COVID-19 Vaccine Acceptance and Hesitancy in Cameroon: A Systematic Review and Meta-analysis

Fabrice Zobel Lekeumo Cheuyem¹*, Adidja Amani¹, Iyawa Clarisse Alma Nkodo², Lionel Bethold Keubou Boukeng³, Michel Franck Edzamba¹, Ariane Nouko¹, Edwige Omona Guissana⁴, Christelle Sandrine Ngos¹, Chabeja Achangwa⁵, Christian Mouangue⁶

- ¹ Department of Public Health, Faculty of Medicine and Biomedical Sciences, The University of Yaounde I, Yaounde, Cameroon
- ² Ministry of Public Health, Yaounde, Cameroon
- ³ Direction for the Fight against Diseases, Epidemics and Pandemics, Ministry of Public Health, Yaounde, Cameroon
- ⁴ Direction of Family Health, Ministry of Public Health, Yaounde, Cameroon
- ⁵ Queens Elisabeth Commonwealth Scholar (QECS scholar), University of the West Indies, Cave Hill, Barbados
- ⁶ Data Management Unit, Public Health Emergency Operations Coordination Centre, Yaounde, Cameroon

*Corresponding author's address: Fabrice Zobel Lekeumo Cheuyem, Department of Public Health, Faculty of Medicine & Biomedical Sciences, The University of Yaounde I, PO Box. 8526, Yaounde, Cameroon. Tel: +237 696 57 28 07; E-mail: <u>zobelcheuyem@gmail.com</u>

It is made available under a CC-BY 4.0 International license .

Abstract

Background: The development of effective vaccines was a promising tool for ending the pandemic. However, the success of a vaccination programme depends heavily on achieving significant community acceptance. In Cameroon, numerous studies have investigated the level of acceptance, hesitancy and perception of COVID-19 vaccines, with mixed results. To provide a comprehensive understanding of these parameters, this meta-analysis aimed to estimate the pooled proportion of COVID-19 vaccine acceptance, hesitancy and perception.

Methods: A systematic search of online databases, including PubMed, Google Scholar, and ScienceDirect, was conducted to identify relevant research articles. This study followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. The extracted data were compiled in a Microsoft Excel spreadsheet and analyzed using R statistical software (version 4.3.3). The pooled proportion of COVID-19 vaccine acceptance, hesitancy, and perception was calculated using random effects meta-analysis. Funnel plots, Egger's and Begg's tests were used to assess publication bias.

Results: Of the 1243 records identified through the database search, 20 research articles were included in the systematic review and meta-analysis. The random-effects model showed that the that approximately 31.21% (95% CI: 23.49-38.94) of the Cameroonian population was willing to accept the COVID-19 vaccine. More than two-thirds of the population (68.49%; 95% CI: 60.65-76.34) were vaccine hesitant. Half of the participants (51.81%; 95% CI: 42.70-60.93), had a negative perception of the COVID-19 vaccine. The acceptance rate progressed from the first semester of 2021 (27.21%; 95% CI: 10.38-44.05) to the first semester of 2022 (45.56%; 95% CI: 25-66.12). The pooled vaccine acceptance rate was 29.29% (95% CI: 19.86-38.72) for the general population and 39.24% (95% CI: 22.84-55.64) for healthcare workers. The pooled vaccine hesitancy rate was 70.39% (95% CI: 61.30-79.80) for the general population and 57.42 % (95% CI: 4.05-71.80) for healthcare workers

Conclusion: Despite progress in vaccine acceptance, targeted interventions are still needed to address vaccine hesitancy in the country. Strategies such as improving access to accurate

information, building trust in institutions, and strengthening community engagement are crucial to increasing COVID-19 vaccine uptake.

Keywords: COVID-19 vaccine, Acceptance, Hesitancy, Perception, Cameroon

Background

Coronavirus disease (COVID-19) is an infectious disease caused by the severe acute respiratory syndrome 2 (SARS-CoV-2) viruses [1]. The pandemic has resulted in an unprecedented burden on global healthcare systems and economies with a particular concern in sub-Saharan Africa [2]. Despite declining case numbers, periodic surges continue, resulting in more than 704 million confirmed cases and more than 7 million deaths worldwide as of 3 March 2024 [3].

In Cameroon, the first confirmed case of COVID-19 was reported on March 6, 2020. Following this first case, the government of Cameroon has implemented several preventive measures to limit the spread of the virus including vaccination [4]. The Cameroonian health authorities, represented by the National Immunization Technical Advisory Groups and the Scientific Advice for Public Health Emergencies, have approved four vaccines against SARS-CoV-2 for immunization against this disease [5].

Although vaccines against COVID-19 were developed, many factors compromise their acceptance and this become a public concern [6,7]. Vaccine hesitancy is one of the top ten global health problems. A distorted perception of disease risk, a lack of knowledge about vaccines, a fear of side effects, and the proliferation of misinformation and fake news are some of the key elements contributing to this public health problem [8]. Vaccine hesitancy negatively affects the vaccine uptake and hampers efforts to control the pandemic.

A study report found that despite the implementation of community engagement focused on education about vaccine efficacy, tolerability, and potential side effects, vaccine hesitancy was expected to persist in Cameroon between 2021 and 2022 [3].

Various studies have been conducted in Cameroon regarding the level of acceptance as well as hesitation and perception of COVID-19 vaccine. These levels vary between studies and the

present meta-analysis was used to estimate the pooled proportion of these parameters in Cameroon.

Methods

Study Design

This study was conducted to assessed the proportion of vaccine acceptance and hesitancy in Cameroon. This systematic review was conducted in accordance with Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guideline [9].

Study Setting

Cameroon has an estimated population of about 28.6 million in 2023. The country covers a total area of 472,650 km², divided into ten administrative regions: Center, Littoral, Far North, North, Adamawa, North-West, South-West, West, East and South. Cameroon has two capitals: Yaoundé, located in the Center Region, serves as the country's political capital, while Douala, located in the Littoral Region, is the economic city that drives the country's growth [10].

Eligibility Criteria

The review included all published cross-sectional studies reporting on COVID-19 vaccine acceptance, hesitancy and perception in Cameroon. Studies with unclear outcome variables were excluded from the review. In addition, duplicate articles were reviewed and removed from the study prior to data extraction. Only articles written in English language were included. There was no restriction on publication date as there was no previous systematic review and meta-analysis that investigated vaccine acceptance, hesitancy and perception in the country.

Article Searching Strategy

Based on predetermined eligibility criteria, a comprehensive review of online literature sources was conducted. A systematic search of electronic databases such as PubMed, Google Scholar, and Science Direct was performed to identify published studies. The search strategy included analysis of the text contained in the title and abstract of each study. A combination of keywords and Medical Subject Headings (MeSH) terms was used, with Boolean logic operators ("AND" and "OR") used to refine the search. The keywords and MeSH terms included "coronavirus

OR COVID-19 AND vaccine AND acceptance OR willingness OR hesitation OR intention OR perception OR attitude AND Cameroon". To ensure a comprehensive search, a manual search was conducted to identify additional published articles not indexed in electronic databases. To reach literature saturation, the reference lists of the indicated studies were also examined. The last search was conducted on November 15, 2024.

Data Extraction

Data extraction was performed from all eligible articles. A predefined Microsoft Excel 2016 form was used to collect study characteristics including primary author, study year, region, study design, setting, study participant, sample size, reported vaccine acceptance, hesitancy, and poor perception. Two authors conducted a critical assessment of each article for relevance and quality. Disagreements among reviewers were resolved through discussion.

