A scoping review of AI, speech and natural language processing methods for assessment of clinician-patient communication

Pierre Albert^a, Brian McKinstry^b, Saturnino Luz^b

^aNational Institute for Public Health and the Environment, Bilthoven, 3721 MA, The Netherlands ^bUsher Institute, Edinburgh Medical School, The University of Edinburgh, 5-7 Bioquarter, Edinburgh, EH16 4UX, UK

Abstract

Introduction. There is growing research interest in applying Artificial Intelligence (AI) methods to medicine and healthcare. Analysis of communication in healthcare has become a target for AI research, particularly in the field of analysis of medical consultations, an area that so far has been dominated by manual rating using measures. This opens new perspectives for automation and large scale appraisal of clinicians' communication skills. In this scoping review we summarised existing methods and systems for the assessment of patient doctor communication in consultations.

Methods. We searched EMBASE, MEDLINE/PubMed, the Cochrane Central Register of Controlled Trials, and the ACM digital library for papers describing methods or systems that employ artificial intelligence or speech and natural language processing (NLP) techniques with a view to automating the assessment of patient-clinician communication, in full or in part. The search covered three main concepts: dyadic communication, clinician-patient interaction, and systematic assessment.

Results. We found that while much work has been done which employs AI and machine learning methods in the analysis of patient-clinician communication in medical encounters, this evolving research field is uneven and presents significant challenges to researchers, developers and prospective users. Most of the studies reviewed focused on linguistic analysis of transcribed consultations. Research on non-verbal aspects of these encounters are fewer,

Preprint submitted to Nuclear Physics B

December 14, 2024

and often hindered by lack of methodological standardisation. This is true especially of studies that investigate the effects of acoustic (paralinguistic) features of speech in communication but also affects studies of visual aspects of interaction (gestures, facial expressions, gaze, etc). We also found that most studies employed small data sets, often consisting of interactions with simulated patients (actors).

Conclusions. While our results point to promising opportunities for the use of AI, more work is needed for collecting larger, standardised, and more easily available data sets, as well as on better documentation and sharing of methods, protocols and code to improve reproducibility of research in this area.

Keywords: Patient-clinician communication, Medical consultations, Clinical Encounters, Artificial Intelligence, Machine Learning, Communication Analysis

1. Introduction

Clinician-patient communication has been the focus of considerable research efforts by the health community. The assessment of communication skills in medical consultations and teamwork among clinicians has been studied for more than sixty years, and numerous models of the medical consultation have been proposed. Better understanding of the patient's motivations and expectations (attitude to illness, psychological aspects), and new insights on the sequence of the consultation itself have led to changes in practice, such as taking social history or safety netting during medical consultations, alongside the formalisation of phases and tasks of the consultation. This has led to the creation of guides and assessment tools for learning and training purposes, such as the Calgary Cambridge Guide to the Medical Interview [21].

Changes and discoveries in models naturally led to their integration in the training of health professionals. However, the assessment of doctors' communication skills is a complex and time consuming process, performed by human experts. While innovations in automated processing have allowed an initial explorations of this domain, the development of automatic assessment of communication skills in clinical settings remains a challenging task.

Clinician-patient communication is a synchronous, usually dyadic communication: a dialogue between two participants interacting dynamically

It is made available under a CC-BY 4.0 International license .

with each other, or tryadic — a clinician interacting with a patient and another person, such as the patient's carer or a relative.

Sociological studies of the consultation have investigated many general traits of social behaviours of clinicians and patients. This includes the role of the patient, for instance, the definition and discussion of a patient's "sick role" (normative expectations around illness) [36, 51], the relationship between clinician and patient [9], the influence of the general organisation of the healthcare system [50, 9], social aspects of health and disease [9], and social factors determining the health of individuals, groups, and large populations [9].

This general picture has been refined by actual observations of interaction patterns contrasted with patient expectations. Such patterns have been the subject of investigation over many years. Davis [11], for instance, analysed recordings of medical consultations combined with interviews and questionnaires to identify patterns of communication explaining non-compliance (tension between the patient and the clinician, lack of rapport, seeking information without giving feedback). Regarding patients' expectations, McKinstry [29] (in a cross-sectional survey) and Elwyn et al. [14] found that patients varied in their desire for involvement in decision making, stressing the need for doctors to determine the level of involvement desired by a patient.

Communication in a dialogue can be divided into different modalities, verbal (speech), paralinguistic (tone, use of silence) and non-verbal (gestures, smiles, showing concern), and between *content*, i.e. the semantics of the interaction, and *content-free* aspects, the form of the interaction. The distinction between verbal and non-verbal aspects of an utterance refers to the distinction between the semantic content, and its paralinguistic content [16].

This review concerns technology that aims to extract meaning from patientclinician interactions using existing tools, new methods, and their combination in a processing pipeline able to provide data that can be turned into metrics and feedback. While some work exists on the automatic assessment of parts of the communication, this domain is in its infancy and more is still needed for its practical applications, e.g. to teach and train communication skills. Nonetheless recent studies have demonstrated the capacity of current systems produce meaningful results, such as prediction of student's success based on communication and domain skills [6], identification and assessment of suicidal risk using verbal and nonverbal cues during interviews with adolescents [52], characterisation of semantic similarity of the patient's

It is made available under a CC-BY 4.0 International license .

and physician's language [53], etc.

At the acoustic level, speech processing focuses on content-free patterns that may be helpful in structuring the communication, such as *prosody* and *segmentation*. Prosody and assessment of voice quality have been used in clinical training using staged scenarios [55]. Spoken dialogue can be segmented by monitoring *turn taking patterns* or using *vocalisation patterns*. Vocalisation patterns [25, 24] are Markov diagrams encoding transition probabilities between vocalisation events of both participants, providing patterns of interaction. In medical applications, they have been used in the context of mental health to characterise power dynamics during dementia diagnosis disclosure conversations [45].

Semantic processing is the content-rich approach to speech processing. For the analysis of consultations, it first requires the transcription or automatic speech recognition (ASR), and its understanding using different semantic processing. A typical semantic pipeline includes diarisation (datermining who spoke when), ASR, syntactic analysys and semantic interpretation. Variations to this typical architecture presented in this review include the use of machine learning (ML) methods for detection of dialogue acts, analysis gestures, facial expressions and other non-verbal signals which affect communication [23].

2. Methods

The reporting of this scoping review follows the recommendations set by the preferred reporting items for systematic reviews and meta-analyses (PRISMA) statement [33].

2.1. Eligibility criteria

To be included all studies had to have three main characteristics. First, the studies had to analyse the interaction or communication between clinicians and patients (dyadic) in primary care settings. Second, the analyses had to be done by using automated methodologies including but not limited to machine learning and deep learning methodologies. Third, the studies had to report performance measure for these analyses.

2.1.1. Dyadic clinician-patient interactions

Dyadic refers to the interaction between a clinician and one patient. Studies including a third person (e.g. carer or relatives) were not deemed eligible.

These conversations should occur only in primary care settings and the term clinician refers to any professional who provides care to patients in these settings such as general practitioners, and nurses.

The patient-clinician interaction had to occur in real time (synchronous) through spoken natural language, either face-to-face or remotely using video-conferencing technology. The interactions had to be spontaneous. We included in this category semi-structured interviews and studies that enrolled simulated patients.

2.1.2. Automated analysis

Automated analysis include machine learning and deep learning methodologies that automatically extract features from dyadic communications. Other type of automated analysis are those that describe precise algorithms or specific instructions which needed to be followed to analyse the interaction.

2.1.3. Performance measures

We distinguished three types of measures to assess performance of automated analyses of clinician-patient interactions: 1) intrinsic evaluations, such as F1-score, recall, precision, sensitivity, area under the receiver operating characteristic curve (AUC), 2) medical communication evaluation meeting certain criteria from medical frameworks, and 3) correlation with human assessment, such as the patient's assessment, as reflected in questionnaires or structured interviews that yield a numerical score (e.g. [48, 13, 15].

2.2. Information sources

A systematic search was performed on Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Embase and Medline through Pubmed from their inception to January, 2021. Because the importance of the Association for Computing Machinery (ACM) Digital Library as one of the world's most comprehensive bibliographical databases in the field of computing we searched this digital library from inception to January 2021. We also included grey literature such as dissertation and theses as our information sources.

The search strategy included terms related to the following terms: 1) dyadic communication, 2) clinician-patient interaction, and 3)automated analysis. We also performed snowballing of included articles. We searched through the references of these articles and assess them against our eligibility criteria.

It is made available under a CC-BY 4.0 International license .

2.3. Article selection

All authors participated in abstract screening. Full-text screening was performed by one author (PA), with random samples assigned to SL and BM for confirmation of selection. A pilot for this last step was performed to homogenise the eligibility criteria of included studies. Borderline papers were identified regarding the interpretation of automation and patient-clinician consultations, and a stricter application of the criteria was advised. Following this, the definitions were clarified and every full text paper was reviewed a second time. Twenty-two studies were rejected and one additional study was included.

2.4. Data collection

We extracted the following overall information: 1) general characteristics such as publication date, first author, and location of the study, 2) baseline characteristics such as sample size, inclusion criteria, age, sex, ethnicity, socioeconomic information. We also extracted the following methodologyrelated data: 1) datasets' characteristics: language, availability, annotated data, 2) the purpose of the interaction: palliative, risk-benefits of treatment options, etc. 3) the name of the framework or theory used to analyse the interaction, 4) type of input material: transcripts of video-recordings, audio-recordings, semi-structured interview transcripts, video-recordings, audio-recordings, manual annotation of non-linguistic features, etc, 5) features of interest: discourse acts.

In terms of results, we extracted the following information:

- 1. performance metrics: kappa, accuracy, sensitivity, specificity correlation scores, F-scores, AUC, and error scores;
- 2. dataset characteristics: language of the dataset, availability, type of collected information (transcription of video- or audio-recordings), input material for preprocessing or cleaning (transcripts, audio, video), preprocessing techniques (e.g. stop-word removal), type of system input information (video, text, or audio), and extracted features;
- 3. analysis characteristics: theory or framework behind the analysis, machine learning or statistical method (supervised, unsupervised, semisupervised), type of analysis (statistical, machine learning, deep learning).

It is made available under a CC-BY 4.0 International license .

2.5. Critical appraisal of included studies

The search was centred around the three main concepts of the review: dyadic communication, clinician-patient interaction, and systematic assessment.

The concepts grouped under systematic assessment of the communication by this review are diverse. Specific terms used in the language processing community are not always used by the medical community, and broader terms needed to be included. In addition, systematic assessment differs from automated assessment, encompassing studies that may have not used computational methods to extract features of the communication. Additional relevant terms were identified during a preliminary search on a subset of studies and reference lists. The final list (figure 1, item 1) includes terms from both medical and speech processing fields.

No previous review on a topic similar to this review was found during initial searches. The scoping and search strategy for this review was developed from scratch to identify studies using systematic approaches or automated processing to support the assessment of patient-clinician communication. Search updates were done as the search protocol was refined.

2.6. Sources searched

Searches were not restricted by location, date of study, or language. Grey literature (dissertations and theses) was also included for screening.

2.6.1. Medical libraries

Systematic searches were performed in the main electronic databases, using the search strategy presented in figure 1.

Dates and issues of the medical databases searched for the review are:

Cochrane Cochrane Central Register of Controlled Trials Issue 1 of 12, January 2021 and Cochrane Database of Systematic Reviews Issue 1 of 12, January 2021. 44 reviews and 41 controlled trials were found.

Embase Embase 1980 to 2021 Week 03

MEDLINE/PubMed Accessed 2021-01-25

ACM Full-Text Collection was searched to retrieve studies with a strong focus set on the language processing aspect that may not have been reported in medical journals. The search was performed on full texts

It is made available under a CC-BY 4.0 International license .

- 1. "machine learning" or "natural language processing" or "speech processing" or "artificial intelligence" or "video analysis" or "visual analytics" or "text analytics" or "text analysis" or "speech analysis"
- 2. communication or consultation or interview
- 3. clinician or doctor or nurse or gp or "general practitioner" or "general practice" or physician or "primary care" or "family practice" or "family practitioner"
- 4. 1 and 2 and 3

Figure 1: Search terms.

until 2019-08-30, then updated with searches on titles and abstracts until 2021-01-25.

Reference lists from eligible studies identified using the developed search strategy were searched manually for additional studies. Within-paper references were searched using Google Scholar¹ or DuckDuckGo² when not referenced to find further relevant studies. Search updates were conducted until January 2021, as mentioned in the respective online libraries search protocols.

2.7. Inclusion criteria

- Primary research study;
- The study is on clinician and/or patient communication;
- The studied interaction is based on synchronous interactive communication using spoken natural language (face-to-face or remotely), spontaneous (including semi-structured interviews), staged or not (e.g. a simulated patients acted a predefined scenario);

¹Google Scholar is a specialised search engine for published scientific literature. It is a valuable resource to lookup specific references, e.g. cited articles in a publication.

²DuckDuckGo is a generic web search engine with a strong focus on keeping user's privacy. It is an alternative to the more popular web search engine by Google.

- Direct signals processing or their interpretation (e.g. speech or transcripts). Secondary interpretation, such as studies that extract patterns from manual annotations were included;
- Automated analysis is used. Therefore statistical analyses only based on manual annotations were discarded. Automation includes manual analysis in which a precise algorithmic methodology was described and used (following objective instructions, e.g. if ... then ... else ...);
- Study must report evaluation measures. The measures can be classified into three types of evaluation: technical evaluation (e.g. standard NLP metrics), medical communication evaluation (e.g. using medical frameworks), and correlation with assessment (e.g. patient's assessment).

Secondary sources were screened for the identification of additional material. Some studies in foreign language were included (French and German).

- 2.7.1. Exclusion criteria
 - Studies based on asynchronous communication: clinical narratives, medical notes (discharge summaries, nursing notes), speech notes using ASR;
 - Automatic analysis of medical expert systems (diagnosis systems) and electronic health records without an interactive component;
 - Studies using patient interviews or focus group discussions by researchers that were conducted after the interaction with clinicians for qualitative studies;
 - Studies without a strong focus on communication between a clinician and a patient (e.g. team communication in presence of a patient);
 - Studies reporting manual annotation and observation of the results whithout automation;
 - Opinion and prospective papers;
 - Studies with no full text available, or full text not in English, French or German.

It is made available under a CC-BY 4.0 International license .

2.8. Screening Procedure

A search of the main medical databases was conducted using the search strategy described in Figure 1. Results were automatically merged and duplicates removed using a specific tool³, then screened for relevance using the title, keywords, and abstracts. Relevance was established where studies discussed analysis of communication in a primary care setting or in a clinical setting similar to primary care (e.g. consultation with a surgeon). Full texts of identified studies were retrieved, and eligibility was screened against review inclusion and exclusion criteria outlined above.

2.8.1. Updates

The search was updated four times — every 6 months — from July 2018 until January 2021. Retrieved results were merged and filtered, and previously screened references were discarded using the aforementioned automated tool. Potentially relevant studies uncovered during article screening (retrieved using Google Scholar) were also screened for eligibility.

2.8.2. Results from the search

Due to the heterogeneity of the systems, aspects of communication, and interventions, a meta-analysis was not attempted. A detailed visualisation of the result of the search and screening procedure is provided in figure 2, formatted in accordance with the PRISMA flow diagram for screening [32].

We can group studies by themes according to the type of communication investigated. The first and largest group of studies explored *verbal communication*: the semantic content of the interaction. In this group, the first theme is the structures of the discourse, either task-specific [3] (VR-CoDES) or general [49] (behavioural codes), [52] (conversation dynamic), [4] (characterisation of utterances, sequential information), [47] (questions and answers), [27] (sequences of discourse elements). Related themes were task-based categories (interaction elements) [4] and the general structure of the dialogue (Speech acts) [56], [28]. The second theme focuses on topics - what was discussed -[57, 58, 35, 8, 10, 6]. The third theme relates to words: embeddings (use and context of a word) [39, 46, 10], types (e.g. part of speech) [28], frequency [47], and polarities (positive and negative words, e.g. related to gain and loss) [34, 17]. A final theme was the expression of affect (sentiment analysis) [47].

³https://edin.ac/30IvxVW

It is made available under a CC-BY 4.0 International license .

The other main group relates to the **non-verbal** components of the interaction: the part of the communication conveyed by other channels than the speech. Most use the visual modality: the face of participants [40, 39], gestures and movements [27, 18, 39], gaze [38, 39], and posture [7]. The other studies observed activities performed during the consultation: clinician's activities [20] and computer / screen interactions [38].

The last group of investigation relates to the **paralinguistic** components: the part of the communication conveyed by the speech but not its content. Acoustic features (verbal dominance) [52] [46], pauses [26], and silence [12, 30, 26].

The type of interactions are shown in Table A.8. The type of interaction relates to the active participants in the interaction. Constrained analysis is specified when applying (e.g. only dyadic interactions are analysed). The value can be dyadic (2 persons) or triadic (3 persons). The *medical interaction* describes the context in which the clinician patient communication occurred, e.g. GP consultation, outpatient visits, etc.

Information of the eligible articles is summarised in two tables. First, studies following the "participants, interventions, comparisons and outcomes" (PICOS) framework [42] are shown in tables 1 and 2. Additionally, we included three columns: a brief description of the aim of the study, an outline of the methodology, and a summary of results.

A summary of tasks related to clinician-patient communication assessment performed in each study is provided in table A.5. The *frameworks* column contains the medical and/or annotation that were used or referenced, the *type of material* is the type of data on which the study was conducted (e.g. audio, video). The *task performed* lists the processing applied to the data, either manual and automated (e.g. emotion recognition). The *performance* variable summarises the main quantified results, and the *dataset* variable describes the collected data. The information is then developed using six tables to extract detailed information relevant to this review (available in appendix, see section Appendix A).

The population of each study is described in two tables: table A.6 for the patients, and table A.7 for the clinicians. Both tables include the same demographic information in addition to the population included in the study: age, sex, ethnicity, location and socio-economical information. Patient-specific information relates to the personal, socioeconomic attributes, and medical condition of the cohort. Clinician-specific information regards speciality and experience. The analysis conducted in each study is then detailed in table

It is made available under a CC-BY 4.0 International license .

A.9, which contains the following columns:

- Preprocessing list the procedures undertaken on raw data (text, audio, video) as preparation steps for subsequent extraction of features analysis. Text processing usually include transcription, in which case the method is reported (by professionals or by researchers). Since no instance of the use of ASR was found, all reported transcriptions were manually produced. It must be stressed however that instances of uses of ASR to help generate transcripts were found: Alloatti et al. [1] for instance used manually corrected ASR output on 30 physiotherapy sessions. Other text preprocessing methods include cleaning of transcripts and removal of unwanted events, such as stop-words or disfluency. preprocessing of audio and video can include segmentation, extraction of parts (beginning, end), signal processing (background noise removal, normalisation, colour balance etc.). Finally, any manual processing is also listed.
- *Feature extraction* reports on automated processing. The generation of the features was documented either from raw data (acoustic or video analysis) or manually generated data (through text analysis: tokenisation, part-of-speech tagging, etc.)
- Task and method reports on the task that was performed (e.g. classification of a sentence) and on the methodology that was used. This includes supervised learning or unsupervised learning, a detail of any analysis used used: machine learning algorithms, clustering, feature set reduction, classification, etc. An accompanying table of abbreviations is provided in section A.3.
- *Evaluation* reports how the results were assessed in the study. This is broken down in four items, if present in the study B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size.
- *Results* are numerical results of the reported performance metrics.

An assessment of the research potential and applications of each of the study is presented in table A.10. It is structured around the following columns:

- Research implications regroups three general characteristics. Novelty (yes/no): whether the study implemented a new method or applied an existing one no is assigned where the study uses an existing tool or method. Replicability (low/partial/full): whether the reported procedure is described in sufficient details and data is available low is assigned where both data is n4ot available and method description is incomplete; partial where either is the case, and full where both data and detailed methods are available. Generalisability (low/medium/high): whether the analysis is specific to the task low is assigned where the method can only be applied to similar settings; medium where the analysis can be applied to other settings (i.e. type of medical encounters) with adaptations (e.g. changing a dictionary of terms); high where the analysis can be applied directly to other settings.
- Risk of bias Real life (RL, yes/partial/no): whether the interaction featured real interactions (e.g. between patients and doctors) or simulated interactions (e.g. training sessions with an actor). Feature balance (FB, yes/no): whether reported individual features were balanced across classes. Suitable metrics (SM, yes/no): whether metrics other than overall accuracy are reported when data are class-imbalanced. Contextualised results (CR, yes/no): whether a baseline is provided to put the results into perspective. Overfitting (yes/no): whether crossvalidation and/or hold-out set were used. Sample size (S): three ranges are reported: $\leq 50, \leq 100, \text{ and } \geq 100$).
- Strengths/Limitations five characteristics are reported with yes/partial/no assessment, each yes indicating a strength, each no indicating a limitation. Spontaneous speech: whether speech was naturally generated or prompted in response to open-answer questions. Conversational speech: whether the study is based dialogue. Automation: whether the automation (other than the machine learning tasks) was complete (excluding preprocessing) or only some aspects of the procedure used in the study. Transcription-free: whether the method required transcription of the dialogue. Content-independence: whether the method is content-based or not.

