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Abstract18

Functional connectivity magnetic resonance imaging (fcMRI) is a well-19

established technique for studying brain networks in both healthy and dis-20

eased individuals. However, no fcMRI-based biomarker has yet achieved21

clinical relevance. To establish better understanding of the state of the22

art in quantifying abnormal connectivity in comparison to a reference dis-23

tribution, for potential use in individual patients, we have conducted a24

scoping review over 5672 entries from the last 10 years. We have located25

five publications proposing methods of abnormal connectivity quantifica-26

tion, reported these methods and formalized them. We also illustrated the27

emerging trends and technical innovations in fcMRI research that may fa-28

cilitate development of individualized fcMRI-based abnormal connectivity29

metrics.30

1 Introduction31

Functional connectivity magnetic resonance imaging (fcMRI), first used for con-32

nectivity analysis in humans by Biswal et al. [1] and based on the blood oxygen33

level dependent (BOLD) signal [2, 3, 4], is widely regarded as a valuable imag-34

ing method for the inquiry into connectivity in human [5, 6] and non-human [7]35

brain research alike. With the scientific community increasingly reconceptualiz-36

ing neurodegenerative [8, 9], psychiatric [10] and neuro-oncological [11, 12, 13]37

disorders as “network disorders”, fcMRI-based biomarkers that quantify abnor-38

mal connectivity in relation to the distribution in a healthy reference sample39

may pave a way for a connectivity metrics suited for validation and application40

in clinical diagnostics.41

To date, no fcMRI biomarker has achieved clinical relevance. This can be42
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linked to two major challenges: (1) limited interpretability of the acquired sig-43

nal in consequence of intra-subject variability and device- and procedure-related44

confounds [14, 15, 16] and (2) a lack of well-established and readily accessible ref-45

erence values for functional connectivity in individuals despite available datasets46

(e.g. Human Connectome Project [52] and 1000connectomes [17]). Alleviating47

these issues through systematic use of reference samples and normative model-48

ing may permit consistent data interpretation and pave the way for an fcMRI49

biomarker accessible enough for potential incorporation into diagnostic practice.50

In light of the potential benefits of establishing such a normative model51

for fcMRI, and considering the successful biomarker normalization attempts in52

other brain imaging modalities [18, 19, 20], two assertions can be made.53

Firstly, there exists an apparent unmet medical need for validated and clin-54

ically implemented fcMRI-based abnormality metrics that satisfy the criteria of55

relationality and countability. Herein, a relational metric may be defined as a56

metric that relies on a control cohort sufficiently representative of the target in-57

dividual, allowing to establish a normative model of connectivity that compares58

a given individual to a distribution of controls and quantifies the discrepancy,59

while a countable metric may be defined as an interval or rational metric that60

can be used as grounds for grading or comparison.61

Secondly, there is minimal study coverage pertaining to the introduction62

and validation of such metrics, which limits current insight into individualized63

abnormality detection in functional connectivity.64

An initial step toward addressing the question of normative modelling in65

fcMRI consists in a scoping review of fcMRI-based metrics of connectivity ab-66

normality, the results of which we present here. Within the scope of this paper,67

we review and analyze the fcMRI abnormality metrics yielded by our search,68

explore the degree of their refinement, and determine their readiness for clinical69
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validation. Moreover, we discuss the need of moving beyond group comparison70

and towards quantitative fcMRI anomaly metrics for application in individual71

patients. We also elucidate emerging trends and technical innovations in fcMRI72

research that may facilitate development of relational fcMRI-based abnormality73

metrics.74

2 Methods75

2.1 Overall Protocol76

We have conducted our review in adherence to the general framework of scoping77

reviews proposed by Arksey and O’Malley [21] and refined by Levac et al. [22].78

We reported our results in compliance with the Preferred Reporting Items for79

Systematic reviews and Meta-Analyses (PRISMA) extension for scoping reviews80

(PRISMA-ScR) [23]. The PRISMA-ScR compliance checklist can be accessed81

in the Supplementary Materials.82

2.2 Review Objectives83

Within the scope of this review, we intended to determine (1) whether there84

exist metrics to quantify the deviation of functional connectivity in an individual85

patient from a reference population, (2) whether they are validated to guarantee86

sufficient technology readiness and clinical utility and (3) whether they satisfy87

the criteria of relationality and countability outlined in the introduction.88

In pursuit of this objective, we have reviewed the state-of-the-art (SOTA)89

in fcMRI connectivity abnormality detection, analyzed the results, formalized90

them, and reported our findings.91
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2.3 Information Sources, Search Strategy, Data Acquisi-92

tion and Handling93

We have leveraged the Google Scholar database for our seearch. We set the query94

year range at the years 2014-2024 and employed Publish or Perish 8.10.4612.883895

