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Abstract	
	
Neuroanatomical	 variation	 in	 individuals	with	 bipolar	 disorder	 (BD)	 has	 been	previously	 described	 in	
observational	 studies.	 However,	 the	 causal	 dynamics	 of	 these	 relationships	 remain	 unexplored.	 We	
performed	Mendelian	Randomization	of	297	structural	and	functional	neuroimaging	phenotypes	from	the	
UK	BioBank	and	BD	using	genome-wide	association	 study	summary	statistics.	We	 found	28	significant	
causal	relationship	pairs	after	multiple	testing	corrections	containing	BD	as	a	term,	27	of	which	described	
neuroimaging	phenotype	effects	on	BD.	We	applied	an	inverse	sparse	regression	algorithm	to	estimate	the	
direct	 effect	 of	 phenotypes	 conditional	 on	 all	 other	 causal	 effects,	 finding	 that	 white	 matter	 tract	
phenotypes	have	larger	absolute	effects	on	BD	than	vice	versa.	We	found	that	white	matter	phenotypes	
have	 significantly	 larger	 out-degrees	 than	 non-white	 matter	 tract	 phenotypes,	 and	 that	 the	 effect	 of	
neuroimaging	variation	on	BD	is	larger	than	vice	versa.	Our	results	provide	support	for	the	hypothesis	that	
neuroanatomical	variation,	specifically	in	white	matter	tracts	such	as	the	superior	and	inferior	longitudinal	
fasciculi,	is	a	cause	rather	than	a	consequence	of	BD.		
	
Introduction	
	
Bipolar	disorder	(BD)	is	a	heritable	mood	disorder	with	a	population	prevalence	of	~2%	worldwide	1.	Its	
presentation	consists	of	recurrent	(hypo)mania,	depression,	and	often	psychotic	symptoms	2.	Owing	to	its	
considerable	public	health	burden	and	incidence	in	families,	its	etiology	has	become	the	focus	of	intense	
research	3,4,5.	Specifically,	genome-wide	association	studies	(GWAS)	of	BD	have	helped	to	characterize	a	
fraction	of	its	common	genetic	architecture,	with	over	60	genome-wide	significant	(GWS)	loci	identified	in	
the	largest	published	study	to	date	6.		
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There	 has	 also	 been	 a	 focus	 on	 describing	 neuroanatomical	 and	 neurofunctional	 variation	 in	 BD	 7,8.	
Phenotypes	 indexing	 general	 brain	 variation	 are	 heritable	 according	 to	 previous	 GWAS	 of	 large	
populations	 9.	 Observational	 magnetic	 resonance	 imaging	 (MRI)	 studies	 have	 described	 volumetric	
differences	between	individuals	with	BD	and	controls	in	regions	such	as	the	prefrontal	cortex	10–12.	Models	
of	BD	pathophysiology	have	posited	that	onset	and	disease	progression	likely	emanate	from	changes	in	the	
structure	 and	 function	 of	 brain	 regions	 involved	 in	 emotional	 regulation	 10–12.	 However,	 estimating	
directional	causality	is	a	challenging	task	with	observational	data.		
	
Mendelian	 randomization	 (MR)	 methods	 use	 robustly	 associated	 genetic	 variants	 as	 instruments	 to	
estimate	the	causal	relationship	between	two	variables,	eliminating	certain	types	of	confounding	under	
specific	 assumptions	 13.	 In	practice,	MR	can	be	performed	with	GWAS	summary	 statistics	using	a	 two-
sample	framework	14.	The	proliferation	of	GWAS	using	large-scale	epidemiological	resources	such	as	the	
UK	Biobank	(UKB)	has	facilitated	a	range	of	causal	analyses	using	MR	methods	across	multiple	phenotypes,	
including	psychiatric	conditions	14–17.	Recent	neuroimaging	releases	have	resulted	in	systematic	GWAS	of	
MRI-based	 phenotypes	 indexing	 neuroanatomical	 and	 neurofunctional	 variation	 9,18.	 These	 publicly	
available	summary	statistics	have	enabled	two-sample	MR	studies	to	investigate	the	relationship	between	
brain	region	variation	and	psychiatric	conditions	19.	However,	previous	work	has	focused	on	investigating	
specific	brain	phenotype	 categories	 20,21,	 or	has	 conditioned	phenotype	 selection	on	 significant	 genetic	
correlation	between	brain	regions	and	psychiatric	phenotypes	(determined	by	the	Linkage-disequilibrium	
Score	 Regression	 method	 19,22).	 This	 may	 remove	 important	 phenotypes,	 as	 MR	 estimates	 are	 not	
dependent	on	genome-wide	genetic	correlation	between	two	traits.	This	is	because	MR	methods	make	use	
of	independent	variants	robustly	associated	with	the	exposure,	and	the	relationship	between	these	effect	
estimates	in	the	exposure	and	outcome	may	not	always	be	correlated	with	the	strength	of	the	genome-
wide	genetic	 correlation	between	 the	exposure	and	outcome.	Thus,	 a	 systematic	 analysis	of	 the	 causal	
relationship	 between	 neuroimaging	 variables	 and	 BD	 remains	 unexplored.	 Additionally,	 the	 causal	
relationship	between	brain	regions	has	not	been	previously	described,	which	could	be	of	interest	in	the	
context	of	psychiatric	conditions.	Furthermore,	the	utility	of	causal	estimates	in	a	predictive	capacity	for	
BD	has	not	been	tested.		
	
Here,	we	carry	out	MR	experiments	to	estimate	the	causal	relationship	between	brain	imaging	variables	
from	the	UKB	and	BD.	Additionally,	we	apply	a	novel	causal	network	estimation	method,	inverse	sparse	
regression,	to	account	for	the	covariance	structure	between	multiple	correlated	causal	effects,	yielding	an	
estimate	of	the	direct	causal	effects	linking	brain	region	phenotypes	and	BD	in	both	directions	23.	Using	
these	causal	estimates,	we	derive	a	risk	score	for	BD	using	neuroimaging	data	in	two	independent	cohorts	
and	assess	its	predictive	ability.			
	

Methods	

GWAS	summary	statistics	and	phenotype	selection	
Figure	1	displays	the	study	workflow.	We	downloaded	GWAS	summary	statistics	of	3,929	brain	imaging	
phenotypes	in	the	UK	Biobank18.	These	GWAS	were	carried	out	per-phenotype	in	unrelated	individuals	of	
European	descent	in	discovery	(n=~22k)	and	replication	(n=~11k)	sets	separately18.	We	obtained	PGC	BD	
summary	statistics	comprising	41,917	BD	cases	and	371,549	controls	of	European	ancestries6.	We	used	
Generalized	 Summary	Mendelian	Randomization	 (GSMR2)	 as	 our	 primary	MR	 analysis	method	 and	 as	
recommended,	we	 considered	phenotypes	with	at	 least	10	quasi-independent	 instruments	 for	 analysis	
24,25.	To	do	so,	we	identified	phenotypes	with	at	least	10	GWS	SNPs	via	linkage	disequilibrium	(LD)-based	
clumping	on	the	discovery	GWAS	summary	statistics	using	the	following	parameters	in	PLINK	1.926:	LD	r2	>	
0.001,	window	10,000	kb,	P	≤	5e−8.	We	used	a	subset	of	16,886	individuals	of	European	descent	from	the	
Haplotype	Reference	Consortium	as	an	LD	reference	panel26,27.	We	did	not	consider	phenotypes	describing	
imaging	quality	control.	

