by individuals (fear371

of infection, severe infection), modeled by P (t), (ii) level of adherence of individuals to NPIs such372

as self-isolation, quarantine, or reporting, modeled by the parameter ζ, and (iii) the effectiveness of373

the NPIs, modeled by the parameter ϵ (Refer to the equation (3) above.) This technique has been374

used in prior studies on infectious disease transmission, including COVID-19 [55] and influenza [56],375

and is adaptable to our experimental scenarios. We explored each mechanism by treating the key376

parameters as a flexible (cubic spline) or time-varying function and comparing various formulations’377

fitting performance. Additionally, we can enhance the models in the future by incorporating further378

details, such as age structure, when data is available, to conduct more fine-grained experiments that379

could aid in pandemic preparedness and response. For further details and analysis of the model, see380

the Appendix section.381

3 Results: Evaluating the impact of individual perception382

and NPI strength383

3.1 Influence of individual perception and NPIs384

Our experimental data results provide critical insights into the dynamics of pathogen transmis-385

sion under varying levels of individual perception and NPIs during the WKU game. Fig. 5 illustrates386

the daily new cases across three distinct scenarios: a naive scenario with no interventions (ϵ = 0387

and ζ = 0), a scenario driven by individual perception (only ϵ = 0), and a combined scenario in-388

corporating both individual perceptions and NPIs. In the naive scenario, represented by the orange389
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solid curve, a rapid increase in new cases is observed, highlighting the unmitigated spread of the390

pathogen in the absence of any intervention. This serves as a baseline, demonstrating the potential391

severity of an outbreak without any behavioral change or NPIs. The second scenario, depicted by392

the red dashed curve, models the impact of individual behavioral responses to the perceived risk of393

infection. Here, participants adjusted their behavior based on the evolving outbreak situation, such394

as by reducing contacts or increasing protective measures like mask-wearing. The substantial reduc-395

tion in new cases in this scenario underscores the significant role that individual perception plays396

in controlling disease spread. This finding is consistent with previous research that emphasizes the397

importance of individual actions in epidemic management [55, 56]. The third scenario, represented398

by the green solid curve, combines individual perception with structured NPIs, such as quarantine399

and isolation. This scenario shows the most pronounced decrease in daily new cases, illustrating400

the enhanced effectiveness of combining adaptive human behavior with coordinated public health401

interventions. The grey curve with dots, representing simulated reported cases, aligns closely with402

the observed data, further validating the accuracy and predictive capability of our model.403

3.2 Evaluation of reporting ratios and model validation404

Fig. 6 (a) & (b) presents the reporting ratios between observed cases and model estimates under405

two scenarios: (a) the combined scenarios of individual perception and NPIs and (b) the scenario with406

individual perception only. The relatively stable reporting ratio observed in both scenarios indicates407

that the model effectively captures the dynamics of reporting behavior and the efficacy of interven-408

tions. This stability is crucial for ensuring that the model accurately reflects real-world dynamics,409

thereby providing reliable predictions of outbreak progression. The consistent reporting ratios also410

underscore the effectiveness of combining individual behavioral responses with structured NPIs in411

mitigating pathogen spread and ensuring reliable reporting. These findings highlight the importance412

of coordinated interventions that integrate both human behavior and public health strategies to413

achieve optimal outcomes during an epidemic. The insights gained from these simulations results414

set the stage for a detailed sensitivity analysis, which will be discussed in the subsequent section.415

This analysis aims to identify key parameters that drive transmission dynamics and intervention ef-416

fectiveness, offering further guidance for optimizing public health strategies during infectious disease417

outbreaks.418

3.3 Sensitivity analysis419

We conducted sensitivity analyses to assess the influence of our model’s parameters on the420

transmission trajectory. The analysis underlined the varying relevance of each parameter and offered421

a more profound understanding of the underlying dynamics. The findings emphasize the critical422

role of prompt intervention and adherence to preventive measures in reducing the severity of the423

outbreak.424

3.3.1 Global sensitivity analysis425

In this sub-section, we aim to provide a paradigm that takes into account both individuals’426

perception of risk (which is modelled by ζ) and NPIs’ strength (which is modelled by ϵ), as well as a427
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Figure 5: Daily new cases across three intervention scenarios during the WKU game represented by
the black shadowed curve. The orange solid curve represents the naive scenario of the simulation with
no interventions, showing a rapid increase in new cases. The red curve illustrates the scenario with
individual perception based on behavior change, resulting in significant reduction in new cases. The
green solid curve depicts the scenario combining individual reactions with NPIs such as quarantine
and isolation, showing the most pronounced decrease in daily new cases. The grey curve with dots
represents the simulated reported cases, aligned with official data, validating the accuracy of our
model. Effect of intervention take some time (a couple of days) to show up in the data.

(a) (b)

Figure 6: Reporting ratio between observed cases and model estimates under the combined sce-
nario of individual perception (IP) and non-pharmaceutical Intervention (NPIs) (a) and IP only (b),
respectively. The relatively stable ratio indicates that the model accurately captures the dynamics
of reporting behavior and intervention efficacy. This stability underscores the effectiveness of coordi-
nated interventions in mitigating the pathogen’s spread and ensuring consistent reporting accuracy.
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Figure 7: Sensitivity analysis illustrating the effects of parameters ϵ (a) and ζ (b) on transmission
dynamics. Our analysis reveals that while both parameters significantly influence the epidemic
trajectory, ζ (which measures the intensity of individual response) has a notably stronger impact
than ϵ (which measures the intervention strength), which indicates that modest increases in ϵ result
in a measurable reduction in transmission, but even a slight increase in ζ leads to a much more
substantial decrease in transmission rates. This highlights the critical role of ζ in effective pathogen
control, surpassing the influence of ϵ.
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time-dependent reporting rate through sensitivity analysis, and also to determine how the parameters428

ζ and ϵ affect the pathogen spread [55]. Our analysis demonstrates that both ζ and ϵ play vital roles429

in shaping transmission patterns, although ζ shows greater magnitude. Specifically, we found that430

ζ exerts a more pronounced effect on transmission dynamics compared to ϵ. Small increases in ϵ or431