[24] to automate our query. We searched in 1-year batches to yield the most96

entries and circumvent the internal limit of 1000 entries per query. We input97

the following search request: ”fcMRI connectivity connectome abnormality de-98

tection anomaly map deviation individual reference metric.”99

All data was aggregated using pandas 2.1.1 [25] and NumPy 1.23.5 [26],100

exported as comma-separated values, and uploaded for subsequent group review101

on a secure team space in Notion [27]. Using Notion’s integrated tools and102

functions, we removed damaged or empty entries. The remaining entries were103

subjected to screening and eligibility assessment (see below).104

2.4 Study Screening and Selection105

We employed a 2-phase screening and eligibility selection strategy. During the106

screening phase, we excluded sources that (1) did not report research based on107

fMRI or did not use BOLD signal, (2) reported experiments on participants108

under 18 years of age, (3) did not have a healthy reference cohort against which109

the patients would be gauged, (4) were reviews, (5) were preprints, (6) were110

book chapters, (7) did not report research on resting-state fcMRI, (8) were111

not accessible for full text, (9) reported research on data acquired with a field112

strength under 3.0 T, (10) were theses or dissertations, (11) were meta-analyses,113

(12) reported research conducted on non-human data, (13) were citation records,114

(14) were abstract almanacs or miscellaneous publications, (15) were conference115

papers, (16) were study protocols or (17) were not in English.116

Eligibility assessment phase consisted in elimination of articles that did not117
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report metrics that satisfy the criteria of relationality and countability outlined118

in the introduction. Eligibility assessment relied on an in-depth inspection of119

the ”Methods” section and a deeper examination of other paper sections in cases120

where it was necessary. Edge cases were resolved by reviewer consensus.121

2.5 Study Analysis122

The sources which passed screening and selection were fully studied. Subse-123

quently, we extracted the metric computation methods reported by the respec-124

tive authors, described them, and formalized them. To explore the degree of125

their refinement, state of validation, and level of applicability in a clinical set-126

ting, we chose to follow the citations of the articles in question (for better nar-127

ration consistency and text legibility, these searches will be reported within the128

results section). Subsequently, we integrated these findings to yield our state-129

ments. We additionally assigned to every metric a Technology Readiness Level130

(TRL) as specified by ISO 16290:2013 [28] in the edition of EU Commission131

Decision C(2017)7124 [29], elucidated for fcMRI-based abnormality detection132

applications as per Table 1.133

3 Results134

3.1 Query Results135

Our query cumulatively returned 5696 entries, 5672 of them valid (non-empty,136

not damaged or fragmentary) entries. After screening, 4964 sources were ex-137

cluded (Fig. 1), while 708 sources were deemed eligible for selection. Only 5138

passed selection and were subjected to a full-depth analysis. A PRISMA flow139

diagram is available in Fig. 2.140
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Non-English Publication 11

Study Protocol 18

Conference Paper 31

Abstract Almanac/Miscellaneous Publication 34

Citation Record Only 52

Meta-Analysis 78

Non-Human Study 92

MRI Field Strength < 3.0 Tesla 113

Book Chapter 135

Not Resting-State fcMRI 200

No Full-Text Access 308

No Reference Cohort/Control Group 377

Review Article 399

Preprint 452

Participants Under 18 Years of Age 771

Non-fMRI (Non-BOLD Signal) 915

Thesis/Dissertation 978

100 200 300 400 500 600 700 800 900 1000

Figure 1: Entries eliminated during Screening phase. In total, we have excluded
4964 entries, of them entries on 978 theses and dissertations, 915 non-fMRI stud-
ies, 771 studies on patients under 18 years of age, 452 preprints, 399 reviews,
377 studies without a healthy reference cohort, 308 articles without accessible
full-text, 200 non-resting-state fMRI studies, 135 book chapters, 113 studies
conducted on data acquired with a field strength under 3.0 Tesla, 92 studies
conducted on non-human data, 78 meta-analyses, 52 citation records, 34 ab-
stract almanacs or other publications, 31 conference papers, 18 protocol papers
and 11 publications in a language other than English.
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Figure 2: PRISMA flow diagram of review process. In the screening phase we
have eliminated 4964 entries of sources (see Section 2.4 and Fig. 1), retrieved
708 sources for review eligibility assessment and applied to them the criteria
of relationality and countability outlined previously. Notably, only five sources
could be deemed eligible for inclusion into the review.
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Table 1: Technology Readiness Levels (TRL) for fcMRI-based abnormality de-
tection
TRL Description Elucidation for fcMRI do-

main
TRL 1 Basic Principles Observed Study of BOLD signals and

derived functional connectivity
metrics at the region of inter-
est (ROI) level; understanding
hemodynamic responses in indi-
vidual ROIs