Our	 phenotype	 selection	 strategy	 was	 not	 conditioned	 on	 genetic	 correlation	 (rg),	 as	 MR	 causal	
estimates	and	rg	estimates	are	not	always	correlated	23,28.	Therefore,	removing	phenotypes	with	significant	
genetic	 correlations	 with	 other	 phenotypes	 may	 lead	 to	 information	 loss.	 We	 calculated	 pairwise	 rg	
estimates	between	all	phenotypes	(298	choose	2	=	44,253	tests)	using	LD-score	regression	22,29	,	applying	
a	 Benjanini-Hochberg	 correction	 for	multiple	 testing,	 and	 constructed	 a	 genetic	 correlation	matrix	 for	
comparison	with	our	causal	effect	matrix	(Fig.	S1).		
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GSMR2	analysis	
All	MR	analyses	were	carried	out	 in	compliance	with	the	STROBE-MR	guidelines	30.	We	performed	298	
choose	2	sets	of	forward	and	reverse	MR	tests	(88,506	tests)	using	GSMR2	with	the	following	parameters:	
heterogeneity	in	dependent	instruments	(HEIDI)	p-value	threshold	=	0.01,	LD	r2	threshold	=	0.05,	LD	FDR	
threshold	=	0.05,	including	297	brain	imaging	phenotypes	and	BD.	For	estimating	the	causal	effect	of	brain	
phenotypes	on	each	other,	we	used	SNPs	 from	 the	discovery	 sample	 for	exposures	and	SNPs	 from	 the	
replication	sample	 for	outcomes,	 to	avoid	potential	bias	arising	 from	sample	overlap	31.	The	HEIDI	 test	
detects	SNPs	which	are	pleiotropic	between	the	exposure	and	outcome,	thus	violating	the	instrumental	
assumptions	of	MR,	and	these	were	removed	prior	to	causal	estimation.	We	applied	a	Benjamini	Hochberg	
correction	to	the	resultant	p-value	matrix	and	considered	MR	tests	with	BD	as	a	term	at	Q	<	0.05	and	Q	<	
0.01	for	further	investigation	(where	Q	is	the	FDR-corrected	p-value).	If	exposure	instruments	were	not	
present	in	sufficient	quantities	in	outcome	summary	statistics	(<10),	causal	effects	were	not	estimated.	A	
298×298	matrix	of	exposures	(rows)	by	outcomes	(columns)	was	populated	using	the	β	coefficients	of	all	
MR	tests,	representing	our	total	causal	effects	(TCE)	matrix.	We	tested	 for	a	difference	 in	means	 in	 the	
absolute	effect	of	BD	on	every	other	phenotype	in	the	matrix	versus	the	absolute	effect	of	every	phenotype	
in	the	matrix	on	BD	using	an	independent	t-test.	Brain	imaging	phenotypes	were	split	into	13	categories	as	
described	in	the	original	publications	and	detailed	further	in	the	results	section	18,31.	We	further	tested	for	
a	difference	in	means	in	the	absolute	effect	on	BD	per	phenotypic	category	versus	the	absolute	effect	of	BD	
on	that	phenotype	category	using	an	independent	t-test,	with	a	Bonferroni	correction	for	the	13	categories	
tested	(P=0.05/13=3.84e-3).	We	measured	the	correlation	between	every	phenotype’s	genetic	correlation	
profile	and	their	causal	effects	as	exposures.	Pairs	with	FDR-significant	(Q	<	0.01)	p-values	containing	BD	
were	compared	to	FDR-significant	(Q	<	0.01)	MR	pairs	containing	BD	as	a	term.		
	
	
	

	
Figure	1	-	Study	workflow		

Figure	made	using	draw.io.	Summary	statistics	were	assembled	from	the	latest	BD	GWAS	6	and	GWAS	of	over	3000	
brain	phenotypes	18.	Clumping	was	performed	using	PLINK1.9	26.	We	utilized	GSMR2	as	our	primary	causal	estimation	
method	using	instruments	from	the	discovery	samples	of	the	UKB	phenotypes	as	exposures	24.	inspre	network	analysis	

was	performed	using	Cytoscape	and	the	networkx	package.		
	
	
	
Sensitivity	Analyses	
FDR-significant	exposure-outcome	pairs	 including	BD	as	a	term	underwent	several	sensitivity	analyses.	
These	 included	 a	 leave-one-instrument-out	 analysis,	 confounder-associated	 instrument	 removal,	 and	
multiple	 MR	 methods	 to	 assess	 robustness	 under	 different	 modeling	 assumptions.	 The	 panel	 of	 MR	
methods	 considered	 included	 the	 inverse	 variance	 weighted,	 simple	 mode,	 weighted	 mode,	 Egger	
regression,	 and	 weighted	 median	 methods	 32,33.	 We	 used	 the	 TwoSampleMR	 package	 to	 apply	 these	
methods	using	SNPs	identified	as	valid	instruments	by	GSMR2	15.	We	plotted	the	resultant	causal	estimates	
and	their	confidence	intervals	to	determine	the	consistency	of	causal	effects	(Figures	S2-S15).	To	identify	
phenotype	 pairs	 where	 causal	 estimates	 across	 SNPs	 were	 heterogeneous,	 we	 performed	 leave-one-
instrument-out	analyses.	This	involved	running	an	inverse	variance	weighted	regression	to	obtain	causal	
estimates	 while	 removing	 one	 valid	 instrument	 at	 a	 time	 34,35.	 We	 repeated	 this	 operation	 per	 FDR-
significant	phenotype	and	plotted	resultant	β	values,	noting	where	test	statistics	lost	statistical	significance	
(Figure	S16).			
	
We	 identified	 a	 panel	 of	 nine	 phenotypes	 that	 were	 potential	 confounders	 of	 the	 exposure-outcome	
relationship	defined	in	the	main	BD	GWAS	study	for	more	focused	instrument	exclusion	experiments	6.	
These	included	problematic	alcohol	use	disorder,	smoking	initiation,	cigarettes	per	day,	drinks	per	week,	
morningness,	 insomnia,	 and	 educational	 attainment	 36–42.	 We	 obtained	 summary	 statistics	 for	 each	
phenotype	from	GWASCatalog43.	Exposure	instruments	that	were	also	significant	associations	(P	≤	5e−8)	
of	a	potential	confounder	were	removed	and	GSMR2	was	rerun.	We	plotted	the	difference	in	𝛽	values	and	
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p-values	before	and	after	 confounder-associated	SNP	 removal	 to	 examine	 if	 the	estimates	were	 robust	
(Figure	S17).	
	

inspre	analysis	
	
We	carried	out	inverse	sparse	regression	using	the	inspre	package	to	estimate	direct	causal	effects	(DCE)	
from	 total	 causal	 effects	 23.	 	 Briefly,	 this	 operation	 seeks	 to	 derive	 a	 precision	 matrix-like	 quantity	
representing	the	conditional	dependencies	between	input	entries,	yielding	a	sparse	output	graph	where	
the	covariance	structure	between	inputs	has	been	accounted	for.	This	collapses	to	a	modified	graphical	
lasso	procedure.	Further	details	on	the	algorithm	can	be	found	in	the	main	text	and	supplemental	note	of	
the	 original	 paper	 by	 Brown	 and	 colleagues	 23.	 We	 chose	 stable	 output	 solutions	 using	 the	 stability	
approach	 to	regularization	strength	selection	method	44.	The	stability	metric,	 termed	𝐷#,	 represents	 the	
average	probability	of	edge	inclusion	in	outputs	under	random	re-samplings	of	the	input	across	different	
penalty	parameters	(λ).	Further	details	on	the	implementation	of	this	method	can	be	found	in	the	primary	
methods	paper	23.	Stable	solutions	were	classified	as	those	with	𝐷# 	values	below	0.05	44.		

Multiple	 stable	 output	 solutions	 can	 exist	 with	 varying	 levels	 of	 numerical	 sparsity.	We	 iterated	 over	
several	 stable	 solutions	 across	 a	 range	 of	 λ	 values	 using	 10-fold	 cross	 validation	 to	 obtain	 a	 range	 of	
potentially	valid	output	graphs.	We	plotted	the	correlation	between	candidate	solutions	satisfying	stability	
criteria	(𝐷# 	≅	0.05)	(Figures	S18-	S20).	In	sparse	solutions,	we	counted	the	number	of	times	a	phenotype	
was	a	non-zero	effector	of	BD	(Figure	S20).			Using	our	specified	output	solutions,	we	repeated	statistical	
tests	carried	out	in	the	TCE	matrix,	testing	for	a	difference	in	means	between	the	absolute	effect	of	BD	on	
all	phenotypes	and	the	absolute	effect	of	all	phenotypes	on	BD	using	an	independent	t-test.	We	tested	for	a	
difference	 in	 means	 in	 the	 same	 quantity	 per	 phenotypic	 category	 as	 previously	 described	 using	 13	
independent	t-tests	which	were	Bonferroni-corrected	for	multiple	testing.		