Data Quality Assessment

The quality of the included studies was assessed using the Joanna Briggs Institute quality assessment tool for prevalence studies [11]. Nine parameters were employed to assess the risk of bias for each study. Such parameters include appropriateness of sampling frame, suitable sampling technique, adequate sample size, description of study subjects and setting, sufficient data analysis, use of valid methods for identified conditions, valid measurement for all participants, use of appropriate statistical analysis, and adequate response rate ($\geq 60\%$). Each parameter was scored as 1 (yes) or 0 (no or unclear). The risk of bias was categorized as low (5-9), moderate (3-4), or high (0-2).

Outcome of Measurement

The primary outcomes of this study were COVID-19 vaccine acceptance and hesitancy. The other outcome variable included the negative perception this vaccine. These proportions were calculated by dividing the number of participants who indicated willingness to receive the vaccine, hesitancy to receive the vaccine, or negative perception of the vaccine by the total number of participants who responded to the question.

Operational Definition

Vaccine acceptance refers to intention or willingness to receive the vaccine and not actual administration (uptake) of the vaccine itself. Vaccine hesitancy is the refusal of vaccines or a delay in acceptance despite the availability of immunization services [4]. Negative or poor perception of the COVID-19 vaccine refers to a negative attitude toward the benefits of the COVID-19 vaccine. It includes cognitive and assessment of the vaccine as undesirable, untrustworthy, dangerous or ineffective, resulting in reluctance or refusal to receive the vaccine.

Statistical Analysis

Data were analyzed using R Statistics version 4.3.3. Heterogeneity between studies was assessed using the l^2 test statistic. Three categories were used to classify the degree of heterogeneity (l^2 index). These categories were either low (<25%), moderate (25-75%), or high (>75%). Subgroup analysis was performed for study year, region, setting, and type of participants enrolled. The random effects model was preferred when significant heterogeneity between studies was observed for the pooled estimates of vaccine acceptance, hesitancy, and perception.

Meta-regression was performed to investigate whether study characteristics could explain the variability in results across studies. The examined study characteristics included the year the study was conducted (2020, 2021, 2022 or 2023), region (studies targeting participants from all ten Regions (nationwide) of the country or less Regions (multicenter) or from a specific Region), setting (participants enrolled from hospital or from other settings including online-and community-recruited participants), sample size (<1000 and \geq 1000), study participant (general or other that includes healthcare workers and/or students). Only study variables with meaningful and practical categories were considered. multivariable meta-regression model was used to assess whether vaccination acceptance, hesitancy, and perception varied according to the selected study variables. A *p*-value<0.05 was considered statistically significant.

Publication Bias and Sensitivity test

Publication bias was assessed visually using the funnel plot. A funnel plot displaying symmetrical, large, and inverted shapes, suggested the absence of publication bias. Furthermore, Egger's and Begg's tests were used to statistically examine the funnel plot asymmetry, with a significance level of p<0.05. The sensitivity test was done by excluding a single individual study from the analysis at a time to explore the robustness of the findings.

It is made available under a CC-BY 4.0 International license .

Results

A total of 1243 records were identified after an extensive literature search. After removing 135 duplicate studies, 1231 records remained. After review, 1208 reports were excluded based on their titles and abstracts. The content of the remaining 23 records was then assessed for eligibility and a total of 20 study reports met the eligibility criteria and were included in this systematic review and meta-analysis (Fig. 1).

Selection of Studies

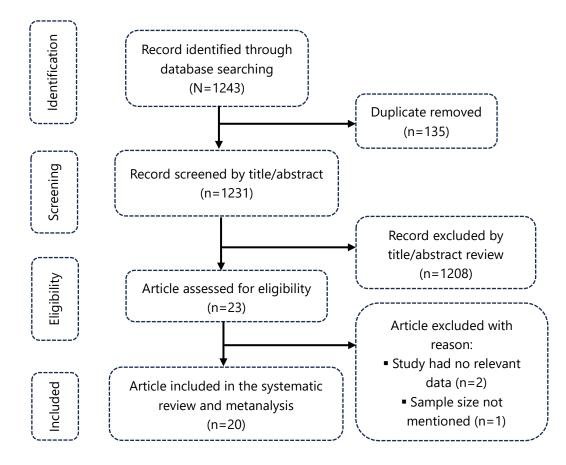


Fig. 1 PRISMA diagram flow of studies included in the metanalysis

Summary of Studies Included

A comprehensive analysis included 20 studies with a cumulative sample size of 28,355 participants. These studies, conducted between 2021 and 2023, primarily involved the general

population in different regions of the country and provided estimates of COVID-19 vaccine acceptance, hesitancy, and perception (Table 1).

Adherence to COVID-19 Vaccine

The random effects model showed that approximately 31.21% (95% CI: 23.49-38.94) of the Cameroonian population was willing to accept the COVID-19 vaccine, with significant heterogeneity observed (l^2 =99.8%; p<0.001). Conversely, more than two-thirds of the population (68.49%; 95% CI: 60.65-76.34), were vaccine hesitant with a high heterogeneity of studies assessed (l^2 =99.3%; p<0.001). In addition, half of the participants (51.81%; 95% CI: 42.70-60.93), had a negative perception of the COVID-19 vaccine, with significant heterogeneity (l^2 =97.2%; p<0.001) (Fig. 2).

Subgroup Analysis

The lowest estimates of the willingness to receive COVID-19 vaccine were observed in the North-west Region (2.37 %; 95% CI: 1.91-3.04) and among students (13.03%; 95% CI: 45.73-83.06). The acceptance rate progressed from the first semester of 2021 (27.21%; 95% CI: 10.38-44.05) to the first semester of 2022 (45.56%; 95% CI: 25-66.12). The pooled vaccine acceptance rate was 29.29% (95% CI: 19.86-38.72) for the general population and 39.24% (95% CI: 22.84-55.64) for healthcare workers (Fig. 3).

The highest hesitancy rate was observed in the half of 2021 with a pooled estimate of 75.96% (95% CI: 63.24-88.68) and in studies conducted both online and in other settings (77.62%; 95% CI: 64.83-90.41). The pooled vaccine hesitancy rate was 70.39% (95% CI: 61.30-79.80) for the general population and 57.42 % (95% CI: 4.05-71.80) for healthcare workers (Fig. 4).

Poor perception of COVID-19 vaccine was mainly observed in studies conducted in other setting (North-west and West Regions) (67.50%; 95% CI: 23.27-100), in multicenter studies (63.37%; 95% CI: 58.85-67.89), and among participant from community (61.79%; 95% CI: 41.86-81.72). The negative perception rate was 56.01% (95% CI: 41.63-70.40) in the general population and 44.96% (95% CI: 34.48-55.44) among healthcare workers (Fig. 5).

It is made available under a CC-BY 4.0 International license .