TRL 2 Technology Concept Formu-
lated

Conceptualizing ROI-wise de-
tection methods; formulating
hypotheses on ROI abnormali-
ties

TRL 3 Proof-of-Concept Demonstrated Simulations with synthetic data
or real data with niche cases;
initial testing of algorithms in
exploratory contexts

TRL 4 Component Validation in Lab
Environment

Testing on controlled datasets;
refining ROI-wise analysis tech-
niques

TRL 5 Component Validation in Rele-
vant Environment

Application to small-scale real-
world human data; adjusting
for real-world variability; lim-
ited longitudinal studies

TRL 6 Prototype Demonstration in
Relevant Environment

Pilot studies with clinical data;
collaborating with clinicians for
feedback; extensive longitudinal
studies

TRL 7 Prototype Demonstration in
Operational Environment

Deployment in clinical settings;
integration with existing imag-
ing systems; experimental clini-
cal decision support

TRL 8 System Qualified Through Test
and Demonstration

Conducting clinical trials; ini-
tiating regulatory compliance
processes; system/metric vali-
dated in clinical contexts for de-
cision support

TRL 9 Actual System Proven in Oper-
ational Environment

Widespread clinical adoption;
ongoing monitoring and sup-
port; ready for long-term inte-
gration into clinical guideline
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3.2 State of the Art and its Aspects141

3.2.1 The Nenning Index142

Nenning et al. [30] introduced a voxel-level connectivity abnormality metric in143

their 2020 glioblastoma paper. Briefly, it is computed as follows: (1) voxel-144

wise connectivity matrices for both patients and controls (80 control subjects)145

are built using z-scored Pearson correlations; (2) element-wise average of control146

population connectivity matrices is computed to yield a group average ”normal”147

connectivity matrix; (3) a vector of voxel-wise differences is computed between148

the patients and group average as row-wise cosine similarity; (4) for every voxel149

in controls’ connectivity matrices and the group average matrix, cosine similar-150

ities are computed to yield voxel-wise distribution; from that distribution, the151

median and mean absolute deviation (MAD) are computed (the ”voxel mean”152

and ”voxel MAD” respectively); (5) for every patient and for every patient153

voxel’s cosine similarity, an abnormality score is computed as the difference of154

cosine similarity and voxel mean, subsequently divided by the voxel MAD.155

Analytically, this can be summarized as follows:156

A(p)
v =

C
(p)
v,∗ ·Cv,∗∣∣∣C(p)
v,∗

∣∣∣ ∣∣Cv,∗
∣∣ −median


 C

(ci)
v,∗ ·Cv,∗∣∣∣C(ci)
v,∗

∣∣∣ ∣∣Cv,∗
∣∣


N

i=1


MAD


 C

(ci)
v,∗ ·Cv,∗∣∣∣C(ci)
v,∗

∣∣∣ ∣∣Cv,∗
∣∣


N

i=1


(1)

where C
(p)
v,∗ is the connectivity vector of voxel v for patient p, C

(ci)
v,∗ is the connec-157

tivity vector of voxel v for control subject ci, with i = 1, 2, . . . , N and N = 80158

being the number of control subjects, Cv,∗ is the average connectivity vector of159

voxel v across all control subjects, ∥·∥ denotes the Euclidean norm of a vector, ·160

represents the dot product between two vectors, median(·) computes the median161
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of a set of values and MAD(·) computes the median absolute deviation of a set162

of values.163

It is important to mention that Nenning’s team focused on reporting ab-164

normality in non-infiltrated regions but pointed out that the inclusion of tumor165

infiltrated regions did not significantly alter the overall connectivity signature.166

Additionally, they demonstrate that in glioblastoma, functional proximity to the167

tumor tends to be reflected stronger than structural proximity in coefficients168

derived from fcMRI signal, while visual, somatomotor, and limbic networks169

tend to exhibit anomaly coefficients more evenly informed by both spatial and170

functional distance alike. Finally, Nenning’s team demonstrate precedence of171

network anomalies before tumor recurrence, highlighting a potential prognostic172

capacity for abnormality index computation.173

PubMed citation check revealed no further studies employing this index in174

their computations; however, the longitudinal character of the study in focus175

supports the assignment to this index of a TRL 5 out of 9.176

3.2.2 The Dysconnectivity Index177

Stoecklein and Liu [31] present another voxel-level connectivity abnormality178

metric in their publication on gliomas. It is computed as follows: (1) voxel-179

wise connectivity matrices are built for both patients and controls (1000 control180

subjects) using Pearson correlations; (2) for every control subject connectivity181

matrix, every voxel position in the matrix, and every element in the voxel, a182

distribution of connectivity coefficients is built; (3) the distribution’s mean and183

standard deviation are computed to yield respective elements of the mean and184

standard deviation vectors; (4) for every patient connectivity matrix, every voxel185

position in the matrix, and every element in the voxel, a z-score is computed for186

using the elements of the mean and standard deviation vectors computed before187

(i.e., for i-th element in the patient’s voxel, respective i-th element of the mean188
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and standard deviation vector is used) to yield a vector of z-scores; (5) a sum189

of z-scores higher than a specific threshold is computed to yield the voxel-level190