ζ could result in decreased transmission, as shown in Fig. 7 (a) & (b), but the impact is relatively432

low for ϵ compared to ζ, which causes substantial decreases in transmission, indicating a higher433

sensitivity to changes in this parameter. This result stresses the role of ϵ and ζ in determining434

the course of an epidemic and highlights the importance of tailored measures to effectively control435

outbreaks. Therefore, through sensitivity analysis, we have gained valuable insights into the relative436

influence of ϵ and ζ, enabling us to optimize intervention strategies and enhance our understanding437

of the underlying transmission mechanisms. This knowledge is crucial for informing public health438

policies and improving pandemic preparedness.439

3.3.2 Local sensitivity analysis440

To delve deeper into our model’s dynamics and parameter effects, we conducted a sensitivity441

analysis using partial rank correlation coefficients (PRCCs) to assess how model parameters influence442

the overall transmission [62, 67]. Utilizing PRCCs with R0 as the response function, we identified443

the most effective parameters influencing the spread of the pathogen. See Fig. 8(a) and (b). Our444

sensitivity analysis involved sampling 5,000 random instances from uniform distributions within the445

specified parameter ranges. Each instance was simulated to produce biological outcomes, and PRCCs446

were calculated between parameters and biological values. The PRCCs for R0 highlighted that the447

transition rate of exposed non-isolated individuals to the infected non-isolated class, along with the448

probability of transmission per contact, significantly influence R0. These findings emphasize the im-449

portance of targeted interventions to reduce interactions among susceptible and infected individuals450

and decrease the probability of transmission per contact. Even minor adjustments to these critical451

parameters could substantially impact the infection’s spread, underscoring the necessity for effective452

public health measures and timely interventions to control the outbreak.453

3.4 Numerical simulations454

In this section, we conducted numerical simulations of the simplified model to evaluate the in-455

fluence of key parameters on transmission dynamics. The contour plots illustrate the dependency of456

the basic reproduction number (R0) on several critical parameters. Fig. 9 (a) shows the relationship457

between R0, β (probability of transmission per contact), and θ (recovery rate of symptomatically458

infected individuals). The plot demonstrates that higher values of β result in an increase in R0, while459

higher θ values lead to a decrease in R0, underscoring the critical importance of reducing transmis-460

sion and increasing recovery rates to effectively control pathogen spread. Fig. 9 (b) presents the461

relationship between R0, δ (disease-induced death rate), and α (modification parameter for decreased462

infectiousness). The results show that increasing both δ and α significantly lowers R0, highlighting463

the importance of interventions that reduce infectiousness and disease severity in mitigating out-464

breaks. Finally, Fig. 9 (c) depicts the relationship between R0, τ (recovery rate of symptomatically465

infected individuals), and α (modification parameter for decreased infectiousness). The plot reveals466

that higher values of τ and α both contribute to a reduction in R0, reinforcing the importance of467
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Figure 8: Local sensitivity analysis using (a) R0 and (b) the attack rate as response functions,
assessed through partial rank correlation coefficients (PRCCs). The analysis identifies the transition
rate from exposed non-isolated individuals to the infected non-isolated class, along with the proba-
bility of transmission per contact, as the most influential parameters on both R0 and the attack rate.
These results emphasize the critical need for targeted interventions focusing on these key parameters
to effectively control the outbreak and reduce transmission rates.
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rapid recovery and lowering infectiousness as effective strategies for outbreak control. These findings468

emphasize the critical role of reducing transmission probability, increasing recovery rates, and miti-469

gating disease severity in controlling infectious disease outbreaks. While other parameters could also470

be explored in future simulations, we focus on β, θ, δ, α, and τ due to their significant influence on471

transmission dynamics in the model. These key parameters offer valuable insights into how targeted472

interventions can alter the course of an epidemic, demonstrating the robustness and applicability of473

our model to real-world public health scenarios.474

(a) (b) (c)

Figure 9: Contour plots of the basic reproduction number (R0) for the model (1), as a function
of (a) transmission rate (β0) and recovery rate of symptomatically infected individuals (θ), (b)
disease-induced death rate (δ) and modification parameter for decreased infectiousness (α), and (c)
recovery rate of symptomatically infected individuals (τ) and modification parameter for decreased
infectiousness (α), respectively. Parameter values used are provided in Table A2.
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4 Discussion475

The epidemic game conducted at WKU provided a unique opportunity to pilot our app-based476

experimentation platform during an open-world realistic ”mock” outbreak, engaging nearly 1,000477

students over two weeks. This large-scale proximity-based experiment integrated behavioral experi-478

ments and generated multimodal data, including contact and transmission patterns (see Figs. 3 and479

A1), highlighting the platform’s potential for interdisciplinary research. WKU students gained prac-480

tical experience by participating in the experiment, while a subgroup of the students were actively481

involved in planning and organizing the activity around campus. The resulting data are available482

for instructors to use during classes and further epidemiological analyses. This data are particularly483

significant given its realistic representation of a real-life outbreak scenario in a university campus,484

thereby supporting the platform’s capacity to generate rich multimodal epidemiology datasets with485

external validity. [3, 22, 25].486

Our in-depth study used a robust modeling approach to investigate pathogen spread during487

the WKU game. We designed an effective model framework (Figs. 4 & A6) to assess interven-488

tion strategies including quarantine and isolation, incorporating human behavioral perspectives and489

non-pharmaceutical interventions (NPIs). We conducted detailed model simulations and sensitivity490

analyses using the data generated from the experiment. Model fitting and parameter estimates (Fig.491

A7) demonstrated that our flexible transmission rate model effectively describes the transmission492

dynamics observed in the experiment. The inclusion of human behavioral factors, such as individual493

adherence to preventative actions and the assessment of risk, greatly enhanced the model’s accu-494

racy. The predicted parameters accurately depicted the transmission situations, highlighting the495

significance of prompt and synchronized interventions [3, 43, 56].496

Our model represents a significant step forward in the integration of dynamic behavioral factors497

into epidemiological modeling. Unlike traditional models that often treat behavioral responses as498

static or oversimplified, our approach accounts for the fluidity of human behavior during an outbreak.499

Individuals in our model can adjust their adherence to NPIs such as social distancing, mask-wearing,500

isolation and quarantine based on real-time changes in disease severity and perceived personal risk [30,501

36]. This dynamic response is critical for understanding the true impact of public health interventions502

and for predicting the course of an epidemic [37, 38].503

However, while our model incorporates a more realistic representation of behavior, it does not504

fully capture the entire spectrum of potential responses. Behavioral heterogeneity, influenced by505

factors such as cultural norms, misinformation, and varying levels of trust in public health messages,506

presents a complex challenge for modeling [39, 40]. Our findings suggest that while the inclusion507

of dynamic behavior significantly improves the accuracy of epidemiological predictions, there is still508

a need for further refinement. Future models should aim to incorporate more granular data on509

behavioral responses, potentially integrating psychological and sociological insights to better capture510

the diversity of human actions in the face of an epidemic. This ongoing refinement will be crucial511

for developing models that can more effectively inform public health strategies and interventions,512

particularly in diverse and rapidly changing real-world settings [30, 36].513

The model simulation results presented in Fig. 5 underscore the profound impact of individual514

behavior and NPIs on disease transmission dynamics. The naive scenario, which operates under515

the assumption of no interventions, illustrated a rapid and uncontrolled spread of the pathogen,516
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emphasizing the critical need for timely interventions to prevent widespread transmission. In contrast,517

scenarios incorporating individual reactions to the outbreak demonstrated a significant reduction in518

new cases. The red dashed curve in Fig. 5 reflects this impact, where behavioral responses such519

as social distancing, mask-wearing, and self-isolation markedly decrease transmission rates. Human520

behavior plays a pivotal role in controlling the spread of infectious diseases, as individuals’ decisions521

to adopt preventive measures can substantially alter the trajectory of an epidemic [55, 56, 44]. The522

most pronounced decrease in daily new cases was observed in the scenario combining individual523

reactions with NPIs, depicted by the green solid curve. This scenario incorporates measures such as524

quarantine, isolation, and contact tracing alongside individual behavioral responses. The synergistic525

effect of these combined strategies results in a substantially flatter epidemic curve, demonstrating the526

efficacy of coordinated intervention efforts. The alignment of simulated reported cases with official527

data, shown by the grey curve with dots, further validates the model’s accuracy and predictive528

capability.529

The analysis of the reporting ratio in Fig. 6 adds another layer of validation to our model.530

