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Abstract 18 

The everlasting interest in precision medicine has instigated a need for patient-specific 19 
multidimensional data collection. By leveraging consumer-level wearable devices and 20 
applications we can support this need by collecting multimodal data in uncontrolled free-21 
living conditions. We used a continuous glucose monitor, a smartwatch with in-house 22 
developed application, and a smartphone application over a period of 14 days to collect data 23 
from 60 participants with diabetes. Data were collected on 77,683 CGM measurements, 24 
4,073 moods, 3,517 meals, 1,394 insulin injections, and 1,364 bouts of physical activity. 25 
Participants were able to effectively use the devices and applications, with 45 participants 26 
reporting data on all modalities and all participants reporting data on at least two modalities 27 
(in addition to the data collected from the smartwatch’s internal sensors). These findings 28 
highlight the efficiency and effectiveness of consumer-level wearable devices to collect data 29 
from the comfort of the people’s homes. Thereby, facilitating the need for a cost-effective 30 
and scalable approach for precision monitoring to the public. 31 
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Introduction 33 

The emergence of precision or personalized medicine, which seeks to improve 34 

diagnosis, prediction, prevention, and treatment by focusing on the individual rather 35 

than on groups of people, has instigated a need for patient-specific multidimensional 36 

data to evaluate an individual’s health, wellbeing, and environment. Diabetes 37 

mellitus, a chronic endocrine disease characterized by chronically elevated blood 38 

glucose levels, is one example of a disease for which precision medicine approaches 39 

can prove to be beneficial, due to the recognized heterogeneity in its etiology, clinical 40 

presentation, and pathogenesis1. The resulting need for patient-specific 41 

multidimensional data collection (precision monitoring) in people with diabetes has 42 

been highlighted in the latest American Diabetes Association (ADA) and European 43 

Association for the Study of Diabetes (EASD) consensus, along with recent 44 

publications, that advocated for precision monitoring methods as the next crucial 45 

step towards precision medicine for diabetes1,2. Precision medicine in the field of 46 

diabetes research focuses on elucidating pathophysiological processes (molecular 47 

and environmental), and consequently the heterogeneity in glycemic dynamics, that 48 

underly the disease. Although the primary cause of dysregulated glycemic dynamics 49 

concerns defects in at least one physiological pathway, multiple coherent factors 50 

including self-regulated behavior (e.g., dietary intake and physical activity) and 51 

health (e.g., medication and psychological status) also influence glycemic dynamics. 52 

Furthermore, lifestyle, defined by the long-term combination of these variables, 53 

impacts the risk for future complications3–7. 54 

To capture glycemic variations, gain insight into the underlying glycemic effects of 55 

lifestyle, and ultimately monitor disease progression, all at an individual level, the 56 

availability of data is imperative. Although data measured in clinical and research 57 
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settings are well controlled, detailed data collection over weeks or months of time is 58 

unfeasible from these settings and difficult to scale to large cohorts. Consequently, a 59 

transition must be made towards data measured in the comfort of people’s homes 60 

and throughout their daily lives. Furthermore, data from free-living conditions are 61 

representative of self-regulated behavior and habits, while measurements in 62 

controlled clinical settings are not, and these data offer the opportunity to capture the 63 

day-to-day glycemic variability typical for diabetes. The shift from clinical settings 64 

towards free-living conditions, to collect data for healthcare and research purposes, 65 

is enabled by the advent and enhancement of wearable devices. The continuous 66 

glucose monitor (CGM) has already provided tremendous insight into glycemic 67 

control for clinicians and people with diabetes8. Furthermore, smartphones and 68 

smartwatches have been shown to be promising for the monitoring of lifestyle 69 

variables (i.e., assessment of physical activity, diet, and psychological stress)9,10. 70 

The use of wearable devices in diabetic populations for data collection in free-living 71 

conditions has, except for a few studies, been mostly limited to the effects on blood 72 

glucose levels of physical activity, diet, or psychological stress alone. The limited 73 

number of studies that simultaneously collected data on a broader range of variables 74 

associated with glycemic variability, have almost all been conducted with people with 75 

type 1 diabetes. Marling & Bunescu (2020) collected data in 12 participants with type 76 