Finally the dataset table (table A.11) summarises details of the datasets used in the reviewed studies. It contains the following columns:

- Data set/Subset size Quantification of the number of documents details by groups of participants, including number of minutes recorded and number of words when available.
- Data type Data recorded and used in the study. Two types of data are reported. Data streams (audio, video) and derived data (e.g. transcripts with information about the transcription when available). Other type of data (patients' information, questionnaires, etc.). The type of interaction during the dialogue is characterised as either structured, semi-structured, or conversational.
- *Data annotation* Type of annotations with details about the annotation set.
- *Data balance* reports whether the dataset is balanced in terms of age (a), gender (g), and socio-professional class (s). Yes reports balance for both between and within class balance when applicable.
- *Data availability* whether the dataset has been published or made available.
- Language is the spoken language used during the interactions. It can differ from the main language of the country where the collection took place.

3. Results and discussion

Before analysing their content, a look at the distribution of the dates of publications of the included articles (see figure 3) provides a sense of how recently the field has emerged. All studies were published after 2005, and more than half of the articles were published after 2018.

A total of 27 studies are included in the final selection. While they cover a wide range of aspects of clinician-patient communication, with only a limited number of studies having been dedicated to each aspect. A wide range of medical speciality are featured: General Practice, dentistry, radiography, language pathology, psychometry, oncology, urology, palliative care, psychotherapy, home medical care. In five occurrences, the interacting clinicians were medical students. A single study used an actor to perform the role of the

It is made available under a CC-BY 4.0 International license .

Figure 2: Detailed result screening procedure.

doctor [18], in order to control the behaviour in preset scenarios (engaged or disengaged).

The retrieved studies feature several types of clinician-patient interactions. Twenty-two studies were conducted on real interactions and five were simulated, including one with a virtual avatar. The dialogues during medical interactions can be grouped in three different type. Twenty studies are based on conversational interactions, i.e. free form interactions during which the participants exchange freely without constraints over the content. Five studies used semi-structured interviews, i.e. an open discussion with a set of themes or questions to direct the interaction or elicit answers. Finally two

It is made available under a CC-BY 4.0 International license .

Figure 3: Distribution of the years of publication of included studies.

studies used structured interactions, i.e. a planned, constrained discussion during which the same set of predefined questions is asked to each participant.

Regarding settings, 17 studies investigated medical consultations, either during GP consultations or routine patient visits (e.g. dental care), of which 13 were dyadic consultations (clinician and patient) and three were triadic interactions (a patient's helper or a second clinician). One study features mainly dyadic interactions with a small fraction of triads. Overall, 7 studies report triadic interactions. A majority of the triads concerns an additional caregiver (e.g. parent). Only one feature an active second clinician although a few report non-interactive clinicians (passive, observing) or interacting before or after the studied interaction.

Five studies used clinical interviews (intake interviews, diagnoses or assessment of a particular condition). Two featured motivational interviewing

It is made available under a CC-BY 4.0 International license .

(one on substance use, one on adherence dialogues). Two investigated disclosure interactions and the breaking bad news. Finally, one used a instruction session (on how to use a specific drug).

Of the 17 studies investigating medical consultations, seven used constrained topics and one investigated only a specific phase of the interaction. The cultural context of the studies (see table A.6) was fairly restricted. More than half of the studies (fifteen) were conducted in the USA, and all but five were conducted in western countries (USA, UK, Scotland, Australia, France, Germany). Of the others, none were conducted in developing countries: four were conducted in Asian countries (Japan, Singapore (PRC), Hong Kong) and one in Israel. The socio-cultural diversity was also quite lacking. Reported age and sex were generally balanced (featuring patients of all age, from children to elderly people). The distribution of ethnicity seemed balanced when reported, but the information is missing in more than half of the studies. While some patients of lower income or lower education were included in some studies, with two studies specifically on low-income cohorts, the information is also often lacking.

Most of the studies investigated cohorts of patients with cancer (seven studies) or patients for general consultations (five). Five studies were conducted with patients suffering from psychological issues such as suicidal thoughts or patients with Dementia, which could potentially influence their speech.

Regarding clinicians (see table A.7), most studies do not report information beyond sex distribution, and even this is missing for eighteen of the studies. Out of the studies reporting those, sex distribution was equal, which can simply signal that studies which paid attention to this metric paid attention to the sex distribution while recruiting the cohort. This is further illustrated regarding the ethnicity, where out of the four studies reporting it, only one was featuring a cohort of white only clinicians. Interactions featured a wide range of clinicians: nurses, oncologists, GPs, etc. Five studies were conducted with students clinicians, and two with resident doctors.

3.1. Investigated aspects

Most studies, 20 out of 27, investigated the semantics of the interaction. Ten studies used the global semantic space (such as topics in Carnell et al. [6] or participants' semantic space in Vrana et al. [53]), i.e. the spoken content of the participants as a whole to characterise the communication.

It is made available under a CC-BY 4.0 International license .

Nine studies investigated topics or closely related concepts in conversations [57, 58, 35, 8, 10], either investigating consequences of differences in their presence or frequency, or evaluating internal structures, e.g. tracking reuse by participants. One additional study addressed the use and presence of more specific task-based categories: Blomqvist et al. [4] investigated interaction elements, characterising syntactic roles of utterances (statement/information, question, request).

Word-based studies are another type of unstructured characterisation, based on the quantification of used words: [39, 46, 10], the words used and their context (word embeddings), their type (part of speech) [28], or their frequency [47]. Investigations of emotions using verbal features were undertaken with two objectives: the classification of positive or negative speech using word polarities [34, 17], and the detection of sentiments from text [47].

While 15 studies investigated unstructured content (e.g. occurrences of topics), five studies investigated the discourse structure of the interaction, tracking the use, presence and absence of predefined sets of structuring elements: either task-specific structure in Birkett et al. [3]) based on VRCoDES [59], a system for coding the patient's expressions of emotional distress, or using a more general linguistic approach (using behavioural codes in Tanana et al. [49], or a set of conversation dynamic features in Venek et al. [52]).

Other studies interpreted the interaction in a more global way by investigating the structure of the interaction, identifying links between its elements and their sequences: Sen et al. [47] tracked the questions and answers between participants, and Mase et al. [27] extracted patterns of interaction from sequences of discourse elements. Blomqvist et al. [4] combined the characterisation of utterances (syntax and type) with sequential information: source (spoke, focus) what was the aim of the utterance, response.

Some studies used concepts stemming directly from theoretical linguistics, such as speech acts [56, 28], although the precise definition of what constitutes a speech act varies across studies. Although both Mayfield et al. [28] and Wallace et al. [56] defined the speech act as a social act embodied in an utterance, and both restricted the possible acts to the categories listed by the Generalized Medical Interaction System (GMIAS) [22], Mayfield et al. [28] aggregated multiple categories into two acts: information-giving and information-requesting.

Further paralinguistic analysis uses acoustic features for the characterisation of speech, generally for its classification, e.g. between healthy and unhealthy patients, [52], but also for investigating non-verbal aspects of the

It is made available under a CC-BY 4.0 International license .

interaction such as the types of pauses [26]. Another paralinguistic aspect of the interaction is the characterisation of the sequences of spoken interaction, or speakers turns: silences [12, 30] and verbal dominance [46] (calculated indirectly by quantifying the words of each participants).

Manukyan et al. [26] and Durieux et al. [12] are based on the same parent cohort study. Their experiments were conducted by the same team and complement each other: speech and silence detection, characterisation of the silences. Manukyan et al. [26] extracted and aggregated of acoustic features for the identification of conversational pauses. The random forest classifier achieved slightly lower accuracy than manual annotators (94.4% vs 99.1% over a ground truth defined as the consensus of three human coders) but it was much faster than the human coders (two orders of magnitude, requiring minutes instead of hours). Durieux et al. [12] used similar acoustic features with statistical aggregators to classify types of connectional silences (emotional, compassionate, invitational). While the automated identification misidentified 41.3% of the clips, its use to semi-automate the annotation task for human annotators was significantly more efficient, manual annotation requiring 61% more time.

In the evaluation of non-verbal element of the interaction, studies prominently investigated the visual modality: studies have used face [40], gestures and movements [27, 18], gaze [38], posture [7], and a combination of them (head movements, posture, gaze, eyebrow, hand gesture, smile) in [39]. Another element of the communication investigated was the ongoing activity of the participant while the interaction was taking place. This included the clinician's activities in Kocaballi et al. [20], and computer / screen interactions in Pearce et al. [38], both of which are known to affect consultations.

3.2. Theoretical background

The theoretical background for the evaluation of the communication was diverse. Eleven studies used ad-hoc coding systems, either designed and tailored for the study, derived from previous works by the same authors (e.g. Pearce et al. [38]), or inspired by concepts defined by existing framework but heavily modified (Two studies, [35]: modified Multi-Dimensional Interaction Analysis, [26]: ad-hoc set of acoustic features including mel-frequency cepstral coefficients (MFCC). The frameworks used in the studies can be separated into four (+ one) types.

The papers of the first type comprise assessment criteria of a medical authority (e.g. the Australian Open Disclosure Standard in [57]) and nor-

It is made available under a CC-BY 4.0 International license .

malised assessment tools such as patients' feedback tools, such as scales used to quantify anxiety (20-item State-Trait Anxiety Inventory), depression (15item Geriatric Depression Scale), and satisfaction with the appointment (Dementia Care Satisfaction Questionnaire) used by Sakai and Carpenter [46]. Two other studies used these scales to assess interaction quality: [58] (Dental Patient Feedback on Consultation skills), and [47].

The second type of framework are medical scales, used to evaluate the medical condition of patients such as the NSA16 in Chakraborty et al. [7]. Four different medical scales were used in the reviewed studies. The list is provided in table A.4.

The third type is frameworks for aspect-specific elements of the communication. The largest subset concerns semantic analysis of the interaction and linguistic or word based dictionaries, e.g. MetaMap for medical terms. Watson et al. [57] used Discursis, a visualisation tool for the analysis of term reuse. Sakai and Carpenter [46], Fridman et al. [17], Carnell et al. [6] and Venek et al. [52] used the LIWC, a word-based framework to quantify the frequency of terms and word categories (e.g. to quantify the use of possessives pronouns). Watson et al. [57] used a generic conversation and dialogue analysis tools, CAT, providing higher level structuring of the dialogue in terms of interpretability, discourse management, interpersonal control and emotional expression.

While a number of studies used acoustic and prosodic features, all studies have used their own set of features [26, 31], usually selected from a combination of sets used in other studies making it very difficult to compare their findings. It must be noted however that part of the feature selected in Manukyan et al. [26] is MFCC, a common set of acoustic features. The study of other non-verbal and paralinguistic aspects of the communication can be similarly depicted, i.e. extraction and study of ad-hoc sets of features, however one study [40] used the Emotion Facial Action Coding System (Em-FACS) to code expressions of affects (happiness, social smiles, sadness, fear, anger, disgust and contempt) as well as social smiles and combinations of different affects.

The fourth type of framework used are the medical frameworks designed to study patient-clinician communication: VRCoDES [3], GMIAS [28, 56], the Comprehensive Analysis of the Structure of Encounters System CASES [28], and the Motivational Interviewing Skill Code (MISC) [49].

The Roter interaction analysis (RIAS) framework [43] is also referenced by Carnell et al. [6], although only its distinction between biomedical utter-

ances and psychosocial utterances is used. Finally, six studies (e.g. [58]) did not use medical or conversational frameworks, instead reporting exploratory findings, for instance using data analysis (unsupervised machine learning methods such as principal component analysis) to identify prominent themes and observe the influence of their use on patients' caregivers' perceived quality of communication.

Similar to the variety of aspects investigated, the large set of frameworks used for reference or in the assessment reported in A.9 makes it difficult to compare the results of the studies and integrate them into a meta interpretation.

3.3. Paralinguistic and non-verbal communication

While the semantic aspect of the interaction has been frequently investigated, partly automated in the frame of this review but also more globally in observational studies of the clinician-patient interaction, non-semantic analysis of communication during consultations has been less studied. From the studies retrieved in this review, a number of aspects can be identified as promising.

Visual cues constitute the most frequent modality investigated. Facial features of the patient during communication has been used to detect facial expressions of different affects (happiness, social smiles, sadness, fear, anger, disgust, contempt) [40] in relation to signs of illness. Beyond the scope of this review, facial features were also used for the detection of illness. Barzilay et al. [2] classified patients' affect using Face Action Recognition, noting the potential of the method as a clinician-supporting tool to detect schizophrenia. Joshi et al. [19] extracted generic facial spatio-temporal descriptors — Local Binary Patterns on Three Orthogonal Planes (LBP-TOP) and Space-Time Interest Points (STIP) — as part of a multimodal classification model of depression (speech and video features), demonstrating the capacity of automated analysis to classify patients, but using extreme cases of the DSM-IV scale.

Focusing on gaze and eye contact, Pearce et al. [38] limited its use to detect computer activity while Porhet et al. [39] investigated gaze as elements of patterns of interaction (cues leading to cues in reaction) in verbal and non-verbal communication during consultations. Gaze was present in detected rules alongside other visual cues (nods, hand movements), however with low confidence scores for the strength of the observed patterns. Visual elements of bodily actions in time, gestures and movements have also been investigated.

It is made available under a CC-BY 4.0 International license .

The *posture* was investigated by Chakraborty et al. [7] to quantify symptoms of schizophrenia, finding a negative correlation between motor movements and negative symptoms.

Using a small number of interactions (n = 10) Mase et al. [27] analysed gestures as part of more abstracted interactional patterns. They did not analyse the gestures in themselves however, and their use was only as elements of sequential patterns for the interpretation of the interaction as a whole. At the smaller scale of motions realised during the interaction, Hart et al. [18] looked at interpersonal motions - synchrony and mutual-followership between two communication styles in acted scenarios (disengaged, engaged). While their corpus is larger, investigation of real interactions would be required to validate these findings.

Finally, a few studies used a combination of visual cues. Porhet et al. [39] extracted head movements, posture, gaze, eyebrow, hand gesture, and smile to identify of cues leading to patients' feedback in the form of rules $(X \implies Y, \text{ e.g. doctor}_{\text{head nod}} \implies \text{patient}_{\text{head nod}})$. They assessed the confidence of an extracted rule by computing the proportion of cases verifying the rule. While patterns of interactions were identified, low confidence (the confidence scores of the top 11 rules are between 0.36 and 0.12) and the acted nature of the data limits generalisability.

Finally, speech related investigations are mostly focused on *silences and pauses.* Identified as a significant component of the medical consultation, notably by Byrne and Heath [5], the therapeutic use of silences described in theoretical models can be detected using a systematic approach, while evidence of more complex usage and functions of pauses and silences is reported. Durieux et al. [12] investigated connectional silences: pauses between clinician's and patient's turns identified as potential markers of shared understanding and presence. They demonstrated the capacity of machine learning to detect connectional silences (recall 0.58, precision 1 compared with human coders) and support the annotation by human coders (human annotation without automation took 61% more time) but did not proceed to their analysis as a part of the communication beside a quantification over 32 samples. Conversational pauses are an element of the dynamics of the interaction (as a marker of engagement, power distribution, turn-taking, listening, connection, politeness, etc.). Manukyan et al. [26] investigated the performance of automated methods for the identification of conversational pauses, on its own (they report an accuracy of 94.4%) and as a supporting tool for manual coders (the annotation of one hour of audio took between

It is made available under a CC-BY 4.0 International license .

113 and 156 minutes for human coders, whereas the automated classification took 1.46 minute on a standard laptop). All studies used simple definitions of pauses, usually based on the length of silences $(t_{duration} > 3s)$, and simple definition of pauses, i.e. not characterising types of pauses.

3.4. Methodologies employed

A first overview of the assessment of the studies (see table A.10) outlines shared limitations. Concerning research implications, reviewed studies used generally novel methodologies (23 out of 27), going beyond the simple application of existing tools. Replicability was low (10 studies) or partial (17), notably due to the expected unavailability of datasets. Generalisability was globally high (seventeen studies) with only five studies using a methodology tailored for a specific setting and five studies requiring sensible work to adapt it to other contexts. Concerning the evaluation of the risks of bias, the major limitation came from feature imbalance (25 studies) associated with a lack of suitable metrics in twelve studies. Fifteen did not provide contextualised results and six did not account for overfitting. Seven did not use real life settings (e.g. features simulated interactions), and ten had rather small sample size (seven used less than 50 documents, three less than 100). Regarding other limitations, automation was only partial in twenty-three studies, and the large majority (nineteen) required the transcription of the encounters while eighteen relied on the spoken content of the interaction (the difference is explained by one study that investigated phases of the interaction [4]).

Most studies (12) used supervised learning with common classifiers (e.g. decision trees, SVM, and neural networks) to predict a type of interaction at the utterance level (e.g. coarse coding of VRCoDES in Birkett et al. [3]) or at the session level (e.g. prediction of student success in Carnell et al. [6]). Tanana et al. [49] predicted of MISC behavioural codes at the utterance and session level, with good results at session level but low performance on utterances. Venek et al. [52] used conversation dynamic features, verbal information (topic identification) and acoustic features to classify non-suicidal and suicidal patients, and a second classification of repeaters and non-repeaters. The use of clinicians' features in addition to patients' features lead to a slight accuracy improvement (90% vs 85%) in the first step but marginally reduced the performance of the second step (-1.2%). Chakraborty et al. [7] had a similar task, correlating body movement and speech with prediction of negative symptoms of schizophrenia. This approach was used to assess successful interactions [47, 30, 6], to detect connecting silences [12] and in content-based

It is made available under a CC-BY 4.0 International license .

analysis to classify topics [35], emotional valences [34], speech acts [28], and gain words [17].

Observational studies, identifying patterns from extracted features constitute another group of investigations. These studies focus on specific elements of the communication, such as semantic similarity between the patient and the physician, to find correlation between observed variations and expected dependant and independent variables. Word-based studies are common, including studies of dominance [46] and temporal ordering of activities in [20]. Wong et al. [58] investigated word-related statistics (e.g. occurrence and co-occurrence) in relation with the perceived quality of the consultation by patients. Vrana et al. [54] searched semantic (dis-)similarities across patients and doctors of different ethnic backgrounds, observing significantly lower communication similarity from white physicians, controlling for confounders (gender of both participants). Other features were used. Rasting et al. [40] used facial display of affect to correlate patients expression with therapists emotional reactions. Porhet et al. [39] investigated sequences of multimodal behaviour elements that elicit feedback from patients. Pearce et al. [38] observed computer use behaviour. Mase et al. [27] identified points of interest in the recordings of trainings based on patterns of interactions (sequences of multimodal behaviour).

Another group of studies performed clustering to detect types of interactions (unsupervised learning, e.g. grouping clinicians by style of communication), or to distinguish between known groups (supervised learning, e.g. interaction featuring good and bad communication). For instance, Wallace et al. [56] clustered physicians based on turn-taking patterns and speech act transitions through semantics, detecting two clusters corresponding to the difference in patients' evaluation for three categories of questions investigated. Cuffy et al. [10] captured semantic aspects of communication, notably the relatedness between discourse content (however limited by the small scale of the study and the disparity between computed scores and self-reported questionnaires). Using the opposite approach (i.e. using fixed groups), Watson et al. [57] extracted word-related statistics on topics to compare speech during effective and ineffective interactions, as evaluated by experts using behavioural analysis, and found significant difference between effective and ineffective interactions in four out of five aspect of the communication. Manukyan et al. [26] evaluated the performance of automating the detection of conversational pauses with good results (accuracy=94.4%). Chiba et al. [8] investigated differences in topics found in conversations be-

tween doctors interacting with caregivers of patients who died at home or at hospital. Blomqvist et al. [4] found differences between patients with and without attention deficit and hyperactivity disorder ADHD (higher degree of non-coordination for patients with ADHD).

Finally, some studies used a combination of approaches, for instance Hart et al. [18] first conducted an exploration of motion synchrony between patients and nurses, before classifying interactions using engaged and disengaged scenarios (accuracy=0.72%)

4. Conclusion

Many of the studies identified reviewed used structured or semi-structured interviews, featuring more restricted interactions than in medical consultations. While this helps retrieving investigated cues (behaviours, emotions, gestures) more consistently, it also limits the weight of the findings of these studies as regards the less restricted range of interaction that take place during medical consultations.