Table 1 Characteristic of studies assessing adherence to COVID-19 vaccine in Cameroon, 2020-

Author	Study year	Region	Setting	Study population	Design	Sample size	Sampling	Risk of bias	
Abongwa <i>et al</i> . [12]	2021	North-west	Community	General	CS	2531	Non- probabilistic	Low	
Aka <i>et al</i> . [13]	2022-2023	Centre	Hospital	population HCW	CS	510	Probabilistic	Low	
Akwa et al. [13]	2022 2023	Nationwide	Online	General	CS	1750	Non-	Low	
	2021	Nationwide	Onine	population	CJ	1750	probabilistic	LOW	
Amani <i>et al</i> . [4]	2021	Nationwide	Online	General population	CS	150	Non- probabilistic	Low	
Ambe <i>et al</i> . [15]	2022	Sout-west	Hospital	Nurse	CS	197	Probabilistic	Low	
Aseneh <i>et al</i> . [16]	2021	National	Online	General population	CS	341	Non- probabilistic	Low	
Baecher <i>et al</i> . [17]	2022	North-west South-west Littoral Centre	Hospital	HCW	CS	825	Non- probabilistic	High	
Chefor <i>et al</i> . [18]	2021	Centre	Hospital	HCW	CS	247	Non- probabilistic	Low	
Cho <i>et al</i> . [19]	2021	West Littoral Centre	Online	General population	CS	665	Non- probabilistic	Low	
Dinga <i>et al</i> . [20]	2020	Nationwide	Online and Community	General population	CS	2512	Non- probabilistic	Low	
Dinga <i>et al</i> . [21]	2022	Nationwide	Online and Community	General population	CS	6732	Non- probabilistic	Low	
Djuikoue <i>et al</i> . [22]	2021	Littoral West	Community	General population	CS	1053	Probabilistic	Low	
Elit <i>et al</i> . [23]	2022	North-west	Community	General population	CS	31	Non- probabilistic	Moderate	
Gunawardhana <i>et</i> <i>al</i> . [24]	2021	Nationwide	Hospital	General population	CS	835	Non- probabilistic	Low	
Ajonina-Ekoti <i>et al.</i> [25]	2021	Littoral	Online and University	Student	CS	591	Non- probabilistic	Low	
Ngasa <i>et al</i> . [26]	2021	Nationwide	Online	HCW and Student	CS	371	Non- probabilistic	Low	
Tambo <i>et al</i> . [27]	2021	Centre	Community	General population	CS	1522	Probabilistic	Low	
Tchiasso <i>et al</i> . [3]	2021-2022	Nationwide	Community	General population	CS	6567	Probabilistic	Low	
Tetsatsi <i>et al</i> . [28]	2022	West	Community	General population	CS	520	Non- probabilistic	Low	
Ukah <i>et al</i> . [29]	2022	Sout-west	Hospital	HCW	CS	405	Probabilistic	Low	

CS: Cross section study; HCW: Healthcare worker

It is made available under a CC-BY 4.0 International license .

study a	Events 1	Fotal	Vaccine acceptance (%)	Event rate	95%-CI	Weight (%)	Study b	Events	Total	Vaccine hesitancy (%)	Event rate	95%-CI We	
Abongwa,2021 Akwa,2021 Amani,2021 Aseneh,2021 Chefor,2021 Cho,2021 Djuikoue,2021 Gunawardhana,2021 Ajonina-Ekoti, 2021 Ngasa,2021 Tambo,2021 Baecher,2022 Dinga,2022 Tchiasso,2022	322 1 56 147 76 165 407 1 84 77 168 768 168 111 257	591 371 1522 197 825 5732	* *	2.37 [1. 18.40 [16. 37.33 [29.5] 43.11 [37.7] 30.77 [25.0] 24.81 [21.6] 38.65 [35.7] 10.06 [8.4] 13.03 [10.4] 45.28 [40.4] 45.28 [40.4] 31.15 [28.0] 31.15 [28.0] 35.55 [34.2] 33.86 [33.0]	51; 20.30] 58; 45.60] 79; 48.55] 77; 36.93] 57; 28.28] 70; 41.67] 10; 12.30] 42; 16.01] 14; 50.50] 39; 52.48] 11; 63.38] 00; 34.44] 21; 36.51]	6.8 6.8 6.4 6.6 6.5 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7 6.7	Dinga,2020 Abongwa,2021 Aka,2023 Aseneh,2021 Chefor,2021 Cho,2021 Djuikoue,2021 Gunawardhana,2021 Ajonina-Ekoti, 2021 Tambo,2021 Ambe,2022 Dinga,2022 Tchiasso,2022		2512 2531 510 341 1053 835 591 1522 197 6732 12109	****	85.38 [83 59.02 [54 56.89 [51 69.23 [63 73.98 [70 61.35 [58 89.94 [87 83.76 [80 50.07 [47 43.65 [63 64.65 [63 66.14 [65	8.08; 85.95] 8.94; 86.74] 6.1; 63.32] 1.45; 62.21] 8.07; 74.93] 0.47; 77.28] 8.33; 64.30] 7.70; 91.90] 0.53; 86.64] 7.52; 52.61] 8.49; 65.79] 8.49; 66.79]	(%) 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.
Random effects model Heterogeneity: 1 ² = 99.8%,			10 20 30 40 50 60	31.21 [23.4	19; 38.94]	100.0	Random effects mode Heterogeneity: / ² = 99.3%		29845 05, p = 0 30	40 50 60 70 80 90).65; 76.34] 10)0
Study C	Events	Total	Vaccine perception (%)	Event rate	95%-C	Weight (%)							
Aseneh,2021 Chefor,2021 Cho,2021 Djuikoue,2021 Gunawardhana,2021 Ngasa,2021 Ambe,2022 Elit,2022 Tchiasso,2022 Tetsatsi,2022 Ukah,2022 Aka,2023 Random effects mode Heterogeneity: / ² = 97.2%	486 188 57 28 5787 1 235 206 240	31 2109 520 405 510 7284	* *	26.10 [21 52.63 [46 60.90 [57 65.53 [62 58.20 [54 50.67 [45 28.93 [22 90.32 [74 47.79 [46 45.19 [40 50.86 [45 47.06 [42 51.81 [42 . 100	20, 59.00 0.8; 64.63 57; 68.40 77; 61.57 46; 55.87 71; 35.81 25; 97.96 90; 48.69 .86; 49.58 .88; 55.83 .66; 51.50	8.2 8.5 8.5 8.3 8.2 7.7 8.6 8.4 8.4 8.4							

Fig. 2 Forest plot displaying the COVID-19 vaccine acceptance (a), hesitancy (b) and negative

perception rates (c) in Cameroon, 2020-2023

It is made available under a CC-BY 4.0 International license .