1 diabetes for eight weeks on blood glucose levels (CGM), dietary intake, physical 77 

activity, usage of insulin analogues and other antidiabetic medication, and 78 

psychological status in free-living conditions11. Other studies such as the D1NAMO 79 

project (nine participants with type 1 diabetes, four-day study period) have collected 80 

data on electrocardiograms, breathing, accelerometers, CGMs, and annotated food 81 

pictures12. The ShanghaiT1DM & ShanghaiT2DM datasets (12 participants with type 82 
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1 diabetes and 100 participants with type 2 diabetes, study period up to 14 days) 83 

included dietary intake, insulin injections, and CGM data13. Nevertheless, while these 84 

studies collected multimodal data in free-living conditions in people with type 1 85 

diabetes, similar studies including people with type 2 diabetes are rare. Zahedani et 86 

al. (2023) used a CGM, a proprietary app for food logging, and heart rate data from a 87 

smartwatch to demonstrate that app-based lifestyle recommendations can improve 88 

eating habits, markers of glycemic variability, and weight in a predominantly healthy 89 

and prediabetic cohort (N = 1,066, including 94 subjects with non-insulin-treated type 90 

2 diabetes)14. Similarly, Pai et al. (2024) collected data from a CGM, app-based food 91 

logging, and accelerometer-derived step count to stratify postprandial peaks into 92 

normal and elevated categories and highlighted the relationship between post-meal 93 

steps and a reduced postprandial glucose response in Hispanic/Latino adults (N = 94 

36, including 14 subjects with non-insulin-treated type 2 diabetes)15. 95 

Data collection in free-living conditions can be burdensome for the participants and 96 

researchers, especially when using analog data collection methods (i.e., paper 97 

logbooks and questionnaires). The data collection process often requires data 98 

digitization, structuring, and manual preprocessing. Some studies also relied on 99 

participants or experts to acquire information on dietary macronutrient composition. 100 

Dubosson, et al. (2018) used picture-based food annotation by a dietitian, while 101 

Marling & Bunescu (2020) relied on patient estimates to infer carbohydrate intake.  102 

By integrating multiple wearable devices, and applications, some of the burdens of 103 

data collection in free-living conditions can be alleviated. The use of wearable 104 

devices negates the need for data inference and digitization. Moreover, the use of 105 

specifically consumer-level wearable devices, rather than research-dedicated 106 

devices, offers a cost-effective, scalable, and readily available method of collecting 107 
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data due to the widespread ownership of smartphones and the increasing popularity 108 

of smartwatches and fitness trackers. The consumer-level wearable devices, used in 109 

this study, included a CGM for continuous blood glucose measurements, a 110 

smartphone application to collect patient-reported dietary intake and physical activity, 111 

and a smartwatch to measure heart rate, acceleration, and step counts. The 112 

smartwatch is supplemented with an in-house developed application (publicly 113 

available) to allow participants to self-report mood and insulin usage. This application 114 

also incorporates a nudging mechanism, using vibrations and visual prompts on the 115 

screen, to encourage participants to report information as requested by the research 116 

team. The use of consumer-level wearable devices ultimately enables large-scale, 117 

patient-centered, and researcher-independent personalized data collection.  118 

This article describes how commercially available consumer-level wearable devices 119 

and apps were used to collect data in free-living conditions in people with diabetes, 120 

predominantly type 2 diabetes. Subsequently, we assessed the feasibility of using 121 

wearable devices in this study population, which is typically older, and analyzed the 122 

effectiveness of our approach in terms of both the quantity and quality of the data 123 

collected. These data included measurements of blood glucose levels, detailed 124 

dietary intake, physical activity, insulin use, and mood over a 14-day period, 125 

supplemented with demographics and clinical measurements. Ultimately, we aim to 126 

showcase the ease and extent to which multimodal data can be collected in free-127 

living conditions using consumer-level wearable devices and applications in a 128 

diabetic population (predominantly type 2). 129 
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Results 130 

Participant Characteristics 131 

Upon study completion, 59 participants (35 males and 24 females) were included 132 

(excluding one dropout due to multiple CGM malfunctions). For one participant CGM 133 

data of her own prescribed CGM was voluntarily provided due to device malfunction. 134 

51 participants were diagnosed with type 2 diabetes and eight with type 1 diabetes, 135 

with respective mean ages of 69·1 years (SD 7·1) and 54·6 years (SD 16·9), mean 136 

BMIs of 30·1 kg/m2 (SD 4·9) and 25·4 kg/m2 (SD 3·3), mean diabetes durations of 137 

20·5 years (SD 7·3) and 26·6 years (SD 13·4), mean HbA1c’s of 61·5 mmol/mol (SD 138 

11·7) and 63·4 mmol/mol (SD 15·0), and mean time in ranges (3·9-10·0 mmol/L) 139 

during the study of 66·8% (SD 22·7) and 62·7% (SD 21·6). For a complete overview 140 

of participant characteristics (e.g., insulin and medications use, anthropometric 141 

measurements, and fasting blood values), stratified by diabetes type, see Table 1. 142 