The stability of the reporting ratio when both individual reactions and NPIs were implemented531

indicates that the model accurately captures the dynamics of reporting behavior and the effectiveness532

of interventions. This consistency is crucial for effective outbreak management, ensuring reliable533

data for decision-making and policy formulation. Accurate and stable reporting is essential for534

monitoring the outbreak and adjusting intervention strategies in real-time. These findings emphasize535

the critical role of NPIs and individual behavior in managing the spread of infectious diseases.536

Timely and decisive interventions, coupled with public compliance, are key to controlling outbreaks.537

Public health strategies must prioritize raising awareness about preventive measures and ensuring538

public cooperation. Campaigns to educate the public on the importance of these measures can539

significantly enhance compliance and effectiveness of interventions. The robustness of our model,540

validated through these simulations and sensitivity analyses, further underscores its applicability in541

real-world epidemiological studies and public health planning. By integrating human behavior and542

NPIs, the model provides a comprehensive tool for predicting outbreak trajectories and designing543

effective intervention strategies. This integrated approach is essential for optimizing public health544

responses and improving pandemic preparedness [25, 65].545

Our study aligns with previous research indicating that combined individual and population-546

level actions are crucial in mitigating the spread of infectious diseases [25, 55, 56]. The insights gained547

from this experiment provide valuable guidance for future outbreak management and emphasize the548

importance of coordinated, multifaceted intervention strategies [25, 69]. Furthermore, our model549

simulation results demonstrate that individual behavior and NPIs are indispensable in controlling550

disease transmission. The effectiveness of these measures in reducing new cases and maintaining551

stable reporting ratios highlights the importance of a comprehensive and coordinated public health552

response. These findings provide a robust foundation for developing strategies to manage future553

outbreaks, ensuring both public compliance and effective intervention implementation.554

To further highlight the effectiveness of key parameters such as ϵ (which measures the efficacy of555

intervention) and ζ (which measures the intensity of behavioral response), global sensitivity analysis556

simulations were conducted and depicted in Fig. 7. Our findings showed that minor increases in ϵ and557

ζ can significantly reduce transmission, with ζ having a more noticeable impact. This emphasizes the558

significance of robust and intensive measures in containing the outbreak. In addition, local sensitivity559
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analysis (see Fig. 8), which has R0 as the response function, analyzed based on the PRCC, identified560

the transition rate of exposed non-isolated individuals to the infected non-isolated class (σn) and561

the probability of transmission per contact (β) as the most critical parameters impacting R0. These562

variables have a major impact on basic reproduction numbers, indicating their significance in control.563

Furthermore, contour plot simulations provided valuable visual insights into the interactions between564

critical model parameters and their impact on the basic reproduction number, R0. In Fig. 9 (a),565

the simulations highlight the relationship between β (probability of transmission per contact) and θ566

(recovery rate of symptomatically infected individuals), revealing that higher values of β significantly567

increase R0, while increasing θ effectively reduces R0. This underscores the importance of both lim-568

iting transmission rates and enhancing recovery efforts in mitigating the spread of the pathogen.569

Similarly, Fig. 9 (b) illustrates the sensitivity of R0 to δ (disease-induced death rate) and α (modifi-570

cation parameter for decreased infectiousness). The simulations show that increases in both δ and α571

result in a notable reduction in R0, highlighting the critical role of interventions aimed at reducing572

disease severity and infectiousness in controlling outbreaks. Lastly, Fig. 9 (c) depicts the relationship573

between R0, τ (recovery rate of symptomatically infected individuals), and α. The results demon-574

strate that higher recovery rates and reduced infectiousness both contribute significantly to lowering575

R0, emphasizing the importance of rapid treatment and measures aimed at reducing the spread of576

infection. These contour plot simulations reinforce the notion that strategic interventions targeting577

key parameters—such as transmission probability, recovery rates, and infectiousness—are essential578

for effective epidemic control. By focusing on reducing transmission and enhancing recovery efforts,579

public health strategies can be optimized to limit the spread of disease and lower the reproduction580

number [25, 69]. This analysis underscores the critical need for coordinated, data-driven interven-581

tions tailored to the specific dynamics of each outbreak. Further numerical simulations (presented582

in A8) highlight the significant influence of key epidemiological parameters—transmission rate (β0),583

recovery rate (θ), and progression rate (γ)—on disease dynamics. Variations in β notably impact584

both asymptomatic and symptomatic infections, with a 50% increase leading to substantial rises in585

case numbers, underscoring the need for interventions like social distancing and mask-wearing to586

mitigate transmission. Similarly, enhancing recovery rates (θ) by 50% reduces the infectious period587

for asymptomatic individuals, while slowing the progression from asymptomatic to symptomatic588

stages (γ) helps to alleviate the burden of symptomatic cases. These findings emphasize the critical589

role of reducing transmission, speeding up recovery, and delaying disease progression in controlling590

outbreaks effectively.591

Conclusion592

In conclusion, this study elucidates the significance of our platform as a powerful tool for study-593

ing pathogen transmission and evaluating the impact of human behavior and NPIs on disease dy-594

namics via an open-world experimental game approach. The integration of a flexible, time-varying595

transmission rate model in the analyses significantly enhances our understanding of how behavioral596

factors and NPIs influence the spread of infectious diseases. By accurately capturing these complex597

dynamics, our model provides critical insights into effective outbreak management strategies, under-598

scoring the importance of timely, coordinated interventions and adherence to preventive measures.599

Our experimentation platform’s ability to generate realistic multimodal datasets—encompassing epi-600
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demiological, behavioral, and network data streams—could prove very valuable for public health601

planning and pandemic preparedness. The robustness and applicability of our model, validated602

through rigorous simulation and sensitivity analyses, highlight its potential as an important tool for603

guiding public health policies and optimizing response strategies in future outbreak scenarios. Future604

research will aim to refine this approach by incorporating additional data streams and elements such605

as age structure and varying interaction patterns, thereby advancing our understanding of disease606

dynamics. Coupling the model with a game-theoretic approach to analyze behavior during the ex-607

periments could further enrich our insights into outbreak management, ultimately contributing to608

more effective public health strategies and a deeper preparedness for future health crises.609