A number of aspects of the patient-clinician communication, verbal and non-verbal, have been investigated using systematic approaches to facilitate objective evaluations. However, while much of the focus has been set on the semantic of the interaction, investigations using paralinguistic and nonverbal components are much less common. In fact, the analysis of non-verbal behaviour has focused more on visual aspects (face, posture, movements).

The analysis of speech is fairly common in studies seeking to discriminate impaired speech of a person (e.g. patients affected by a physical or neurological conditions). However, the characterisation of speech during the patient-clinician communication is mostly limited to the quantification of silences and pauses using simple definitions.

While some touched upon some of its elements, very few studies have investigated the structure of turns in the interaction. Turn-taking behaviours combined with the analysis of speech patterns remains an area that was not investigated, supporting and legitimating the focus of the work. The rather unexplored domain of the paralinguistic and non-verbal elements associated with the automation of the assessment of the communication happening in consultations constitutes its background [44].

Overall, the result of this review shows that the automated analysis of consultation is feasible. Numerous elements of the communication happening during medical encounters can be retrieved and analysed automatically.

It is made available under a CC-BY 4.0 International license .

The literature focuses largely on semantics, while little work exists on paralinguistic analysis. Methodologies employed in consultation analysis vary. Whereas semantic analysis often use existing frameworks as a basis, studies of non-verbal and paralinguistic communication shared little methodological common ground. Much remains to be done to standardise elements, features, and metrics for the analysis of medical consultations. While majority of studies we reviewed used automation in classification tasks, exploration and identification of patterns of interaction is also a focus of research. The results of this review shows that features of multimodal behaviour in consultations can be extracted and identified. The characterisation of these features complement existing knowledge on elements of patient-clinician communication that are new and complementary, notably relating to linguistic, paralinguistic and non-verbal behaviour.

Table 1: PICOS table.

ADHD: Attention Deficit Hyperactivity Disorder, ANOVA: Analysis of variance, BRL: Bayesian Rule Lists, CAT: Communication Accommodation Theory, C-SSRS: Columbia Suicide Severity Rating Scale, kNN: k-Nearest Neighbours, LSA: Latent Semantic Analysis, MHD: Mental Health Discussion, MISC: Motivational Interviewing Skill Code, ML: Machine Learning, OSCE: Objective Structured Clinical Examination, PCA: Principal Component Analysis, RNN: Recurrent Neural Network, SIQ-JR: Suicidal Ideation Questionnaire-Junior, SP: Standardised Patients, SVM: Support Vector Machine, TF-IDF: Term frequency-inverse document frequency, UQ: Ubiquitous Questionnaire

Study	Participants	Interventions	Comparison groups	Outcomes studied Classification accuracy Text- based analysis.	
Birkett et al. [3]	91 adult female breast cancer pa- tients, 2 therapeu- tic radiographers	One-on-one con- sultations of patients undergo- ing radiotherapy	-		
[4]	22 children with ADHD, 47 children without, parents, 1 dentist	Annual dental re- call visit	Children with and without ADHD	Statistical difference in in- teractions patterns between groups.	
Carnell et al. [6]	464 graduate stu- dents, AI agents (number not re- ported)	Student training sessions of GP consultations.	-	Predictive accuracy of inter- pretable classification model - BRL.	

It is made available under a CC-BY 4.0 International license .

Study	Participants	Interventions	Comparison	Outcomes studied
U	1		groups	
Chakraborty et al. [7]	46 patients and 23 healthy controls	Dedicated medical interview (not con- sultation).	Patients diag- nosed with schizophre- nia, healthy controls participants	Association between objec- tive and clinicians' subjective evaluations of motor move- ment. Performance of the classification between individ- uals with schizophrenia and healthy individuals.
Chiba et al. [8]	18 patients at terminal stage of cancer receiving periodical medical care, 24 doctors, family caregivers.	Doctors' visits to patients.	Home death cases and hospital death cases.	No evaluation of automated processing. Difference of which topics were discussed with caregivers during doc- tors' visits between the two groups.
Cuffy et al. [10]	132 patients, 17 physicians	Patient-physician interactions in a primary care clinic	-	Word similarity (global: reuse of similar words in the whole interaction), respon- siveness between participants (utterance-based), topic reuse. Pearson's correla- tions between the computed quality scores and patients' self-reported trust and satisfaction. Low linear correlation between scores of the 3 methods and patient's evaluation
Durieux et al. [12]	225 hospitalized patient referred for palliative care consultation, clini- cians (number not reported)	Palliative care con- sultations	Comparison of semi- automatic and manual silences cat- egorisation.	Reliability, efficiency and sen- sitivity of the identification
Fridman et al. [17]	208 patients diag- nosed with low or intermediate-risk prostate cancers. 8 urologist, 3 radia- tion oncologists	Outpatient con- sultations about treatment options with patients diag- nosed with early- stage prostate cancer	Patients choosing cancer treatment, patients choos- ing active surveillance.	Physician's use of gain or loss words, association be- tween words use and patients' treatment choices. Use of loss words was associated with pa- tient's choice of cancer treat- ment. Physicians' use of loss words was correlated with recommendations for cancer treatment.
Hart et al. [18]	43 recruited sub- jects, 1 simulated physician	Presentation of a drug to the pa- tient and direction to apply the oint- ment	Two acted scenarios: disengaged and de- tached, engaged and suggestive.	Correlation in total kinetic energy, interpersonal motion synchrony and entrainment
Kocaballi et al. [20]	31 primary care patients, 4 primary care physicians	Medical interviews in general practice.	-	Type and flow of clinician's activities.

It is made available under a CC-BY 4.0 International license .

Study	Participants	Interventions	Comparison	Outcomes studied
Manukyan et al. [26]	225 hospitalised patients with ad- vanced cancer, 54 palliative care clinicians	Palliative care con- sultation	Human annotators, Machine learning classifier	Performance and efficiency of the classifier.
Mase et al. [27]	10 [*] medical stu- dents (*unclear), simulated patients (number not re- porter)	Simulated medical interviews with simulated patients for training in- terview skills of medical students	Generated summaries and actual recordings by physi- cians	Comparison of the evalua- tion between generated sum- maries and actual recordings (38 items). The method was able to identify points of in- terest in the recordings of trainings.
Mayfield et al. [28]	415 patient. 45 physicians, nurse practitioners, or physician assis- tants	Routine outpatient visits by people liv- ing with HIV	Manual and human eval- uation	Evaluation of the performance of the automation.
Mistica et al. [30]	2 SP enacted by qualified doctors, 11 international medical graduates enrolled in a bridg- ing course	Objective struc- tured clinical examinations with 2 stations: sexu- ally transmitted disease genital herpes, and bowel cancer. 1 SP per station.	-	Prediction performance on the outcome of the OSCE assessment, and analysis of communication aspects influ- encing it.
Park et al. [35]	255 patients (evidence-based MHD, perfunctory MHD, and no MHD), 56 physi- cians	Periodic health ex- aminations	-	Classification accuracy for talk-turns. precision, re- call, and F1-scores at the visit level. Sequential models had higher classification ac- curacy at the talk-turn level and higher precision at the visit level. Sequential infor- mation across talk-turns im- proves topic prediction accu- racy. Best results achieve with hierarchical gated recur- rent units
Park et al. [34]	350 patients, 84 physicians	Elderly patients' doctor visits	Human annotators, automated annotation	Agreement between auto- mated classification and human ratings
Pearce et al. [38]	308 patients, 36 GPs	Routine clinical consultations (UK, Australia)	-	Proportion of triadic interac- tions, inclusive behaviour
Porhet et al. [39]	13 doctors, actor patients (number not reporter)	Real training ses- sions of doctors with simulated patients (actors) for breaking bad news scenario	-	Confidence score (frequency of valid occurrences) of ex- tracted rules (cue $X \implies$ feedback Y)

It is made available under a CC-BY 4.0 International license .

Study	Participants	Interventions	Comparison	Outcomes studied
Rasting et al. [41] Sakai and Carpenter [46]	Therapists, 12 pa- tients with various psychosomatic dis- orders 86 patients and companions dyads, physicians (num- ber not reporter)	Real interviews of patients for in-patient psy- chotherapy Clinical interview, exam and formula- tion of diagnostic	- (different degrees of alexithymia) Patients diagnosed with and without dementia.	Correlation between cate- gories in patients' evaluation of psychosomatic disorders and behaviours. Differences in actual and per- ceived verbal dominance, dif- ferences in makers of power between groups of patients and influence on patient's evaluation.
Sen et al. [47]	122 patients with stage 3 or stage 4 advanced solid tu- mors, 40 oncolo- gists	Doctor-patient conversations of late-stage cancer patients	-	Speech features related to pa- tients' evaluation. 2 clusters of communication styles iden- tified: several communication styles associated with higher and lower communication rat- ings. Poor results of machine learning for the classification of doctors with highest com- munication ratings.
Tanana et al. [49]	341* primary care patients at a safety-net hospi- tal, including 76* university students with problematic drug or alcohol use (* unclear). clinicians (number not reporter)	Short motivational interviews	-	Capacity of machine lean- ing methods to predict MISC codes at utterance and session level.
Venek et al. [52]	60 adolescents: 30 suicidal (13 repeaters and 17 non-repeaters), 30 non-suicidal. 1 social worker	Q and A to 16 questions: Columbia Suicide Severity Rating Scale (C-SSRS ver- sion 1/14/2009), Suicidal Ideation Questionnaire- Junior (SIQ-JR version 1987 [16]), Ubiquitous Ques- tionnaire (UQ version 2011 [1])	Suicidal (repeater / non- repeater) and non suicidal patients Classifica- tion of the patients using a two layers hierarchical classifier	Statistical significance of dif- ferences of discourse features between suicidal and non- suicidal adolescents, and be- tween suicidal repeaters' be- haviours and non-repeaters. mainly acoustic information are statistically significant to discriminate between re- peaters and non-repeaters. Verbal behaviour of patients and clinicians is important to assess suicidal risk. Nonver- bal behaviour, notably acous- tic features, is important to assess the potential of suicidal re-attempt. Accuracy of hier- archical classification is fairly good (67.7%)

It is made available under a CC-BY 4.0 International license .

Study	Participants	Interventions	Comparison groups	Outcomes studied
Vrana et al. [53]	132 low-income pa- tients, 17 physi- cians	Medical appoint- ment in a primary care clinic	-	Patient-physician communi- cation similarity and correla- tion with trust levels. Results were influenced by physician's race and gender, and patient's gender. Higher communi- cation similarity was associ- ated with less trust in physi- cians before the interaction and higher after.
Wallace et al. [56]	360 [*] patients (* unclear), 41 doc- tors	Physician-patient visits	-	Correlation between detected clusters and patients' evalua- tions.
Watson et al. [57]	8* Simulated pa- tients or family members (* un- clear), 8 clinicians.	Simulated consul- tation of a clini- cian training pro- gram to discuss ad- verse events in pa- tient care	4 effective consulta- tions, 4 ineffective consulta- tions (set by experts using be- havioural analysis)	 Statistical comparison (t- tests) of agreement on effec- tive/ineffective rating of the interactions, and of each part of the CAT using the mean scores of students' evalua- tions. 2: Interest of vi- sualisation of concepts reuse for the discourse analysis of clinician-patient interaction. In effective interactions, physicians approximated to patients more than patients approximated to physicians. Physicians engaged with the patients' conceptual contribu- tions. The visualisation pro- vided meaningful interpreta- tion capacities for discourse analysis.
Wong et al. [58]	62 cases, pae- diatric dentists, certificated dental surgery assistants, child patients, and their care-givers (not detailed)	dental conversa- tion with child patient and care- giver	-	Relation of themes to eval- uation. Frequent use of positive reinforcement/reas- surance was significantly as- sociated with higher per- ceived quality of communica- tion. Specific terms and be- haviour were identified.

It is made available under a CC-BY 4.0 International license .

Table 2: Design, methodoloy and results summary.

ADHD: Attention Deficit Hyperactivity Disorder, ANOVA: Analysis of variance, BRL: Bayesian Rule Lists, CAT: Communication Accommodation Theory, C-SSRS: Columbia Suicide Severity Rating Scale, kNN: k-Nearest Neighbours, LSA: Latent Semantic Analysis, MHD: Mental Health Discussion, MISC: Motivational Interviewing Skill Code, ML: Machine Learning, OSCE: Objective Structured Clinical Examination, PCA: Principal Component Analysis, RNN: Recurrent Neural Network, SIQ-JR: Suicidal Ideation Questionnaire-Junior, SP: Standardised Patients, SVM: Support Vector Machine, TF-IDF: Term frequency-inverse document frequency, UQ: Ubiquitous Questionnaire

\mathbf{Study}	Design, aim	$\operatorname{description},$	Methodology	Results
Birkett et al. [3]	Automatic ing of text of medica (VR-CoDI	on of the cod- cual transcripts al interactions ES)	Utterance representation us- ing bag-of-words and tf-idf, classification (naïve Bayes, lo- gistic regression, support vec- tor machines, decision trees)	High accuracy of the auto- mated classification of VR- CoDES. Similar performance of the different classifiers and n-grams, TF-IDF outper- formed other data representa- tion.
Blomqvist et al. [4]	Analysis of interaction dentist and	of behavioural is between the d child patients	Quantification of the differ- ent parts of interaction using video recordings	No differences in the num- ber of initiatives (questions), focus, and functions of ver- bal expressions by the den- tist. Children with ADHD made significantly more ini- tiatives, made fewer verbal re- sponses, more frequently did not respond, and had a higher degree of avoidance of re- sponse, no-response or incon- gruity between the verbal and non-verbal response
Carnell et al. [6]	Investigati bility of 1 for classif dents' suc of the eval fail).	on on practica- ML algorithms ication of stu- ccess (outcome uation: pass or	Classification and perfor- mance of ML over prior probability of success based on manually annotated textual content of the in- teraction: domain skills (medical discovery informa- tion, science reasoning) and communication skills (med- ical question style, dialect switching).	Machine learning using communication-based fea- tures can be used to predict success of student interaction. Interpretable classifier offers slightly lower performance than classic classifiers (0.62 vs 0.66), both slightly better than baseline (accuracy 5% over prior probability of success).
Chakraborty et al. [7]	Development tive methor symptoms nia	ent of objec- ods to quantify of schizophre-	Categorisation of partici- pants. Extraction of body posture and movements, and classification using SVM and kNN (with and without feature selection).	Multiple moderate negative correlations between objec- tive (detected) motor move- ments and negative symp- toms. 3 movements with $corr \leq -0.47$ and p<0.001, 7 with $corr \leq -0.44$ p<0.01, 28 movements with $corr \leq$ -0.29 p<0.05.

It is made available under a CC-BY 4.0 International license .

Study	Design,	description,	Methodology	Results
v	aim	1 /		
Chiba et al. [8]	Study of t by doctors during end identify to patients' h	opics discussed and caregivers d-of-life care to opics related to nome death	Identification of topics from recorded exchanges.	The patients' places of death is correlated with difference in the topics discussed (2 out of 3 main topics, 8 out of 15 sub- topics).
Cuffy et al. [10]	Methods model and tient-phys nication u	to capture, d evaluate pa- iician commu- sing semantics.	Communication quality based on patient's evaluation (trust before, trust after, satisfac- tion). Clustering of interac- tions based on word embed- dings trained on corpus and generic corpora (Wikipedia and Medline), utterances rep- resented by centroid vector.	Patients were generally more responsive to their physician. Low linear correlation be- tween scores of the 3 methods and patient's evaluation
Durieux et al. [12]	Identificat tional sile tive care using Ma and manu	ion of connec- ence in pallia- consultations chine learning al annotation.	Manual and automated ex- traction of silences with man- ual classification.	Connectional Silence can be identified using a semi- automated method with good reliability (kappa 0.62 on the found clips), efficiency (+61%) and sensitivity (No silence missed).
Fridman et al. [17]	Study of formation the physic words du benefits of cancer pat	gain–loss in- framing in tians' choice of ring risks and liscussion with tients	Extraction of gain/loss words using a dictionnary. Logistic regression tests between word use and outcome.	Physicians recommend- ing cancer treatment used slightly fewer words related to losses and significantly fewer words related to death. Use of loss words was asso- ciated with patient's choice of cancer treatment. Physi- cians' use of loss words was correlated with recommenda- tions for cancer treatment.
Hart et al. [18]	Automate sis tool for teractions	d video analy- r non-verbal in-	Pixel based quantification of movement in the videos of the encounters	Large differences found be- tween scenarios. Engaged: higher motion synchrony, ac- tor and subject follow each other's motion in turns, more equal turn-taking.
Kocaballi et al. [20]	Identificat activities relationshi mary care	ion of clinical and their inter- ips during pri- visits.	Manual annotation of activ- ities: type, frequency, se- quence, network. Seman- tic analysis of transitions be- tween activities.	Identification of temporal se- quencing of activities and transitions between activities (central activity: discussion about patients' present com- plaint).
Manukyan et al. [26]	Automatin analysis i tings.	ng conversation n clinical set-	Identification of contiguous intervals without voicing>2s.	Positive capacity of machine learning to automatically identify conversational pauses in inpatient serious illness conversations, while reducing coding time by two orders of magnitude.

Table 2:	Design, meth	odolov and res	ults summary (continued).

It is made available under a CC-BY 4.0 International license .

Study	Design, description,	Methodology	Results
-	aim		
Mase et al. [27]	Visual summarisation method for multi-modal dialogues using pattern and motif mining.	Identification of patterns based on annotations of elements of interaction, selec- tion of salient patterns.	39.5% features matched be- tween summaries and manual reviews of the videos (26.3% mis-matched features, 26% unknown from summary) The method was able to iden- tify points of interest in the recordings of trainings.
Mayfield et al. [28]	Automation of the coding of speech acts in clinical	Prediction of patient- reported measures of com-	Reliability is too low for the replacement of manual eval-
	communication	munication quality based on information-giving ratio.	uation, but the lowered cost of the evaluation can help in exploratory research, prelimi- nary evaluation of annotation schemes, and rapid screening of interactions.
Mistica	Discourse analysis of	Supervised classification of	High correlation between as-
et al. [30]	training sessions	interactions based on ex-	sessment criteria based on
		annotations.	skills and successful outcome.
			Word-based feature sets were
			the best predictors.
Park et al. [35]	Detection of conversation topics in primary care us- ing machine learning	Bag-of-words encoding of texts. Classification using machine learning models: single/multiple talk-turns (logistic classifiers, support vector machines, gated recur- rent units), and sequential models (conditional random fields, hidden Markov mod- els, and hierarchical gated recurrent units)	Independent models had higher recall scores at the visit level. Sequential models had higher classification accuracy at the talk-turn level and higher precision at the visit level. Sequential information across talk-turns improves topic prediction ac- curacy. Best results achieve with hierarchical gated recur- rent units
Park et al. [34]	Evaluation of machine learning to classify emo- tional valence of utter- ances.	Classification of emotional va- lence (positive, negative, neu- tral) of utterances (bag-of- word representation) using 2 machine learning models (re- current neural network with a hierarchical structure, logistic regression classifier).	Performance of automated emotion classification was comparable to human-human inter-rater agreement.

Table 2: Design, methodoloy and results summary (continued).

It is made available under a CC-BY 4.0 International license .

Study	Design,	description,	Methodology	Results
Pearce et al. [38]	aim How com tion is int communic medical co	aputer interac- segrated in the ation during onsultation	Manual annotation of partic- ipants' behaviour	The way clinicians integrate the use of the computer in the interaction results in more inclusive consulta- tions, influences patient's en- gagement, and is associated with more complete clinical records. 36.5% of consulta- tions classified as inclusive. Triadic interactions during in- clusive consultations are more frequent and longer.
Porhet et al. [39]	Exploration and nonvector clinician-punication. of doctor nonverbal patients' f	on of verbal erbal signals in patient commu- Identification 's verbal and cues leading to eedback	Manual annotation of cues, extraction of sequences in the last five tokens preceding a feedback, extraction of rules based on sequences (sequence of type of interaction leading to specific type of feedback)	10 rules identifies, confidence score between 0.36 and 0.12, 5 rules with cs<0.2
Rasting et al. [41]	Study of expression therapeuti clinician-p nication. of emotion therapists display by	affective facial in a dyadic ic interaction in attent commu- Identification nal reactions of to facial affect patients.	Manual annotation of inter- views (beginning and end) and coding of facial expres- sions analysed by computer.	Patients with high alex- ithymia displayed less aggressive affects (anger, dis- gust, contempt). Therapists interacting with alexithymic patients tended to display negative affects: contempt using total score, and con- tempt, fear, and sadness using subscales of the assess- ment tool.
Sakai and Carpenter [46]	Investigati of power i pressions tia diagno	ion of markers n linguistic ex- during demen- sis disclosure	Statistical analysis. Assess- ment of differences in per- ception of verbal dominance: ANOVA. Influenced by de- mentia status: t-test. Con- founders: Bivariate correla- tion. Prediction of patient's evaluation and condition on use of markers: hierarchical regression.	Consultations were domi- nated by clinicians in speech duration (83%). Companions spoke more when patients had dementia. Makers of power were not predictive of patient's anxiety, depression, or satisfaction.
Sen et al. [47]	Identificat styles in communic fective an speech fea	ion of latent doctor-patient ation using af- id nonaffective tures	Extraction of speech features, sentiment analysis using Nat- ural Language ToolKit and lexicon. Statistical analy- sis of features, unsupervised clustering for communication styles identification and asso- ciation with outcome	Differences in numerous lan- guage features between best- rated doctors and other doc- tors. 2 clusters of com- munication styles identified: several communication styles associated with higher and lower communication ratings. Poor results of machine learn- ing for the classification of doctors with highest commu- nication ratings.