Data Quantity 143 

The set of wearable devices provided a large extent of multimodal data (Fig. 1 144 

showcases an example of four days of collected data). Data in Fig. 1 includes sensor 145 

measurements of interstitial glucose concentrations and heart rate as well as self-146 

reported mood, insulin analogue injections, dietary intake (only carbohydrate content 147 

is shown here), and physical activity. The data not only provided insight into the day-148 

to-day glucose variability at an individual level, but glycemic variations can also be 149 

associated with reported self-regulated behavior. In this example, rises in blood 150 

glucose levels were associated with high-carbohydrate meals and drops with 151 

adequate preprandial insulin administration or periods of reported physical activity 152 

with an elevated heart rate. In total, the dataset includes 77,683 CGM 153 

measurements, 4,073 self-reported moods, 3,517 meals, 1,394 insulin injections, 154 
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and 1,364 bouts of physical activity. Excluding days of study visits, interstitial glucose 155 

levels were measured (every 15 minutes) in 97·5% of measurement instances. A 156 

daily energy intake of at least 1,000 kcal/day was reported on 80·6% of study days 157 

(excluding a single participant who was known to have started a crash-diet prior to 158 

study participation), while at least 1,000 steps a day were recorded on 93·0% of 159 

study days (excluding one wheelchair-bound participant). 96·6% of participants self-160 

reported their mood, and 84·1% of insulin-dependent participants (n=44) reported 161 

insulin doses. 84·5% of participants had self-reported physical activity. 45 162 

participants (76·3%) managed to self-report data of every modality (including insulin 163 

doses when prescribed). Further analysis demonstrated participants were 164 

consistently engaged (i.e. they reported data) with the applications and smartwatch 165 

during the study period, only with a slight decrease in physical activity reporting after 166 

the second and third study days (Supplemental Fig. S3). The number of days 167 

participants reported data on each modality varied between participants (shown in 168 

Fig. 2). Excluding visit days, dietary intake had been reported for 11 to 13 days by all 169 

participants (67·8% with a daily energy intake greater than 1,000 kcal/day). The 170 

number of days with bouts of physical activity, which had a qualitatively similar 171 

distribution to the number of days with at least 3,000 steps, ranged from between 172 

nine and 13 days (total of 54·2%) to only one or no day (total of 27·1%). Mood was 173 

self-reported anywhere between zero (3·4%) and 13 (22·0%) days, with more than 174 

half (50·8%) of the participants reporting mood for at least ten days. 70·5% of 175 

insulin-dependent participants reported insulin usage for 11 to 13 days, while seven 176 

out of 44 (15·9%) of these participants (only one of these seven used rapid-acting 177 

insulin) did not report insulin usage at all. 178 
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Data Quality 179 

Evaluation of the quality of the patient-reported data suggested mixed results, as 180 

data was consistently reported but not always to the extent that it matched our 181 

expectations of a complete day of lifestyle events. A comparison of reported dietary 182 

intake and daily insulin doses to recommended guidelines and health records 183 

demonstrated discrepancies for a subset of participants. Firstly, the reported daily 184 

energy intake (shown in Fig. 3, with participants ordered by age), varied considerably 185 

between participants from 55·2 kcal/day to 4,766 kcal/day. The mean energy intake 186 

(excluding outliers below 1,000 kcal/day) was 1,796 kcal/day (SD 563 kcal/day) for 187 

men (dashed blue line) and 1,484 kcal/day (SD 356 kcal/day) for women (dashed 188 

green line). For reference, dietary reference values recommend 1,860 and 2,290 189 

kcal/day for, respectively, moderately active females and males between the ages of 190 

60 and 69 years16. Thus, the reported energy intake was lower than these reference 191 

values. A complete breakdown of macronutrient intake (carbohydrates, sugars, 192 

saturated and unsaturated fat, protein, fiber, and salt) is provided in Supplemental 193 