Strengths610

Our study on the experimental game using the epidemic app at WKU demonstrates significant611

strengths. The large-scale, real-life experiment, involving nearly 1,000 students over two weeks, pro-612

vided a detailed dataset closely mirroring real-world outbreaks. This rich dataset enabled rigorous613

analysis of pathogen transmission dynamics and the effectiveness of intervention strategies. A key614

strength of this research is the integration of behavioral data with epidemiological modeling. Our615

experimentation platform facilitated the collection of multimodal data, including epidemiological, be-616

havioral, and network streams, offering a comprehensive view of disease dynamics. Our model, which617

incorporates human behavior and NPIs, accurately reflected the transmission patterns observed dur-618

ing the experiment. The robustness of our approach is further supported by extensive simulations and619

sensitivity analyses, validating the model’s accuracy and its applicability to public health planning.620

Moreover, the platform’s ability to generate realistic, high-quality data underscores its potential as621

a valuable tool for enhancing outbreak response strategies and pandemic preparedness.622

Limitations623

Despite the strengths of our study, we must acknowledge several limitations. The assumption624

of homogeneous mixing within sub-populations may oversimplify real-world interactions, potentially625

affecting model accuracy in diverse populations. While time-varying parameters were incorporated626

to reflect adaptive behaviors, some parameters were assumed constant, which may not fully capture627

the dynamics of real-world epidemics. The use of an exponential distribution for transitions between628

epidemiological states simplifies the model but may not accurately represent actual waiting time dis-629

tributions. Additionally, the model does not account for demographic variations, such as age/group630

structure and varying interaction patterns, which could provide deeper insights into disease dynamics631

and intervention effects. The findings from the WKU game, while valuable, may not be fully gen-632

eralizable to other settings with different population dynamics and intervention strategies. Further633

experiments in diverse environments are needed to validate and refine the model, which is why our634

long-term plans would include extending the platform to support a wide range of field experiments635

to study transmissible diseases.636

Lastly, using smartphones’ Bluetooth radio to detect proximal contacts between individuals in637

physical space can introduce missing data and inaccuracies. This is due to the inherent noise in the638

Bluetooth signal and technical issues such as varying hardware capabilities and incomplete adherence639
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to the Bluetooth specs from smartphone makers, particularly on Android. We are currently working640

together with the developers of the Herald project to address these issues, and upcoming versions of641

the app will likely feature more accurate and robust contact detection.642

Implication for Public Health643

This study underscores the importance of integrating human behavioral dynamics and NPIs into644

epidemiological models to improve public health responses during disease outbreaks. The experiment645

conducted at WKU demonstrated how real-time behavioral changes, such as adherence to social dis-646

tancing, isolation and quarantine measures, can significantly alter the trajectory of an epidemic. By647

incorporating these adaptive behaviors into our model, we were able to provide more accurate pre-648

dictions of disease transmission and identify the most effective intervention strategies. This approach649

emphasizes the importance of public health policies that are both responsive and adaptive, taking650

into account the dynamic nature of human behavior in response to changing outbreak conditions.651

Also, the platform’s ability to generate comprehensive, multimodal datasets offers a valuable652

tool for public health planning and pandemic preparedness (for similar outbreak data generator, see653

[22]). The data-driven insights from this study can inform the design of targeted interventions that654

consider not only the biological aspects of disease spread but also the complex social and behavioral655

factors that influence public compliance and the effectiveness of NPIs. As public health officials656

navigate the challenges of controlling infectious diseases, the findings from this research provide657

a robust framework for developing strategies that are both evidence-based and adaptable to the658

changing dynamics of human behavior and pathogen transmission.659
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[17] Wang Z, Jusup M, Guo H, Shi L, Geček S, Anand M, Perc M, Bauch CT, Kurths J, Boccaletti S, Schellnhuber728

HJ. Communicating sentiment and outlook reverses inaction against collective risks. Proc Natl Acad Sci USA729

2020; 117(30): 17650-17655. doi: 10.1073/pnas.1922345117.730

[18] Mkandawire W, Dong Y, Grozdani A, Hong H, Khandpekar M, Inekwe T, Collins J, Fowler A, Musa SS, Col-731

ubri A. Introducing Epidemica: an proximity-based platform to study infectious disease transmission through732

experimental epidemic games. In preparation.733

[19] Asanjarani A, Shausan A, Chew K, Graham T, Henderson SG, Jansen HM, Short KR, Taylor PG, Vuorinen A,734

Yadav Y, Ziedins I. Emulation of epidemics via Bluetooth-based virtual safe virus spread: experimental setup,735

software, and data. PLOS Digit Health 2022; 1(12): e0000142.736

29

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 20, 2024. ; https://doi.org/10.1101/2024.12.14.24318955doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.14.24318955


[20] Sau A. A simulation study on hypothetical Ebola virus transmission in India using spatiotemporal epidemiological737

modeler (STEM): a way towards precision public health. J Environ Public Health 2017; 2017: 7602301.738

[21] Bakalos N, Kaselimi M, Doulamis N, Doulamis A, Kalogeras D, Bimpas M, Davradou A, Vlachostergiou A,739

Fotopoulos A, Plakia M, Karalis A. STAMINA: Bioinformatics platform for monitoring and mitigating pandemic740

outbreaks. Technologies 2022; 10(3): 63.741

[22] Orchard F, Clain C, Madie W, Hayes JS, Connolly MA, Sevin E, Sent́ıs A. PANDEM-Source, a tool to collect or742

generate surveillance indicators for pandemic management: a use case with COVID-19 data. Front Public Health743

2024; 12: 1295117.744

[23] Karaarslan E, Aydın D. An artificial intelligence–based decision support and resource management system for745

COVID-19 pandemic. In: Data Sci COVID-19 2021; 25-49.746

[24] Chondros C, Nikolopoulos SD, Polenakis I. An integrated simulation framework for the prevention and mitigation747

of pandemics caused by airborne pathogens. Netw Model Anal Health Inform Bioinform 2022; 11(1): 42.748

[25] Reingruber J, Papale A, Ruckly S, Timsit JF, Holcman D. Data-driven multiscale dynamical framework to control749

a pandemic evolution with non-pharmaceutical interventions. PLoS One 2023; 18(1): e0278882.750

[26] Kleczkowski A, Maharaj S, Rasmussen S, Williams L, Cairns N. Spontaneous social distancing in response to a751

simulated epidemic: a virtual experiment. BMC public health 2015; 15(1). doi: 10.1186/s12889-015-2336-7.752
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Figure A1: Time series plots depicting the progression of disease cases during the experiment period.
The red line represents the hourly incidence data, providing a detailed view of the outbreak’s temporal
dynamics. The purple line shows the cumulative number of cases, illustrating the overall growth of the
outbreak over time. Specifically, panel (a) displays the hourly number of cases, capturing the short-
term fluctuations in disease transmission, while panel (b) presents the daily number of cases, offering
a broader perspective on the outbreak’s progression. The four-day gap without cases corresponds to
a weekend and two consecutive holidays, during which participants had limited interactions, reducing
potential transmissions.