Study a Events Total Vaccine acceptance	Event rate 5%-CI Weight	Study b Events Total Vaccine acceptance	Event rate 95%-CI Weight
(%)	(%)	(%)	(%)
subgroup = North-west Abongwa,2021 60 2531 🗆	2.37 [1.81; 3.04] 6.8	subgroup = Community Abongwa,2021 60 2531	2.37 [1.81; 3.04] 6.8
Notice I		Djulkoue,2021 407 1053 -	38.65 [35.70; 41.67] 6.7
subgroup = National Akwa,2021 322 1750 =	18.40 [16.61; 20.30] 6.8	Tambo,2021 760 1522 = Tchiasso.2022 4100 12109	49.93 [47.39; 52.48] 6.7 33.86 [33.02; 34.71] 6.8
Amani,2021 56 150 👘	37.33 [29.58; 45.60] 6.4	Random effects model 17215	31.18 [11.20; 51.16] 27.0
Aseneh,2021 147 341	43.11 [37.79; 48.55] 6.6 10.06 [8.10; 12.30] 6.8	Heterogeneity: $I^2 = 99.9\%$, $\tau^2 = 0.0415$, $p = 0$	
Ngasa,2021 168 371 -	10.06 [8.10; 12.30] 6.8 45.28 [40.14; 50.50] 6.6	subgroup = Online	
Dinga,2022 2380 6732	35.35 [34.21; 36.51] 6.8	Akwa,2021 322 1750 =	18.40 [16.61; 20.30] 6.8
Tchiasso,2022 4100 12109 Random effects model 22288	33.86 [33.02; 34.71] 6.8 31.73 [22.05; 41.41] 46.6	Amani,2021 56 150	37.33 [29.58; 45.60] 6.4 43.11 [37.79; 48.55] 6.6
Heterogeneity: $I^2 = 99.2\%$, $\tau^2 = 0.0166$, $p < 0.0001$	(Cho,2021 165 665 -	24.81 [21.57; 28.28] 6.7
aubaraun - Cantra		Ngasa,2021 168 371	45.28 [40.14; 50.50] 6.6
subgroup = Centre Chefor,2021 76 247	30.77 [25.07; 36.93] 6.5	Random effects model 3277 Heterogeneity: $l^2 = 97.6\%$, $\tau^2 = 0.0136$, $p < 0.0001$	33.56 [23.10; 44.02] 33.0
Tambo,2021 760 1522 =	49.93 [47.39; 52.48] 6.7	neterogenety. 7 = 37.0%, 7 = 0.0130, p < 0.0001	
Random effects model 1769 Heterogeneity: $I^2 = 97.2\%$, $\tau^2 = 0.0179$, $p < 0.0001$	40.53 [21.76; 59.31] 13.3	subgroup = Hospital	
Heterogeneity: $T = 97.2\%$, $\tau = 0.0179$, $p < 0.0001$		Chefor,2021 76 247 Gunawardhana,2021 84 835	30.77 [25.07; 36.93] 6.5 10.06 [8.10; 12.30] 6.8
subgroup = Multicentre	04.04 (04.57) 00.001 0.7	Ambe,2022 111 197	56.35 [49.11; 63.38] 6.4
Cho,2021 165 665	24.81 [21.57; 28.28] 6.7 38.65 [35.70; 41.67] 6.7	Baecher,2022 257 825	31.15 [28.00; 34.44] 6.7
Baecher,2022 257 825 🛨	31.15 [28.00; 34.44] 6.7	Heterogeneity: $l^2 = 98.8\%$, $\tau^2 = 0.0350$, $p < 0.0001$	31.90 [13.39; 50.40] 26.5
Random effects model 2543 Heterogeneity: <i>I</i> ² = 94.8%, τ ² = 0.0046, <i>p</i> < 0.0001	31.57 [23.72; 39.41] 20.1		
Heterogeneity: $I = 94.6\%, \tau = 0.0046, p < 0.0001$		subgroup = Online and other setting Ajonina-Ekoti, 2021 77 591 —	13.03 [10.42; 16.01] 6.7
subgroup = Littoral		Dinga,2022 2380 6732	35.35 [34.21; 36.51] 6.8
Ajonina-Ekoti, 2021 77 591 🛥	13.03 [10.42; 16.01] 6.7	Random effects model 7323	24.23 [2.35; 46.10] 13.5
subgroup = South-west		Heterogeneity: $l^2 = 99.5\%$, $\tau^2 = 0.0248$, $p < 0.0001$	
Ambe,2022 111 197	56.35 [49.11; 63.38] 6.4	d	
C		-	
subgroup = First semester 2021 Abongwa,2021 60 2531	2.37 [1.81; 3.04] 6.8	subgroup = General population	
Aseneh,2021 147 341 -	43.11 [37.79; 48.55] 6.6	Abongwa,2021 60 2531 Akwa,2021 322 1750 =	2.37 [1.81; 3.04] 6.8 18.40 [16.61; 20.30] 6.8
Gunawardhana,2021 84 835 - Ajonina-Ekoti, 2021 77 591 -	10.06 [8.10; 12.30] 6.8 13.03 [10.42; 16.01] 6.7	Amani,2021 56 150	37.33 [29.58; 45.60] 6.4
Ngasa,2021 168 371 -	45.28 [40.14; 50.50] 6.6	Aseneh,2021 147 341	43.11 [37.79; 48.55] 6.6
Tambo,2021 760 1522	49.93 [47.39; 52.48] 6.7 27.21 [10.38; 44.05] 40.2	Cho,2021 165 665 🛨	24.81 [21.57; 28.28] 6.7
Heterogeneity: $I^2 = 99.7\%$, $\tau^2 = 0.0440$, $p = 0$	27.21 [10.56, 44.05] 40.2	Djuikoue,2021 407 1053 -	38.65 [35.70; 41.67] 6.7
subgroup = Second semester 2021		Gunawardhana,2021 84 835 - Tambo,2021 760 1522 -	10.06 [8.10; 12.30] 6.8 49.93 [47.39; 52.48] 6.7
Akwa,2021 322 1750 =	18.40 [16.61; 20.30] 6.8	Dinga,2022 2380 6732	49.93 [47.39; 52.48] 6.7 35.35 [34.21; 36.51] 6.8
Amani,2021 56 150	37.33 [29.58; 45.60] 6.4 27.48 [8.94; 46.02] 13.1	Tchiasso,2022 4100 12109	33.86 [33.02; 34.71] 6.8
Heterogeneity: $I^2 = 95.4\%$, $\tau^2 = 0.0171$, $p < 0.0001$	27.46 [0.94, 40.02] 15.1	Random effects model 27688	29.29 [19.86; 38.72] 67.0
subgroup = First and Second semester 2021		Heterogeneity: $l^2 = 99.8\%$, $\tau^2 = 0.0228$, $p = 0$	
Chefor,2021 76 247 💻	30.77 [25.07; 36.93] 6.5	aubarous – Healtheare worker	
Cho,2021 165 665	24.81 [21.57; 28.28] 6.7 38.65 [35.70; 41.67] 6.7	subgroup = Healthcare worker Chefor.2021 76 247 =	30.77 [25.07; 36.93] 6.5
Random effects model 1965	31.46 [23.31; 39.62] 20.0	Ambe,2022 111 197 -	56.35 [49.11; 63.38] 6.4
Heterogeneity: $l^2 = 94.8\%$, $\tau^2 = 0.0048$, $p < 0.0001$		Baecher,2022 257 825 ±	31.15 [28.00; 34.44] 6.7
subgroup = First semester 2022		Random effects model 1269	39.24 [22.84; 55.64] 19.7
Ambe,2022 111 197	56.35 [49.11; 63.38] 6.4 35.35 [34.21; 36.51] 6.8	Heterogeneity: I^2 = 95.5%, τ^2 = 0.0202, $p < 0.0001$	
Random effects model 6929	- 45.56 [25.00; 66.12] 13.2	subgroup = Student	
Heterogeneity: I^2 = 97.1%, τ^2 = 0.0214, p < 0.0001		subgroup = Student Ajonina-Ekoti, 2021 77 591 	13.03 [10.42; 16.01] 6.7
subgroup = Not specified		- ground anony access to the own	teres from total and
Baecher,2022 257 825	31.15 [28.00; 34.44] 6.7	subgroup = Healthcare worker and student	
subgroup = 2021-2022		Ngasa,2021 168 371 -	45.28 [40.14; 50.50] 6.6
Tchiasso,2022 4100 12109	33.86 [33.02; 34.71] 6.8	Pandom offects model 20040	24 24 122 40: 20 041 400 0
Random effects model 29919	31.21 [23.49; 38.94] 100.0	Random effects model 29919 Heterogeneity: $l^2 = 99.8\%$, $\tau^2 = 0.0229$, $p = 0$ 30	31.21 [23.49; 38.94] 100.0
Heterogeneity: $l^2 = 99.8\%$, $\tau^2 = 0.0229$, $p = 0$ 0 30	70	Heterogeneity: $7 = 99.6\%, t = 0.0229, p = 0$ 30	70

Fig. 3 Subgroup analysis reporting the COVID-19 vaccine acceptance rate in Cameroon, 2021-2023 (*a: by Region; b: by setting; c: by study period and d: by type of participants*)

It is made available under a CC-BY 4.0 International license .