Fig. S4. Additionally, mean reported daily energy intake was not correlated with year 194 

of birth (Spearman’s ρ = -0·19, p = 0·15).  195 

Secondly, Bland-Altman plots comparing daily (accumulated) reported insulin doses 196 

with prescriptions from health records, stratified by rapid and (ultra) long-acting 197 

insulin analogues (Supplemental Fig. S5 and S6), showed an overall mixed 198 

agreement between reported and prescribed values. The median bias of respectively 199 

rapid- and long-acting analogue doses were both 0 IU/day. The relative difference 200 

between reported and prescribed daily dose was between -15% and 15% for 50·2% 201 

of study days for short-acting insulins (this range was defined to allow some daily 202 

variability, typical for short-acting insulin treatment). There was no difference 203 
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between reported and prescribed dose on 55·5% of study days for long-acting 204 

insulins. Otherwise, daily insulin doses were mostly underreported compared to 205 

prescribed doses (respectively 31·6% and 31·0%). Note for example the distinct 206 

declining line of points for long-acting insulins that correspond to days without 207 

reported doses. Nonetheless, the deviations in the reported daily doses could be 208 

attributed to a subset of individuals (Supplemental Fig. S7 and S8).  209 

Ecological momentary assessment of mood with the nudging mechanism using the 210 

smartwatch provided a method to repeatedly gain insight into psychological status 211 

within the natural flow of life. Of the five mood categories, participants primarily 212 

reported being happy (13·5%) or relaxed (78·9%) throughout the day (Fig. 4), while 213 

stressed (5·4%), sad (1·2%), and angry (1·0%) were reported less frequently. 214 

Moreover, mood was reported most frequently shortly after participants were 215 

nudged, evident by a considerably higher number of reports during the hours of the 216 

day including 08:00, 12:00, 18:00, and 20:00. Differences in the number of reports at 217 

these four times can be attributed to differences in wearing percentage and response 218 

percentage. Firstly, the wearing percentage was lower at 52·7% (95% CI, 49·1% – 219 

56·3%) in the morning compared to 94·0% (95% CI, 92·1% – 95·6%), 95·6% (95% 220 

CI, 93·9% – 96·9%), and 96·1% (95% CI, 94·5% – 97·3%) at 12:00, 18:00, and 221 

20:00, respectively. Secondly, the nudging response percentage was considerably 222 

lower at noon with 33·0% (95% CI, 29·6% – 36·6%) compared to 18:00 and 20:00 223 

with respectively 41·5% (95% CI, 37·9% – 45·1%) and 42·1% (95% CI, 38·5% – 224 

45·7%), while the response percentage at 08:00 was 35·4% (95% CI, 30·7% – 225 

40·3%). Thus, the nudging mechanism was most effective in the evening times. 226 

These wearing and response percentages, overall and stratified by nudge time, did 227 

not decrease throughout the study period and were unaffected by the check-up call 228 
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around study day five (Supplemental Fig. S9 and S10). Nevertheless, similar to the 229 

reported dietary intake and insulin doses, the response percentages varied 230 

considerably among participants, ranging from 0% to 96% during the observational 231 

period (Supplemental Fig. S11). However, the percentages of responses to the 232 

nudging were not correlated with the number of moods reported outside of the 233 

nudging times (Spearman’s ρ = -0·08, p = 0·53). 234 

Discussion 235 

By leveraging consumer-level wearable devices, supplemented with applications and 236 

a nudging mechanism, we aimed to efficiently collect multimodal personal data in 237 

free-living conditions on glycemic dynamics and an extensive set of associated 238 

variables (dietary intake, insulin administration, physical activity, and mood). 239 

Furthermore, the effectiveness and feasibility of using multiple wearable devices 240 

(CGM, smartphone, and smartwatch) with corresponding applications was assessed 241 

for data collection in a study population typical of type 2 diabetes (relatively old age 242 

and various comorbidities). 243 

Our study showcased the opportunity to harness wearable devices as a feasible 244 

method of multimodal longitudinal data collection under free-living conditions in 245 

individuals. These devices required minimal calibration steps, could be operated by 246 

participants following a short instruction session, and no major problems were 247 

identified by the research team (except for two CGM sensor failures) or reported by 248 

participants. Moreover, the interaction of the participants with the applications was 249 

effective, reflected by the high percentage of participants providing self-reported 250 

information. Additionally, the use of a blinded CGM negated the need to scan every 251 

eight hours, potentially leading to loss of data and avoided influencing the 252 

participant’s decision-making. The commercial availability of these consumer-level 253 
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devices and public access to the applications allows for time-effectiveness and easy 254 

scalability to large cohorts. These devices, thereby, provide the means to obtain 255 

continuous insight into lifestyle and personalized glycemic dynamics to the public 256 

and optionally their healthcare providers. 257 

The combination of a CGM, a smartwatch, and a smartphone application provided 258 

insight into the daily life of an individual, from the comfort of their home, of which 259 

limited information was otherwise available. However, data collected under free-260 

living conditions is usually not a comprehensive description of all lifestyle events. 261 