	

Network	construction	
We	created	subnetworks	from	our	candidate	solutions	using	several	filtering	conditions.	Firstly,	we	ranked	
the	 top	 20	 phenotypes	with	 the	 largest	 absolute	DCE	 effects	 on	BD	 and	 created	 a	 21	 ×	 21	matrix	 (20	
phenotypes	plus	BD)	of	DCE	estimates.	We	created	a	directed	network	from	this	matrix	using	the	networkx	
package,	interpreting	the	input	as	a	weighted	adjacency	matrix.	We	then	removed	all	edges	with	absolute	
weights	 below	 one	 standard	 deviation	 of	 the	 global	 mean	 DCE	 effect	 and	 visualized	 our	 network	 in	
Cytoscape.	We	carried	out	this	process	for	selected	stable	solutions.	For	the	selected	network	solutions,	we	
also	visualized	the	same	networks	using	TCE	and	rg	estimates.	We	created	a	standalone	web	application	
summarizing	all	information	for	these	edges	available	for	download	in	the	Supplementary	Note.		
For	network	visualization	and	experiments,	we	grouped	phenotypes	into	white	matter	phenotypes	(any	
with	‘white	matter’	or	‘WM’	in	their	descriptions	18,23)	and	grey	matter	structural	phenotypes.	We	tested	
for	a	difference	in	out-degree	between	the	categories	across	selected	stable	solutions	to	determine	which	
category	had	more	direct	 influence	on	 the	wider	network	using	an	 independent	 t-test.	Out	degree	was	
calculated	as	the	number	of	non-zero	targets	of	a	phenotype	as	an	exposure	in	the	network.		

BD	prediction	using	causal	estimates	

We	assessed	the	predictive	capabilities	of	our	causal	estimates	for	BD	in	two	separate	cohorts	of	clinically	
defined	BD	participants	and	controls12.	The	first	cohort	had	a	total	sample	size	of	100,	with	44	BD	cases	
and	56	controls;	the	second	cohort	had	a	total	sample	size	of	565,	with	127	cases	and	438	controls.	The	use	
of	these	cohorts	was	approved	by	local	institutional	review	boards	and	ethics	committees,	and	all	study	
participants	provided	written	informed	consent.	Full	cohort	demographic	descriptions	can	be	found	in	the	
Supplemental	Note	(Table	S2).		
Using	 subcortical	 volumetric	 data	 and	 fractional	 anisotropy	 (FA)	measures	 available	 from	 our	 clinical	
samples,	we	matched	14	variables	to	brain	imaging	phenotypes	in	our	direct	causal	matrices.	We	adopted	
a	polygenic-risk-score-like	approach,	whereby	we	summed	the	product	of	our	scaled	causal	weights	and	
normalized	neuroimaging	measures	per	patient	to	derive	a	causal	score	metric,	which	we	refer	to	as	the	
causal	𝛽	score	12,45.	This	procedure	can	be	represented	by	the	following:		
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where	 i	 indexes	 the	 participant,	 j	 indexes	 the	 number	 of	 neuroimaging	 variables	 (z),	X	 represents	 the	
neuroimaging	measure,	and	𝛽	represents	the	causal	estimate	for	that	neuroimaging	variable.	This	results	
in	a	causal	𝛽	score	S	per	individual.	We	fit	the	null	model	by	performing	a	logistic	regression	of	BD	status	
against	covariates,	and	the	full	model	by	regressing	BD	status	against	S	plus	covariates.	We	calculated	the	
Nagalkerke’s	pseudo-R2	variance	explained	for	each	model	and	subtracted	that	of	the	null	model	from	the	
full	model	to	obtain	the	variance	explained	by	S,	which	was	subsequently	transformed	to	the	liability	scale	
to	account	for	case	ascertainment	bias	using	a	BD	population	prevalence	of	2%4647.	We	assessed	model	fit	
using	an	analysis	of	variance	(ANOVA)	model,	comparing	the	null	model	to	the	full	model.	We	determined	
an	empirical	p-value	distribution	 for	 this	quantity	by	 randomly	permuting	BD	and	control	 status	1000	
times	and	refitting	null	and	full	models,	using	an	ANOVA	to	obtain	a	p-value	for	the	fit	48.	Significance	was	
assessed	 by	 determining	 the	 proportion	 of	 tests	with	 empirical	 p-values	 greater	 than	 the	 observed	 p-
values.	We	carried	out	 this	procedure	across	 cohorts	using	DCE	weights	 to	 calculate	S	 49.	We	used	 the	
r2redux	package	to	test	for	a	significant	difference	between	variance	explained	between	S	scores	calculated	
using	DCE	and	TCE	weights	50.	We	performed	all	tests	separately	in	each	cohort	and	meta-analyzed	the	
regression	results	using	the	dense	DCE	results	with	a	random-effects	model	using	the	metafor	R	package	
51.		
	

Results	

Causal	relationships	between	neuroimaging	measures	and	BD	in	TCE		

We	found	298	phenotypes	with	≥	10	GWS	clumped	instruments	(297	brain	imaging	phenotypes	plus	BD).	
These	phenotypes	can	be	grouped	into	13	phenotypic	categories	(Table	S1)	previously	defined	by	Smith	
and	 colleagues	 18.	 Briefly,	 these	 categories	 include	 regional	 and	 tissue	 volume	 (describing	 volumetric	
changes),	WM	 tract	 ICVF	 (white	matter	 tract	 intracellular	 volume	 fraction,	 estimated	 from	 the	 neurite	
orientation	dispersion	and	density	imaging	model	18,52),	cortical	grey-white	contrast,	WM	tract	diffusivity	
(describing	 how	 freely	 water	 molecules	 can	 diffuse),	 cortical	 area,	 WM	 tract	 OD	 (white	 matter	 tract	
orientation	dispersion,	describing	the	orientation	of	diffusion),	regional	and	tissue	intensity,	WM	tract	FA	
(white	matter	tract	fractional	anisotropy,	describing	the	directionality	of	restricted	diffusion),	WM	tract	
ISOVF	 (white	 matter	 tract	 isotropic	 or	 free	 water	 volume	 fraction),	 regional	 T2*	 (T2	 intensity	 from	
susceptibility-weighted	imaging,	describing	the	amount	of	water	content	in	a	region),	rsfMRI	connectivity	
(resting	state	functional	MRI	connectivity,	describing	features	from	an	independent	components	analysis	
(ICA)	 introduced	by	Smith	and	colleagues	 18),	WM	tract	MO	(white	matter	 tract	diffusion	 tensor	mode,	
describing	 whether	 or	 not	 multiple	 fibres	 are	 present	 in	 the	 high	 FA	 regions),	 and	 white	 matter	
hyperintensity	volume.	More	details	on	phenotypic	categories	and	the	discussed	constructs	can	be	found	
in	the	Supplemental	note	of	previous	work	performed	by	Elliott	and	colleagues	9.	The	best	represented	
phenotypic	 group	 was	 regional	 and	 tissue	 volume	 phenotypes,	 with	 71	 phenotypes	 included	 in	 our	
analyses	(Table	S1).	The	median	𝑆𝑁𝑃	ℎ!		of	included	brain	phenotypes	was	0.3	(calculated	using	ldsc	by	
Elliot	and	colleagues18).	Cortical	grey-white	contrast	phenotypes	had	the	highest	median	heritability	of	any	
group	category	(median	𝑆𝑁𝑃	ℎ!	0.33,	Table	S1).			
Using	our	panel	of	298	phenotypes,	we	carried	out	88,506	forward/reverse	MR	experiments	using	GSMR2.	
After	applying	FDR	correction,	we	 found	that	28,832	phenotype-phenotype	pairs	had	significant	causal	
estimates	 (Q<=0.01).	The	majority	of	 significant	 causal	pairs	 (28,805)	were	brain-phenotype	on	brain-
phenotype	 causal	 estimates,	 with	 27	 brain	 phenotypes	 having	 an	 FDR-significant	 causal	 effect	 on	 BD	
(Figure	2A).	Twenty	of	these	significant	exposures	were	white	matter	tract	intracellular	volume	fraction	
(WM-ICVF)	phenotypes.	We	 found	one	significant	 causal	pair	 featuring	BD	as	an	exposure	at	a	 relaxed	
threshold	of	Q<0.05	-	the	strength	of	the	white-gray	matter	contrast	in	the	right	hemispheric	insula	(𝛽 =
	0.094,	95%	CI	= 	0.031	 − 0.156,	Q=0.011,	Figure	2C,	Table	1).		
	