Table 2: Design, methodoloy and results summary (continued).

It is made available under a CC-BY 4.0 International license .

Study	Design, description, aim	Methodology	Results
Tanana et al. [49]	Automated coding of mo- tivational interviewing using Natural Language Processing	Dependency trees with dis- crete sentence features (N- grams) and RNN with word embedding.	Common utterance and ses- sion level codes could be pre- dicted, with results compa- rable to human reliability. Rarer codes were not well pre- dicted.
Venek et al. [52]	Identification and assess- ment of suicidal risk us- ing verbal and nonverbal responses to a question- naire	Interviews were separated in two: interaction during UQ or not. Discourse fea- tures(conversational, verbal and acoustic) were extracted and tested individually for significance. Classification of the patients using a two lay- ers hierarchical classifier	Significant differences found in all three types of features (22 for patients and 21 for clinicians) the classification of suicidal and non-suicidal pa- tients. mainly acoustic infor- mation are statistically signif- icant to discriminate between repeaters and non-repeaters. Verbal behaviour of patients and clinicians is important to assess suicidal risk. Nonver- bal behaviour, notably acous- tic features, is important to assess the potential of suicidal re-attempt. Accuracy of hier- archical classification is fairly good (67.7%)
Vrana et al. [53]	Characterisation of se- mantic similarity of the patient's and physician's language	Extraction of participants' speech in semantic space us- ing Latent Semantic Analy- sis and relation to evalua- tion of trust in the physi- cian before and after the in- teraction (General Estimat- ing Equations regressions to correct for bias).	LSA captured individual dif- ferences during medical in- teractions. Significant pos- itive relationship was found between patients' and physi- cians' speech. Results were influenced by physician's race and gender, and patient's gender. Higher communi- cation similarity was associ- ated with less trust in physi- cians before the interaction and higher after.
Wallace et al. [56]	Characterisation of physicians' variation in communication patterns to cluster communication styles.	sequential analysis of speech acts transitions grouped into a physician-specific vector. Clustering of physicians' vec- tors into 2 classes using k- means on PCA reduce matrix of physicians.	Variations between the two detected clusters are detected but are not significant in 2 of 3 categories of the patients evaluation (positive correla- tion with HIV-specific issues evaluation but not for Over- all issues, Adherence).

Table 2: Design, methodoloy and results summary (continued).

It is made available under a CC-BY 4.0 International license .

Study	Design,	description,	Methodology	Results
Watson et al. [57]	Accommo nication st ician disc sequent pa lowing ad patient ca evaluation support to	dative commu- trategies of clin- ussing the con- atient harm fol- verse events in the using direct a and computer bol.	Two parts study: (1) rat- ing of CAT strategies (Overall progress, interpretability, dis- course management, interper- sonal control and emotional expression) by first-year psy- chology students, and (2) tex- tual analysis of approxima- tion using convergence and divergence in reuse of con- cepts. 2: Interest of visualisa- tion of concepts reuse for the discourse analysis of clinician- patient interaction.	1: significant agreement on the rating of the interaction. Significant difference between effective and ineffective inter- actions 4 out of 5 CAT parts, while discourse management was not more highly rated in the effective recordings. 2: In effective interactions, physicians approximated to patients more than patients approximated to physicians. Physicians engaged with the patients' conceptual contribu- tions. The visualisation pro- vided meaningful interpreta- tion capacities for discourse analysis.
Wong et al. [58]	Content prominent clinician-p sation an to percei communic	analysis of themes in the batient conver- id its relation ved quality of ation	Visual text analytics us- ing word occurrence and co-occurrence statistics, di- mensionality reduction using PCA followed by qualitative analysis of related conversa- tion content.	5 themes were identified as prominent out of 13 ex- tracted: disease treatment, treatment procedure related instructions, preparation for examination, positive reinforcement/reassur- ance, family/social history. Frequent use of positive reinforcement/reassurance was significantly associated with higher perceived quality of communication. Specific terms and behaviour were identified.

Table 2: Design, methodoloy and results summary (continued).

Acknowledgements

This research received funding from the Health Research Board, Ireland, towards the INCA project (Interaction Analytics for Automatic Assessment of Communication in Healthcare).

Conflicts of Interest

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript; or in the decision to publish the results.
It is made available under a CC-BY 4.0 International license .

References

- Alloatti, F., Bolioli, A., Bosca, A., Guadalupi, M., 2020. The RiMotivAzione dialogue corpus Analysing Medical Discourse to Model a Digital Physiotherapist, in: LREC 2020 Language Resources and Evaluation Conference 11-16 May 2020, p. 16.
- [2] Barzilay, R., Israel, N., Krivoy, A., Sagy, R., Kamhi-Nesher, S., Loebstein, O., Wolf, L., Shoval, G., 2019. Predicting affect classification in mental status examination using machine learning face action recognition system: A pilot study in schizophrenia patients 10, 288.
- [3] Birkett, C., Arandjelović, O., Humphris, G., 2017. Towards objective and reproducible study of patient-doctor interaction: Automatic text analysis based VR-CoDES annotation of consultation transcripts, in: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE. pp. 2638–2641.
- [4] Blomqvist, M., Augustsson, M., Bertlin, C., Holmberg, K., Fernell, E., Dahllöf, G., Ek, U., 2005. How do children with attention deficit hyperactivity disorder interact in a clinical dental examination? A video analysis 113, 203–209. doi:10.1111/j.1600-0722.2005.00211.x.
- [5] Byrne, P.S., Heath, C.C., Practitioners' use of non-verbal behaviour in real consultations 30, 327–331. arXiv:7411517.
- [6] Carnell, S., Lok, B., James, M.T., Su, J.K., 2019. Predicting student success in communication skills learning scenarios with virtual humans, in: Proceedings of the 9th International Conference on Learning Analytics & Knowledge, pp. 436–440.
- [7] Chakraborty, D., Tahir, Y., Yang, Z., Maszczyk, T., Dauwels, J., Thalmann, D., Thalmann, N.M., Tan, B.L., Lee, J., 2017. Assessment and prediction of negative symptoms of schizophrenia from RGB+ D movement signals, in: 2017 IEEE 19th International Workshop on Multimedia Signal Processing (MMSP), IEEE. pp. 1–6.
- [8] Chiba, H., Ogata, T., Ito, M., Kaneko, S., 2018. Identification of Topics Explained by Home Doctors to Family Caregivers with Cancer Patients Died at Home: A Quantitative Text Analysis of Actual Speech in All Visits 245, 251–261.

- [9] Cockerham, W.C., 2017. Medical Sociology. American Cancer Society. doi:10.1002/9781118410868.wbehibs548.
- [10] Cuffy, C., Hagiwara, N., Vrana, S., McInnes, B.T., Measuring the quality of patient-physician communication 112, 103589. doi:10.1016/ j.jbi.2020.103589.
- [11] Davis, M.S., 1968. Variations in patients' compliance with doctors' advice: An empirical analysis of patterns o communication. 58, 274–288. arXiv:5688773.
- [12] Durieux, B.N., Gramling, C.J., Manukyan, V., Eppstein, M.J., Rizzo, D.M., Ross, L.M., Ryan, A.G., Niland, M.A., Clarfeld, L.A., Alexander, S.C., 2018. Identifying connectional silence in palliative care consultations: A tandem machine-learning and human coding method 21, 1755–1760.
- [13] Elwyn, G., Barr, P.J., Grande, S.W., Thompson, R., Walsh, T., Ozanne, E.M., a. Developing CollaboRATE: A fast and frugal patient-reported measure of shared decision making in clinical encounters 93, 102–107. doi:10.1016/j.pec.2013.05.009.
- [14] Elwyn, G., Edwards, A., Kinnersley, P., Grol, R., 2000. Shared decision making and the concept of equipoise: The competences of involving patients in healthcare choices. 50, 892–899.
- [15] Elwyn, G., Grande, S.W., Barr, P., b. Observer OPTION 5 Manual.
- [16] Fairhurst, K., May, C., . Knowing patients and knowledge about patients: Evidence of modes of reasoning in the consultation? 18, 501–505. doi:10.1093/fampra/18.5.501.
- [17] Fridman, I., Fagerlin, A., Scherr, K.A., Scherer, L.D., Huffstetler, H., Ubel, P.A., Gain-loss framing and patients' decisions: A linguistic examination of information framing in physician-patient conversations 44, 38–52. doi:10.1007/s10865-020-00171-0.
- [18] Hart, Y., Czerniak, E., Karnieli-Miller, O., Mayo, A.E., Ziv, A., Biegon, A., Citron, A., Alon, U., . Automated Video Analysis of Non-verbal Communication in a Medical Setting 7. doi:10.3389/fpsyg.2016. 01130, arXiv:27602002.

- [19] Joshi, J., Goecke, R., Alghowinem, S., Dhall, A., Wagner, M., Epps, J., Parker, G., Breakspear, M., 2013. Multimodal assistive technologies for depression diagnosis and monitoring 7, 217–228.
- [20] Kocaballi, A.B., Coiera, E., Tong, H.L., White, S.J., Quiroz, J.C., Rezazadegan, F., Willcock, S., Laranjo, L., 2019. A network model of activities in primary care consultations 26, 1074–1082.
- [21] Kurtz, S.M., Silverman, J.D., 1998. Calgary Cambridge Guide to the Medical Interview.
- [22] Laws, M.B., Beach, M.C., Lee, Y., Rogers, W.H., Saha, S., Korthuis, P.T., Sharp, V., Wilson, I.B., 2013. Provider-patient adherence dialogue in HIV care: Results of a multisite study 17, 148–159.
- [23] Liu, C., Calvo, R.A., Lim, R., 2016. Improving Medical Students' Awareness of Their Non-Verbal Communication through Automated Non-Verbal Behavior Feedback 3. doi:10.3389/fict.2016.00011.
- [24] Luz, S., 2009. Locating case discussion segments in recorded medical team meetings, in: Proceedings of the ACM Multimedia Workshop on Searching Spontaneous Conversational Speech (SSCS'09), ACM Press, Beijing, China. pp. 21–30.
- [25] Luz, S., 2012. The nonverbal structure of patient case discussions in multidisciplinary medical team meetings. ACM Transactions on Information Systems (TOIS) 30, 17:1–17:24. doi:10.1145/2328967.2328970.
- [26] Manukyan, V., Durieux, B.N., Gramling, C.J., Clarfeld, L.A., Rizzo, D.M., Eppstein, M.J., Gramling, R., 2018. Automated detection of conversational pauses from audio recordings of serious illness conversations in natural hospital settings 21, 1724–1728.
- [27] Mase, K., Sawamoto, Y., Koyama, Y., Suzuki, T., Katsuyama, K., 2009. Interaction pattern and motif mining method for doctor-patient multimodal dialog analysis, in: Proceedings of the ICMI-MLMI'09 Workshop on Multimodal Sensor-Based Systems and Mobile Phones for Social Computing, pp. 1–4.

- [28] Mayfield, E., Laws, M.B., Wilson, I.B., Penstein Rosé, C., 2014. Automating annotation of information-giving for analysis of clinical conversation 21, e122–e128.
- [29] McKinstry, B., 2000. Do patients wish to be involved in decision making in the consultation? A cross sectional survey with video vignettes 321, 867–871.
- [30] Mistica, M., Baldwin, T., Cordella, M., Musgrave, S., 2008. Applying discourse analysis and data mining methods to spoken OSCE assessments, in: Proceedings of the 22nd International Conference on Computational Linguistics (Coling 2008), pp. 577–584.
- [31] Mitra, V., Shriberg, E., Vergyri, D., Knoth, B., Salomon, R.M., 2015. Cross-corpus depression prediction from speech, in: 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE. pp. 4769–4773.
- [32] Moher, D., Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement 151, 264. doi:10.7326/ 0003-4819-151-4-200908180-00135.
- [33] Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement 339, b2535. doi:10.1136/bmj.b2535, arXiv:19622551.
- [34] Park, J., Jindal, A., Kuo, P., Tanana, M., Lafata, J.E., Tai-Seale, M., Atkins, D.C., Imel, Z.E., Smyth, P., a. Automated rating of patient and physician emotion in primary care visits doi:10.1016/j.pec.2021.01. 004.
- [35] Park, J., Kotzias, D., Kuo, P., Logan IV, R.L., Merced, K., Singh, S., Tanana, M., Karra Taniskidou, E., Lafata, J.E., Atkins, D.C., Tai-Seale, M., Imel, Z.E., Smyth, P., b. Detecting conversation topics in primary care office visits from transcripts of patient-provider interactions 26, 1493–1504. doi:10.1093/jamia/ocz140.
- [36] Parsons, T., 1975. The Sick Role and the Role of the Physician Reconsidered 53, 257–278. doi:10.2307/3349493, arXiv:3349493.

It is made available under a CC-BY 4.0 International license .

- [37] Pearce, C., Dwan, K., Arnold, M., Phillips, C., 2006. Analysing the doctor-patient-computer relationship: The use of video data. 14.
- [38] Pearce, C., Kumarapeli, P., De Lusignan, S., 2010. Getting seamless care right from the beginning-integrating computers into the human interaction., in: EFMI-STC, pp. 196–202.
- [39] Porhet, C., Ochs, M., Saubesty, J., De Montcheuil, G., Bertrand, R., 2017. Mining a multimodal corpus of doctor's training for virtual patient's feedbacks, in: Proceedings of the 19th ACM International Conference on Multimodal Interaction, pp. 473–478.
- [40] Rasting, M., Brosig, B., Beutel, M.E., 2005a. Alexithymic Characteristics and Patient-Therapist Interaction: A Video Analysis of Facial Affect Display 38, 105–111. doi:10.1159/000085772, arXiv:15897680.
- [41] Rasting, M., Brosig, B., Beutel, M.E., 2005b. Alexithymic characteristics and patient-therapist interaction: A video analysis of facial affect display 38, 105–111.
- [42] Richardson, W.S., Wilson, M.C., Nishikawa, J., Hayward, R.S., 1995. The well-built clinical question: a key to evidence-based decisions. ACP Journal Club 123, A12–A13.
- [43] Roter, D.L., Larson, S., . The Roter interaction analysis system (RIAS): Utility and flexibility for analysis of medical interactions 46, 243–251. doi:10.1016/S0738-3991(02)00012-5, arXiv:11932123.
- [44] Ryan, P., Luz, S., Albert, P., Vogel, C., Normand, C., Elwyn, G., . Using artificial intelligence to assess clinicians' communication skills 364, 1161. doi:10.1136/bmj.1161, arXiv:30659013.
- [45] Sakai, E.Y., Carpenter, B.D., 2011a. Linguistic features of power dynamics in triadic dementia diagnostic conversations 85, 295–298. doi:10.1016/j.pec.2010.09.020, arXiv:21030193.
- [46] Sakai, E.Y., Carpenter, B.D., 2011b. Linguistic features of power dynamics in triadic dementia diagnostic conversations 85, 295–298.
- [47] Sen, T., Ali, M.R., Hoque, M.E., Epstein, R., Duberstein, P., 2017. Modeling doctor-patient communication with affective text analysis, in:

It is made available under a CC-BY 4.0 International license .

2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), IEEE. pp. 170–177.

- [48] Stubenrouch, F.E., Pieterse, A.H., Falkenberg, R., Santema, T.K.B., Stiggelbout, A.M., van der Weijden, T., Aarts, J.A.W.M., Ubbink, D.T., . OPTION5 versus OPTION12 instruments to appreciate the extent to which healthcare providers involve patients in decision-making 99, 1062– 1068. doi:10.1016/j.pec.2015.12.019.
- [49] Tanana, M., Hallgren, K.A., Imel, Z.E., Atkins, D.C., Srikumar, V., 2016. A comparison of natural language processing methods for automated coding of motivational interviewing 65, 43–50.
- [50] Tuckett, D., 1976. An Introduction to Medical Sociology. Routledge. arXiv:kShmAgAAQBAJ.
- [51] Varul, M.Z., . Talcott Parsons, the Sick Role and Chronic Illness 16, 72–94. doi:10.1177/1357034X10364766.
- [52] Venek, V., Scherer, S., Morency, L.P., Pestian, J., 2017. Adolescent suicidal risk assessment in clinician-patient interaction 8, 204–215.
- [53] Vrana, S.R., Vrana, D.T., Penner, L.A., Eggly, S., Slatcher, R.B., Hagiwara, N., a. Latent Semantic Analysis: A new measure of patientphysician communication 198, 22–26. doi:10.1016/j.socscimed.2017. 12.021.
- [54] Vrana, S.R., Vrana, D.T., Penner, L.A., Eggly, S., Slatcher, R.B., Hagiwara, N., b. Latent Semantic Analysis: A new measure of patientphysician communication 198, 22–26. doi:10.1016/j.socscimed.2017. 12.021.
- [55] Walker, N., Cedergren, J.H., Trofimovich, P., Gatbonton, E., Mikhail, E., 2008. Someone to talk to: A virtual patient for medical history interview training in a second language, 1–9.
- [56] Wallace, B., Dahabreh, I., Trikalinos, T., Laws, M.B., Wilson, I., Charniak, E., Identifying differences in physician communication styles with a log-linear transition component model, in: Proceedings of the AAAI Conference on Artificial Intelligence.

- [57] Watson, B.M., Angus, D., Gore, L., Farmer, J., 2015. Communication in open disclosure conversations about adverse events in hospitals 41, 57–70.
- [58] Wong, H.M., Bridges, S.M., McGrath, C.P., Yiu, C.K.Y., Zayts, O.A., Au, T.K.F., 2017. Impact of prominent themes in clinician-patient conversations on caregiver's perceived quality of communication with paediatric dental visits 12, e0169059.
- [59] Zimmermann, C., Del Piccolo, L., Bensing, J., Bergvik, S., De Haes, H., Eide, H., Fletcher, I., Goss, C., Heaven, C., Humphris, G., 2011. Coding patient emotional cues and concerns in medical consultations: The Verona coding definitions of emotional sequences (VR-CoDES) 82, 141–148.

Appendix A. Supplemental tables

It is made available under a CC-BY 4.0 International license .

Abbreviation	Full name
ANOVA	analyses of variance
BoW	bag of words
BTS	Bartlett's test of sphericity
CFR	conditional random fields
CNN	Counterpropagation Neural Networks
DT	Decision Tree
GRU	gated recurrent units
GT	golden truth
HMM	hidden Markov models
HGRU	hierarchical gated recurrent units
JSD	Jensen-Shannon Divergence
KLD	Kullback-Leibler Divergence
KMO	Kaiser-Meyer-Olkin
kNN	k-nearest neighbors
LIWC	Linguistic Inquiry and Word Count
LR	logistic regression
LSM	Language style matching
NB	Naïve Bayes
RNN	recurrent neural network
SVM	Support Vector Machine
t-tests	Student's t-tests
tf-idf	term frequency-inverse document frequency

Table A.3: List of abbreviation for methods and terms used in studies reported in the review.

Abbreviation	Full name
DCSQ	Dementia Care Satisfaction Questionnaire
DPFC	16-item Dental Patient Feedback on Consultation skills
GDS	Geriatric Depression Scale
MISC	Motivational Interviewing Skill Code
NSA	Negative Symptom Assessment
STAI	State-Trait Anxiety Inventory
TAS	Toronto Alexithymia Scale (TAS-26)

Table A.4: List of questionnaires (top) and medical scales (bottom) used in studies reported in the review.