Appendix884

A1 Time-series of the ground-truth data885

The raw data generated from the WKU game (see Fig. A1) provided a comprehensive overview886

of the outbreak dynamics and participants’ responses. This dataset included detailed contact traces887

for 794 participating students over a period of 14 days, capturing crucial experiment events such888

as infections, re-infections, individual quarantining, and disease outcomes, including recoveries and889

fatalities. The sheer volume of data, totaling over 2 million individual entries, offered a granular890

understanding of the simulated epidemic’s progression and the effectiveness of intervention strategies.891
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A2 Participants’ demographics, perceptions about quaran-892

tine, and adoption of daily protective behaviors893

We administered a survey where students were able to enter their gender, major, year, mobile894

operating system, and other demography questions. This survey was planned to be conducted before895

the start of the WKU game, but due to a technical issue, this was not possible, and was distributed896

to participating students only several weeks after the end of the game. Because of this, only 145897

students responded to the survey, which is still useful to estimate the breakdown of participation898

among gender, year, etc. (Fig. A2). We also provided another anonymous survey to all enrolled899

participants that they could optionally answer before the start of the game. This survey included900

three questions with an answer on a scale from 1 (strongly disagree) to 5 (strongly agree): ”Public901

health officials should have the power to order people into quarantine during COVID-19 outbreaks”,902

”If someone is given a quarantine order by a public health official, they should follow it no matter903

what else is going on in their life at work or home”, and ”If I go into quarantine, my family, friends,904

and community will be protected from getting COVID-19.” These questions were adapted from a905

telephone survey to measure public perceptions of quarantine following the H1N1 pandemic in 2009906

[50]. Even though these responses were not incorporated in the current analysis either, they are part907

of the dataset for future analyses. Furthermore, our study aimed to capture individuals’ perceptions908

and actions undertaken by students based on the infection situation, offering insights into behavioral909

patterns and the efficacy of NPIs in mitigating disease transmission (Fig. A3). The daily behaviors910

of participants in the WKU game (using points to buy and wear a virtual mask or use antiviral to911

mitigate symptoms of disease, and choosing to quarantine/isolate for the day) were recorded by the912

app, and quantify the level of engagement of participants with the app as well as their concern with913

the possibility or consequences of infection. None of these data were used in the current analysis,914

as the time-varying transmission rate in our epidemiological model accounting for human behavioral915

responses was fitted to the case count data and did not use any of the explicit behavioral information916

collected with the app.917

A3 Superspreader epidemiology of the transmission tree in918

the WKU game919

We followed the analyses described by Taube et al. in their 2022 paper [47], where they compiled920

the OutbreakTrees database containing 382 published and standardized transmission trees from921

16 directly transmitted diseases. For each disease, they calculated several statistics, including the922

dispersion parameter k and mean R of the offspring distribution (the number of infections caused923

by each infected individual) and the proportion of cases considered superspreaders. Their analyses924

showed that intermediate dispersion parameters contribute most to superspreading, and provided925

preliminary support for the prediction that superspreaders tend to generate more superspreaders.926

We applied these analyses on the largest connected component of the transmission tree from the927

WKU game (see Fig. A4), and we were able to reproduce all their main results from published928

transmission trees generated by biological pathogens: (1) significant decrease in R between the929

first and second halves of transmission trees with 20 or more nodes and 2 or more generations of930
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Figure A2: Charts representing demographics of some of the students who participated in the
WKU game, collected through an anonymous survey distributed after the end of the game. These
charts depict gender (female, male, other), year (freshman, sophomore, junior, senior), major (Bi-
ological Science, Business, Chemistry, Communication, Computer Science, Design, English, Math-
ematics and applied Mathematics, Psychology), and mobile operating system (Android, iOS, Har-
monyOS/Huawei).
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Figure A3: Charts depicting the perceptions of participating students regarding quarantining (top
row). The height of the bars correspond to the number of students who selected each response in a
scale from 1 to 5 to the three questions in the survey. The line plots show the number of students
who chose to quarantine/isolate, wear a mask, and take an antiviral medication in the app at each
day of the WKU game.

spread, (2) intermediate dispersion parameters giving rise to the highest proportion of cases causing931

superspreading events, such as COVID-19 (k = 0.14), SARS (k = 0.06), and MERS (k = 0.24),932

with the virtual pathogen (modeled in the app after SARS-CoV-22) yield k = 0.35, and (3) and the933

observed ratio of superspreader-superspreader exceeding what would be expected by chance in 12934

of 18 trees, with COVID-19 trees showing ratios higher than 8 (the tree for the WKU game had a935

ratio of 14 when including all notes, and 19 when only including non-terminal nodes). These results,936

even though are outside the main modeling approach we use in this paper, are very important by937

providing strong evidence that that transmission dynamics in the WKU game is representative of938

biologically-caused epidemic processes, and in particular close to those of SARS-like viruses.939

A4 Model of disease transmission and progression in the940

app941

Current epidemic games using the epidemic app are driven by a customizable model of disease942

transmission and progression that the app uses to calculate the probabilities of participants to move943

between epidemiological (e.g.: susceptible, infectious) and health (e.g.: asymptomatic, severely sick)944

states. A diagram of this model is depicted in Fig. A5). This model provides formulas for calcu-945

lating the mean total duration of infection (broken down into exposed, infectious, and symptomatic946

states) and how this duration can be adjusted using rations between the different duration peri-947
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Figure A4: Network and superspreader epidemiology analysis of the data: contact network aggre-
gated over the two weeks of the WKU game and colored by final infection status (blue for participants
who were never infected, orange for those infected at some point during the game) (a), three largest
connected transmission trees connecting infectors with infectees (b), decrease in R by disease, R was
below 1 in the second half of all trees (red line denotes R = 1) (c), and proportion of cases causing
super spreading events as function of dispersion parameters, as predicted by theory and measured
from the data (d). Panels (c) and (d) were adapted from [47].
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Figure A5: Model of disease progression in the app. ”Infected” participants start in the exposed
(E) state, where they are not infectious, and from there they move on to the infectious state. The
infectious state contains a sequence of possible substates depending on the symptomatology of the
participants; first, the participants can become fully asymptomatic but infectious (Iasym) with a
probability pasym. If this does not happen, with probability 1 − pasym the participants will turn into
symptomatic, going through a pre-symptomatic state (Ipre), which can evolve into symptomatic mild
(Imild) or symptomatic severe (Isev) with probability pmild and 1 − pmild, respectively. A participant
in the symptomatic mild state can become severe with probability psev. From all these states, Iasym,
Imild, and Isev, the individual finally becomes removed, by either ”recovering” or ”dying”.