Our	sensitivity	analyses	were	focused	on	the	27	brain-phenotype-BD	pairs	found	to	be	FDR-significant	at	
Q<0.01	and	the	one	BD-brain-phenotype	pair	found	to	be	FDR-significant	at	Q<0.05.	Our	formal	sensitivity	
analysis	using	TwoSampleMR	 resulted	 in	2	phenotypes	with	 test	 statistics	 losing	statistical	 significance	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.12.24318953doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.12.24318953
http://creativecommons.org/licenses/by-nc-nd/4.0/


6	

after	instrument	removal	(mean	ICVF	in	the	right	superior	cerebellar	peduncle	on	BD;	mean	ICVF	in	the	
left	 anterior	 corona	 radiata	 on	 BD)	 (Figure	 S16).	We	 found	 9	 SNPs	 overlapping	 between	 our	 panel	 of	
potential	confounder	GWAS	significant	hits	and	valid	exposure	instruments	from	our	28	pairs	of	interest.	
This	resulted	in	9	pairs	requiring	re-analysis	with	confounder-associated	SNPs	removed.	All	tests	remained	
significant	at	p	<	0.05	after	SNP	removal	with	minimal	changes	to	estimated	𝛽	values	(Figure	S17).		
	
We	found	that	23/28	of	our	FDR-significant	pairs	had	significant	test	statistics	in	at	least	three	MR	methods	
out	of	6.	For	example,	the	standardized	effect	of	BD	on	the	strength	of	the	white-gray	matter	contrast	in	the	
right	hemispheric	insula	was	found	to	be	significant	by	GSMR2,	inverse	variance	weighted	regression,	and	
the	weighted	median	method.	Two	phenotypes	were	significant	in	at	least	5	MR	methods	including	GSMR2;	
mean	ICVF	in	the	left	posterior	corona	radiata	on	BD,	and	the	volume	of	the	grey	matter	in	the	right	caudate	
on	BD.		The	effect	of	volume	of	the	grey	matter	in	the	left	caudate	on	BD	had	confidence	intervals	that	did	
not	contain	zero	across	all	methods,	but	p-values	from	the	weighted	and	simple	mode	estimators	were	
non-significant	 (Figure	 S2A).	 We	 found	 good	 correlation	 between	 rg	 estimates	 from	 ldsc	 and	 causal	
estimates	per	phenotype	 in	 the	 forward	direction	 (median	correlation	of	0.84).	After	carrying	out	FDR	
correction,	we	found	one	phenotype	with	a	significant	(Q<0.01)	genetic	correlation	test	statistic	with	BD	
that	was	also	identified	as	a	significant	causal	exposure	in	our	MR	experiments:	the	mean	ICVF	in	the	left	
posterior	corona	radiata	on	BD.	We	constructed	a	TCE	using	the	causal	estimates	from	GSMR2	(Figure	2D).	
	

	
Figure	2	-	GSMR2	results	and	causal	estimates	

A)	Plot	of	27	causal	relationships	with	FDR-significant	test	statistics	at	Q<0.01	containing	BD	as	a	term.	Odds	ratio	
and	confidence	intervals	from	GSMR2	are	presented	along	the	x-axis	with	phenotypes	colored	by	their	category.	B)	
𝑆𝑁𝑃ℎ!estimates	for	phenotypes	included	in	our	MR	analyses	on	the	x-axis	against	phenotype	category	on	the	y-axis.	
Estimates	were	derived	from	the	original	paper	which	utilized	ldsc	to	calculate	heritability.	From	bottom	to	top,	the	y-
axis	is	sorted	by	the	number	of	phenotypes	in	that	category	in	the	network	from	largest	to	smallest.	C)	Plot	of	causal	
estimates	and	their	associated	confidence	intervals	for	the	effect	of	BD	on	the	strength	of	the	white-gray	contrast	in	
the	right	hemispheric	insula	across	six	MR	methods.	After	FDR	correction	of	GSMR2	p-values,	this	pair	was	found	to	
have	a	Q	value	of	0.011.	D)	Matrix	of	total	causal	effects	for	all	phenotypes	included	in	our	analyses.	Exposures	are	

presented	along	the	rows,	with	the	outcome	of	that	exposure	presented	in	the	columns,	making	the	matrix	asymmetric.			
	
	
Estimated	direct	causal	associations	between	white	matter	phenotypes	and	BD	
	
We	 found	several	 candidate	 inspre	solutions	with	 instability	metrics	at	our	 threshold	of	approximately	
0.05.	 The	 correlation	 between	 77	 candidate	 solutions	 was	 high	 (median	 𝜌=0.76,	 Figure	 S18).	 Most	
solutions	were	sparse	(5	solutions	with	more	than	20%	non-zero	entries,	Figure	S19).	Amongst	sparse	
solutions	(72	solutions),	four	WM-ICVF	phenotypes	occurred	as	non-zero	effectors	of	BD	in	at	least	50%	of	
outputs	(mean	ICVF	in	left	superior	longitudinal	fasciculus,	weighted-mean	ICVF	in	right	superior	and	left	
inferior	longitudinal	fasciculus,	weighted-mean	ICVF	in	forceps	minor).	Given	the	broad	range	of	possible	
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7	

candidate	 solutions	 of	 varying	 numerical	 density,	 we	 focused	 on	 two	 stable	 output	 DCE	 matrices	 of	
differing	non-zero	percentages	(Figure	3,	Figure	S19).	Specifically,	we	chose	a	dense	solution	with	74%	
non-zero	values	and	a	sparse	solution	with	11%	non-zero	values	(Figure	S19).	In	our	dense	output,	the	
largest	effector	of	BD	was	the	volume	of	the	gray	matter	in	the	right	caudate.	In	this	matrix,	we	found	that	
the	mean	causal	effect	of	phenotypes	on	BD	was	statistically	larger	than	vice	versa	(P=1.3e-8,	Figure	4A).	
This	result	was	mirrored	in	the	TCE	input,	with	phenotypes	exerting	a	larger	mean	causal	effect	on	BD	than	
vice	versa	(P=2.76e-28).	In	our	dense	DCE	solution,	we	found	that	in	phenotypic	categories	with	greater	
than	20	phenotypes,	WM-ICVF	phenotypes	had	a	statistically	larger	estimated	effect	on	BD	than	vice	versa	
after	Bonferroni	correction	(P=0.0012,	Figure	4D).	This	result	was	also	observed	in	the	TCE	input,	with	
WM	 diffusivity,	 cortical	 grey-white	 contrast,	 and	 regional/tissue	 volume	 categories	 also	 found	 to	 be	
significant	in	the	same	direction	(Figure	4C).		We	found	that	white	matter	phenotypes	had	a	statistically	
larger	out	degree	than	non-white	matter	phenotypes	in	our	dense	solution	(P=3.37e-12,	Figure	4B).		The	
correlation	between	our	input	TCE	and	dense	DCE	was	0.21	(Figure	3B).	The	top	20	causal	effectors	of	BD	
in	this	solution	contained	8	white	matter	phenotypes	and	12	non-white	matter	phenotypes	(Figure	5A).		
	
Our	 sparse	 solution	with	11%	non-zero	 entries	 featured	 the	mean	 ICVF	 in	 the	 corpus	 callosum	as	 the	
largest	effector	of	BD	(Figure	5B).	We	found	that	all	non-zero	effectors	of	BD	in	this	network	were	WM	
ICVF	phenotypes.	We	found	that	white	matter	phenotypes	had	a	statistically	larger	out	degree	than	non-
white	matter	phenotypes	in	this	network	(P=4.31e-19).	Of	the	seven	non-zero	effectors	of	BD,	five	were	
phenotypes	describing	diffusivity	 in	 the	superior	or	 inferior	 longitudinal	 fasciculus,	with	 the	other	 two	
phenotypes	 describing	 diffusivity	 in	 the	 forceps	 minor	 and	 corpus	 callosum.	 The	 global	 mean	 causal	
estimate	decreased	from	0.065	to	0.001	in	the	dense	DCE	solution	and	decreased	to	0.0008	in	the	sparse	
solution.	We	plotted	the	rg	estimates	for	each	of	the	aforementioned	networks	and	found	that	the	direction	
of	 effect	was	 not	 always	 consistent	 (Figure	 5C;	 5D).	 Further,	 we	 constructed	 a	 standalone	 interactive	
Cytoscape	web	application	summarizing	Figure	5	in	its	entirety	(Supplementary	materials).	
	