Evaluation of data quality indeed indicated that participant-reported data did not 262 

always compare to expectations, with heterogeneity in the magnitude of these 263 

differences between participants. Firstly, the energy intake reported through the 264 

smartphone application (Fig. 2) was, on average, lower than expected (around 450 265 

kcal/day lower) considering the European guidelines for moderately active women 266 

and men between the ages of 60 and 69 years16. Nonetheless, the mean reported 267 

energy intake was comparable to another study using the same smartphone 268 

application in a younger non-diabetic population (1,830 kcal/day, SD 485 kcal/day, 269 

n=100), which concluded that the application provided comparable results to 24-hour 270 

recalls. Dubosson et al., whom relied on picture-based food annotation by a dietitian, 271 

reported similar daily energy intakes (1,672 kcal/day, SD 1,038 kcal/day, n=8)12,17. 272 

Additionally, mean daily carbohydrate intake was similar to participant-reported 273 

values in people with type 1 diabetes11. Therefore, even though the energy intake 274 

may deliberately be reduced or underreported by participants during a study focused 275 

on lifestyle observation, partially accounting for the discrepancy, accurate dietary 276 

intake assessment in free-living conditions remains challenging. Nonetheless, all 277 

participants had reported dietary intake for at least 11 days. The participant’s age did 278 
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not appear to be a limiting factor in reporting dietary intake using a smartphone 279 

application, even with a generally older cohort typical for type 2 diabetes.  280 

Secondly, the smartwatch offered an easily accessible means for insulin usage 281 

registration, which needed no connection to the internet or a smartphone and was 282 

always at hand for participants. These reported insulin doses were accurate on a 283 

majority of the study days, when they could be compared to prescribed insulin 284 

treatments. These comparisons demonstrated that only five out of 36 long-acting 285 

insulin users, and no short-acting insulin users, failed to report at least one day for 286 

which the accumulated daily insulin dosages were comparable to their health 287 

records. However, the accumulated daily insulin dosages derived from insulin reports 288 

were frequently lower than prescribed (especially evident when one dose a day was 289 

prescribed, and none were reported). It is unclear why insulin administration was 290 

underreported. While daily dose adjustments are inherently part of the short-acting 291 

insulin treatment, the quality of reported data on insulin use may be affected by the 292 

otherwise repeated nature of daily insulin dosing leading to a lack of urgency to 293 

consistently report these events. It has already been shown that data on insulin 294 

dosing can be effectively collected from insulin pumps18, which are predominantly 295 

used by people with type 1 diabetes, whereas the recent development of smart 296 

insulin pens could potentially alleviate the burden of insulin dose registration 297 

altogether.  298 

Thirdly, ecological momentary assessment of mood using the smartwatch, 299 

supplemented with a nudging mechanism four times a day, appeared to be an 300 

effective method to collect information on the perceived mood of participants. 301 

Participant involvement was consistent throughout the study period with high 302 

wearing percentages (except in the early morning when several participants may not 303 
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yet have woken up) and overall steady response percentages. Participants for whom 304 

the nudging mechanism was less effective still provided ample mood reports without 305 

this nudging encouragement. In addition to providing a means to report mood and 306 

insulin doses, the smartwatch enabled the measurement of heart rate, acceleration, 307 

and step count to independently inform on physical activity (next to participant-308 

reported physical activity). Lastly, the mean daily value of none of the variables 309 

reported by the participants decreased considerably throughout the study period; 310 

which, if this had happened, could have suggested that the data collection protocol 311 

may have placed too much of a burden on the participants. Thus, while the collected 312 

data may not be a complete description of all daily events, these wearable devices 313 

can effectively be used to acquire multimodal data in free-living conditions. Hereby 314 

answering the call for precision monitoring methods as the next step towards 315 

precision prevention, diagnostics, and prognostics 1,2. 316 

We acknowledge that the study cohort consisting of known patients does not provide 317 

a complete cross-sectional overview of the diabetic population in the Netherlands. 318 

Nonetheless, the study cohort is typical for a type 1 and 2 diabetes cohort, when 319 

compared to other studies in terms of patient characteristics. Inclusion may be 320 

biased for participants with at least some affinity for digital devices as those 321 

unfamiliar or hesitant to use wearable devices may be more likely to refuse 322 

participation. These latter people may need additional support to promote adequate 323 

use of these wearable devices.  324 

Multiple enhancements could further enrich the collected data through the inclusion 325 

of standardized at-home meals and meal tolerance tests19. Furthermore, the 326 

registration of medication usage can be extended from the use of solely exogenous 327 

insulin to oral medications (e.g., metformin and GLP-1 agonists). Adherence to these 328 
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medications was currently assumed to be consistent throughout the study period, 329 

even though in practice adherence has shown to be inconsistent20. Additionally, real-330 

time communication between devices can enable personalized nudging 331 

mechanisms, by incorporating information from all devices, for Just-In-Time Adaptive 332 