								1				PUBLIC III				
^{Study} a	Events	Total	Vaccine hesit (%)	ancy	Event rate	95%-CI	Weight (%)	Study	b	Events	Total	Vaccine hes (%)	itancy	Event rate	95%-CI	Weight (%)
subgroup = Centre							• •		= communit		0504	. ,		05 00 103	04.00.74	7.0
Aka,2023	301	510			59.02 [54.			Abongwa, Djuikoue,2		2161 646	1053				.94; 86.74] .33; 64.30]	7.8 7.7
Chefor,2021	171	247		-	69.23 [63.			Tambo,20			1522	+			.52; 52.61]	7.8
Tambo,2021	762	1522	+		50.07 [47.			Tchiasso,		8009					.29; 66.98]	
Random effects model		2279			59.20 [48.3	38; 70.01]	22.9		ffects model		17215		-		.32; 80.21]	
Heterogeneity: $l^2 = 95.2\%$	τ = 0.008	36, <i>p</i> < 0.0001							ity: / ² = 99.6%							
subgroup = Other Abongwa,2021	2161	2531			85.38 [83.9	04- 96 741	7.8	subgroup	= Hospital							
Ajonina-Ekoti, 2021	495	591		-	83.76 [80.		7.7	Aka,2023		301	510				.61; 63.32]	7.6
Ambe,2022	86	197			43.65 [36.		7.4	Chefor,20		171	247	-	-		.07; 74.93]	7.5
Random effects model		3319		_	71.11 [44.	55; 97.68]	22.9		lhana,2021	751	835		+		.70; 91.90]	7.8
Heterogeneity: 1 ² = 98.5%,	, τ ² = 0.054	46, <i>p</i> < 0.0001						Ambe,202 Random e	ffects model	86	197 1789				.62; 50.89] .57; 84.68]	7.4 30.3
subgroup = Multicentre									ity: / ² = 99%, τ					05.02 [40	.57, 64.00]	50.5
Cho,2021	492	665	-	÷-	73.98 [70.4	47: 77.281	7.7									
Djuikoue,2021	646		+		61.35 [58.			subgroup								
Random effects model		1718		-	67.64 [55.3	26; 80.02]	15.4	Aseneh,20	021	194	341		-		.45; 62.21]	
Heterogeneity: / ² = 96.8%,	$\tau^{2} = 0.007$	77, p < 0.0001						Cho,2021 Random e	ffects model	492	665 1006		-		.47; 77.28] .81; 82.31]	7.7
subgroup = National									ity: / ² = 96.5%				_	05.50 [40		1010
Dinga,2020	2124	2512			84.55 [83.	08; 85.951	7.8	-	-							
Aseneh,2021	194	341			56.89 [51.4	45; 62.21]	7.6		= Online and				_			-
Gunawardhana,2021	751	835	_	-	89.94 [87.		7.8	Dinga,202		2124	2512				.08; 85.95]	
Dinga,2022	4352	6732			64.65 [63.		7.8	Ajonina-El Dinga,202		495 4352	591 6732	27	-		.53; 86.64] .49; 65.79]	7.7 [.] 7.8
Tchiasso,2022 Random effects model		12109 22529			66.14 [65.: 72.52 [60.:		7.8		ffects model		9835	i.el			.83; 90.41]	
Heterogeneity: $I^2 = 99.6\%$					12.52 [00.	22, 04.00]	50.0		ity: / ² = 99.6%					11102 [01		2010
С								-	d				:			
subgroup = First and S			20		04 55 102	00-05-051	7.0		= General po							
Dinga,2020	2124	2512		bia.	84.55 [83.	08; 85.95]	7.8	Dinga,202	0	2124	2512		1	84.55 [83	.08; 85.95]	7.8
subgroup = First seme	ster 202	1						Abongwa,2	2021	2161	2531			85.38 [83	.94; 86.74]	7.8
Abongwa,2021	2161			11	85.38 [83.			Aseneh,20)21	194	341			56.89 [51	.45; 62.21]	7.6
Aseneh,2021	301	510	-		59.02 [54.		7.6	Cho.2021	_	492	665		+		47:77.28	7.7
Gunawardhana,2021 Ajonina-Ekoti, 2021	646 751	1053 835	-	-	61.35 [58. 89.94 [87.]		7.7	Djuikoue.2	0021	646	1053	-			.33; 64.30]	7.7
Tambo,2021	495	591		+	83.76 [80.			-			835					
Random effects mode		5520			75.96 [63.]				hana,2021	751					.70; 91.90]	7.8
Heterogeneity: / ² = 99%, t	² = 0.0208	, <i>p</i> < 0.0001						Tambo,20		762	1522	+			.52; 52.61]	7.8
aubaroup - First and P	econd out	menter 201						Dinga,202	2	4352	6732			64.65 [63	.49; 65.79]	7.8
subgroup = First and S Chefor,2021	econd se 194	341 341			56.89 [51.4	45: 62.211	7.6	Tchiasso,2	2022	8009	12109			66.14 [65	.29; 66.98]	7.8
Cho,2021	171	247		-	69.23 [63.		7.5		ffects model		28300				.30; 79.48]	69.8
Random effects mode	1	588		-	63.00 [50.				ity: / ² = 99.5%.							
Heterogeneity: / ² = 89.6%	, τ ² = 0.000	58, p = 0.0019)					noterogene	ng. r = 00.070,	0.013	-, p - 0					
subgroup = First and S			22	_			_	subaroup	= Healthcare	worker						
Djuikoue,2021	492	665	+	-	73.98 [70.4	47; 77.28]	7.7	Aka.2023		301	510			59.02 [54	.61; 63.32]	7.6
subgroup = First seme	ster 202	2						Chefor.202	21	171	247	_	-		.07; 74.93]	7.5
Ambe,2022		1522	-		50.07 [47.	52; 52.611	7.8			86	197					
Dinga,2022	86	197			43.65 [36.			Ambe,202							.62; 50.89]	7.4
Random effects mode		1719	-		47.71 [41.	65; 53.77]	15.1		ffects model		954			57.42 [43	.05; 71.80]	22.5
Heterogeneity: 1 ² = 65.6%		is, p = 0.0881						Heterogene	ity: / ² = 93.5%,	τ = 0.015	3, p < 0.0001					
subgroup = 2021-2022 Tchiasso,2022		6732			64.65 [63.	40:65 701	7.0	aubaraus	- Chudant							
runasso,2022	4302	0132	h.d		04.00 [03.	49,00.79]	1.0	subgroup			504		_			
subgroup = 2022-2023								Ajonina-Ek	(oti, 2021	495	591		+	83.76 (80	.53; 86.64]	7.7
Aka,2023		12109			66.14 [65.	29; 66.98]	7.8									
Random effects mode		29845	_		68.49 [60.	65: 76 341	100.0		ffects model		29845	-	-	68.49 [60	.65; 76.34]	100.0
Heterogeneity: $I^2 = 99.3\%$				1	J 00.45 [00.1	0.04]		Heterogene	ity: / ² = 99.3%,	$\tau^2 = 0.020$	5, p = 0			1		
		20	60	1	100					- 0	20	60		100		

Fig. 4 Forest plot showing the subgroup analysis of the COVID-19 vaccine hesitancy rate in Cameroon, 2020-2023 (*a: by Region; b: by setting; c: by study period and d: by type of participants*)

It is made available under a CC-BY 4.0 International license .