	

	
Figure	3	-	DCE	estimates	of	input	TCE	

A)	Matrix	of	direct	causal	effects	from	a	stable	graph	solution	estimated	using	inspre.	Exposures	are	presented	along	
the	rows	and	outcomes	along	the	columns,	making	the	matrix	asymmetric.	This	solution	contains	74%	non-zero	values	
and	a	𝐷&	estimate	<=0.05.	B)	Correlation	plot	of	the	dense	DCE	solution	from	A	against	the	input	TCE	from	Figure	2D.	
Points	are	colored	according	to	whether	the	sign	of	the	causal	estimate	is	consistent	across	input	TCE	and	output	DCE.	
Upper	and	right	histograms	describe	the	respective	distributions	of	the	TCE	and	dense	DCE.	Dotted	green	lines	detail	
one	standard	deviation	of	the	respective	matrices.	C)	Matrix	of	direct	causal	effects	from	a	stable	graph	solution	

estimated	using	inspre.	Exposures	are	presented	along	the	rows	and	outcomes	along	the	columns,	making	the	matrix	
asymmetric.	This	solution	contains	11%	non-zero	values	and	a	𝐷& 	estimate	<=0.05.	D)	Correlation	plot	of	the	sparse	
DCE	solution	from	C	against	the	input	TCE	from	Figure	2D.	Points	are	colored	according	to	whether	the	sign	of	the	
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causal	estimate	is	consistent	across	input	TCE	and	output	DCE.	Upper	and	right	histograms	describe	the	respective	
distributions	of	the	TCE	and	dense	DCE.	Dotted	green	lines	detail	one	standard	deviation	of	the	respective	matrices.		

	
	

	
Figure	4	-	Causal	effects	on	BD	and	neuroimaging	phenotypes	across	DCE	and	TCE	solutions	

A)	Violin	plots	of	the	absolute	causal	effect	of	BD	on	phenotypes	and	vice	versa,	where	the	absolute	causal	effect	is	
detailed	on	the	x-axis.	Left	panel	uses	the	absolute	causal	effects	from	the	TCE	matrix	and	right	panel	uses	the	absolute	
causal	effects	from	the	dense	DCE	matrix.	P-values	were	calculated	from	an	independent	t-test	of	means	between	both	
groups.	B)	Violin	plots	of	out	degree	in	different	phenotypic	categories	across	DCE	solutions,	where	out	degree	is	
presented	on	the	x-axis.	Out	degree	is	calculated	as	the	number	of	non-zero	connections	from	phenotypes	of	the	

specified	category	where	the	index	phenotype	acts	as	the	exposure.	P-values	were	calculated	using	an	independent	t-
test	of	means.	C)	Absolute	causal	effect	of	BD	on	phenotypes	and	vice	versa	in	the	TCE	stratified	by	phenotypic	
category.	Independent	t-tests	were	carried	out	within	categories	and	p-values	less	than	the	Bonferroni-corrected	

significance	level	are	colored	red.	D)	Absolute	causal	effect	of	BD	on	phenotypes	and	vice	versa	in	the	DCE	stratified	by	
phenotypic	category.	Independent	t-tests	were	carried	out	within	categories	and	p-values	less	than	the	Bonferroni-

corrected	significance	level	are	colored	red.		
	

	
Comparison	of	FDR-significant	pairs	across	causal	estimates	and	genetic	
correlation	results	
	
We	observed	that	3/28	FDR-significant	causal	pairs	containing	BD	as	a	term	had	non-zero	values	across	
all	 considered	 experiments	 -	 ICVF	 in	 the	 corpus	 callosum,	 ICVF	 in	 the	 right	 hemispheric	 superior	
longitudinal	 fasciculus,	and	 ICVF	 in	 the	 left	hemispheric	superior	 longitudinal	 fasciculus	 (Table	1).	The	
direction	of	effect	was	consistent	between	all	MR	methods	and	both	dense	and	sparse	DCE	solutions,	with	
standardized	unit	increases	in	the	phenotype	values	estimated	to	have	a	negative	causal	effect	on	BD.	We	
also	observed	that	the	genetic	correlation	estimates	were	also	negative,	although	the	p-values	of	the	test	
statistics	were	insignificant	across	all	three	phenotype	pairs.	Increased	volume	of	the	right	caudate	was	
estimated	to	have	a	significant	causal	effect	on	BD	in	5	out	of	6	considered	MR	methods	(all	models	except	
Egger	regression).	 	Seven	phenotype	pairs	had	 inconsistent	signs	with	their	rg	estimates,	 including	the	
effect	of	BD	on	the	strength	of	the	white-gray	contrast	in	the	right	hemispheric	insula.	Seven	out	of	28	FDR-
significant	 pairs	 had	 significant	 genetic	 correlation	 estimates,	 five	 of	which	described	negative	 genetic	
correlations	(Table	1).	The	range	of	rg	values	for	the	7	significant	pairs	was	-0.0973	to	0.1438,	with	the	
median	rg	found	to	be	-0.0759.				
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Figure	5	-	DCE	estimates	of	input	TCE	

A)	Network	diagram	of	the	top	20	exposures	acting	on	BD	in	the	dense	DCE	solution	thresholded	by	one	standard	
deviation.		B)	Network	diagram	of	exposures	acting	on	BD	in	the	sparse	DCE	solution	thresholded	by	one	standard	
deviation.	C)	Network	diagram	of	rg	values	between	the	interactions	present	in	A.	D)	Network	diagram	of	rg	values	

between	the	interactions	present	in	B.		
	

	
Prediction	of	BD	status	using	causal	estimates		
We	found	that	our	causal	𝛽	score	calculated	using	DCE	weights	(direct	causal	𝛽	score)	was	significantly	
associated	with	age	in	our	Galway	cohort	(P<0.05),	and	with	age	and	sex	in	our	Oslo	cohort.	Holding	age	
constant,	we	estimated	 that	a	1	 s.d.	 	 increase	 in	direct	 causal	𝛽	 score	was	associated	with	a	1.06	odds	
increase	 in	BD	 risk	 (95%	C.I.	 0.69,	1.61;	P=0.802)	 in	 the	Galway	population.	The	direct	 causal	𝛽	 score	
explained	0.0415%	of	variance	(𝑅!liability	scale)	in	BD	status	and	the	area	under	the	receiver	operating	
characteristic	 curve	 (AUC)	 was	 0.55.	 The	 empirical	 p-value	 of	 the	 direct	 causal	 𝛽	 score	 was	 deemed	
insignificant	after	1000	permutations	of	phenotype	values	across	all	individuals	(empirical	P=0.811).		
In	our	Oslo	 testing	population,	we	 found	that	age	and	sex	were	significantly	associated	with	our	direct	
causal	𝛽	score.	Including	both	of	these	variables	as	covariates,	we	found	that	1	s.d.	unit	increase	in	direct	
causal	𝛽	score	was	associated	with	a	1.03	odds	increase	in	BD	status	(95%	C.I.	0.82,	1.29;	P=0.805).	In	this	
cohort,	 the	 direct	 causal	 𝛽	 score	 explained	 0.01%	 of	 phenotypic	 variance	 on	 the	 liability	 scale.	 The	
empirical	 p-value	 of	 the	 direct	 causal	 𝛽	 score	 was	 deemed	 insignificant	 after	 1000	 permutations	 of	
phenotype	values	across	all	 individuals	 (empirical	P=0.791).	The	AUC	 for	 this	 cohort	was	0.60.	After	a	
random-effects	meta-analysis,	we	found	a	nonsignificant	association	between	direct	causal	𝛽	score	and	BD	
status	across	cohorts	(OR	=	1.03,	95%	C.I.	0.85,	1.26;	P=0.7359,	Figure	S21).		
We	 found	a	non-significant	difference	between	 the	variance	explained	using	causal	𝛽	 scores	calculated	
using	either	TCE	or	DCE	weights	(Galway	two-sided	P=0.856;	Oslo	two-sided	P=0.644).	We	found	that	the	
liability	𝑅!	 from	causal	𝛽	scores	calculated	using	TCE	weights	was	0.009	in	the	Galway	population,	and	
0.067	in	the	Oslo	population.			