Interventions21. Tailoring the timing, frequency, and format of the nudging to the 333 

individual may improve effectiveness, while just-in-time nudging could be used to 334 

promote reports on dietary intake or insulin injections when blood glucose excursions 335 

are observed (currently the nudging mechanism was limited to data collection on 336 

mood due to the inherent continuity of human mood, which is lacking in all other 337 

variables).  338 

The data collected in free-living conditions holds the potential for various clinical 339 

purposes, as indicated by the growing interest and recent increase in research within 340 

this field. Firstly, it offers a deeper understanding of intra-day and inter-day glycemic 341 

variability at an individual level. This understanding enables healthcare providers to 342 

deliver targeted and personalized care (precision medicine), which may contribute to 343 

improved health outcomes (e.g., to deliver app-based personalized lifestyle 344 

recommendations14). Secondly and more importantly, the collected data offers 345 

valuable insights when analyzed across broader groups. It can reveal inter-individual 346 

variations, facilitating the identification of distinct subgroups within the diabetes 347 

population, unveiling their distinct characteristics and needs (e.g., to stratify meal 348 

events for digital phenotyping15). Lastly, these data can support the development of 349 

next-generation simulators and digital twins, general or personalized dynamic 350 

metabolic models capable of predicting glucose levels and their modulation due to 351 

daily activities22. Such models have the potential to serve multiple purposes, from 352 

enhancing broader group-level education by showcasing the response of blood 353 
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glucose levels to lifestyle decisions to in silico experiments with virtual patient 354 

cohorts. A deeper understanding of a disease like diabetes and the various factors 355 

influencing blood glucose levels can foster increased self-confidence and effective 356 

self-management in people with diabetes. Given that improved self-management in 357 

diabetes correlates with better health and reduced short- and long-term 358 

complications, the significance of this understanding is clear23. Furthermore, 359 

diabetes self-management education and support (DSMES) currently occurs 360 

predominantly through one-on-one consultations with healthcare providers. 361 

However, with the escalating numbers of patients with diabetes globally, there is a 362 

growing need for more scalable, sustainable, and affordable support. Electronic 363 

resources and digital interventions, such as advanced simulators, predicting glucose 364 

levels at a personal level, could offer a crucial addition to future healthcare. They 365 

hold the potential to make healthcare more efficient and accessible while 366 

simultaneously improving its quality.  367 

Conclusion 368 

Our study showcased the feasibility and effectiveness of consumer-level wearable 369 

devices for multimodal data collection in free-living conditions, in a predominantly 370 

type 2 diabetes cohort. Moreover, the protocol can be scaled to larger cohorts and 371 

easily reproduced and integrated due to the commercial or free availability of the 372 

devices and applications. The multimodal data that can be measured in free-living 373 

conditions, by relying on wearable devices, applications, and the people themselves, 374 

give us the opportunity for precision monitoring to individualize patient care by 375 

accounting for intra- and inter-day heterogeneity in glycemic dynamics. Moreover, 376 

the data support further research into the effects of self-regulated behavior and 377 

health on glycemic dynamics and the long-term progression of the disease. 378 
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Ultimately, enabling us to provide patients with personalized approaches for diabetes 379 

treatment and self-management support. 380 

STAR Methods 381 

Study Design and Participants 382 

Between June 2022 and June 2023, 60 participants (both type 1 and type 2 383 

diabetes) were included and data were collected over a consecutive 14-day period. 384 

All participants were recruited from the outpatient clinic of the Máxima Medical 385 

Centre (The Netherlands). Participants were eligible for inclusion when they met the 386 

following criteria: (I) diagnosis of type 2 diabetes or type 1 diabetes (body mass 387 

index (BMI) < 30 kg/m2 for type 1 diabetes), (II) age > 18 years, (III) possession of a 388 

smartphone that runs the required application. Exclusion criteria comprised: (I) 389 

pregnancy or breastfeeding, (II) ongoing treatment for malignancy, (III) scheduled 390 

MRI scan during the study, and (IV) non-Dutch speaking. All individuals provided 391 

written informed consent. The study was registered in the Dutch Trial Registry 392 

(NL9290), approved by the Medical Research Ethics Committee Máxima MC (nr. 393 

L20.102), and conducted according to the principles of the Declaration of Helsinki. 394 