ods to control the pace of a experiment based on real-world infection data. Given a set of mean948

duration parameters, the app uses exponential distributions to randomly assign duration values dur-949

ing the experiment to each participant. To determine probability of infection between susceptible950

and infectious individuals, the model incorporates factors like estimated contact rate and duration951

of contact, the contact detection accuracy from the Bluetooth library, and internal time-step such952

that everything is normalized to that time-step for consistency. By working out the formulas in the953

ground-truth transmission model in the app, it is possible to link its parameters with those in a954

classical classical SEIR (Susceptible-Exposed-Infectious-Removed) model, such as the transmission955

rate, infection period, and exposure period. This enable us to run simulated scenarios in advance956

for each experimental game, and tweak the parameters in the ground-truth model so that the game957

takes place within the constrains of the experimental constrains (maximum duration, anticipated958

number of participants, etc.) An online reference is available detailing all the formulas used in the959

model [84].960
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A5 Time-varying effective reproduction number estimation961

by renewal equation962

The transmissibility of the pathogen in the WKU game can be quantified by calculating the963

instantaneous (effective) reproduction number, R(t), which represents the expected number of sec-964

ondary cases generated by a single infectious individual at time t. In this study, we estimated R(t)965

from the time series data using the serial interval (SI) approach, as described by Wallinga and Teunis966

(2004) [71]. The SI in epidemiology refers to the time interval between successive cases in a chain967

of transmission [72]. With known distributions for the SI, it is possible to simulate the sequence of968

infections, determining the number of secondary infections caused by one primary infection based969

on the reproduction number. Conversely, if both the SI distribution and case time series are known,970

the reproduction number can be reconstructed retrospectively.971

This approach to estimating R(t) has been extended in several studies [73, 74, 75, 76, 77, 78, 81]972

and has been applied to analyze the transmission dynamics of various infectious diseases [79, 80].973

For the WKU game, we adopted the same framework to estimate the time-varying R(t) by applying974

the renewal equation, expressed as Eq. (A1):975

R(t) = x(t)∫ ∞
0 w(k)x(t− k) dk , (A1)

where x(t) represents the incidence rate at time t, and the convolution term
∫ ∞

0 w(k)x(t− k) dk976

measures the total infectiousness at time t. The term w(k) refers to the distribution of the SI,977

which defines the period over which an individual remains infectious. This methodology allows for a978

detailed and dynamic estimation of the pathogen’s transmissibility during the experiment.979

Using this method, we adopted the SI estimate for COVID-19 from China as a proxy for the SI of980

the simulated outbreak [46]. Following approaches similar to those in [79, 80, 82, 81]. The estimated981

reproduction number, R(t), for the duration of the simulation, was computed, and we provided982

95% confidence intervals (CI) based on Gamma priors [75, 77]. These estimates are crucial for983

understanding the transmission dynamics and for validating the effectiveness of non-pharmaceutical984

interventions (NPIs) implemented during the experiment.985

The Reff is illustrated in Fig. 3, with the gray points indicating the calculated values and the986

error bars representing the 95% confidence intervals. A smoothed black line captures the overall987

trend, providing insights into the changing transmission potential over time. The red dashed line988

at Reff = 1 marks a critical threshold: values above this indicate the infection is spreading, while989

values below suggest the outbreak is under control. To estimate Reff , we utilized serial interval data990

from COVID-19 cases in China, scaled appropriately for the two-week duration of the experimental991

game [46]. This analysis offers a comprehensive understanding of the infection dynamics, identifying992

key transmission peaks and assessing the effectiveness of interventions in controlling the outbreak.993

A6 Mathematical formulation of the model994

Following the above description, the proposed model partitions the total population N(t) at any995

time t into nine distinct sub-populations: non-quarantine susceptible (Snq(t)), quarantine suscepti-996
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ble (Sq(t)), non-isolated exposed (Eni(t)), isolated exposed (Ei(t)), non-isolated asymptomatically997

infected (Ani(t)), isolated asymptomatically infected (Ai(t)), non-isolated symptomatically infected998

(Ini(t)), isolated symptomatically infected (Ii(t)), recovered (R(t)), and deceased (D(t)) individu-999

als. The model tracks the movement of individuals between these compartments using a system of1000

non-linear ordinary differential equations (ODEs). So that:1001

N(t) = Snq(t) + Eni(t) + Ani(t) + Ini(t) + Sq(t) + Ei(t) + Ai(t) + Ii(t) +R(t).
In the model, the rate at which individuals move between compartments is determined by various1002

parameters, including the infection rate λ(t), transition rates between different states (σ, γ, τ), and1003

quarantine/isolation dynamics (ψni(t), ψi(t)). The model also includes parameters for recovery (θ),1004

immunity waning (ω), and disease-induced mortality (δ). Individuals may leave the susceptible1005

compartment (Snq) to become exposed (Eni) due to infection, or they may transition into or out1006

of quarantine (Sq) based on the rates ψni(t) and ψi(t). Once exposed, individuals may progress to1007

either asymptomatic (Ani) or symptomatic infection (Ini), with similar transitions for their isolated1008

counterparts (Ai, Ii). Recovered individuals can lose immunity and re-enter the susceptible class.1009

The model further accounts for simulated ”deaths” due to the disease, captured by the compartment1010

D(t).1011

The proposed model is depicted in Fig. 4; the state variables and model parameters (Table A1)1012

fulfill the following system of non-linear ordinary differential equations (ODEs):1013

dSnq

dt = −λ(t)Snq + ωR + ψni(t)Sq − ψi(t)Snq,

dSq

dt = ψi(t)Snq − ψni(t)Sq,

dEni

dt = λ(t)Snq − σEni + ψni(t)Eq − ψq(t)Eni,

dEi

dt = ψq(t)Eni − ψni(t)Eq − σEi,

dAni

dt = σEni − (τ + γ)Ani + ψni(t)Aq − ψq(t)Ani,

dAi

dt = σEi − (θ + γ)Ai + ψq(t)Ani − ψni(t)Aq,

dIni

dt = γAni − (τ + δ)Ini + ηψni(t)Iq − κψq(t)Ini,

dIi

dt = γAi − (τ + δ)Ii + κψq(t)Ini − ηψni(t)Iq,

dR
dt = θAni + θAi + τIni + τIi − ωR,

dD
dt = δ(Ini + Iq).