Study	Framework used	Material	Task performed	Performance	Datatset
[3]	Verona coding definitions of emotional sequences (VR-CoDES)	semi-structured textual transcripts	utterances-based classifi- cation of VR-CoDES	Manual: Kappa=0.67 (2 annotators on 5% of the corpora). Automated: F-score=0.72, Kappa=0.45	200 audio recordings of consultations
[4]	Ad-hoc (interaction phase, sequence, ele- ments)	video, audio	topic identification, se- quence annotation	Weighted kappa=0.98 on 5 documents	69 video recordings of the introduction phase (1-2 minutes)
[6]	Linguistic Inquiry and Word Count (LIWC), language style match- ing (LSM), distinction between biomedical or psychosocial utterances from RIAS.	Transcripts and manual anno- tations (Domain Topics for 3 stages).	Classification of student success for topic discovery (binary class - threshold on amount of information retrieved) in the 3 stages.	Held-out test folds. Classifier results between 5% and 10% (BRL) above baseline (always True classifier) for communication skill in one domain. No difference in the other two.	464 transcripts of student interactions with 6 Virtual Patients
[7] ⁴ - 57	Negative Symptoms As- sessment (NSA-16) scale	Video (tracking of limbs) and audio recording. Linear and angular speeds of skeleton joints. Annotations of be- haviour by psychol- ogists.	Identification of postures correlated with NSA-16 items. Detection of NSA- 16 items. Classification of participants (healthy, schizophrenic).	Leave-one-out cross-validation. Pre- diction of subjective ratings - 61- 78% accuracy. Classification of pa- tient - 74-87% accuracy.	69 medical semi- structured interviews by 1 trained psychometri- cian. (34 hours)
[8]	None, ad-hoc list of topics	Transcripts from speech annotated for number of oc- currences of topics.	Topic identification (3 topics, 15 sub-topics) from parts of speech tagging and dictionary of terms.	Not reported	227 visits to 18 patients, interactions recorded dur- ing medical examinations and conversations with family caregivers.

\mathbf{Study}	Framework used	Material	Task performed	Performance	Datatset
[10]	-	transcripts	Evaluation of communica- tion quality (global, utter- ance, topic)	Pearson's correlation scores (Pa- tient's Satisfaction): global=0.14, utterance=-0.07, topic= 0.08	132 video recorded patient–physician inter- actions in a primary care clinic
[12]	Connectional Silences tax- onomy for the context of palliative care: emo- tional, compassionate, in- vitational.	audio recording	extraction of conversa- tional pauses (1000 clips), manual annotation of type of silence	Automated extraction misidentified 41.3% of the clips as silences while none was missed. Manual annotation required 61% more time than the semi-automated method.	354 audio-recorded inpa- tient palliative care con- sultations
[17]	Ad-hoc dictionary of gain- loss terms	transcripts	word coding (2 classes: gain, loss)	manual annotation Krippendorf $\alpha = 0.93$ (50 documents). Auto- mated annotation Krippendorff Alpha coefficient = 0.97.	286 audio-recorded face- to-face consultations (1 or 2 per patient)
[18] 46	-	Video recordings	Automated classification of interpersonal motion in video recordings using synchrony and mutual- followership indicators.	Accuracy: 0.72	43 videos of simulated en- counters (22 disengaged, 21 engaged).
[20]	Ad-hoc scheme adapted from Waitzkin's frame- work	Video, verbatim transcripts.	Coding of clinician's activ- ities, chart of performed tasks.	370 activities detected.	31 consultations: audio, video, computer screen video capture, notes from an observer.
[26]	Adapted definition of con- versational pauses, Acous- tic features (MFCC + zero-crossing rate, energy, energy entropy, and spec- tral entropy)	audio, manual annotation of con- versational pauses (reference, 60 con- versations)	Identification of conversa- tional pauses (random for- est classifier, 50 trees), ex- traction and aggregation of acoustic features.	Sensitivity=90.5%, speci- ficity=94.5%, accuracy=94.4%, positive predictive value=30%	354 audio recordings of real-world serious illness conversations (9770 min-utes)

Table A.5: Tasks table (continued).

1).	•
ł))

Study	Framework used	Material	Task performed	Performance	Datatset
[27]	-	video, audio, manu- ally annotated dia- logue (speech, gaze, gesture).	Patterns extraction, mo- tifs extraction (sequence of patterns)	1569 patterns observed, 18 patterns selected (covering 45% of the interview times)	10 Videotaped simulated medical interview (Per- formance evaluated by a medical doctor)
[28]	Generalized Medical In- teraction Analysis System (GMIAS), Comprehensive Analysis of the Struc- ture of Encounters System (CASES)	Manually an- notated speech acts, aggre- gated in 3 classes: information-giving and requesting, other. Patients' ratings of provider communication.	(1) Text analysis: speech acts classification (logis- tic regression) during 3 types of interaction across the consultation (Presen- tation, Information, Reso- lution). (2) Prediction of communication quality.	(1) Accuracy=71.2%, κ =0.57 (full corpus). (2) 80% correct evaluation (corpus of 5 documents).	40 transcripts of routine outpatient visits
	-	transcripts, manual annotation of turns and pauses. 38 fea- tures grouped in 11 feature sets.	Prediction of passed or failed examination (binary classification) based on combinations of features	Best results on all features and sep- arating dataset by station. Baseline (majority vote): F-score=0.871, IB1 algorithm: F-score=0.882	22 video-recorded consul- tations of candidates en- acting medical consulta- tion scenarios (1 per sta- tion)
[35]	Multi-Dimensional Inter- action Analysis coding system (modified, 39 topic labels)	transcripts, evalua- tions scores	Classification of talk turns	Talk-turn level accuracy: Hier- GRU=61.77%. Visit level accuracy: Windowed SVM=78.37	279 audio recorded pri- mary care visits
[34]	-	transcripts	emotion recognition	Pearson correlation coefficients: Hu- man (one vs rest)=0.60, RNN=0.60. R-precision(positive class) Human (OVR)=0.47, RNN=0.58. R- precision(negative class) Human (OVR)=0.44, RNN=0.45	353 video recorded patient-physician inter- actions in a primary care clinic

ed).
ed)

Study	Framework used	Material	Task performed	Performance	Datatset
[38]	[37] method for video	audio, video, text of	Classification of computer	Not reported	308 consultations with as-
	analysis of doctor-patient-	the medical notes,	activity (doctor only,		sociated generated notes
	computer relationship.	manual annotation	shared with patient):		in the computer medical
		of gaze	occurrences and length		record
[39]	Verbal Cues: Enriched	Audio, segmented	Manual annotation: head	manual annotation $k=0.63$	13 videos of patient- $=$
	Orthographical Transcrip-	transcripts, Part of	movements, posture, gaze,		doctor interaction $(119 \ \overline{o})$
	tion, MarsaTag. Visual	Speech tags	eyebrow, hand gesture,		minutes) a
	Cues: ad-hoc annotation		smile. Extraction of mul-		ס ע
	set		timodal sequences leading		Vall
			to feedbacks		abi
[40]	Emotionally relevant	Video	Manual annotation of ex-	Not reported	12 videos of patient-
	movements in the face		pressions. Affect recogni-		doctor interaction
	(EmFACS). Ad hoc:		tion and pattern recogni-		ھ
48	happiness, social smiles,		tion (clinician reaction to		C. C.
	sadness, fear, anger,		patient display of affect).		ц Ч
	disgust, contempt, social				4
	smiles, different affects				
[46]	Patient's evaluation: 20-	Transcripts, out-	Verbal dominance (num-	Not reported	86 videotaped sessions
	item State-Trait Anxiety	come question-	ber of words), ratio of first		of physician-patient-
	Inventory, 15-item Geri-	naires (anxiety,	person singular and plu-		companion triads
	atric Depression Scale,	depressive symp-	ral pronouns relative to all		Ē
	Dementia Care Satisfac-	toms, satisfaction)	words		ans and a second se
	tion Questionnaire				

Table A.5: Tasks table (continued).

Study	Framework used	Material	Task performed	Performance	Datatset
[47]	14 word features. sen- timent analysis: Valence Aware Dictionary for sEn- timent Reasoning. Pa- tient evaluation: 5 points Likert-type scales	transcripts, audio recordings, patient surveys	number of spoken/unique words, average posi- tive/negative sentiment expressed, number of questions asked. Clus- tering of conversation features into "styles". Prediction of doctor- patient interaction rating.	Rating prediction: 71% accuracy	122 audio recordings of patient's visits
[49] 49	Motivational Interviewing Skill Code V2.1	transcripts, parsing of utterance, rat- ings	Prediction of behavioural codes (utterances) and summary elements (ses- sion)	Best performing: DSF. Utterance: $\kappa > 0.60$ open and closed ques- tions, affirm, giving information, and follow/neutral. Session level: Intraclass correlation (ICC) > 0.75: inter-rater agreement, affirm, fa- cilitate, giving information, fol- low/neutral, simple reflections, and open and closed questions all were in the excellent range. $0.60 < ICC$ < 0.75: sustain talk. ICC < 0.40 : confront, structure, and advise	341 psychotherapy ses- sions in 6 MI clinical trial (78,977 clinician and client talk turns)
[53]	-	transcripts, trust scores	text-level extraction of se- mantic space by partici- pant	- (mean patient-physician communi- cation similarity correlation=0.142)	132 video recorded inter-

Table A.5: Tasks table (continued).

Study	Framework used	Material	Task performed	Performance	Datatset
[52]	speech features (9): CO- VAREP toolbox (v.1.2.0), linguistic features: LIWC	Segmented tran- scripts, audio	Statistical significance of conversation dynamic fea- tures, verbal information (topic identification) and acoustic features. Clas- sification of suicidal risk (2 classes), classification of repeater's behaviour (2 classes), and combined hi- erarchical classification	Hierarchical classification accu- racy=71.7%. Repeaters/non- repeaters accuracy =67.7%. Suicidal/non-suicidal accu- racy=88.3%.	60 audio-recorded dyadic clinician-patient inter- views.
[56] 50	General Medical Inter- action Analysis System (GMIAS - 10 classes)	transcripts, pa- tients' evaluation of physician com- munication.	topic annotation	Interannotator kappa=0.81 to 0.95.	360 physician-patient vis-
[57]	Communication accom- modation theory (CAT), Discursis	Audio and video, visualisation gen- erated from tran- scripts	Categorisation, annota- tion of communication strategies, topic track- ing: immediate topic repetition (ITR), topic consistency other (TCO), and topic consistency self (TCS).	1: significant difference in categori- sation between effective/ineffective interactions (p<0.001), 2: ITR>0 in effective vs ITR<0 in ineffective interactions. extreme TCS values indicative of effective interactions. TCO<0 in 3/4 of effective and 1/4 of ineffective interactions.	8 audio video recordings of interaction of trainings with simulated patient
[58]	feedback: 16-items Dental Patient Feedback on Con- sultation	transcripts, pa- tients' demographic information, care- giver perceived quality of commu- nication	Topic identification using word occurrence and co- occurrence statistics	13 themes, grouped in 5 using PCA explaining 60.2% of the total vari- ance (15.3%, 14.4%, 11.9%, 9.9%, 8.8%).	162 video recordings of clinician-patient conversa- tions: appointments for consultation, oral exami- nation, dental treatment, and follow-up.

ID	Population	Condition	Location	Age	Sex	Ethnicity	SEI
[3]	91	breast cancer	Edinburgh, Scotland	28 to 85	female	-	-
				$(\bar{x} = 58, \text{sd})$			
<u> </u>				= 11.3)	1.0		
[4]	69 p: 22, c:	ADHD	Sigtuna, Sweden	10-11	p: 18m,	21% background	
	47				4f c:	from a foreign	ы. В
					18m, 29f	country (main	ade
<u>[0]</u>				20 72 (-	0 00	study, pop=555)	a c
[6]	6 (virtual	speech language pathology	University of Flori-	38-73 (x = 55)	2m, 6f	Black: 3, White:	iilab
	avatars+AI		da/University of	55)		3	le ur
	agent)		Auckland/Univer-				nder
			sity of Queens-				ອ ດ
			Zeelend / Austrelie				č,
[17]	208	orly stage prostate cancer low or	Midwost USA	$\bar{x} = 62$	malo	88% white	$\frac{2}{64\%}$ college
[11]	208	intermediate-risk (Cleason score 6 or 7)	Midwest, USA	x = 02	maie	0070 white	educated = «
[7]	<u>69</u> . <u>46</u>	schizophrenia $(BAC+NSA-16)$	Singapore	p: 20-52	n: 23m	n: 38 Chinese 5	n: education
[']	natients 23	semzophreina (Drie + 1011-10)	Singapore	p. 20-02 (mean	23f c ²	Malay 3 Indian c	university \vec{Q} 6
	controls			(110an) $31.2)$ c [*]	11m 12f	19C 3M 1I	diploma/voca
	controls			19-47 (28.4)	11111 121	150 010 11	tional 25 high
				10 11 (20.1)			school 15 c 3U
							14D/V 6HS
[8]	18	end-stage of cancer	Hokkaido / Kanto	$> 20, \bar{x} =$	16m. 2f	(Japanese) -	-
[~]			/ Tokai / Kinki /	71.9. sd =	,	()	
			Tvugoku / Kvusvu.	12.4			
			Japan				
		m: male. f: female.	c: control group, p: pa	tients, -: not r	reported.		
) (()	5 17 1 1	,	1		7

Table A.6: Patients information. (SEI = socioeconomic information; $\bar{x} = \text{mean}$)

Table A.6: Patients information (continued).							
ID	Population	Condition	Location	Age	Sex	Ethnicity	SEI
[10]	132	(primary care)	large city, Midwest, USA	$18-82 \ (\bar{x} = 43.8, \text{ sd} = 14.0)$	32m, 100f	Black/African American	low income
[12]	231	hospitalised patients with advanced cancer	New York/San Fran- cisco, USA	<55:27, 55-70: 45, >70: 28	51m 49f	Black: 13, His- panic/Latino: 8, Either Black or Latino: 20, No Black/Latino: 80	Education: ≥Bachelors HS/some color 55, <high school<br="">16. Financial curity: secure partially sec 28, insecure 3.2</high>
[18]	43	volunteers for analgesic ointment evalua- tion	Israel	$\bar{x} = 24$ yo(18-39)	34m, 9f	-	Education: \vec{x} 14 years(12-18)
[20]	40	primary care visits	Australia	-	-	-	- 4.0
[26]	231	hospitalised patients with advanced cancer	New York/San Fran- cisco, USA	<55:27, 55-70: 45, >70: 28	51m 49f	Black: 13, His- panic/Latino: 8, Either Black or Latino: 20, No Black/Latino: 80	Education: ≥Bachelors HS/some colors 55, <high schur<br="">16. Financial curity: secure partially secu 28, insecure 33</high>
[27]	(10)	medical interview (simulated patients)	Nagoya University Hospital, Japan	-	-	-	-
[28]	415	HIV-infected	USA	-	-	-	-

		Table A.6: Pa	atients information (conti	nued).			
ID	Population	Condition	Location	Age	Sex	Ethnicity	SEI
[30]	2	SP acted by qualified doctors	Australia	-	1f 1m	-	-
[35]	279	patients due for a colorectal cancer screen- ing	Michigan, USA	range 50-80 (parent study: $\bar{x} =$ 59.6)	- (parent study: $f=63\%$)	- (parent study: white=66%)	High school/GED or higher=95.7%
[34]	350	primary care office visits	USA	$\bar{x} = 62$	65.6% female	66.2% white	- nade av
[38]	308	GP consultations	Australia: 141 , UK: 167	-		_	- ailable under a CC-BY
[39]	<13	breaking bad news situations (virtual pa- tients, doctors and actors)	France	-	-	-	4.0 Inte
[40]	12	in-patients with various psychosomatic disorders (8 anxiety disorders, 5 depres- sive and adjustment disorders, 5 somato- form disorders)	Germany	$\bar{x} = 32.9$ (SD = 8.1)	f=9, m=3	-	single=8, di- vorced=2, mar- ried=2. 9 em- ployed full-time 2 in school, 1 housekeeping

m: male, f: female, c: control group, p: patients, -: not reported.

		Table A.6: Pa	atients informa	ation (contin	nued).			
ID	Population	Condition	Location		Age	Sex	Ethnicity	SEI
[46]	86 patients,	diagnosed with dementia	USA		p: \bar{x} =	p: f=52,	p: black=8,	Education (years)
	86 compan-				72.93 (sd	comp:	white $= 78$,	p: $\bar{x} = 14.52$
	ions				= 8.10),	f = 60	comp: $black=5$,	(sd = 3.48) comp
					comp: $\bar{x} =$		white $=77$	$\bar{x} = 15.1 \text{ (sd} =$
					62.46 (sd =			2.84)
					13.72)			nad
[47]	122	cancer patients, stage 3 or stage 4 (late	USA		-	-	-	- av
		stage) advanced solid tumours						aila
[49]	(341)	6 studies: -,10 first year college students	USA		-	-	-	78 students
		with indication of drinking related prob-						unde
		lems, 20 students intending to drink dur-						er a
		ing their upcoming spring break trip, 41						ç ş
		alcohol intervention for students turning						BY
		twenty-one, 70 adults presenting at pri-						4.0
		mary care clinics who indicate drug use,						Inte
		7 college students with some indication of						mati
		marijuana-related problems	~	<u></u>		20 200		on a
[52]	60	adolescents. 30 suicidal (13 repeaters, 17	Cincinnati	Chil-	13 < age <	30m, 30t	-	
		non-repeaters), 30 non-suicidal.	dren's	Hospital	18			ense
			Medical	Center				
			Emergency	Depart-				
	100		ment, USA					5
[54]	132	primary care	USA		$\bar{x} = 43.8,$	76%	Black / African	low-income
- [12 0]					range=18-82	women	American	<u> </u>
[56]	360	Patients with HIV	USA		-	-	-	

m: male, f: female, c: control group, p: patients, -: not reported.

54

		Table A.6: Pa	atients information (conti	nued).			
ID	Population	Condition	Location	Age	Sex	Ethnicity	SEI
[57]	1 profes-	open disclosure (simulated)	Brisbane, Australia	-	-	(Australian)	-
	sional actor						
[58]	162 (not	dental visit	Hong Kong	4-5: 47, 6-	m: 71,	(Chinese)	-
	unique)			10: 85, 11-	f:91		=
				16: 30			<u>م</u>
		m: male, f: female,	c: control group, p: pc	ntients, -: not r	eported.		nade
							ava
							ailab
							ie u
							ndei
							r a C
							č
							3¥ 4
							.0 T
							iterr
							atio
							nal
							licer
							ISe

	ID	Population	Speciality	Experience	Location	Age	Sex	Ethnicity	SEI
	[3]	2	the rapeutic radiographers	-	Edinburgh, Scot- land	-	-	-	-
	[4]	1	dentist		Sigtuna, Sweden	_	-	-	-
	[6]	464	speech language pathology	students	University of Flori- da/University of Auckland/Univer- sity of Queensland, USA	-	-	-	-
	[7]	1	psychometrician	-	Singapore	_	-	-	-
56	[8]	24	specialists in home medical care	years of experience: $\bar{x} = 18.4$, sd = 8.5. years of home care ex- perience: $\bar{x} = 5.5$ sd = 4.6	Hokkaido: 14, Kanto: , Tokai 2, Kinki 3, Tyugoku 1 - Japan	-	20m, 4f	-	-
	[10]	17	GPs	physicians, or medical residents in training	large city, Midwest, USA	26-35 (\bar{x} = 27.1) =	8m, 9f	variety of ethnic groups	low income
	[12]	54	palliative care clinicians: 52 physicians, 11 nurse practi- tioners, 26 physician fellow, 6 nurses, 3 social workers, 2 chaplain	-	New York/San Francisco, USA	-	46m 54f	-	-
	[17]	11	8 urologist, 3 radiation oncol- ogist (in 1/3 of the interac- tions: 10 nurse practitioners, 34 residents, 4 medical stu- dents)	-	Midwest, USA	$\bar{x} = 62$	-	-	-

Table A.7: Clinicians information. (SEI = socioeconomic information)

m: male, f: female, c: control group, p: patients, -: not reported, (values in italic): assumed from content.

It is made available under a CC-BY 4.0 International license .

Table A.7: Clinicians information (continued).

	ID	Population	Speciality	Experience	Location	Age	Sex	Ethnicity	SEI
	[18]	1	doctor	actor	Israel	- (est. 40- 50)	male	white	-
	[20]	4	primary care physicians	>5 years of clinical experience	Australia	-	2 male, 2 female	-	-
	[26]	54	palliative care clinicians: 52 physicians, 11 nurse practi- tioners, 26 physician fellow, 6 nurses, 3 social workers, 2 chaplain	-	New York/San Francisco, USA	-	46m 54f	-	-
	[27]	(10)	-	medical students	Nagoya University Hospital, Japan	-	-	-	-
57	[28]	(45)	physicians, nurse practition- ers (NPs), or physician as- sistants (30 with a second provider, an NP, or fellow)	-	USA	-	-	-	-
	[30]	11	-	medical students	Melbourne, Aus- tralia	-	-	-	-
	[35]	59	physicians	-	Michigan, USA	X = 49.4	male=41.5	%-	_
	[34]	84	physicians	-	USA	-	-	-	-
	[38]	36	GPs	-	Australia: 25, UK: 11	-	$\begin{array}{c} \mbox{Australia:} \\ \mbox{f=7,} \\ \mbox{m=13}, \\ \mbox{UK: f=4,} \\ \mbox{m=12} \end{array}$	-	-
	[39]	13	students	France	-	-	-	-	-
	[40]	-	therapists	Germany	-	-	-	-	-
	[46]	-	physician	USA	-	-	-	-	-
	[47]	40	oncologists	USA	_	-	-	-	-

m: male, f: female, c: control group, p: patients, -: not reported, (values in italic): assumed from content.