Study a Events Total Vaccine perception (%)	Event rate 95%-CI Weight (%)	Study b Events Total Vaccine perception Event rate 95%-C Weight (%)
subgroup = Centre (79) Chefor,2021 130 247 Aka,2023 240 510 Random effects model 757 Heterogeneity: l^2 = 51.8%, τ^2 = 0.0008, ρ = 0.1499	52.63 [46.20; 59.00] 8.2 47.06 [42.66; 51.50] 8.4 49.38 [43.99; 54.76] 16.6	subgroup = Online Aseneh,2021 89 341 26.10 [21.52; 31.10] 8.4 Cho,2021 405 665 60.90 [57.08; 64.63] 8.4 Ngasa,2021 188 371 50.67 [45.46; 55.87] 8.3
subgroup = Multicentre 405 665	60.90 [57.08; 64.63] 8.4 65.53 [62.57; 68.40] 8.5 63.37 [58.85; 67.89] 16.9	Random effects model 1377 45.92 [25.66; 66.18] 25.2 Heterogeneity: J^2 = 98.5%, τ^2 = 0.0315, $p < 0.0001$ subgroup = Hospital 45.92 [25.66; 66.18] 25.2
subgroup = National Aseneh,2021 89 341 Gunawardhana,2021 486 835 Ngasa,2021 188 371 Tchiasso,2022 5787 12109 Random effects model 13656 Heterogeneity: $l^2 = 97.5\%$, $\tau^2 = 0.0184$, $p < 0.0001$	26.10 [21.52; 31.10] 8.4 58.20 [54.77; 61.57] 8.5 50.67 [45.46; 55.87] 8.3 47.79 [46.90; 48.69] 8.6 45.75 [32.32; 59.17] 33.7	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
subgroup = Other Eiit,2022 28 31	- 90.32 [74.25; 97.96] 7.7 45.19 [40.86; 49.58] 8.4 - 67.50 [23.27; 100.00] 16.1	subgroup = Community Djuikoue,2021 690 1053 ➡ 65.53 [62.57; 68.40] 8.5 Elit,2022 28 31 ➡ 90.32 [74.25; 97.96] 7.7' Tchiasso.2022 5787 12109 ➡ 47.79 [46.90; 48.69] 8.6
subgroup = South-west Ambe,2022 57 197 Ukah,2022 206 405 Random effects model 602 Heterogeneity: 1 ² = 96.5%, τ ² = 0.0232, p < 0.0001	28.93 [22.71; 35.81] 8.2 50.86 [45.88; 55.83] 8.4 40.00 [18.51; 61.49] 16.6	Tetsatsi,2022 235 520 45.19 [40.86, 49.5] 8.4 Random effects model 13713 61.79 [41.86; 81.72] 33.2 Heterogeneity: l^2 = 98.5%, τ^2 = 0.0405, $p < 0.0001$ 61.79 [41.86; 81.72] 33.2
с		d
subgroup = 2021 Aseneh,2021 89 341 Chefor,2021 130 247 Cho,2021 405 665 Djuikoue,2021 690 1053 Gunawardhana,2021 486 835 Ngasa,2021 188 371 Heterogeneity: l^2 = 97.7%, r^2 = 0.0190, $p < 0.0001$	26.10 [21.52; 31.10] 8.4 52.63 [46.20; 59.00] 8.2 60.90 [57.08; 64.63] 8.4 65.53 [62.57; 68.40] 8.5 58.20 [54.77; 61.57] 8.5 50.67 [45.46; 55.87] 8.3 52.41 [41.23; 63.59] 50.4	subgroup = General population 26.10 [21.52; 31.10] 8.4 Cho,2021 405 665 ■ 60.90 [57.08; 64.63] 8.4 Djuikoue,2021 690 1053 ■ 65.53 [62.57; 68.40] 8.5 Gunawardhana,2021 486 835 ■ 90.32 [74.25; 97.96] 7.7 Tchiasso,2022 5787 12109 ■ 47.79 [46.90; 48.69] 8.6 Tetsatsi,2022 235 520 ■ 45.19 [40.86; 49.58] 8.4 Random effects model 15554 56.01 [41.63; 70.40] 58.4
subgroup = 2022 Ambe,2022 57 197 Elit,2022 28 31 Tchiasso,2022 5787 12109 Tetsatsi,2022 235 520 Ukah,2022 206 405 Random effects model 13262 Heterogeneity: / ² = 96%, τ ² = 0.0481, p < 0.0001	28.93 [22.71; 35.81] 8.2 90.32 [74.25; 97.96] 7.7 47.79 [46.90; 48.69] 8.6 45.19 [40.86; 49.58] 8.4 50.86 [45.88; 55.83] 8.4 52.32 [32.90; 71.73] 41.2	subgroup = Healthcare worker Chefor,2021 130 247 52.63 [46.20; 59.00] 8.2 Ambe,2022 57 197 28.93 [22.71; 35.81] 8.2 Ukah,2022 206 405 50.86 [45.88; 55.83] 8.4 Aka,2023 240 510 47.06 [42.66; 51.50] 8.4 Random effects model 1359 44.96 [34.48; 55.44] 33.2 Heterogeneity: /² = 91.7%, τ^2 = 0.0106, $p < 0.0001$ 50.001 50.86 [34.48; 55.44] 33.2
subgroup = 2023 Aka,2023 240 510 —	47.06 [42.66; 51.50] 8.4	subgroup = Healthcare worker and student Ngasa,2021 188 371 → 50.67 [45.46; 55.87] 8.3
Random effects model 17284 Heterogeneity: $l^2 = 97.2\%$, $\tau^2 = 0.0253$, $p < 0.0001$ 20 60	51.81 [42.70; 60.93] 100.0 100	Random effects model 17284 51.81 [42.70; 60.93] 100.0 Heterogeneity: l^2 = 97.2%, τ^2 = 0,0253, $p < 0.0001$ 60 100

Fig. 5 Negative perception subgroup estimates of the COVID-19 vaccine in Cameroon, 2021-2023 (*a: by Region; b: by setting; c: by study period and d: by type of participants*)

Meta-Regression Analysis

The meta-regression analysis showed that the sampling method used had a significant effect on the heterogeneity of willingness to accept the COVID-19 vaccine (p=0.014). Surveys conducted before or during the introduction of the COVID-19 vaccine in Cameroon (2020-2021) revealed a significantly higher rate of vaccine hesitancy than those conducted in the following years (2022-

It is made available under a CC-BY 4.0 International license .

2023) (p<0.001). In addition, vaccine hesitancy was higher in studies conducted in other settings (online or community) compared to those conducted in hospital settings (p<0.001) (Table 2).

Table 2 Multivariate metanalysis of COVID-19 vaccine acceptance, hesitancy and perception in

COVID-19 vaccine estimate	Category	Moderator	Adjusted coefficient (β)	<i>p</i> -value
Acceptance	Study year	2021 vs 2022	-0.3965	0.553
	Setting	Other ¹ vs Hospital	0.6130	0.396
	Region	Subnational ² vs Nationwide	-0.6440	0.268
	Sampling	Non-probabilistic vs Probabilistic	-1.6216	0.014
	Sample size	<1000 vs ≥1000	1.0653	0.1525
	Participant	Other ³ vs General population	0.4229	0.570
Hesitancy	Study year	2020-2021 vs 2022-2023	1.2502	<0.001
	Setting	Other ^{1} vs Hospital	1.4673	<0.001
	Region	Subnational ² vs Nationwide	0.1790	0.593
	Sampling	Non-probabilistic vs Probabilistic	0.2866	0.342
	Sample size	<1000 vs ≥1000	-0.9047	<0.001
	Participant	Other ³ vs General population	0.9696	0.017
Negative perception	Study year	2021 vs 2022+	0.31143	0.6539
	Setting	Other ¹ vs Hospital	-0.2460	0.750
	Region	Subnational ² vs Nationwide	0.7020	0.228
	Sampling	Non-probabilistic vs Probabilistic	1.1791	0.323
	Sample size	<1000 vs ≥1000	-1.2916	0.363
	Participant	Other ³ vs General population	-0.0620	0.936

Cameroon healthcare workers in Cameroon, 2020-2023

¹Online and/or within Community; ²Multicenter and/or specific Region; ³Healthcare workers and/or students

Publication Bias and Sensitivity test Analysis

To assess publication bias, a traditional funnel plot was used, which showed asymmetry, indicating potential publication bias. For further investigation, Egger's linear regression and Begg's rank correlation tests were performed. Contrary to the visual impression of the funnel plot, the tests indicated no statistically significant publication bias for studies used to assessed COVID-19 vaccine acceptance (p=0.257), vaccine hesitancy (p=0.435) and perception (p=0.611) (Fig. 6).