R pallidum intensity

ICVF mcp

gmv R thalamus

OD L cp

paracentral contrast

R caudate intensity

gmv cerebellum

Volume lh hippo

rh volume amyg

ICVF L cp

ICVF R sup cp

parahippo contrast

OD R ext cap

MD L int cap

BD

R caudate volumeICVF R corona radiata

cuneus contrast

MD L slf

gmv L caudate

gmv R caudate

White matter Non-white matter

Dense DCE Sparse DCE 

ICVF R slf

ICVF R slf (dMRI)

ICVF L slf

ICVF forceps m

ICVF R ilf

BD

ICVF corp call

D
C

E
 b

e
ta

0

-0.03

0.05

D
C

E
 b

e
ta

0

-0.05

A B

C

parahippo contrast

ICVF R sup cp

ICVF L cp

rh volume amyg

Volume lh hippo

gmv cerebellum

R caudate intensity

paracentral contrast
OD L cp

gmv R thalamus

ICVF mcp

R pallidum intensity

gmv R caudate

gmv L caudate

MD L slf

cuneus contrast

ICVF R corona radiata

R caudate volume

BD

MD L int cap

OD R ext cap

parahippo contrast

ICVF R sup cp

ICVF L cp

rh volume amyg

Volume lh hippo

gmv cerebellum

R caudate intensity

paracentral contrast
OD L cp

gmv R thalamus

ICVF mcp

R pallidum intensity

gmv R caudate

gmv L caudate

MD L slf

cuneus contrast

ICVF R corona radiata

R caudate volume

BD

MD L int cap

OD R ext cap

ICVF corp call

BD

ICVF R ilf

ICVF forceps m

ICVF L slf
ICVF R slf (dMRI)

ICVF R slf

rg rg

Sparse DCE rg

Dense DCE rg

-1

1 1

-1

D

White matter

Non-white matter

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.12.24318953doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.12.24318953
http://creativecommons.org/licenses/by-nc-nd/4.0/


10	

	
	
Discussion		
We	ran	over	88	thousand	MR	analyses	to	examine	the	potential	causal	relationship	between	brain	imaging	
phenotypes	and	BD,	 finding	 several	 significant	 causal	pairs.	 Standardized	unit	 increases	 in	phenotypes	
indexing	 white	 matter	 microstructural	 variation	 typically	 had	 negative	 causal	 effects	 on	 BD	 status.	
Previous	 BD	 neuroimaging	 and	 endophenotype	 research	 has	 focused	 on	 observed	 white	 matter	
microstructural	differences,	with	a	large	mega-analysis	reporting	significantly	decreased	FA	in	the	body	of	
the	corpus	callosum	53,54.	Additionally,	the	mean	ICVF	in	the	corpus	callosum	was	found	to	be	one	of	three	
FDR-significant	 phenotypes	 with	 non-zero	 values	 in	 both	 selected	 DCE	 solutions.	 Whether	 or	 not	
decreased	 FA	 (used	 as	 a	 proxy	 for	 tract	microstructural	 organization,	with	 lower	 values	 implying	 less	
directionally	 restricted	 diffusion)	 and	 decreased	 ICVF	 (representing	 less	 axonal	 tissue,	 or	 decreased	
neurite	density)	correlate	in	all	cases	is	unknown.		
We	 find	that	 the	majority	of	significant	causal	effects	are	observed	between	pairs	of	brain	phenotypes,	
which	also	exhibit	large	patterns	of	genetic	correlation	with	each	other.		This	result	may	be	driven	by	the	
presence	of	latent	causal	factors	which	induce	dependencies	between	groups	of	brain	regions.	Exploring	
this	hypothesis	further	is	an	important	consideration	for	future	research.		
We	also	observe	that	the	effect	of	brain	phenotypes	on	BD	is	consistently	of	 larger	magnitude	than	the	
effect	of	BD	on	brain	phenotypes	in	both	the	TCE	estimates	and	our	dense	DCE	solution,	consistent	with	
previous	results	investigating	the	causal	relationship	between	psychiatric	conditions	and	brain	imaging	
phenotypes19.	This	finding	is	interesting	given	that	a	degree	of	brain-state	variation	is	plastic	and	can	vary	
based	on	mood	state,	medication	usage,	or	previous	viral	infection	55–57.	Our	results	indicate	that	certain	
brain	alterations,	which	can	be	characterized	as	brain-trait	metrics,	may	precede	BD	onset,	underscoring	
the	importance	of	brain	development	in	psychiatric	pathology	58.	The	dysconnectivity	hypothesis	of	BD	
neuroanatomy	 posits	 that	 aberrant	 connections	 between	 brain	 regions	 may	 give	 rise	 to	 the	 various	
cognitive	features	observed	in	individuals	with	BD	59.	Our	finding	of	white	matter	ICVF	phenotypes	as	the	
main	effectors	of	BD	across	TCE	and	DCE	solutions	may	capture	an	aspect	of	this	hypothesis,	whereby	less	
axonal	tissue	and	decreased	neurite	density	may	impact		information	flow	between	indexed	regions.		
Aggregating	phenotypic	categories	 into	 ‘white	matter’	or	 ’non-white	matter’,	we	 find	 that	white	matter	
phenotypes	across	both	DCE	solutions	have	the	largest	out	degree	as	measured	by	the	number	of	non-zero	
outgoing	edges.	White	matter	tissue	is	comprised	of	more	axonal	fibers	than	gray	matter,	which	by	contrast	
is	composed	of	more	axonal	endings	and	neuronal	bodies.	Larger	effects	of	white	matter	phenotypes	on	
BD	 implies	 that	 cognitive	 systems	 associated	 with	 BD	 are	 characterized	 by	 aberrant	 information	
transmission	across	and	between	brain	regions.	This	effect	is	also	observed	at	various	levels	of	sparsity	in	
output	 graphical	 lasso	 solutions	 that	 have	 accounted	 for	 the	 correlation	 structure	 of	 causal	 estimates	
between	brain	regions.		
At	the	individual	regions	level,	we	find	several	results	consistent	with	the	previous	literature.	ICVF	levels	
in	the	left	anterior	thalamic	radiations	was	found	to	be	a	non-zero	effector	of	BD	in	over	90%	of	stable	
output	graph	solutions	in	our	work,	with	a	previous	study	finding	decreased	FA	in	this	fiber	in	individuals	
with	 BD	 60.	 This	 tract	 connects	 nuclear	 groups	 in	 the	 thalamus	 to	 the	 frontal	 lobe,	with	 the	 thalamus	
historically	recognized	as	an	important	component	of	the	limbic	system	61.	The	limbic	system	is	thought	to	
play	 a	 key	 role	 in	 emotional	 processing	 tasks,	 especially	 in	 the	 context	 of	 BD;	 previous	 studies	 have	
hypothesized	that	dysfunction	of	limbic	processes	can	contribute	to	BD	symptoms	10,62.	Another	region	of	
interest	 across	 solutions	 is	 the	 forceps	 minor,	 which	 is	 found	 in	 50%	 of	 stable	 sparse	 output	 graph	
solutions,	is	an	FDR-significant	phenotype	acting	on	BD,	and	is	a	non-zero	effector	of	BD	in	our	sparse	DCE	
graph.	The	forceps	minor	is	a	fiber	bundle	connecting	the	lateral	and	medial	surfaces	of	the	frontal	lobes	
and	crosses	the	midline	via	the	genu	of	the corpus	callosum,	and	has	been	previously	implicated	in	BD	
through	decreased	FA	measures	and	reduced	volume	63–65.	Previous	work	has	also	identified	shared	loci	
between	 FA	 in	 the	 corpus	 callosum	 and	 BD	 66.	 Other	 brain	 phenotypes	 of	 interest	 include	 diffusion	
measures	in	the	superior	and	inferior	longitudinal	fasciculus,	identified	as	non-zero	effectors	of	BD	across	
multiple	sparse	solutions	(Figure	S20).		Our	selected	sparse	DCE	network	implicated	several	measures	of	
the	ICVF	in	the	superior	longitudinal	fasciculus,	which	is	a	large	connection	of	associative	fibers	connecting	
frontal	and	anterior	areas	of	the	cerebrum.	Bilateral	tracts	were	also	found	to	have	lower	FA	in	a	previous	
mega-analysis	of	cohorts	from	multiple	sites	in	the	ENIGMA	consortium	53.		
Increased	volumes	of	both	the	left	and	right	caudate	are	FDR-significant	effectors	of	BD	according	to	GSMR2	
estimates.	The	 same	directions	of	 effect	 are	observed	 in	our	 stable	dense	DCE	solution	and	across	MR	
methods.	This	is	contrary	to	the	direction	of	effect	reported	in	a	previous	observational	ENIGMA	study	53.	
The	caudate	has	been	of	historical	interest	in	BD,	with	early	neuroimaging	studies	describing	increased	
activity	in	the	left	hemisphere	67.	How	volumetric	changes	in	caudal	structures	(and	the	striatum	complex	
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to	which	they	are	related)	may	impact	BD	symptoms	remains	unknown,	but	previous	studies	have	posited	
that	its	function	is	related	to	reward	systems	and	memory	68.	The	striatum	is	also	thought	to	be	involved	
in	 addictive	 behaviors	 and	 associative	 learning,	 which	 are	 relevant	 cognitive	 systems	 related	 to	 BD	
pathology	69.		
We	found	that	only	7	of	28	FDR-significant	BD-phenotype	causal	pairs	have	significant	genetic	correlation	
estimates.	This	 indicates	that	conditioning	phenotype	inclusion	for	our	MR	analyses	on	the	presence	of	
significant	genetic	correlation	estimates,	as	employed	in	previous	studies	19,	would	miss	relevant	causal	
relationships,	Generally,	rg	estimates	and	the	causal	relationships	between	those	regions	are	not	always	
consistent	in	direction	or	magnitude,	as	evidenced	in	our	network	diagrams.	This	implies	that	different	
information	is	captured	by	these	distinct	methods	70.			
Finally,	 our	 predictive	 analysis	 attempts	 to	 ground	 our	 theoretical	 causal	 experiments	 in	 a	 practical	
application.	While	 the	 variance	 explained	on	 the	 liability	 scale	 is	marginally	higher	using	DCE	weights	
compared	to	TCE	weights	in	the	Galway	testing	set,	our	limited	sample	size	likely	leaves	us	underpowered	
to	detect	any	true	effects	or	establish	if	either	solution	has	any	predictive	capacity.	Additionally,	we	observe	
the	opposite	effect	 in	the	Oslo	population.	To	our	knowledge,	this	marks	the	first	application	of	MR	for	
predictive	 applications	 at	 scale,	 which	 if	 realized,	 may	 have	 transformative	 benefits	 for	 the	 proactive	
treatment	of	psychiatric	conditions.	Future	work	could	explore	potential	increases	in	predictive	power	by	
obtaining	neuroimaging	information	on	the	most	significant	causal	neuroimaging	variables.			
	