(A2)

From model (A2), the incidence function or force of infection is given by the following equation:1014

λ(t) = β(t)
(Ani + αIni

N

)
. (A3)
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It is worth mentioning that the parameter 0 < α < 1 represents the adjustment factor for reduced1015

infectiousness in infectious individuals, indicating that Ani is more prone to transmitting the disease1016

at a higher rate than Ini. This is due to the silent nature of asymptomatic cases and the reduced1017

activity of severely infected individuals, who are less mobile within the community compared to1018

asymptomatic cases [57, 58]. We set the state variable D(t) to measure the number of disease-1019

deceased individuals to keep track of disease-related ”deaths” (for calibration and quantification of1020

model parameters).1021

Model assumptions1022

The primary epidemiological assumptions underlying the formulation of the system (1) are as1023

follows:1024

• Heterogeneous mixing: The population is heterogeneously mixed, reflecting varying contact1025

patterns influenced by individual behavior, risk perception, and adherence to non-pharmaceutical1026

interventions (NPIs). This assumption captures the complexity of real-world interactions.1027

• Exponential waiting time: Individuals transition between epidemiological states according1028

to an exponential distribution, implying constant transition probabilities, simplifying the model1029

while maintaining analytical tractability.1030

• Continuous transitions: Transitions between compartments occur continuously over time,1031

accurately representing the dynamic progression of the epidemic.1032

• Constant population size: The total population remains constant throughout the experi-1033

ment, focusing exclusively on disease dynamics without accounting for participants leaving the1034

simulation for causes unrelated to their outcome within the experiment.1035

• Time-varying parameters: Key parameters such as transmission and contact rates are1036

modeled as time-varying, reflecting adaptive behavioral responses to the evolving epidemic.1037

• Behavioral response incorporation: Human behavioral responses, including compliance1038

with NPIs and changes in contact patterns, are integrated as dynamic variables, informed by1039

real-time data and prior studies [55, 56].1040

• Data-driven calibration: Model calibration is based on empirical data from the WKU game,1041

ensuring alignment with observed transmission dynamics and enhancing predictive accuracy1042

[19, 21].1043

• Feedback mechanisms: The model includes feedback loops where behavioral changes influ-1044

ence, and are influenced by, the disease dynamics, capturing the reciprocal relationship between1045

human behavior and pathogen transmission.1046

These assumptions offer a robust framework for comprehending and modeling disease dynamics in1047

a controlled setting—the WKU setting in this instance—and also help us understand intervention1048

strategies and behavioral reactions, which offers crucial insights into containing the outbreaks.1049
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A7 Analysis of simplified model1050

The simplified version of the model (depicted in Fig. A6 and formulated in (1)), which maintains1051

the same incidence function as in the full model (A2), while using flexible transmission rate.The1052

simplified version of the model (1) was modified with two additional classes: (1) “P” mimicking the1053

public perception of risk regarding the number of infection (severe or critical) cases; and (2) “C”1054

representing the number of cumulative cases. Note that it is also convenient to define the cumulative1055

rate of change of disease infection as Csub−model = σE+γA. Since quarantined and isolated individuals1056

do not contribute to disease spread, the force of infection remains unaffected. Thus, λ(t) is given by1057

λ(t) = β(t)
(

Ani+αIni

N

)
, where α accounts for the reduced infectiousness.1058

A7.1 Basic reproduction number1059

Here, we computed the basic reproduction number (R0) of the simplified model at disease-1060

free equilibrium (and by considering constant transmission rate β0) by adopting the next-generation1061

matrix (NGM) technique as demonstrated in [60]. The R0 represents the number of secondary1062

cases that a typical primary case would cause during the infectious period in a wholly susceptible1063

population [60, 61, 62, 63].1064

Through direct calculation of the NGM, we obtained R0 as follows:1065

R0 = ρ(FV −1) = R1 + R2 = β0

(θ + γ) + β0αγ

(θ + γ)(τ + δ) , (6)

where the parameter ρ represents the spectral radius of the next-generation matrices of the Jacobin1066

matrices.1067

Therefore, the basic reproduction number, R0, can be interpreted by decomposing it into three1068

components as follows: R1, representing new infections from asymptomatically infected contacts, and1069

R2, representing new infections from symptomatically infected contacts. This breakdown allows for a1070

more nuanced understanding of how different types of infections contribute to the overall transmission1071

dynamics of the outbreak. Understanding R0 and its components is crucial for assessing the potential1072

impact of an infectious disease outbreak. A high R0 indicates that each infected individual is, on1073

average, infecting more than one other person, leading to exponential growth in cases. This highlights1074

the importance of interventions targeting both asymptomatic and symptomatic cases to reduce R01075

and control the spread of the disease effectively.1076

The result of Theorem A7.1 below follows from Theorem 2 of [60], and reference to the local1077

stability of the DFE of model (1), the result of Theorem 3.1 below follows.1078

Theorem A7.1. The disease-free equilibrium of model (1) is locally-asymptotically stable whenever1079

R0 ≤ 1.1080

The epidemiological importance of the given theorem indicates that a small infection of the1081

virus would not result in a substantial epidemic if the basic reproduction number (R0) is lower than1082

one. Attaining a R0 value of less than 1 is efficacious, although not obligatory, in averting significant1083

epidemics. When the value of R0 is below one, the sickness naturally diminishes, but it continues to1084
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Figure A6: A simplified diagrammatic representation of the sub-model, derived from the full model
(1), focusing on the essential dynamics of pathogen transmission. Solid arrows represent transitions
between compartments, with per capita flow rates indicated alongside each arrow. The sub-model
includes key compartments: susceptible (S), exposed (E), asymptomatic (A), symptomatic (I),
and recovered (R) individuals. This streamlined version did not consider quarantine/isolation as
separate compartment but rather as a function in the transmission rate to reduce the complexity
when analyzing behavioral responses, providing a clearer view of the primary transmission pathways.
While simplified, this model effectively captures the core mechanisms of disease spread, making it
suitable for foundational analysis and rapid simulations aimed at understanding the impact of basic
intervention measures.
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exist when R0 is more than 1. This highlights the need for sophisticated intervention techniques to1085

successfully manage the disease, as demonstrated in earlier studies like [61].1086

A7.2 Model fitting and parameter estimation1087

In this study, we employed a compartmental SEIR model to fit the observed data on disease1088

transmission dynamics during the WKU game. Our fitting process utilized the simulation inference1089

framework, leveraging Pearson’s Chi-square and the least squares method to align our model with1090

the data. This comprehensive approach involved conducting 10,000 random simulations to explore1091

the parameter space thoroughly, ensuring an accurate representation of the outbreak dynamics [64,1092

65, 66]. The experimental data, which captured pathogen transmission among 794 participants over1093

two weeks, provided a robust basis for parameter estimation. Initial conditions and demographic1094

parameters were derived from the experiment context. Key epidemiological parameters, such as1095

transmission and reinfection rates, were estimated to reflect the observed dynamics accurately. To1096

estimate the parameters of the model, we conducted a fitting process where parameters such as β1097

(transmission rate), α (modification parameter for the increase/decrease of infectiousness of infectious1098

individuals), and ω (rate of reinfection) were sampled uniformly within specified ranges. This process1099

was iterated 1,000 times, and for each iteration, the model was solved using the lsoda function1100

from the deSolve package in R. The predicted number of cases (Csub−model) was compared to the1101

data observed in the experiment, and the fitting accuracy was evaluated using the Pearson chi-1102

squared statistic. The iteration yielding the lowest chi-squared value was considered the best fit.1103