Participation consisted of two visits to the clinic and a telephone call. During the first 395 

visit, a brief overview of the participant’s medical history was registered, along with 396 

medication use. Subsequently, blood pressure, resting heart rate, weight, and length 397 

were measured and a blinded CGM was applied. Finally, participants received a 398 

smartwatch with preinstalled study application, were instructed on how to download 399 

the smartphone application, and use the devices. 400 

Four to six days after the first visit participants were contacted by telephone to 401 

address specific issues, identified through a remote assessment of data reported on 402 
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dietary intake and physical activity. Instructions were reiterated if necessary. 403 

Subsequently, after 14 days, participants returned for the second visit in a fasted 404 

state to draw blood and return all devices. The data on these devices were 405 

subsequently pseudonymized and exported to a secure database.  406 

Data Collection 407 

Glucose concentrations were measured using a FreeStyle Libre Pro iQ sensor 408 

(Abbott Diabetes Care, Illinois, USA), a blinded CGM that measured interstitial 409 

glucose levels every 15 minutes, 24 hours per day, for 14 consecutive days. 410 

Glycated hemoglobin (HbA1c), fasting glucose, and c-peptide concentrations were 411 

measured using the standard protocol of the hospital’s clinical chemical laboratory.  412 

Participants received a Samsung Galaxy Watch 2 Active 44mm smartwatch during 413 

visit 1, pre-installed with the developed application (built for the Tizen mobile 414 

operating system). The application allowed participants to report mood and insulin 415 

analogue usage and automatically recorded measurements from the internal sensors 416 

(heart rate monitor, pedometer, triaxial accelerometer). First, (insulin-dependent) 417 

participants were instructed to self-report the type of insulin injected (short-acting, 418 

long-acting, or mixed insulin), dose, and time of injection through the dedicated 419 

screen. Secondly, participants were nudged four times a day at fixed times (8 AM, 12 420 

PM, 6 PM, 8 PM) through short vibrations and activation of the smartwatch 421 

showcasing the dedicated mood screen. The screen provided the option of five 422 

moods with matching emojis: happy, relaxed, stressed, angry, and sad. Participants 423 

were instructed to respond to these nudges and to report their mood when they 424 

perceived a change in their mood. Nonetheless, participants retained the autonomy 425 
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to report mood at any time via the application. An overview of the smartwatch 426 

application can be seen in Supplemental Fig. S1. 427 

Dietary intake, both food and beverage consumption (excluding water, tea, and 428 

coffee without any additives), and physical activity were self-reported every day 429 

through the Mijn Eetmeter smartphone application (translates to ‘My Eating Meter’) 430 

on the participant’s smartphone (Voedingscentrum, The Hague, The Netherlands)24. 431 

Reporting dietary intake required participants to enter the meal moment (breakfast, 432 

lunch, dinner, and snacks in between these meal moments), meal contents, and 433 

amounts of these meal contents. Options for meal contents are synchronized with 434 

the Dutch Food Composition Information Portal (NVIP) from the Dutch National 435 

Institute for Public Health and the Environment25. The application provides 436 

predefined portion sizes per product (e.g., one standard serving of a product or the 437 

distinction between a small, medium, or large portion with an indicated weight) next 438 

to the option to report the weight of the product. Instructions were given to report 439 

mealtimes in an adjacent text field that listed the different meal moments. 440 

Furthermore, participants were instructed to report physical activity in the application. 441 

This action consisted of selecting the type of activity from a wide range of 442 

possibilities (from walking to cleaning the house), the duration of the activity, and 443 

noting the starting time in a text field. For an impression of the application, see 444 

Supplemental Fig. S2. 445 

Data Security 446 

Participants were provided with preset study Mijn Eetmeter accounts to promote data 447 

security and privacy, aligning with the General Data Protection Regulation (GDPR). 448 

Additionally, the smartwatch and CGM operated offline during the study period.  449 
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Statistical Analysis 450 

95% binomial proportion confidence intervals for wearing percentage (smartwatch 451 

was worn at the time of a nudge) and response percentage (responses to nudges 452 

when the smartwatch was determined to be worn) were calculated using Clopper-453 

Pearson “exact” confidence intervals, unless stated otherwise. The wearing of the 454 

smartwatch was determined by the presence of a valid reading of the heart rate 455 

sensor within one minute of nudging, whereas the response percentage was defined 456 

as the percentage of responses to a nudge, within five minutes, when the 457 

smartwatch was worn according to the previous criterion. 458 

 459 
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Demographics 
Mean ± Standard Deviation 

Type 2 Diabetes  
(n = 51) 

Type 1 Diabetes 
(n = 8) 