Some	limitations	of	this	study	warrant	noting.	The	sample	size	discrepancies	between	brain	phenotypes	
and	BD	may	impact	the	precision	of	our	causal	estimates.	However,	we	have	utilized	the	best-powered	
GWAS	 currently	 available	 for	 all	 phenotypes.	Variants	 that	 are	GWS	 for	 brain	phenotype	 variation	 are	
measured	in	a	population	of	individuals	of	primarily	European	ancestry	aged	40-69,	which	may	impact	the	
generalizability	of	our	results	to	other	populations.	We	performed	numerous	tests	to	ensure	the	robustness	
of	our	MR	results,	in	line	with	STROBE	guidelines;	however,	it	is	difficult	in	practice	to	guarantee	that	all	
assumptions	 have	 been	 met.	 Future	 work	 to	 test	 the	 predictive	 capabilities	 of	 causal	 estimates	 in	
longitudinal	 BD	 neuroimaging	 samples	would	 also	 be	 of	 great	 interest	 for	 future	 clinical	 applications.	
Finally,	 when	 testing	 for	 a	 difference	 in	 means	 between	 BD	 causal	 effects	 and	 causal	 effects	 on	 BD,	
accounting	 for	 the	 correlation	 between	 incoming	 and	 outgoing	 causal	 effects	 in	 similar	 phenotype	
categories	may	attenuate	 the	significance	of	our	 independent	 t-test	results.	However,	 this	 is	difficult	 to	
achieve	 in	 practice	 because	 each	 exposure	 is	 indexed	 by	 different	 instruments,	 thus	making	 each	 test	
technically	independent.	At	the	category	level,	our	application	of	a	Bonferroni	correction	ensures	that	we	
are	conservative	in	our	estimation.	
	
Conclusions	
	
Here,	we	leverage	access	to	multiple	well-powered	GWAS	to	carry	out	a	multitude	of	MR	tests	to	generate	
new	causal	hypotheses	while	carrying	out	robust	sensitivity	analyses	and	sanity	checks	in	the	process.	Our	
application	of	graphical	 lasso	methods	 to	causal	estimates	also	offers	 interpretative	benefit	at	both	 the	
individual	 component	 and	 systems	 level,	 providing	 direct	 causal	 estimates	 accounting	 for	 the	 causal	
relationships	 between	 brain	 regions.	 We	 find	 that	 white	 matter	 ICVF	 phenotypes	 and	 white	 matter	
phenotypes	 in	 general	 are	 consistent	 effectors	 of	 BD,	 implying	 that	 white	 matter	 microstructure	
disruptions	have	a	causal	 relationship	with	BD.	We	also	 find	 that	brain	phenotype	variation	has	 larger	
effects	on	BD	than	vice	versa,	establishing	a	novel	framework	for	conceptualizing	BD	pathology.	We	also	
attempt	to	establish	that	causal	estimates	can	have	interventional	potential	through	predictive	applications	
to	separate	datasets	with	limited	success.		
	
Supplementary	Information	
	
Access	to	all	main	figures	as	high-resolution	PDFs	and	the	supplementary	material	is	available	here.	
	
Data	availability	
	
All	 summary	 statistics	 and	 software	 used	 in	 this	 analysis	 are	 publicly	 available.	 PGC3	 BD	 summary	
statistics	 are	 available	 on	 the	 PGC	 download	 page	
(https://figshare.com/articles/dataset/PGC3_bipolar_disorder_GWAS_summary_statistics/14102594).	
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UKBB	 neuroimaging	 summary	 statistics	 are	 available	 for	 download	 on	 the	 BIG40	 website	
(https://open.win.ox.ac.uk/ukbiobank/big40/).		
	
Code	availability	
All	 code	 necessary	 to	 recreate	 this	 analysis	 are	 available	 at	 https://github.com/oconnell-
s/causal_networks/.		
	
	

Acknowledgements	
Research	was	 conducted	with	 the	 financial	 support	 of	NIMH	R01MH130879	 “Delineating	 the	 network	
effects	of	mental	disorder-associated	variants	using	convex	optimization	methods”	(PI	David	Knowles),	
grant	 number	 18/CRT/6214	 from	 Science	 Foundation	 Ireland,	 the	 Irish	 Research	 Council,	 the	 Health	
Research	 Board	 of	 Ireland	 (HRA-POR-324	 Prof	 Cannon), NIH	 grant	 1R01MH129742	 -	 01	 to	 OAA.,	 the	
Research	council	of	Norway	(#324499),	and	Nordforsk	(#164218).	
		
	
	
	

Conflicts	of	Interest	
	
Dr.	 Andreassen	 has	 received	 speaker	 fees	 from	 Lundbeck,	 Janssen,	 Otsuka,	 and	 Sunovion	 and	 is	 a	
consultant	 to	 Cortechs.ai.	 and	 Precision	 Health.	 Dr.	 Westlye	 is	 a	 shareholder	 of	 baba.vision.	 All	 other	
authors	report	no	competing	interests.		

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.12.24318953doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.12.24318953
http://creativecommons.org/licenses/by-nc-nd/4.0/


13	

	

Exposure	 Outcome	 Beta/OR	 95%	C.I.	
[lower,	
upper]	

P	 N	snps	 rg	 P(rg)	 h2	
(exposure)	

DCE	beta	
(dense)	

DCE	beta	
(sparse)	

UKBID	 Any	P	>	
0.05	(LOO)	

N	
significant	
methods	

Phenotype	
category	

IDP	dMRI	
TBSS	ICVF	
Posterior	
corona	
radiata	L	

BD	 0.8856	 [0.8216,	
0.9546]	

1.497E-03	 13	 -0.0916	 1.429E-02	 0.3286	 -0.0059	 0	 1929	 FALSE	 5	 WM	tract	
ICVF	

IDP	T1	
FAST	ROIs	
R	caudate	

BD	 1.2584	 [1.13,	
1.4015]	

2.843E-05	 9	 0.0705	 7.625E-02	 0.2764	 0.0299	 0	 125	 FALSE	 5	 regional	
and	tissue	
volume	

IDP	dMRI	
ProbtrackX	
ICVF	slf	r	

BD	 0.8999	 [0.8452,	
0.9581]	

9.687E-04	 20	 -0.0365	 2.894E-01	 0.3771	 -0.002	 -0.0047	 1972	 FALSE	 4	 WM	tract	
ICVF	

IDP	dMRI	
ProbtrackX	
ISOVF	ilf	r	

BD	 0.8968	 [0.8432,	
0.9539]	

5.373E-04	 20	 -0.0146	 6.974E-01	 0.2462	 -0.013	 0	 2115	 FALSE	 4	 WM	tract	
ISOVF	