It is made available under a CC-BY 4.0 International license .

ID	Population	Speciality	Experience	Location	Age	Sex	Ethnicity	SEI
[49]	-	graduate or undergraduate students, clinic-based social workers	not reported	USA	-	-	-	-
[52]	1	trained social worker	-	Cincinnati Chil- dren's Hospital Medical Center Emergency Depart- ment, USA	-	-	-	-
[54]	17	physicians	second or third year medical residents	USA	$\bar{x} = 27.1,$ range=26-3	f: 53% 35	8 India / Pakistan (5f). 6 Asia, other (3f). 2 white (2m). 1 Black (1f)	
[56]	41	physicians	-	USA	-	-	-	-
[57]	-	clinicians	-	Brisbane, Australia	-	-	-	-
[58]	-	paediatric dentists, certifi- cated dental surgery assis- tants	-	Hong Kong	-	-	-	-

m: male, f: female, c: control group, p: patients, -: not reported, (values in italic): assumed from content.

It is made available under a CC-BY 4.0 International license

It is made available under a CC-BY 4.0 International license .

Table A	1.8: In	teractions.

ID	Type of inter-	Medical interaction
	action	
[3]	dyadic	breast cancer consultations
[4]	triadic, analysis:	introduction phase of dentist visits
	dyadic only	
[6]	dyadic	GP consultations
[7]	dyadic	semi-structured interviews
[8]	triadic	medical examinations and conversations with family
		caregivers
[10]	dyadic	patient–physician interactions in a primary care clinic
[12]	dyadic	palliative care consultations
[17]	dyadic	medical interview (discuss treatment options). $1/3$
		visits included a discussion with a nurse practitioner
		or resident before the interview
[18]	dyadic	presentation and instructions of a drug for an evalu-
		ation study (simulated). Engaged scenario: opened
5 3		questions. Disengaged scenario closed questions
[20]	dyadic	GP consultation
[26]	dyadic	palliative care consultations
[27]	dyadic	Simulated medical interview
[28]	dyadic (36 with a	routine outpatient visits of HIV patients
	second clinician)	
[30]	dyadic	OSCE examinations: sexually transmitted disease –
		genital herpes and bowel cancer (scripted, uncued, free from)
[35]	dyadic, small	primary care visits (preventive health discussions.)
	fraction triadic	
	(nurse, family	
	member)	
[34]	dyadic	elderly patients primary care office visits
[38]	dyadic	GP consultations
[39]	dyadic	breaking bad news, real training sessions
[40]	dyadic	intake interviews for in-patient psychotherapy
[46]	triadic	dementia diagnosis disclosure sessions with the patient
		and companion
[47]	triadic (family	physician-patient visits
	caregiver)	
[49]	dyadic	Motivational Interviewing (substance use disorders)
	OSCE: Objective	e structured clinical examination

It is made available under a CC-BY 4.0 International license .

Table A.8: Interactions (continued).

ID	Type of inter-	Medical interaction
	action	
[52]	dyadic	interviews, 16 questions (Columbia Suicide Severity
		Rating Scale (C-SSRS version $1/14/2009$), Suicidal
		Ideation Questionnaire-Junior (SIQ-JR version 1987),
		Ubiquitous Questionnaire (UQ version 2011).
[54]	dyadic	primary care
[56]	dyadic	adherence dialogue in HIV care
[57]	dyadic	discussions about adverse events in patient care, open
		disclosure interactions scenarios taken from actual ad-
		verse events
[58]	triadic	examination: 60, treatment: 71, consultation: 31
	OSCE: Objective	e structured clinical examination

				Table A.9: Data analysis.		preprint (which was n		
_	ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results		
	[3]	transcription (pro- fessional, manual), stopwords removal. Representation: Term abstraction: unigram, unordered bigram, ordered bigram Term set representations: binary bag, tf-idf (95% most frequent words, $n_{words}=300$)	Coarse level coding of VR-CoDES.	Supervised learning. classifi- cation: NB, LR, SVM (Gaus- sian kernel, scale 0:25 $\sqrt{n_p}$ where n_p : number of predic- tors), boosted ensemble DT	CV: 5-fold cross- validation. T: no	Best representation: unordered bigram, little difference across classifiers. Results - BoW Gaussian kernel SVM. prece sion=0.93, recall=0.86, AUC= $\overline{0.75}$ F-score=0.72, κ =0.45. Results - tf-idf higher that BoW, more consistent: mean acc=0.94.		
61	[4]	-	sequences of interactional elements	manual identification of se- quences of interaction and comparison between the 2 pa- tient's groups	comparison. PM: Stu- dents t-test adjusted for gender using LR. other type of/unclear focus: Fishers' exact test	ADHD: more initiatives $(P=0.002)$ focus of the initiative was most free quently unclear $(P=0.018)$. fewer verbal responses $(P=0.090)$ and more frequent missing response (verbal and non-verbal) $(P=0.080)$ Higher degree of missing response (P=0.061). Higher degree of hore coordination - avoidance of re- sponse, no-response or incongruit between the verbal and non-verbal response $(P=0.072)$.		
		B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size, -: not reported. ANOVA: analysis of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency						

Table A.9: Data analysis (continued).

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results
[6]	transcription (-),	doctor's word frequency:	Prediction of student success	B: prior probability	Accuracy per phase. Diet and Eat
	manual annotations	(LIWC) - 9 categories	(passing the evaluation) in	(acc=0.58), PM: accu-	ing Habits, Medical History: n
		(topics). Participants'	three stages - binary classi-	racy, CV: 4-fold	improvement over $B(acc_D EH)$
		word frequency (LSM): ad-	fication of student's success		$0.64, acc_M H = 0.87$). History d
		verbs, articles, auxiliary	(success, failure): NB, KNN,		Present Illness: CART, KNN,
		verbs, conjunctions, indef-	LR, SVM, CART, BRL.		$> 5\%$ over B (acc=0.53). BRL $\stackrel{3}{\downarrow}$ L
		inite pronouns, negations,			$>10\%$. Global LR, NB, SVM $\gtrsim 5\%$
		personal pronouns, prepo-			(B=0.58)
		sitions, and quantifiers +			able
		average. Type of utter-			ů,
		ance (RIAS' psychosocial			der
		or biomedical, topic direct			
		correspondence): 6 com-			CO B
		bined features (linguistic).			· ≻ 4
		topic data reduction (13			
		annotated domain topics)			te a
		feature binning $([0 \ 1] \cdot 3)$			atio
		$classes \begin{bmatrix} -1 & 1 \end{bmatrix}$ 6 $classes$			
				7	
	B: baseline, PM: p	erformance metric, CV: cross-validat	tion technique used, T: test set held out	and its size, -: not reported. A	NOVA: analysis
	of variance, BoW:	Bag of Words, BRL: Bayesian Rule	Lists, CART: Classification and regress	sion trees, CNN: Convolutional	Neural Network.

B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size, -: not reported. ANOVA: analysis of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency

Table A.9: Data analysis (continued).

					-
ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results
[7]	3D position of the	global movement of upper	Supervised learning. Task	Task 1 PM: p-	Task 1: Negative correlation be
	skeleton and co-	body limbs (head, elbows,	1: linear correlation be-	value<0.05. Task	tween body movement signals and
	ordinates of 20 joints,	wrists, hands): linear/an-	tween movements and NSA-	$2 \text{ and } 3 \mathbf{B}: no (manual)$	Reduced Expressive Gestures (
	audio: - $(task 3 only)$	gular speed/acceleration,	16 items. Task 2: predic-	GT), PM: precision,	features/14) and speech items \mathbf{d}
		Head movement (lin-	tion of subjective ratings (bi-	recall, F-score, ROC	NSA-16 (Restricted Speech Qaian
		ear/angular speed), ges-	nary from multiclass: unob-	area, accuracy, CV:	tity $(10/14)$ and Prolonged $\mathbf{\vec{k}}$
		tures: angular difference	servable/observable): Linear	LOO.	to Respond $(4/14)$). Task 2: $\overline{\mathfrak{G}}$ Re
		in elbow and wrist (top 0.1	SVM with Stochastic Gradi-		stricted Speech Quantity 78 26
		percent). Mean+SD for	ent Descent and kNN. Task		SVM, Reduced Expressive
		each. 41 non-verbal speech	3 classification of participants		tures 73.91% SVM, Impoverişhe
		signals (task 3 only)	(binary: patient, control):		Speech Content 67.39% SVM, $\overline{\underline{\bullet}}$ A
			same as task 2		fect Reduced Modulation of Inter
					sity 63.04% kNN, Prolonged Dim
					to Respond 60.87% SVM. Tas
					3: body only: $acc=73.91\%$ SVM
					body+speech: acc=86.76% mailt
					layer perceptron
	B: baseline, PM: p	erformance metric, CV: cross-validat	tion technique used, T: test set held out	and its size, -: not reported. A	NOVA: analysis
	of variance, BoW:	Bag of Words, BRL: Bayesian Rule	Lists, CART: Classification and regress	ion trees, CNN: Convolutional	Neural Network,
	GEE: General Esti	imating Equations, GRU: Gated Rec	urrent Unit, HMM: Hidden Markov Mod	lel, ICC: intraclass correlations,	kNN: k-nearest

alidation technique its size, uy. perj erric, C usea, epof variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency

Table A.9: Data analysis (continued).

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results
[8]	transcription (-, doc-	Part of Speech tagging	Comparison of occurrence fre-	not applicable	difference in the occurrence free
	tor only)	(KH-Coder version 2).	quency of topics discussed be-		quency of topics between the tw
		Frequency of nouns, ad-	tween patients' dying at home		groups: 8 sub-topics more discusse
		jectives, and verbs. Topic	and at hospital. Chi-square		at home. $p_{i}0.01$: Visiting 24 hour
		extraction (15 sub-topics,	test		and 365 days (76.9% vs. $23.\overline{\overline{a}}\%$
		3 main)			Predicted sudden deterioration
		,			tern (84.6% vs. 15.4%), Ease of $\frac{1}{6}$ on
					tacting or consulting with do
					(88.5% vs. 38.5%), Current life ex
					pectancy (46.2% vs. 7.7%), D
					and death caused by ageing (76.99)
					vs. 7.7%). $p_{i}0.05$: Calling hom
					care doctors instead of an anabu
					lance (61.5% vs. 15.4%). Home \dot{c} and
					service based on a long-term care in
					surance system (76.9% vs. $38.\frac{3}{5}$ %
					Medical insurance system and $\overline{\overline{\mathbf{b}}}$
					ment (61.5% vs. 15.4%).
	B: baseline $PM \cdot r$	performance metric, CV: cross-validat	tion technique used. T: test set held out	and its size -: not reported	NOVA: analysis
	of variance, BoW:	Bag of Words, BRL: Bayesian Rule	Lists, CART: Classification and rearess	ion trees CNN: Convolutional	Neural Network

B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size, -: not reported. ANOVA: analysis of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency

Table A.9: Data analysis (continued).

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results
ID [10]	Preprocessing transcription (professional), anonymisation	Feature extraction text analysis: word em- beddings (word to word co-occurrence matrix) per participant. Continuous bag of words (CBOW, probability of a word given a context) and skip-gram (probability of the context given a word). Centroid for each utterance (average of embeddings). Extraction of topics: k number of dis- criminative clusters based on content per participant over the whole interaction.	Task/method Capture of patient-physician relatedness between discourse content. Word embeddings (word2vec) trained with corpus/"2015 Medline ab- stracts and titles" / "2017 Wikipedia". Comparison per participants of 3 mod- els: all to all (average of all utterances)/utterance- based (resident-to-patient, patient-to-resident)/topic- based (interaction's word clustering). All-to-all: global use of similar/related words. Utterance-to-utterance: par- ticipant's responsiveness.	Evaluation (1) Resident-Patient Interaction evaluation. B: no. PM: com- parison of computed quality of communi- cation scores (QCS). Statistical significance (Fisher's R-to-Z trans- formation, p_i 0.05) (2) Physician conversation quality (QCS averaged per physician). B: no. PM: Significance of variations of QCS. (3) Resident-Patient questionnaires eval- uation B: patient	Results (1) Interactions were ranked similarly using all-to-all and clustering methods. Utterance-based methods rank interactions in a similar manner. (2) No statistical signification of variations of quality score (6.10 for all methods (3) very low give all linear correlation (-0.16 to 6.11) among all methods
		over the whole interaction.	use of similar/related words. Utterance-to-utterance: par- ticipant's responsiveness.	 (3) Resident-Patient questionnaires eval- uation B: patient 	4.0 Internation
			Topic-to-topic: topics used by each participant and how related are they. Comparison of mean cosine similarity	self-reported metrics, PM: PCC between B and QCS	al license .
			(centroids).		

B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size, -: not reported. ANOVA: analysis of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency

Table A.9: Data analysis (continued).

[12] - 85 audio features / 0.5s Supervised machine learning, (1) B: human coders, (1) $accuracy_R F = 0.95$ nonoverlapping intervals. 2-steps. Binary classification PM: accuracy, sensitive HCvsHM+ML: +	8 (2) . tas 61%. Sens
nonoverlapping intervals. 2-steps. Binary classification PM: accuracy, sensi- time HCvsHM+ML: +	61%. Sens
	DY DY
17 audio features: 13 Mel (speech, silence), contiguous tivity, specificity, CV: tivity: 100%	
Frequency Cepstral Coef- $(>2s)$. Classifier: RF, 50 deci- 10-fold T: no (2) B:	
ficients, zero-crossing rate, sion trees. (1) ML binary clas- manual annotations	it is
energy, energy entropy, sifiers: RF, SVM, CNN. Raw (golden truth set by 2	mac
and spectral entropy. 50 feature vectors and PCA. (2) coders), PM: Cohen's	de a
ms intervals (with 25 ML+Human Coders vs HC Kappa of HC over	s the vail
ms overlap), 5 statistical alone detected silences, task	able
aggregators: minimum, time, sensitivity CV:	und
maximum, mean, median, no T: no	der a
SD.	a <mark>C(</mark>
B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size, -: not reported. ANOVA: analysis	-B/ Mh
of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network,	o na (4.
GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest	n O D St
neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC:	terr
Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency	natio
	ona
	ens

Table A.9: Data analysis (con	tinued).
-------------------------------	----------

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results	
[17]	transcription, clean-	3 word counts per health-	(1) word coding: Linguis-	(1) B: manual coding	(1) gain words: $100%$ loss words	
	up (deletion of punc-	care provider: total, terms	tic Inquiry and Word Count	PM: accuracy, CV: no	80% , Krippendorff's $\alpha = 0.9$	
	tuation, description	related to gains/to losses	(LIWC) software, context ex-	T: no(2) not evaluated	(2) physicians recommending can	
	of noises), lemma-	(dictionary based)	traction Contextualizer soft-	(3) not evaluated	cer treatment used fewer loss word	
	tisation, stemming.		ware (coding of negations:		$(p = .097)$. No significant as \vec{s}	
	Manual dictionary		negation word in a 30 words		ation was found over gain wards	
	of terms related to		window) (2) Framing: associ-		Words associated with death were	
	gains or losses (3		ation between physician rec-		related to physicians' recommend	
	reviewers).		ommendation and physicians'		dation (treatment: 43%, astiv	
			words, LR (3) relation with		surveillance: 58% , both: 60%	
			patients' choice		(3) Association between patients	
					choice of cancer treatment and dos	
					words in the first clinical consulta	
					tion $(p = .05)$.	
	B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size, -: not reported. ANOVA: analysis of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC:					
		on Coefficient, S v w. Support Vector 1	поистолос, ij-tuj. 1 ст по је сучисто су-тичет зе и	σε απιεπε γιεγαετιε χ	Cense r	

Table A.9: Data analysis (continued).

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results
[18]	separation into sub- ject/doctor parts of the frame	velocity of each pixel in each frame (optical flow algorithm), total energy (sum of squared pixel velocities) per person. cross-correlation between persons' energies, motion synchrony, kinetic energy cross-correlation at zero lag, total / instantaneous entrainment and leading/- following behaviour, power spectrum of the motion, jitter	 (1) Exploration: correlation of motions, jitter as a marker of followership, dominance (cross correlation over 20s). (2) Classification of interactions: scenario (engaged/disengaged) LR using synchrony and asymmetry 	(1) Significance. Motions: cross- correlation at lag $-5s_i\tau_i5s$. Jitter and dominance: Mann–Whitney test (2) B : none PM: accuracy CV: no, T: no	Motion synchrony higher in en gaged scenario ($p_i 0.001$). disen gaged scenario: participants follow each other's motion in turns, en gaged: one-way followership \vec{a} participants tient follows doctor). Jitter higher in engaged scenario. Dominance duration ratio higher in engaged scenario ($p_i 0.03$) (2) Classification accuracy = 0.72
[20]	transcription (re- search team).	extraction of activity net- works, temporal sequenc- ing of activities and tran- sitions	Visualisations. Temporal or- dering of activities: heatmap. Network diagram: Fruchter- man Reingold centrality	not evaluated	highly interactive, fragmented, and nonlinear process. Central cluster discussion about patients' presen- complaint was the most central activity and was highly connected to medical history taking, physical ex- amination, and assessment. Re- maining activities were more pe- ripheral and less connected.
	of variance, BoW: GEE: General Esti	Bag of Words, BRL: Bayesian Rule mating Equations, GRU: Gated Reco	Lists, CART: Classification and regress urrent Unit, HMM: Hidden Markov Mod	ion trees, CNN: Convolutional lel, ICC: intraclass correlations,	Neural Network, kNN: k-nearest

neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency

Table A.9: Data analysis (continued).

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results	
[26]	-	detection of conversational	Supervised machine learning,	B: manual annota-	accuracy=94.4%,	sensitivity=90.5
		pauses. 85 audio fea-	2-steps. Binary classification	tions (3 annotators,	specificity = 94.5.	
		tures/0.5s nonoverlapping	(speech, silence), contiguous	261mins), PM: ac-		3
		intervals. 17 audio fea-	(>2s). Classifier: RF, 50 de-	curacy, sensitivity,		3
		tures: 13 Mel Frequency	cision trees. ML binary clas-	specificity, CV: 10-fold		It is
		Cepstral Coefficients, zero-	sifiers: RF, SVM, Counter-	T: 6 consultations		ma
		crossing rate, energy, en-	propagation Neural Networks.	$(260.5 \mathrm{mins})$		de a
		ergy entropy, and spectral	Raw feature vectors and PCA.			vail
		entropy. 50 ms intervals				able
		(with 25 ms overlap), 5 sta-				ung
		tistical aggregators: min-				der
		imum, maximum, mean,				
		median, SD.				BY
	B: baseline, PM: p	erformance metric, CV: cross-validat	tion technique used, T: test set held out	and its size, -: not reported. A	NOVA: analysis	4.0
	of variance, BoW:	Bag of Words, BRL: Bayesian Rule	Lists, CART: Classification and regress	ion trees, CNN: Convolutional	Neural Network,	
	GEE: General Est	imating Equations, GRU: Gated Rece	urrent Unit, HMM: Hidden Markov Mod	lel, ICC: intraclass correlations,	, kNN: k-nearest	ern
	neighbours, LOO:	leave one out, LR: Linear regression,	ML: Machine Learning, NB: Naive Bag	yes, PCA: Principal Component	t analysis, PCC:	atic
	Pearson's Correlati	ion Coefficient, SVM: support vector r	nachine, tf-idf: Term frequency-inverse d	ocument frequency		onal
						onse d

Table A.9: Data analysis (continued).