It is made available under a CC-BY 4.0 International license .

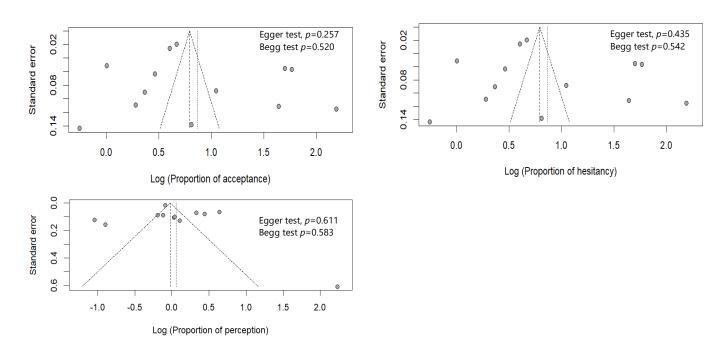


Fig. 6 Funnel plot with pseudo 95% confidence limits and the resulting Egger's and Begg's tests of studies included

A sensitivity analysis was also performed to assess the impact of individual studies and outliers on the overall results. This analysis showed that no single study had a significant impact on the overall results (Supplemental tables 1,2 and 3).

Discussion

The results of the study reveal a worrying trend in Cameroon, where approximately 31.21% of the population are willing to accept the COVID-19 vaccine, while a significant majority (68.49%) are hesitant to accept the vaccine. An almost similar trend was observed in a study conducted among large rural, underserved and minority populations in Alabama, USA [30]. This vaccine acceptance rate was lower than that observed in several meta-analyses conducted in Ethiopia and worldwide [1,6,21,31]. The high rate of vaccine hesitancy in the country could explain this acceptance rate. Vaccine hesitancy is a major concern as it may hinder efforts to control the spread of COVID-19. This finding corroborates results from studies conducted in the USA, where certain ethnic groups and underserved communities appeared to be more reluctant to be vaccinated against COVID-19 [32,33]. A much lower proportion of COVID-19 vaccine hesitancy was observed in a global meta-analysis conducted in 2023 [7].

In addition, about half of the participants (51.81%) have a negative perception of the vaccine. This negative perception may be due to various factors, such as misinformation, fear of side effects, or mistrust of the vaccine's efficacy. This also explains the high hesitancy rate observed in the Cameroonian population.

The study found a significant increase in COVID-19 vaccine acceptance in Cameroon from the first semester of 2021 to the first semester of 2022. The acceptance rate increased from 27.21% in 2021 to 45.56% in 2022. This could be explained by the Ministry of Health's community engagement efforts to sensitize the population with the aim of breaking down barriers to acceptance of the COVID-19 vaccine [3]. A natural process could also explain this progress, as humans are known to integrate new concepts over time. Our results are consistent with the findings of a global meta-analysis, where a significant increase in acceptance was observed from 2020 to 2021 [6,31].

The pooled vaccine hesitancy rate was 70.39% for the general population and 57.42% for healthcare workers. This result corroborates findings from a global meta-analysis where higher hesitancy was observed in the general population compared with a specific group including healthcare workers [31]. The general population may have limited access to credible sources of information about COVID-19 vaccines, making them more susceptible to misinformation and myths. In addition, the general population may be more skeptical of institutions such as the government, pharmaceutical companies, and healthcare systems, which may influence their attitudes towards vaccination. This lack of access to accurate information and mistrust can lead to confusion, suspicion, and ultimately, vaccine hesitancy.

Limitations

Absence of hesitancy rate and a specific variable to assess poor perception of covid-19 rate in certain studies have reduced the number of studies included and should be considered in interpreting the result related to vaccine perception. Although the study checked for publication bias using funnel plots and Egger tests, it is possible that some relevant studies may not have been published or were not accessible. The study relied on self-reported data, which may be subject to

It is made available under a CC-BY 4.0 International license .

social desirability bias, leading to overreporting of vaccine acceptance and underreporting of vaccine hesitancy.

Conclusions

The study's findings reveal a concerning trend of high vaccine hesitancy rates among the Cameroonian population. Willingness to receive the vaccine was lower than the global trend. The study also found a significant increase in COVID-19 vaccine acceptance rates in the country from 2021 to 2022. The results suggest that the general population in Cameroon is more reluctant to be vaccinated with COVID-19 than healthcare workers. The results of the study highlight the need for targeted interventions to address vaccine hesitancy in Cameroon. Efforts to improve access to accurate information, build trust in institutions and strengthen community engagement are critical to increasing acceptance of vaccine against COVID-19 or future emerging or re-emerging diseases.

Abbreviations

COVID-19: New Coronavirus Disease

CS: Cross Sectional Study

HCW: Healthcare Worker

MeSH: Medical Subject Headings

PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-Analysis

SARS-CoV-2: Severe Acute Respiratory Syndrome 2

Declarations

Author contributions: FZLC conceived the original idea of the study. FZLC and MFE conducted the literature search. FZLC, MFE selected the studies, extracted the relevant information, and synthesized the data. FZLC performed the analyses and wrote the first draft of the manuscript. All authors critically reviewed and revised successive drafts of the manuscript. All authors read and approved the final manuscript.

Ethical Approval Statement: Not applicable

Consent for publication: Not applicable.

Availability of data and materials: Data supporting this systematic review are available in the

reference. All data generated or analyzed during this study are included in this published article.

Competing interests: All authors declare no conflicts of interest and have approved the final

version of the article.

Funding source: This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

References

- 1. Tolossa T, Fetensa G, Feyisa BR, Wakuma B, Lema M. Willingness to accept COVID-19 vaccine and its determinants in Ethiopia: A systematic review and meta-analysis. *Front Virol.* 2023; 3:1065991.
- 2. Bitanihirwe BKY, Ssewanyana D. The health and economic burden of the coronavirus in sub-Saharan Africa. *Glob Health Promot*. 2021;28(1):70–4.
- 3. Tchiasso D, Mendjime P, Fai KN, Wandji BSN, Yuya F, Youm É, et al. Dynamic factors associated with COVID-19 vaccine uptake in Cameroon between 2021 and 2022. *J Public Health Afr.* 2024;15(1):8.
- 4. Amani A, Mossus T, Cheuyem FZL, Bilounga C, Mikamb P, Basseguin Atchou J, et al. Gender and COVID-19 Vaccine Disparities in Cameroon. *COVID*. 2022;2(12):1715–30.
- 5. Amani A, Njoh AA, Mouangue C, Cheuyem Lekeumo FZL, Mossus T. Vaccination Coverage and Safety in Cameroon; Descriptive Assessment of COVID-19 Infection in Vaccinated Individuals. *Health Sci Dis.* 2022;23(8).
- 6. Mengistu DA, Demmu YM, Asefa YA. Global COVID-19 vaccine acceptance rate: Systematic review and meta-analysis. *Front Public Health*. 2022; 10:1044193.
- 7. Dinga JN, Kabakama S, Njimoh DL, Chia JE, Morhason-Bello I, Lumu I. Quantitative Synthesis of Factors Associated with COVID-19 Vaccine Acceptance and Vaccine Hesitancy in 185 Countries. *Vaccines*. 2023;12(1):34.
- 8. Baghani M, Fathalizade F, Loghman AH, Samieefar N, Ghobadinezhad F, Rashedi R, et al. COVID-19 vaccine hesitancy worldwide and its associated factors: a systematic review and meta-analysis. Sci One Health. 2023; 2:100048.
- 9. Moher D, Liberati A, Tetzlaff J, Altman DG, Group TP. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. *PLOS Med*. 2009;6(7): e1000097.