IDP	dMRI	
TBSS	ICVF	
Superior	
longitudina
l	fasciculus	
L	

BD	 0.8975	 [0.8438,	
0.9546]	

5.916E-04	 19	 -0.0599	 8.684E-02	 0.3536	 -0.0026	 -0.0057	 1943	 FALSE	 4	 WM	tract	
ICVF	

IDP	dMRI	
TBSS	ICVF	
Retrolentic
ular	part	of	

BD	 0.8999	 [0.8418,	
0.9619]	

1.913E-03	 14	 -0.0499	 1.802E-01	 0.3163	 -0.0006	 0	 1922	 FALSE	 4	 WM	tract	
ICVF	
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internal	
capsule	R	

IDP	dMRI	
TBSS	ICVF	
Anterior	
corona	
radiata	L	

BD	 0.8951	 [0.8327,	
0.9622]	

2.641E-03	 14	 -0.0718	 3.183E-02	 0.3566	 -0.0016	 0	 1925	 TRUE	 4	 WM	tract	
ICVF	

IDP	dMRI	
TBSS	ICVF	
Posterior	
corona	
radiata	R	

BD	 0.856	 [0.7902,	
0.9272]	

1.385E-04	 12	 -0.0813	 2.899E-02	 0.3287	 -0.0158	 0	 1928	 FALSE	 4	 WM	tract	
ICVF	

IDP	dMRI	
ProbtrackX	
ICVF	atr	l	

BD	 0.8515	 [0.7897,	
0.9181]	

2.868E-05	 12	 -0.0147	 6.912E-01	 0.3477	 -0.0088	 0	 1952	 FALSE	 4	 WM	tract	
ICVF	

IDP	dMRI	
TBSS	ICVF	
Superior	
cerebellar	
peduncle	R	

BD	 1.1487	 [1.0634,	
1.2409]	

4.326E-04	 11	 0.0087	 8.143E-01	 0.2979	 0.0258	 0	 1914	 TRUE	 4	 WM	tract	
ICVF	

IDP	T1	
FAST	ROIs	
L	caudate	

BD	 1.2114	 [1.0866,	
1.3506]	

5.482E-04	 9	 0.062	 1.136E-01	 0.2696	 0.0242	 0	 124	 FALSE	 4	 regional	
and	tissue	
volume	

BD	 wg	rh	
intensity-
contrast	
insula	

0.0936	 [0.0309,	
0.1564]	

3.459E-03	 56	 -0.0142	 7.280E-01	 0.186	 0.013	 0	 1436	 FALSE	 3	 cortical	
grey-white	
contrast	

IDP	dMRI	 BD	 0.9068	 [0.8592,	 3.888E-04	 22	 -0.0356	 2.812E-01	 0.3707	 -0.0009	 -0.0123	 1905	 FALSE	 3	 WM	tract	
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TBSS	ICVF	
Body	of	
corpus	
callosum	

0.9572]	 ICVF	

IDP	dMRI	
ProbtrackX	
ICVF	slf	l	

BD	 0.8986	 [0.8443,	
0.9563]	

7.591E-04	 20	 -0.0561	 1.093E-01	 0.3737	 0	 -0.004	 1971	 FALSE	 3	 WM	tract	
ICVF	

IDP	dMRI	
ProbtrackX	
ISOVF	ifo	r	

BD	 0.8762	 [0.8158,	
0.941]	

2.856E-04	 16	 0.0181	 6.599E-01	 0.2269	 -0.0135	 0	 2113	 FALSE	 3	 WM	tract	
ISOVF	

IDP	dMRI	
TBSS	ICVF	
Anterior	
corona	
radiata	R	

BD	 0.8846	 [0.8245,	
0.9491]	

6.375E-04	 15	 -0.0759	 2.704E-02	 0.3652	 -0.005	 0	 1924	 FALSE	 3	 WM	tract	
ICVF	

IDP	dMRI	
TBSS	ICVF	
Anterior	
limb	of	
internal	
capsule	L	

BD	 0.8836	 [0.8193,	
0.9528]	

1.306E-03	 14	 0.015	 6.845E-01	 0.344	 -0.0124	 0	 1919	 FALSE	 3	 WM	tract	
ICVF	

IDP	dMRI	
TBSS	ICVF	
Cerebral	
peduncle	L	

BD	 0.8731	 [0.8069,	
0.9447]	

7.379E-04	 13	 0.1438	 2.940E-04	 0.301	 -0.0149	 0	 1917	 FALSE	 3	 WM	tract	
ICVF	

IDP	dMRI	
ProbtrackX	
ICVF	atr	r	

BD	 0.8614	 [0.7982,	
0.9295]	

1.222E-04	 12	 -0.0367	 3.309E-01	 0.3456	 -0.013	 0	 1953	 FALSE	 3	 WM	tract	
ICVF	
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IDP	dMRI	
ProbtrackX	
ICVF	mcp	

BD	 0.8581	 [0.7936,	
0.9278]	

1.231E-04	 11	 0.0258	 5.208E-01	 0.2714	 -0.0175	 0	 1966	 FALSE	 3	 WM	tract	
ICVF	

IDP	dMRI	
TBSS	ICVF	
Anterior	
limb	of	
internal	
capsule	R	

BD	 0.8581	 [0.7989,	
0.9444]	

9.607E-04	 11	 -0.012	 7.386E-01	 0.3524	 -0.0123	 0	 1918	 FALSE	 3	 WM	tract	
ICVF	

IDP	dMRI	
TBSS	MD	
Superior	
longitudina
l	fasciculus	
L	

BD	 1.213	 [1.097,	
1.3412]	

1.660E-04	 9	 0.0701	 4.170E-02	 0.3304	 0.0206	 0	 1643	 FALSE	 3	 WM	tract	
diffusivity	

IDP	dMRI	
ProbtrackX	
ICVF	cst	r	

BD	 0.8578	 [0.787,	
0.935]	

4.820E-04	 9	 0.012	 7.409E-01	 0.323	 -0.0114	 0	 1959	 FALSE	 3	 WM	tract	
ICVF	

IDP	dMRI	
TBSS	ICVF	
Cingulum	
hippocamp
us	R	

BD	 0.901	 [0.8472,	
0.9582]	

9.025E-04	 17	 -0.0028	 9.435E-01	 0.3054	 0	 0	 1938	 FALSE	 2	 WM	tract	
ICVF	

IDP	dMRI	
TBSS	ICVF	
Posterior	
thalamic	
radiation	L	

BD	 0.9001	 [0.8445,	
0.9595]	

1.246E-03	 17	 -0.0973	 1.087E-02	 0.3058	 -0.002	 0	 1931	 FALSE	 2	 WM	tract	
ICVF	
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IDP	dMRI	
ProbtrackX	
L3	ifo	r	

BD	 1.1322	 [1.0462,	
1.2253]	

2.064E-03	 11	 0.0693	 5.886E-02	 0.2951	 0.0097	 0	 1888	 FALSE	 2	 WM	tract	
diffusivity	

IDP	dMRI	
TBSS	ICVF	
External	
capsule	R	

BD	 0.8906	 [0.8291,	
0.9567]	

1.517E-03	 11	 -0.0444	 2.869E-01	 0.3118	 -0.0066	 0	 1934	 FALSE	 2	 WM	tract	
ICVF	

IDP	dMRI	
TBSS	MD	
Anterior	
limb	of	
internal	
capsule	L	

BD	 0.8383	 [0.7498,	
0.9374]	

1.973E-03	 8	 0.0267	 5.423E-01	 0.2023	 -0.0294	 0	 1619	 FALSE	 2	 WM	tract	
diffusivity	

Table	1:	Information	on	28	FDR-significant	causal	relationships	between	brain	phenotypes	and	BD,	including	the	UKBID,	the	results	of	sensitivity	analyses,	the	phenotype	category,	the	
causal	estimate	from	GSMR2	in	either	the	odds	ratio	scale	or	𝛽	scale	(depending	on	the	data	type	of	the	outcome),	the	rg	estimate,	the	DCE	estimate	(dense	and	sparse),	the	number	of	
instruments,	and	the	number	of	MR	methods	in	which	the	pair	was	significant	(out	of	6	total	methods).	95%	C.I.	stands	for	95%	confidence	interval,	with	the	lower	and	upper	bounds	

presented	accordingly.	Any	P>0.05	(LOO)	denotes	whether	or	not	any	test	statistic	lost	significance	after	systematic	leave-one-out	SNP	exclusion.
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