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results
[27]	digitisation of videos, manual annotation	Patterns of interaction	Extraction concurrence of primitives, motifs, pattern	B: evaluation from video PM: Com-	out of 38 items: 39.5% matched features, 26.3% mis-matched, 26% ur
	(dialogue primitives,		clusters from annotations.	parison of human	known, 13.2% other.
	e.g. gaze, speech, 0.1		Feature reduction: JSD derived from KLD Pattern	evaluation of commu-	t:
	s precision)		evaluated with: basic pattern	recording and corre-	s made
			pattern measure. Motifs	patterns (matched	availe
			evaluated with normalised	features, mis-matched	able c
			expected/actual occurrence.	features, unknown,	bur.
			Pattern clusters: distance	other). CVT/T : no	er a
			between patterns. Clustering:		
			Ward method. Reduction:		U MNC
			thresholding.		4.C
[28]	transcription (pro-	Part-of-speech tagging.	Speech acts classification	B: manually coded	$\kappa = 0.573$, accuracy=71 $\overline{z}2\%$
	fessional or research	Unigrams (BoW), bi-	(text analysis): trained on 40	transcripts, PM: Co-	Information-Giving Ratio, $r = 0.96$
	assistant), coding	grams, part-of-speech	conversations, L2-regularised	hen's κ . Reproduction	Performances increased with the
	(GMIAS: all, CASES:	bigrams, role-specialized	LR	of the Information-	size of the training set, gain was
	50). Mapping from	N-grams, adjacent speech		Giving Ratios. T:	logarithmic. Automated annotatio
	GMIAS codes to	- content similarity, adja-		375 conversations,	did not significantly correlated with
	information-giving	cent speech - hypothesis		overfitting: selection	outcomes.
		label		of quality indicators	e to
				prior to experiments.	

B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size, -: not reported. ANOVA: analysis of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency

Table A.9: Data analysis (continued).

					-	
ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results	
[30]	transcripts (manu	al text analysis: 38 fea-	Outcome prediction (binary:	B: zero-R (majority	10-fold - best word	based = .919
	verbatim, resear	ch tures (overall word count,	fail, success). supervised clas-	vote) PM: accuracy,	all=.872 LOO -	best wor
	team, ELAN)	length of interaction, num-	sifier: IB1 (lazy learner) using	precision, recall, F-	based = .919, all = .872	
		ber of turns, number of	11 feature sets (different clus-	score CV: 10-fold		
		uh and ah, number of un-	tering of extracted features).	stratified and LOO		It is
		finished words, number of				ma
		overlapping words, length				de , a
		of overlap (time), transi-				vaili
		tion pauses, within turn				able
		pauses, all time-based fea-				un
		tures, all turn-based fea-				der
		tures, number of turns,				S a
		longest turn, single word				ц. В
		responses, number of in-				r 4.0
		troduced content words by				0 Int
		each speaker, number of				erna
		times speaker uses word in-				atior
		troduced by other, num-				halli
		ber of words in dialogue,				icen
		longest number of words in				Se .
		a turn)				
	B: baseline, Pl	I: performance metric, CV: cross-valida	tion technique used. T: test set held out	and its size, -: not reported. A	NOVA: analysis	

B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size, -: not reported. ANOVA: analysis of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency

Table A.9: Data analysis (continued).

		Tabl	e A.9: Data analysis (continued).		preprint (which was	
[34]	Preprocessing transcripts (human- generated)	Feature extractionutterancesextraction(punctuation based)	Task/method 2 ML to recognise emo- tional valence of utterances (3 classes: positive, negative, neutral): RNN with a hier- archical structure, LR (bag- of-words) objective function : minimising the log-loss (cross- entropy) using gradient-based search in an end-to-end fash- ion	Evaluation B: LR , LR. PM: Average and One-versus- Rest (OvR) human va- lence rating. Pearson correlation coefficient, R-precision CV: 10-fold	Results Pearson correlation coefficients human OvR=0.60, RNN=0.60 LR=0.55. R-precisions (positive class): 0.47, 0.58, 0.53 (same order class): 0.45, 0.42 (same order). R-precisions (negative class): 0.45, 0.42 (same order). consistently better than LR. RNN similar to human OvR.	
[35]	removal of poten- tially identifiable information. word tokenisation: Natural Language ToolKit (NLTK) tokenizer. Stopwords removal (except for NN mod- els)	binary word vectors (vo- cabulary size=14800) of each talk-turn aggregated into a single talk-turn vector (bag-of-words, tf- idf weights). Except for NN: embedding layer (GloVe vectors) and bidi- rectional set of gated recur- rent units (size=128), re- sulting in talk-turn vectors (size=256).	Classification of talk-turn topic labels: indepen- dent (LR, SVM, GRU), window-based (Windowed LR, Windowed SVM), se- quential (CRF, HMM-LR, HMM-SVM, HMM-GRU, Hier-GRU).	B: prediction of most common topics. PM: Turn level: accuracy. Visit level (aggre- gated): precision recall F1 (human golden truth). Sig- nificance: dependent t tests for paired samples	Turn: Hier-GRU accuracy=61.77% sequential models are more accurate than others (P<.01). Visit: Wing dowed SVM F1=78.37%. Lower gas in performance between models Se mantic similarity of discussion more ics can be a significant contributor to prediction error	
	(size=256). B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size, -: not reported. ANOVA: analysis of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency					

72
Table A.9: Data analysis (continued).

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results
[38]	verbal and body lan-	Automated extraction of	observation techniques and	Extraction not eval-	20% of consultations without com
	guage clues, clinician	computer use. Unsure:	simple descriptive statistics	uated. Significance	puter use. Computer shapes the
	style (inclusive or not)	gaze, detailed computer		of observations: Chi	beginning actively (7%) , passively
		use		square, NPAR Man	(10%). 23% of consultations were
				Whitney	patient initiated. inclusive con
					tations: patient looked more and the
					computer screen (number of times
					duration). Triadic (doctor, patient
					computer screen) interactions were
					more common.
[39]	transcription (man-	part-of speech (POS), au-	automatic extraction of mul-	B: none, PM:	10 rules identified, confidence score
	ual), annotation	tomated segmentation and	timodal sequences leading to	Confidence score	between 0.36 and 0.12, 5 rules wit
	of non-verbal be-	extraction of sequences	feedbacks. Extraction of sig-	of extracted	cs<0.2
	haviours, audio	(SPPAS).	nificant rules (types of se-	rules $(freq(X \cup$	4.C
	segmented into Inter-	· · · ·	quence X leading to specific	Y)/freq(X)).	
	Pausal Units		feedback Y, $X \implies Y$)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	erna
	B: baseline, PM: p	erformance metric, CV: cross-validat	tion technique used, T: test set held out	and its size, -: not reported. A	NOVA: analysis
	of variance, BoW:	Bag of Words, BRL: Bayesian Rule	Lists, CART: Classification and regress	ion trees, CNN: Convolutional	Neural Network,
	GEE: General Esti	mating Equations, GRU: Gated Rec	urrent Unit, HMM: Hidden Markov Mod	lel, ICC: intraclass correlations,	kNN: k-nearest
	neighbours, LOO: l	leave one out, LR: Linear regression,	, ML: Machine Learning, NB: Naive Bay	yes, PCA: Principal Component	analysis, PCC:

ιg 2qis,neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency

Table A.9: Da	ta analysis	(continued).
---------------	-------------	--------------

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results
[40]	compositing of the	facial expressions of happi-	congruence of codings with	Extraction not eval-	Correlations TAS with categorie
	two video streams	ness, social smiles, sadness,	the facial expressions of hap-	uated. Correlations:	of facial affect display (patients)
	into one. analysis of	fear, anger, disgust, con-	piness, social smiles, sad-	correlation coefficient	significant negative correlation be
	15 min of each inter-	tempt, different affects	ness, fear, anger, disgust, con-		tween the total score of the TAS
	view (first 10min, last		tempt, social smiles, different		26/the first TAS-26 subscale 'prob
	5min): emotionally		affects. Evaluation of facial		lems in identifying feelings' and
	relevant movements in		affect display and correspond-		the facial display of aggressive at
	the face (EmFACS),		ing emotional reactions of the		fects (anger, disgust, contention)
	TAS-26 scale		therapists. Relation between		Correlations TAS with facia
			Patients' Facial Affective Dis-		fect display (patients): Anger, gor
			play and TAS		tempt $(p_i 0.05)$, Anger, Contemp
					Blends, Surprise, Disgust (p< 0.1)
					Correlations TAS with facial af
					fect display (therapists): Contemp
					Fear $(p_i 0.05)$ Contempt, Fear, $\overline{s}a$
					ness $(p_i 0.1)$.
	B: baseline, PM: p	erformance metric, CV: cross-validat	tion technique used, T: test set held out	and its size, -: not reported. A	NOVA: analysis
	$of \ variance, \ BoW:$	Bag of Words, BRL: Bayesian Rule	Lists, CART: Classification and regress	ion trees, CNN: Convolutional	Neural Network,
	GEE: General Esti	imating Equations, GRU: Gated Rec	urrent Unit, HMM: Hidden Markov Mod	lel, ICC: intraclass correlations,	, kNN: k-nearest
	neighbours, LOO: l	leave one out, LR: Linear regression,	, ML: Machine Learning, NB: Naive Bag	yes, PCA: Principal Component	t analysis, PCC:

ιg оJ s, ıy гg GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency

Table A.9: Data analysis (continued).

ID	Preprocessing	Feature extraction	${ m Task/method}$	Evaluation	Results
[46]	transcripts	text analysis (Linguistic	Measures of verbal dominance	Observation of dif-	Physicians dominated the conversa
		Inquiry and Word Count)	and use of pronoun	ferences in actual	tion $(83\%$ of the total words). Pa
				and perceived verbal	tients 10%, companions 6%. Sig
				dominance (ANOVA).	nificant difference in the use
				influenced of demen-	first person pronouns across $pa\overline{\overline{a}}$ tic
				tia status on verbal	ipants (p<.001). Physicians dise
				dominance (Indepen-	fewer singular pronouns, Compan
				dent samples t-tests).	ions used fewer singular pron
				differences in pronoun	than patients. Physicians used
				use (ANOVA). Not	plural pronouns. Power indices
				evaluated. Bivariate	not predict outcomes.
				correlations between	
				observations and	царана и со
				characteristics, hier-	≺ 4
				archical regressions	
				between observations	tern
				and outcomes.	atio

B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size, -: not reported. ANOVA: analysis of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency

license

Table A.9: Data analysis (continued).

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results
[47]	transcription	Speech Features by	(1) Comparison of feature av-	(1) PM: t-test p-value,	(1) $p_{i}0.05$: number of words spo
		speaker: number of words	erages between best rated and	Bonferroni corrected.	ken by doctor, Doctor unique wor
		spoken, number of ques-	other interactions. (2) Classi-	Effect size: Cohen's	count (2) $acc = 71\%$. (3) 4 style
		tions asked, word diversity	fication of: LR, $kNN (k=13)$.	d (2) B: survey re-	identified (% words spoken by do
		(unique word count).	with and without L1 regulari-	sponses PM: accuracy	tor and Doctor positive senting
		Affective Features: senti-	sation validation (3) unsuper-	CV: 5 -fold (3) PM:	% words spoken by patient and
		ments expressed (positive,	vised clustering of features (k-	Silhouette coefficient,	Patient positive sentiment, Date
		negative, neutral). Va-	means) (4) Linguistic Inquiry	Student's t-test com-	Unique Word Count and Patient
		lence Aware Dictionary	Word Count analysis between	parison (4) PM: t-test	Unique Word Count, number
		for sEntiment Reasoning	best rated doctors group and		unique words spoken by doctor
		(VADER) + Natural Lan-	others doctor group		Doctor positive sentiment).
		guage ToolKit (NLTK)			statistically significant (4) Larges
					effect: You, I , and Personal ψ or
					categories
	B: baseline, PM: p	erformance metric, CV: cross-validat	tion technique used, T: test set held out	and its size, -: not reported. A	NOVA: analysis
	$of \ variance, \ BoW:$	Bag of Words, BRL: Bayesian Rule	e Lists, CART: Classification and regress	ion trees, CNN: Convolutional	Neural Network,
	GEE: General Esta	imating Equations, GRU: Gated Rec	urrent Unit, HMM: Hidden Markov Mod	lel, ICC: intraclass correlations	, kNN: k-nearest
	neighbours, LOO:	leave one out, LR: Linear regression,	, ML: Machine Learning, NB: Naive Ba	yes, PCA: Principal Component	t analysis, PCC:
	Pearson's Correlati	on Coefficient, SVM: support vector r	machine, tf-idf: Term frequency-inverse d	locument frequency	

Table A.9: Data analysis (continued).

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results
ID [49]	Preprocessing transcripts	Feature extraction part of speech. Text analy- sis (n-grams, word embed- ding)	Task/methodPrediction of MISC be- havioural codes (utterance) and session-level MISC sum- mary indices. SL ML, 2 dependency trees methods.Discrete Sentence Feature (DSD)	Evaluation B: human inter- rater agreement (n=63) PM: utter- ances: Cohen's kappa. sessions: two-way, absolute-agreement,	Results Utterances: Varied performance (better than chance except advise with permission, advise without permission, and confront). lowes performance on low frequency \vec{a} at gories. $\kappa > 0.50$: open and choice
			(DSF): dependency parse tree and N-grams, RNN Model: dependency parse tree and word embedding, multinomial regression	single-measures ICC. CV: 10 fold, T: yes (n=109, 30%)	questions, facilitate, giving information, affirm and follow/neutral $0.30 > \kappa > 0.50$: simple and formation plex reflections. DSF performed better than RNN (.055 to .193.) Session: DSF outperformed RNN ICC > 0.75: affirm, facilitate giving information, follow/neutral simple reflections, and open formation closed questions. 0.60_1ICC_{10} .75 sustain talk
	B: baseline, PM: p of variance, BoW: GEE: General Esti	erformance metric, CV: cross-validat Bag of Words, BRL: Bayesian Rule Emating Equations, GRU: Gated Rece	ion technique used, T: test set held out Lists, CART: Classification and regress urrent Unit, HMM: Hidden Markov Mod	and its size, -: not reported. A ion trees, CNN: Convolutional lel, ICC: intraclass correlations.	NOVA: analysis Neural Network, , kNN: k-nearest

of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency

Table A.9: Data analysis (continued).

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results
ID [52]	transcription	Feature extraction conversation dynamic fea- tures (clinicians, patients): speech / pausetime per- centages, words per second, overlap rates. Verbal information: LIWC word category scales (80: linguistic class, positive emotion and negative emo- tion, nonfluencies, assent words). Acoustic informa- tion features: Fundamen- tal frequency;Normalized Amplitude Quotient, Quasi-Open Quotient, Parabolic Spectral Param- eter, Maxima Dispersion Quotient, Peak Slope, Liljencrants-Fant model parameter Rd:, Formants (F1, F2)	Task/method(1) Observational during Ubiquitous Questionnaire / others. (2) Classification (2 steps binary: step 1 suicidal / non suicidal, repeater / non-repeater): SVM using statistically significant fea- tures of 1 (37 features: 6 conversational, 14 verbal, 17 acoustic features), radial basis function kernel, step 2 AdaBoostM1 (20 features: 1 conversational, 19 acoustic)	Evaluation (1) PM: ANOVA (pj0.05). (2) PM: acc, F1 CV: LOO	Results (2) Using patients' features: 56.79 step 1 acc=85%. step 2 acc=34.59 Using patients' and clinician: ste 1 acc = 90% step 2 acc = 33.39 F1 Ubiquitous Questionnaire: aNd Suicidal 0.88 Non repeater 0.56 r peater 0.37, resp. 0.84 0.68 0.49 others

B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size, -: not reported. ANOVA: analysis of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency

Table A.9: Data analysis (continued).

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results
[54]	transcripts: separated	text analysis: Latent Se-	detection of patient-physician	B: none, PM: similar-	patient-physician communica
	into doctor / patient	mantic Analysis (LSA)	communication similarity us-	ity correlation, GEE	tion similarity correlation: \bar{x}
	raw text files, cleaned		ing LSA trained of whole cor-	regressions	0.142, median= 0.150 , sd = 0.185
	of special characters		pus.		Physicians differed significant
	and formatting				in patient-physician commu $\mathbf{\overline{\overline{n}}}$ ica
					tion similarity. White physia
					exhibited significantly lower $\frac{\overline{\phi}}{\omega}$ se
					mantic similarity with the
					patient's speech than Indian
					istani or other Asian, resp (m
					r = 0.028, SE = 0.0325 / mean fractional statement of the second statement o
					r = 0.179, SE = 0.024 / r = 0
					SE = 0.025). Female physician
					had marginally greater semantic
					similarity $(p = .082)$. Female
					patients' speech exhibited greate
					semantic similarity $(p = .617)$
					Greater communication similarit
					was associated with less trus
					physicians in general $(p = .002)^{\text{s}}$ and
					greater trust in their own physicial
					(pj.010).
	B: baseline, PM: p	erformance metric. CV: cross-validat	ion technique used. T: test set held out	and its size, -: not reported. A	ANOVA: analysis

of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency Table A.9: Data analysis (continued).

TD	Droppo cogging	Fasture outreation	Teal (mathed	Evaluation	Deculta
	r reprocessing	reature extraction			
[50]	transcription	turn-taking patterns, rela-	Clustering of physicians by	B: none. PM: cluster	2 clusters of physicians, signif
		tive frequencies of speech	their communication: pa-	coefficient estimates,	cant difference $(p_i.05)$ for question
		act transitions	rameters estimation to cap-	t-test between group	regarding communication around
			ture physician-level communi-	values	HIV-specific issues, suggestive for
			cation characteristics (speech		the two other sets of questions
			act usage, speech act transi-		Three reported significant apat
			tions). Relation with rating		terns: physician issuing com
			over 12 questions. Gradient		sives within a single turn, physeia
			descent optimisation, feature-		issuing directives within a s
			space reduction (PCA). Prob-		turn (positive association with §va
			ability of speech act con-		uation), directive following ques
			ditioned on the preceding		tions (negative association). i.e.
			speech act, the speaker pat-		vising or making decisions without
			tern and the participating		patient input and patients apprec
			physician		ate instruction when solicited,
					when unsolicited.
[57]	transcription (-)	Discursis visual output,	Comparison of features be-	no evaluation (z-value)	
		immediate topic repeti-	tween the 2 types of interac-		
		tion, topic consistency	tions		Ce n
		other, and topic consis-			2 8
		tency self (automated			
		extraction). Features con-			
		verted to z-scores relative			
		to the mean and SD of			Ť.
		aggregated values			, , , , , , , , , , , , , , , , , , ,
	B: baseline, PM: p	erformance metric, CV: cross-validat	tion technique used, T: test set held out	and its size, -: not reported. A	NOVA: analysis

B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size, -: not reported. ANOVA: analysis of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network, GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest neighbours, LOO: leave one out, LR: Linear regression, ML: Machine Learning, NB: Naive Bayes, PCA: Principal Component analysis, PCC: Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency

Table A.9: Data analysis (continued).

ID	Preprocessing	Feature extraction	Task/method	Evaluation	Results	
[58]	transcription: speaker	word occurrence and	Relation of six variables on	B: patient's evalua-	pi0.05: Percentage of related utter	
	of utterances and	co-occurrence statistics.	each theme with perceived	tion. PM: associ-	ances in total number of utterance	
	texts (research team)	feature reduction: PCA	quality of communication. t-	ation between Den-	Percentage of time spent in total	
		on 13 themes extracted	tests or one-way ANOVA	tal Patient Feedback	time duration. pi0.01: Number	
		from word occurrence and		on Consultation skills	related words, Percentage of retate	
		co-occurrence to obtain		(DPFC) score and ex-	words in total number of $w \overline{a} rds$	
		5 themes (KMO= 0.536 ,		tracted variables for	Number of related utterances. $\tilde{\mathbf{b}}$	
		BTS: $p_i 0.001$), PC1 to		each themes (p-value).		
		PC5 (Disease / treat-			eldt	
		ment, Treatment procedure			und	
		related instructions, Prepa-				
		ration for examination,				
		Positive reinforcement /			BY	
		reassurance and Family $/$			4.0	
		social history)			inter a second se	
	B: baseline, PM: performance metric, CV: cross-validation technique used, T: test set held out and its size, -: not reported. ANOVA: analysis					
	of variance, BoW: Bag of Words, BRL: Bayesian Rule Lists, CART: Classification and regression trees, CNN: Convolutional Neural Network,					
	GEE: General Estimating Equations, GRU: Gated Recurrent Unit, HMM: Hidden Markov Model, ICC: intraclass correlations, kNN: k-nearest					
	$neighbours, \ LOO:$	leave one out, LR: Linear regression,	, ML: Machine Learning, NB: Naive Bay	yes, PCA: Principal Component	t analysis, PCC:	
	Pearson's Correlation Coefficient, SVM: support vector machine, tf-idf: Term frequency-inverse document frequency					

It is made available under a CC-BY 4.0 International license

Table A.10:	Study	assessment.
-------------	-------	-------------

*

	ID	Research implications	Risk of bias	Strengths/Limitations
	[3]	Novelty: Yes, Replicabil-	RL: partial (structured transcripts), FB:	Spontaneous speech: yes, Conversa-
		ity: partial, Generalisabil-	no, SM: no, CR: manual annotation of	tional speech: yes, Automation: par-
		ity: high	5% $\kappa = 0.67, 95\%$ CI=0.58-0.75; Spear-	tial, Transcription-free: no, Content-
			man's $\rho = 0$: 98, $p_i 0$: 001 Overfitting:	independence: yes.
			HO but no CV, S: ≤ 50	
	[4]	Novelty: Yes, Replicabil-	RL: yes, FB: no, SM: n/a, CR: manual	Spontaneous speech: yes, Conver-
		ity: partial, Generalisabil-	annotation of 21 phases $\kappa = 0.98$, 21 se-	sational speech: yes, Automation:
∞		ity: medium	quences $\kappa = 0.98$, 21 interaction elements	no, Transcription-free: yes, Content-
			$\kappa = 0.95$. Overfitting: n/a, S: ≤ 100	independence: no.
Ň	[6]	Novelty: Yes, Replicabil-	RL: no, FB: no, SM: no, CR: yes (prior	Spontaneous speech: yes, Conversa-
		ity: partial, Generalisabil-	probability of success). Overfitting: CV,	tional speech: yes, Automation: par-
		ity: medium	$S: \ge 100$	tial, Transcription-free: no, Content-
	r. 1			independence: no.
	[7]	Novelty: Yes, Replicabil-	RL: yes, FB: no, SM: yes, CR: no. Over-	Spontaneous speech: yes, Conversa-
		ity: partial, Generalisabil-	fitting: n/a, S: ≤ 50	tional speech: yes, Automation: par-
		ity: low		tial, Transcription-free: no, Content-
	[]			independence: no.
	[8]	Novelty: No, Replicabil-	RL: yes, FB: no, SM: yes, CR: no. Over-	Spontaneous speech: yes, Conversa-
		ity: partial, Generalisabil-	fitting: LOO CV, S: ≤ 100	tional speech: yes, Automation: partial,
		ity: low		Transcription-free: video: yes, audio: un-
				clear, Content-independence: video: yes, au-
				dio: unclear.