Additionally, we computed the 95% confidence interval for the fitted model to assess the uncertainty1104

in the predictions. The results of our model fitting, illustrated in Fig. A7, show a close alignment1105

between observed cumulative incidence and model predictions, validating the model’s accuracy. The1106

estimated parameters, detailed in Table A2, highlight the impact of human behavior and intervention1107

strategies on disease spread.1108

To quantify the goodness of fit, we calculated the R-squared statistic, which represents the1109

proportion of variance in the observed data explained by the model. The R-squared value is computed1110

using the formula:1111

R2 = 1 − SSR

SST

where SSR is the sum of squares of residuals (the difference between observed and predicted values)1112

and SST is the total sum of squares (the difference between observed values and their mean). The1113

R-squared value provides an indication of how well the model captures the variability in the observed1114

data, with values closer to 1 indicating a better fit. In our fitting process, we achieved an R-squared1115

value of 0.87, suggesting that the model accurately represents the observed disease dynamics. In1116

the subsequent sub-section, sensitivity analyses were further assessed, which underscored the impor-1117

tance of timely interventions and compliance with preventive measures. These findings demonstrate1118

the utility of our platform in generating valuable epidemiological insights, emphasizing the role of1119

behavioral factors in controlling outbreaks and informing public health strategies.1120
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Figure A7: Model (6) fitting for transmission dynamics in the WKU game. The gray dotted points
represent the observed data, while the red curve depicts the model’s predictions based on the fitted
epidemic parameters. The light-blue shaded area indicates the 95% credible interval, reflecting the
model’s uncertainty range. This analysis was conducted using R Statistical Software version 4.2.1.
The specific parameters employed in the simulation are detailed in Table A2
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A7.3 Further Numerical Simulations1121

Furthermore, we conducted further numerical simulations to gain valuable insights into how1122

varying key epidemiological parameters, such as transmission rate (β), recovery rate (θ), and pro-1123

gression rate (γ), influence the overall dynamics of disease spread. By testing 50% increases and1124

decreases in these parameters, we can assess their impact on infection patterns.1125

Figures A8(a) and A8(b) illustrate the effect of varying β on asymptomatic (An) and symp-1126

tomatic (In) infections. In Figure 1(a), a 50% increase in β leads to a higher proportion of asymp-1127

tomatic cases over time, while a 50% decrease reduces the number of asymptomatic individuals. This1128

highlights the importance of minimizing transmission rates to control outbreaks. Similarly, Figure1129

A8(b) shows that a 50% increase in β results in a substantial rise in symptomatic cases, whereas1130

a 50% reduction significantly decreases symptomatic infections. These results emphasize the crit-1131

ical role of interventions aimed at reducing transmission (e.g., social distancing, mask-wearing) in1132

mitigating both asymptomatic and symptomatic spread.1133

Figures A8(c) and A8(d) explore the influence of recovery (θ) and progression rates (γ) on disease1134

dynamics. In Figure A8(c), increasing θ by 50% leads to a faster reduction in asymptomatic infec-1135

tions, while a 50% decrease prolongs the infectious period, maintaining higher levels of transmission.1136

This underscores the importance of enhancing recovery rates through early detection and treatment.1137

In Figure A8(d), a 50% increase in γ accelerates the transition from asymptomatic to symptomatic1138

cases, increasing the overall burden of symptomatic infections. Conversely, a 50% reduction in γ1139

delays the progression, reducing the number of symptomatic cases over time. This highlights the1140

significance of interventions that slow disease progression to alleviate the outbreak’s severity. These1141

simulations demonstrate the profound effect that modifying β, θ, and γ has on controlling disease1142

transmission, underscoring the importance of targeted interventions in outbreak management.1143
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Figure A8: Solution curves of disease dynamics for varying transmission rates β, recovery rates
θ, and progression rates γ. (a) Prevalence time series for asymptomatic infections (A) with varying
transmission rates (β). The plot shows the effect of baseline, 50% increase, and 50% decrease in β on
the proportion of asymptomatic individuals over time. (b) Prevalence time series for symptomatic
infections (I) with varying transmission rates (β). The plot illustrates how baseline, 50% increase,
and 50% decrease in β impact the proportion of symptomatic individuals over time. (c) Prevalence
time series for asymptomatic infections (A) with varying recovery rates (θ). The plot shows the effect
of baseline, 50% increase, and 50% decrease in θ on the proportion of asymptomatic individuals in
the population over time. (d) Prevalence time series for symptomatic infections (I) with varying
progression rates from asymptomatic to symptomatic infections (γ). The plot demonstrates the
effect of baseline, 50% increase, and 50% decrease in γ on the proportion of symptomatic individuals
over time. The legends in each subplot clearly indicate the different variations in β, θ, and γ,
highlighting the influence of these key parameters on the infection dynamics within the population.
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A8 Summary table of initial state values and parameters1144

estimation results of the model (1)1145

Table A1: Epidemiological description of the state variables and parameters of model (1).

Variable Description
Sn Non-quarantine susceptible
Sq Quarantine susceptible
En Non-isolated exposed
Ei Isolated exposed
An Non-isolated asymptomatic (mild or no symptoms)
Ai Isolated asymptomatic
In Non-isolated symptomatic (moderate to severe symptoms)
Ii Isolated symptomatic
R Recovered
P Risk perception
Parameter Description
β0 Probability of transmission per contact
α Modification parameters for decreased infectiousness
σ Transition rate of exposed individuals to asymptomatically infected
γ Progression rate from asymptomatic to symptoms stages
ψq Rate of movement from non-quarantine/non-isolation to quarantine/isolation
ψn Rate of movement from quarantine/isolation to non-quarantine/non-isolation
η Rate of reduced transition from isolation to non-isolation symptomatic individuals
κ Rate of reduced transition from non-isolation to isolation for symptomatic individuals
θ Recovery rates of symptomatically infected individuals
τ Recovery rates of symptomatically infected individuals
ω Immunity waning rate
δ Disease-induced death rate
ϵ Rate of intervention action strength
ζ Response intensity (measures the intensity of response)
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Table A2: Summary of parameter values for model (1).

Parameter Default value (range) Units Sources
β0 0.8366158 (0.25 − 1.5) per time fitted
α 0.489124 (0.4 − 0.6) per time assumed
σ 0.126 (0.01 − 0.25) per time simulated
γ 0.129 (0.05 − 0.2) per time simulated
ψi 0.06 (0.042 − 0.09) per time [65, 68]
ψni 0.06 (0.042 − 0.09) per time [65, 68]
η 0.6333 (0.001 − 0.95) per time fitted
κ 0.084 (0.05 − 0.1) per time simulated
θ 0.18 (0.1 − 0.4) per time [68, 65]
τ 0.017 (0.05 − 0.2) per time [68, 65]
ω 0.2411152 (0.1 − 0.75) per time assumed
δ 0.983 (0.1 − 0.95) per time assumed
m 1/1.5 (0.1 − 0.92) per time assumed
ϵ 0.1 (0.05 − 0.275) per time simulated
ζ (0.1 − 0.5) per time simulated
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