General 
Male 32 3 

Female 19 5 

BMI (kg/m2) 30·1 ± 4·9 25·4 ± 3·3 

Age (years) 69·1 ± 7·1 54·6 ± 16·9 

HbA1c (mmol/mol) 61·5 ± 11·7 63·4 ± 15·0 

HbA1c (%) 7·8 ± 1·1 8·0 ± 1·4 

Systolic Blood Pressure (mmHg) 133 ± 16 128 ± 13 

Diastolic Blood Pressure (mmHg) 73 ± 8 76 ± 4 

Resting Heart rate (bpm) 75 ± 17 81 ± 12 

Diabetes Duration (years) 20·5 ± 7·3 26·6 ± 13·4 

Fasting Glucose (mmol/L) 7·8 ± 2·5* 10·7 ± 4·0 

Fasting C-Peptide (nmol/L) 0·69 ± 0·44* 
(1 BLOQ) 

0·10 ± 0·14 
(5 BLOQ) 

Time in Range During the Study (%) 66·8 ± 22·7 62·7 ± 21·6 
Daily Insulin per kg bodyweight 

(IU/kg/day) 0·45 ± 0·45 0·44 ± 0·20 

Insulin Analogues and Medication 
Insulin Aspart 17 7 

Insulin Lispro 2 1 

NPH Insulin 2 1 

Insulin Glargine 9 0 

Insulin Detemir 2 0 

Insulin Degludec 25 5 

Mixed Insulins 1 0 

Insulin Pump Therapy 1 2 

Metformin 41 1 

SGLT2 Inhibitors 17 0 

GLP-1 Agonist 23 0 

Sulfonylureum Derivatives 25 0 
Table 1: Participant characteristics stratified by diabetes type. *n=58 as one participant had not 554 
fasted the morning of visit 2. BLOQ: Below Limit of Quantification (0·03 nmol/L for C-peptide); these 555 
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values were imputed with half of the detection limit concentration to calculate the corresponding 556 
presented statistic. Time in range is defined by the percentage of times CGM values were in between 557 
3·9 and 10·0 mmol/L.  558 

 559 

 560 

 561 

 562 

 563 

 564 

 565 

 566 

 567 

 568 

 569 

 570 
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Figures 572 

 573 
Figure 1: Example of four days of data collected from one participant.  574 

Panel A: CGM measurements (in mmol/L, solid black line) and reported moods (dark green circle = 575 
happy, light green square = relaxed, light red diamond = stressed; sad and angry were not reported 576 
by this participant in this interval). Panel B: Carbohydrate content (in grams) of reported dietary intake 577 
(light red circles) and reported short-acting (dark green diamonds) and long-acting (dark green circles) 578 
insulin doses (IU). Panel C: Measured heart rate in beats per minute (solid black line) and participant-579 
reported bouts of physical activity (light green shade). Accelerometer and pedometer data were 580 
excluded from this figure for clarity.  581 
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 582 

Figure 2: Distribution of available days of collected data per participant for various data 583 
modalities.  584 

Distribution of the total number of days, excluding days of study visits, with collected data per 585 
participant for each of the data modalities. Panel A: Distributions of available CGM measurements 586 
(including all days = light green, including days with at least 90% of CGM time points = dark green). 587 
Panel B: Distributions of self-reported dietary intake (including all days = light green, including days 588 
with at least 1,000 kcal reported = dark green). Panel C: Distributions of self-reported physical activity 589 
(red) and days with at least 3,000 steps (green). Panel D: Distributions of self-reported mood (red) 590 
and insulin injection doses (green, n = 44 since not all study participants were insulin dependent). 591 

 592 

 593 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 14, 2024. ; https://doi.org/10.1101/2024.12.13.24318201doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.13.24318201
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

 594 
Figure 3: Reported daily energy intake colored by sex and sorted by year of birth (ascending 595 
from left to right).  596 

Boxplots of the daily energy intake (kcal/day) reported from day two (day one excluded due to the 597 
variability of the times of day at inclusion) until visit 2 for each participant. Participants are colored by 598 
sex (blue = male, green = female, outliers are colored red) and sorted by year of birth (ascending from 599 
left to right). Mean daily energy intake per sex (including outliers) is depicted by corresponding 600 
dashed lines (1,655 kcal/day for males and 1,259 kcal/day for females).  601 

 602 
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 605 
Figure 4: Moods reported by participants at each time of day and nudging statistics at each 606 
nudging instance.  607 

Number of moods reported at each hour of the day (angry = dark red, happy = dark green, relaxed = 608 
light green, sad = dark blue, stressed = light red). Underneath the figure, the wearing percentage at 609 
each nudge time (08:00, 12:00, 18:00, and 20:00) and corresponding response percentage to the 610 
nudges are given with 95% confidence intervals. 611 
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