-: not reported. RL: Real-life interactions, FB: Feature balance, SM: Suitable metrics, CR: Contextualised results. CI: Confidence Interval.

Table A.10:	Study	assessment	(continued)).
	•/		\	/

ID	Research implications	Risk of bias	Strengths/Limitations
[10]	Novelty: Yes, Replicabil-	RL: yes, FB: no, SM: yes, CR: partial	Spontaneous speech: yes, Conver-
	ity: partial, Generalisabil-	(patient evaluation). Overfitting: -, S:	sational speech: yes, Automation:
	ity: medium	≥ 100	yes, Transcription-free: no, Content-
			independence: no.
[12]	Novelty: No, Replicabil-	RL: yes, FB: no, SM: yes, CR: no (base-	Spontaneous speech: yes, Conversa-
	ity: partial, Generalisabil-	line not assessed). Overfitting: -, S: ≥ 100	tional speech: yes, Automation: par-
	ity: high		tial, Transcription-free: yes, Content-
			independence: yes.
[17]	Novelty: Yes, Replicabil-	RL: yes, FB: partial, SM: yes, CR: no.	Spontaneous speech: yes, Conversa-
	ity: low, Generalisability:	Overfitting: no, S: ≥ 100	tional speech: yes, Automation: par-
	low		tial, Transcription-free: no, Content-
			independence: no.
[18]	Novelty: Yes, Replicabil-	RL: no, FB: no, SM: no, CR: no. Over-	Spontaneous speech: yes, Conver-
	ity: partial, Generalisabil-	fitting: no, S: ≤ 50	sational speech: yes, Automation:
	ity: high		yes, Transcription-free: yes, Content-
			independence: yes.
[20]	Novelty: Yes, Replicabil-	RL: yes, FB: no, SM: no, CR: no. Over-	Spontaneous speech: yes, Conversa-
	ity: low, Generalisability:	fitting: n/a, S: ≤ 50	tional speech: yes, Automation: par-
	high		tial, Transcription-free: no, Content-
			independence: no.
[26]	Novelty: No, Replicabil-	RL: yes, FB: no, SM: yes, CR: yes.	Spontaneous speech: yes, Conver-
	ity: partial, Generalisabil-	Overfitting: yes, S: ≥ 100	sational speech: yes, Automation:
	ity: high		yes, Transcription-free: yes, Content-
			independence: yes.

It is made available under a CC-BY 4.0 International license

33

ID	Research implications	Risk of bias	Strengths/Limitations
[27]	Novelty: Yes, Replicabil-	RL: no, FB: no, SM: no, CR: yes. Over- fitting: n/a , $Si \leq 50$	Spontaneous speech: yes, Conversa- tional speech: yes, Automation: par
	high	intung: $n/a, 5. \le 50$	tial, Transcription-free: yes, Content- independence: yes.
[28]	Novelty: Yes, Replicabil-	RL: yes, FB: no, SM: yes, CR: yes.	Spontaneous speech: yes, Conversa-
	ity: low, Generalisability: high	Overfitting: no, S: ≥ 100	tional speech: yes, Automation: par- tial, Transcription-free: no, Content- independence: no.
[30]	Novelty: Yes, Replicabil-	RL: no, FB: no, SM: yes, CR: yes. Over-	Spontaneous speech: yes, Conversa-
	ity: low, Generalisability: high	fitting: yes, S: ≤ 50	tional speech: yes, Automation: par- tial, Transcription-free: no, Content-
[34]	Novelty: Ves Benlicabil-	BL: yes FB: no SM: yes CB: yes	Spontaneous speech: ves Conversa-
[04]	ity: low, Generalisability: high	Overfitting: yes, S: ≥ 100	tional speech: yes, Conversa- tial, Transcription-free: no, Content-
[0F]			independence: no.
[35]	ity: partial, Generalisabil- ity: high	RL: yes, FB: no, SM: yes, CR: yes. Overfitting: yes, S: ≥ 100	Spontaneous speech: yes, Conversa- tional speech: yes, Automation: par- tial, Transcription-free: no, Content- independence: no.
[38]	Novelty: Yes, Replicabil- ity: low, Generalisability: medium	RL: yes, FB: no, SM: no, CR: no. Over-fitting: no, S: ≥ 100	Spontaneous speech: yes, Conversa- tional speech: yes, Automation: par- tial, Transcription-free: yes, Content- independence: yes.

It is made available under a CC-BY 4.0 International license

84

Table A.10: Study assessment (continued).

ID	Research implications	Risk of bias	Strengths/Limitations
[39]	Novelty: Yes, Replicabil- ity: low, Generalisability: high	RL: no, FB: no, SM: no, CR: no. Over- fitting: n/a , S: ≤ 50	Spontaneous speech: yes, Conversa- tional speech: yes, Automation: par- tial, Transcription-free: no, Content- independence: no
[40]	Novelty: Yes, Replicabil- ity: low, Generalisability: low	RL: yes, FB: no, SM: no, CR: no. Overfitting: n/a , S: ≤ 50	Spontaneous speech: yes, Conversa- tional speech: no, Automation: par- tial, Transcription-free: yes, Content- independence: yes.
[46]	Novelty: Yes, Replicabil- ity: partial, Generalisabil- ity: medium	RL: yes, FB: no, SM: no, CR: no. Over- fitting: n/a , S: ≤ 100	Spontaneous speech: yes, Conversa- tional speech: yes, Automation: par- tial, Transcription-free: no, Content- independence: yes.
[47]	Novelty: Yes, Replicabil- ity: partial, Generalisabil- ity: high	RL: yes, FB: no, SM: no, CR: no. Over- fitting: yes, $S: \ge 100$	Spontaneous speech: yes, Conversa- tional speech: yes, Automation: par- tial, Transcription-free: no, Content- independence: no.
[49]	Novelty: Yes, Replicabil- ity: low, Generalisability: high	RL: yes, FB: no, SM: no, CR: yes. Overfitting: yes, $S: \ge 100$	Spontaneous speech: yes, Conversa- tional speech: yes, Automation: par- tial, Transcription-free: no, Content- independence: no.
[52]	Novelty: Yes, Replicabil- ity: partial, Generalisabil- ity: low	RL: yes, FB: no, SM: yes, CR: no. Overfitting: yes, S: ≤ 100	Spontaneous speech: yes, Conversa- tional speech: yes, Automation: par- tial, Transcription-free: no, Content- independence: no

It is made available under a CC-BY 4.0 International license

 $\mathbf{\tilde{c}}_{\mathbf{C}}^{\mathbf{0}}$

Table A.10: Study assessment (continued).

ID	Research implications	Risk of bias	Strengths/Limitations
[54]	Novelty: Yes, Replicabil-	RL: yes, FB: no, SM: no, CR: no. Over-	Spontaneous speech: yes, Conversa-
	ity: partial, Generalisabil- ity: high	fitting: no, S: ≥ 100	tional speech: yes, Automation: par- tial, Transcription-free: no, Content-
	• 0		independence: no.
[56]	Novelty: Yes, Replicabil-	RL: yes, FB: no, SM: no, CR: no. Over-	Spontaneous speech: yes, Conversa-
	ity: partial, Generalisabil- ity: high	fitting: no, S: ≥ 100	tional speech: yes, Automation: par- tial, Transcription-free: no, Content- independence: no.
[57]	Novelty: No, Replicabil- ity: partial, Generalisabil- ity: high	RL: no, FB: no, SM: no, CR: n/a, Over-fitting: n/a , S: ≤ 50	Spontaneous speech: yes, Conversa- tional speech: yes, Automation: par- tial, Transcription-free: no, Content- independence: no.
[58]	Novelty: Yes, Replicabil- ity: partial, Generalisabil- ity: high	RL: yes, FB: partial, SM: yes, CR: no, Overfitting: n/a , S: ≥ 100	Spontaneous speech: yes, Conversa- tional speech: yes, Automation: par- tial, Transcription-free: no, Content- independence: no.

It is made available under a CC-BY 4.0 International license

98

Table A.11:	Datasets	assessment.

Data bal- ance (6 a:No, g:No (by design),	Data avail- ability Available: no	Languag English
ance (6 a:No, g:No (by design),	avail- ability Available: no	English
(6 a:No, g:No (by design),	ability Available: no	English
(6 a:No, g:No (by design),	Available: no	English
(b a:No, g:No (by design),	Available: no	English 3
(by design),	no	<u> </u>
NI		_ 8
S:INO		tis a
		ma
		de 💐
		ava
		ilab
		ile u
		Ind
		era
er- a· no (bv	Available	(Swedish)≸
a) design) g:	no	
e). design), g.	110	.0 ds
ce, no, s: -		nte
re-		ma
		ion II
lard deviation		
		Cer
		a Sel
nto nso uro f	nter- a: no (by nse). design), g: urce, no, s: - f re- indard deviation	nter- a: no (by Available: nse). design), g: no urce, no, s: - f re- mdard deviation

 87

Table A.11: Datasets a	assessment ((continued).
------------------------	--------------	--------------

	ID	Data set/Subset size	Data type	Data annotation	Data bal-	Data	Languag
					ance	avail- ability	
	[6]	464 GP consultations (student, virtual pa- tient)	textual transcripts (-)	discovery segments (segment contain- ing information critical to the diagno- sis); stages (Diet and Eating Habits (DEH), History of Present Illness (HPI), and Medical History (MH)); dis- covery proficiency prediction (success, failure); overall discovery proficiency $(n_{(studentdiscoveries)}/n_{(totalnumbero)})$	a: no , g: no, s: no fdiscoveries))	Available: no	English It is made available und
88	[7]	69 clinical interview (34 hours, mean dura- tion=30mins)	Videos. type : semi-structured.	no evaluation subjective ratings of symptoms of schizophrenia (NSA-16 scale) No eval- uation.	a: yes , g: yes, s: yes	Available: no	English (non e native
	[8]	227 patients visits (home: $\bar{x} = 12.9$, sd = 6.7. Hospital $\bar{x} = 10.0$, sd = 4.2). 5415 words	Audio. type : conversational.	None.	a: no , g: no, s: -	Available: no	Englista (non hand) native
	[10]	132 GP consultations	transcripts (professionally), patient questionnaires: general trust in the medical system (prior), trust in the consultation resident (after), satisfac- tion with the consultation (after). type : conversational.	not annotated	a: p=yes/d=no , g: p=no/d=yes, s: no	Available: no	Englis

Table A.11: Data	sets assessment	(continued).
------------------	-----------------	--------------

ID	Data set/Subset size	Data type	Data annotation	Data bal-	Data	Languag
				ance	avail-	_
					ability	
[12]	587 clips from 354 pal- liative care consulta- tions (9770 minutes)	audio. type : conversational	Type of connectional silences (emo- tional, compassionate, invitational), linguistic features (pre/post speakers, pause length, temporal reference (past, present, future) preceding the pause)	a: no, g: yes, s: yes	Available: no	English
[17]	286 transcripts (words: $\bar{x} = 5348$, me- dian=4880, sd = 2921)	audio, transcripts type : conversa- tional	providers' roles in the conversation, pa- tient and physician IDs, consultation order (1 or 2), speciality of the attend- ing physician urologist, radiation on- cologist), patients' choices. No evalu- ation	a: no, g: no (by design), s: no	Available: no	Englise Englise le under a CC-B
[18]	43 videos (duration: $\bar{x} = 210s, sd = 49s$)	video type : structured	Not annotated	a: yes, g: no, s: yes	Available: no	
[20]	40 (pilot=7, study=31)	audio, video of electronic health records screens, annotations: times when tools were used (papers, note- books, websites), occurrence of phone calls, interruptions, new or a regular patient, patient alone or accompanied type : conversational	consultation activity (ad-hoc, adapted from Waitzkin, 1989)	a: -, g: -, s: -	Available: no	English allicense
[26]	587 clips from 354 pal- liative care consulta- tions (9770 minutes)	audio. type : conversational	Connectional silences and speech	a: no, g: yes, s: yes	Available: no	English

68

medRxiv preprint doi: https://doi.org/10.1101/2024.12.13.24318778; this version posted December 16, 2024. The copyright holder for this preprint (which was npectified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

Table A.11: Datasets assessme	nt (continued).
-------------------------------	-----------------

ID	Data set/Subset size	Data type	Data annotation	Data bal- ance	Data avail- ability	Languag
[27]	10 videotaped interac- tions(about 10 minutes each)	video, audio type : conversational	25 primitives (12 shared per participants+memo-taking for doc- tors): speak, gaze to human, gaze to memo, head nod, rhythm, and touching self, memo-taking, "major nonverbal behaviours in communica- tion psychology research literatures"	a: -, g: -, s: -	Available: no	(Japanese
[28]	415 recordings	audio, transcripts, patients' quality in- dicators: communication quality (over- all), provider decision-making, partic- ipatory decision-making, interpersonal style, interpersonal trust. type : con- versational	Speech acts: 118 287 Giving Informa- tion, 28 576 Requesting Information, 92 448 Other. not evaluated	a: -, g: -, s: -	Available: no	Englister a CC-BY 4.0 Int
[30]	$22 \; (<8mins)$	video, time-aligned transcripts, exam- ination result: OSCE marking scheme (17 pass, 5 fail) type : conversational	a: -, g: -, s: -	Available: no	English	ernational lic
	D: du	ration, -: not reported. a: age, g: gender,	s: socio-professional class. SD: standard	deviation		tense

Table A.11: Datasets assessment (continued).

	ID	Data set/Subset size	Data type	Data annotation	Data bal- ance	Data avail- ability	Languag
	[34]	353 interactions (210k utterances)	transcripts (Mental Health Discussion study by Tai-Seale et al., Assessment of Doctor-Elderly Patient Transactions (ADEPT) study by Teresi et al.) type : conversational	emotional valence of utterances. Scale: -3 (very negative) to +3 (very posi- tive). 14 raters (students), 4 discarded (distributions of assigned ratings signif- icantly different from the other raters). Each utterance was rated by 2.3 raters. Evaluation: Intraclass Correlation Co- efficient (ICC), two-way random effects model ICC: 0.90.	a: -, g: no, s: -	Available: no	English tis made available under
91	[35]	279 interactions (122 083 talk-turns, me- dian=408, $\bar{x} = 438$, upper/lower quar- tiles=312/522)). (sub- set differs from reported parent study)	transcripts type : conversational	topic label (27: modified MDIA cod- ing system. 3 most frequent topics (BiomedHistory, PreventiveCare, and MusSkePain)>50% of the corpus. Not evaluated	a: -, g: -, s: -	Available: no	Englist BY 4.0 International li
	[38]	308 consultations	multi-channel video, screen capture, key strokes, mouse coordinates	gaze, computer use, detailed use of the computer, verbal and body language clues, clinician style (inclusive or not). Not evaluated	a: -, g: no, s: -	Available: no	Englista

Table A.11: Datasets a	ssessment (contin	ued).
------------------------	-------------------	-------

ID	Data set/Subset size	Data type	Data annotation	Data bal- ance	Data avail- ability	Languag
[39]	13 videotaped interac- tions (total= 119 min- utes, $\bar{x} = 15$)	audio, video, transcripts (manual) type: conversational	transcripts (Transcription Or- thographique Enrichie / Enriched Orthographical Transcription), part-of speech (MarsaTag), Visual cues (Head movements: nod, shake, tilt, bottom, up, side. Posture change: forward, backward, other. Gaze: oneself, inter- locutor, other direction, closed eyes. Eyebrow expression: frown, raise. Hand gesture, Smile). Evaluation. Visual Cues, 5% of the corpus $\kappa = 0.63$	a: -, g: -, s: -	Available: no	French It is made available under a CC-B
[40]	12 interactions (180 min)	videos of each participant type : semi- structured	EmFACS: emotionally relevant move- ments in the face, based on the earlier Facial Action Coding System (FACS). Evaluation: test of the coder, reliabil- ity r;0.80.	a: -, g: -, s: -	Available: no	German

Table A.11: Datasets ass	essment (continued).
--------------------------	----------------------

TD	Data ant /Sachart .	Data tama	Data ann station	Data hal	Data	T
ID	Data set/Subset size	Data type	Data annotation	Data bal-	Data	Languag
				ance	ability	
[46]	86 videotaped interac-	audio, video, transcripts, patient and	not annotated	a: -, g: -, s:	Available:	English 🍣
	tions	companion questionnaires: anxiety		-	no	_
		(20-item State-Trait Anxiety Inven-				tisr
		tory), depression (15-item Geriatric				nad
		Depression Scale), satisfaction with				e av
		their appointment (Dementia Care Sat-				aila
		isfaction Questionnaire) 2-3 days after				bleu
		the session type : conversational	_			
[47]	122	transcripts (professionals), audio	not annotated	a: -, g: -, s:	Available:	Englista E
		recordings of the interactions, pa-		-	no	°, ei,
		tient surveys: wellbeing (Likert-type				BY
		scales), physician's communication				4.0
		skill (5 questions) type : conversa-				yı a Inte
[40]		tional				
[49]	341 (1.7 million words,	transcripts (human raters) type: con-	modified Motivational Interviewing	a: -, g: -, s:	Available:	Englista
	$175,000$ utterances, and $70,000 \pm 10$	versational	Skill Code (MISC version 2.1): single,	-	no	
	79,000 talk turns)		categorical behavioural code to each			an a
			client and clinician utterance. MISC			
			behavioural codes and session-level			
			MISC summary indices only, no global			5
			ratings.			

Table A.11: Datasets	assessment	(continued).
----------------------	------------	--------------

ID	Data set/Subset size	Data type	Data annotation	Data bal-	Data	Languag
				ance	avail- ability	
[52]	60 interactions (mean duration: suicidal: 869s, non-suicidal: 490s)	audio recordings (mono, SNR=17.2 dB), transcripts, speech segments (software: ELAN) type : semi-structured	not annotated	a: -(by design), g: yes, s: -	Available: no	English
[54]	132 video recorded in- teractions	video, transcripts (professional) ques- tionnaire: previous history with med- ical interactions, trust questionnaire (n=65) type : semi-structured	not annotated	a: no, g: no, s: no	Available: no	Englis Vailable und
[56]	360 interactions (me- dian length=605 utter- ances)	transcripts (manual), patient's ques- tionnaire (physician communication, Likert scale)	General Medical Interaction Analysis System (GMIAS), kappa= 0.81 to 0.95	a: no, g: no, s: no	English	der a CC-B
[57]	8 interactions. Dura- tion: - (segment>3min)	Audio, video, transcripts (-). Type: conversational	effectiveness of interaction (effective, ineffective). No evaluation	a: -, g: -, s: -	Available: no	(English)
[58]	162 interactions (2-4 participants). Dura- tion: -	Audio, video, transcripts (research team, manual), questionnaires (DPFC). Type: conversational	6: Number of related words in the grouped themes, number of related utterances containing the related words, time spent on related utterances in a record and percentages of these three variables in total number of words, utterances and time duration of a record. No evaluation	a: yes (chil- dren), g: yes, s:-	Available: no	(Chinese and/og English)

medRxiv preprint doi: https://doi.org/10.1101/2024.12.13.24318778; this version posted December 16, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

It is made available under a CC-BY 4.0 International license .