- Cheuyem FZL, Mouangue C, Ajong BN, Edzamba MF, Hamadama DCM, Achangwa C, et al. Occupational Exposures to Blood and other Body Fluids among Healthcare Workers in Cameroon: A Systematic Review and Meta-analysis. medRxiv; 2024. doi:10.1101/2024.12.05.24318564v2.
- 11. JBI Critical Appraisal Tools. The Joanna Briggs Institute, Adelaide. 2017. https://jbi.global/critical-appraisal-tools. Accessed: 2024 Dec 3.
- 12. Abongwa LE, Sumo L, Ngum NH, Muhammed NN, Njiwale MS, Nakuh NM, et al. A Survey on Factors Influencing COVID-19 Vaccine Hesitancy in Bamenda-Cameroon. *J Adv Microbiol*. 2022;1–14.
- 13. Aka TK, Atanga SN, Esemu SN, Ndip LMA. Attitudes, and perceptions of COVID-19 vaccines and Acceptance to receive COVID-19 vaccine among healthcare workers in Yaounde, Cameroon. *OALib.* 2024;11(04):1–23.
- 14. Akwa TE, Ngyah NE. Determinants of Public Acceptance of Testing and COVID-19 Vaccines in Cameroon: A Cross Sectional Study. *Electron J Med Educ Technol.* 2022;15(2): em2206.
- 15. Ambe NC, Akum AE, Binwi NF, Ngunde PJ. Prevalence, perceptions and factors influencing covid-19 vaccines' uptake among nurses in fako division, Cameroon. *medRxiv*; 2023. doi:10.1101/2023.01.25.23284999.
- 16. Aseneh JB, Agbor VN, Kadia BM, Okolie EA, Ofomata CJ, Etombi CL, et al. Factors associated with COVID-19 vaccine hesitancy among healthcare workers in Cameroon and Nigeria: a web-based cross-sectional study. *Int Health*. 2023;15(6):702–14.
- Baecher K, Boutwell A, Gunawardhana N, Gunawardhana N, Tebit DM, Dionne J. 1938. COVID-19 Vaccine Hesitancy among Adults Who Rely on social media for Health Care Information in Cameroon, Africa. *Open Forum Infect Dis*. 2022;9(Supplement_2): ofac492.1565.
- 18. Chefor JAN, Likeng JLN, Lum SA. Sociocultural and Institutional Determinants of Adherence to Covid-19 Vaccination among Health Personnel of the Cite Verte Health District Yaounde Cameroon. *Int J Form Sci Curr Future Res Trends*. 2022;15(1):211–29.
- 19. Cho FN, Ngah YE, Tassang AN, Fru CN, Kuku Elad PC, Jokwi PK, et al. Face mask ownership/utilisation and COVID-19 vaccine hesitancy amongst patients recovering from COVID-19 in Cameroon: A cross-sectional study. Aslam MS, editor. *PLOS ONE*. 2023;18(1): e0280269.
- 20. Dinga JN, Sinda LK, Titanji VPK. Assessment of Vaccine Hesitancy to a COVID-19 Vaccine in Cameroonian Adults and Its Global Implication. *Vaccines*. 2021;9(2):175.
- 21. Dinga JN, Njoh AA, Gamua SD, Muki SE, Titanji VPK. Factors Driving COVID-19 Vaccine Hesitancy in Cameroon and Their Implications for Africa: A Comparison of Two Cross-Sectional Studies Conducted 19 Months Apart in 2020 and 2022. *Vaccines*. 2022;10(9):1401.

- 22. Djuikoue CI, Kamga Wouambo R, Pahane MM, Demanou Fenkeng B, Seugnou Nana C, Djamfa Nzenya J, et al. Epidemiology of the Acceptance of Anti COVID-19 Vaccine in Urban and Rural Settings in Cameroon. *Vaccines*. 2023;11(3):625.
- 23. Elit L, Ngalla C, Afungchwi G, Tum E, Fokom-Domgue J, Nouvet E. Perceptions of COVID 19 Vaccine in Rural Cameroon. *Med Discoveries*. 2023;2(1):1007.
- 24. Gunawardhana N, Baecher K, Boutwell A, Pekwarake S, Kifem M, Ngong MG, et al. COVID-19 vaccine acceptance and perceived risk among pregnant and non-pregnant adults in Cameroon, Africa. Sallam M, editor. *PLOS ONE*. 2022;17(9):e0274541.
- 25. Ajonina-Ekoti IU, Ware KB, Nfor CK, Akomoneh EA, Djam A, Chia-Garba M, et al. COVID-19 perceptions and vaccine hesitancy: Acceptance, attitude, and barriers among Cameroonians. *J Am Pharm Assoc.* 2022;62(6):1823–9.
- 26. Ngasa NC, Ngasa SN, Tchouda LAS, Tanisso E, Abanda C, Dingana TN. Spirituality and other factors associated with COVID-19 Vaccine Acceptance amongst Healthcare Workers in Cameroon. *Research Square*; 2021. doi:10.21203/rs.3.rs-712354/v1.
- 27. Tambo E, Tsague CL, Ebong SB, Tchuendem I, Ngazoue EF, Fankep B, et al. Acceptability Of Covid-19 Vaccines And Vaccination In Cameroon: Challenges And Way Forward. *Research Square*; 2022. doi:10.21203/rs.3.rs-1369012/v1.
- 28. Tetsatsi ACM, Nguena AA, Deutou AL, Talom AT, Metchum BT, Tiotsia AT, et al. Factors Associated with COVID-19 Vaccine Refusal: A Community-Based Study in the Menoua Division in Cameroon. *Trop Med Infect Dis*. 2023;8(9):424.
- 29. Ukah EC, Tambe J, Tanue AE, Ngeha NC, Shei MC, Tabe OBV, et al. COVID-19 vaccine uptake among healthcare workers in the Limbe Health district of Cameroon. *J Public Health Epidemiol*. 2024;16(1):28–40.
- 30. Crozier J, Christensen N, Li P, Stanley G, Clark DS, Selleck C. Rural, Underserved, and Minority Populations' Perceptions of COVID-19 Information, Testing, and Vaccination: Report from a Southern State. *Popul Health Manag.* 2022;25(3):413–22.
- 31. Kawuki J, Chen S, Fang Y, Liang X, Chan PS fong, Wang Z. COVID-19 Vaccine Acceptance, Attitude and Perception among Slum and Underserved Communities: A Systematic Review and Meta-Analysis. *Vaccines*. 2023;11(5):886.
- 32. Coman IA, Xu S, Yamamoto M. COVID-19 Vaccine Hesitancy: Disadvantaged Groups' Experience with Perceived Barriers, Cues to Action, and Attitudes. *Am J Health Promot.* 2023;37(4):488–98.
- 33. Doherty IA, Pilkington W, Brown L, Billings V, Hoffler U, Paulin L, et al. COVID-19 vaccine hesitancy in underserved communities of North Carolina. *PLOS ONE*. 2021;16(11): e0248542.