”abnormality coefficient.”191

Analytically, for the voxel at the position i this can be summarized as follows:192

Abnormality Coefficient =
∑
j

I


P ij −

(
1

N

N∑
c=1

Cij
c

)
√

1

N

N∑
c=1

(
Cij

c − 1

N

N∑
c=1

Cij
c

)2
> T

 (2)

where P ij is the connectivity coefficient at voxel position i, j for the patient,193

Cij
c is the connectivity coefficient at voxel position i, j for control subject c, N194

is the number of control subjects, T is the specific threshold, and I(·) is the195

indicator function, which evaluates to 1 if the condition is true and 0 otherwise.196

The authors have conducted computations for the entire brain (without tu-197

mor mask exclusion) and demonstrated not only that tumor sites can be cap-198

tured by their index, but that abnormality can be detected far beyond the lesion199

itself, even in the contralateral hemisphere, particularly in high grade gliomas.200

They have also shown that, in glioma, their abnormality index correlates with201

neurocognitive performance, WHO grade, PET metabolic data, and IDH muta-202

tion status. Additionally, the authors hypothesized that abnormal connectivity203

may not only originate from tumor functional or structural proximity but also204

indicate sub-clinical tumor cell infiltration and speculated that functional dis-205

ruption also indicates possible tumor cell infiltration.206

PubMed citation check revealed two studies based on this index. In the207

first publication [32], the authors demonstrated that their abnormality index208

(in more recent sources referred to as DCI - the ”dysconnectivity index”) can209

be employed to assess immune effector cell-associated neurotoxicity syndrome210
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(ICANS) in patients under CAR-T therapy and hypothesized that it may be211

used to objectify damage to functional networks in encephalopathies; further-212

more, the authors stated that their index may provide an imaging correlate to213

trace and possibly predict neurotoxic side-effects of oncologic treatment. In the214

second publication [33], the authors show a direct association between the DCI215

and the perifocal edema volume in meningiomas, as well as neurocognitive per-216

formance (i.e., higher DCI implies larger edema and more degraded cognition).217

The sizable body of knowledge amassed in relation to this index, as well as218

validation for different diseases of the human brain and their sequelae, allows219

us to assign to this index a TRL of 6 out of 9.220

3.2.3 The Doucet Normative Person-Based Similarity Index221

In their publication, Doucet et al. [34] report the normative person-based simi-222

larity index (nPBSI). Computed from both functional connectivity and cortical223

morphometry per aspect, their index explicitly seeks to make a patient’s condi-224

tion relative to a set control population (93 control subjects). Doucet’s group225

presents four indices for which clinical, genetic, demographic, and environmental226

correlates have been described - normative cortical thickness PBSI (nPBSI-CT),227

normative subcortical volume PBSI (nPBSI-SV), normative module cohesion228

PBSI (nPBSI-MC) and normative module integrations (nPBSI-MI).229

Within the scope of this review, our attention was focused on the fcMRI-230

based module cohesion and module integration metrics, computed as follows: (1)231

the patient’s brain is parcellated into default mode, central executive, salience,232

sensorimotor, and visual networks; (2) within-module connectivity is repre-233

sented as the average value of a voxel wise z-transformed Pearson correlation234

coefficient between all of the module’s voxel pairs and used to build a pa-235

tient’s module cohesion profile, encoded as a module cohesion feature vector;236

(3) between-module connectivity is represented as z-transformed Pearson cor-237
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relation coefficients of the modules’ averaged time series and used to build a238

patient’s module integrations profile, encoded as a module integrations feature239

vector, and finally, (4) the nPBSI-MC or nPBSI-MI are computed as averaged240

Spearman correlations between the patient and the healthy controls’ respective241

(module cohesion or module integrations) feature vectors.242

Analytically, for the patient p this can be summarized as follows:243

nPBSI-MC =
1

|H|
∑
h∈H

ρ


 1

Ki

∑
(vp,vq)∈Mi

z
(
r(p)vpvq

)N

i=1

,

 1

Ki

∑
(vp,vq)∈Mi

z
(
r(h)vpvq

)N

i=1


(3)244

nPBSI-MI =
1

|H|
∑
h∈H

ρ

([
z
(
r
(p)
MiMj

)]
i ̸=j

,
[
z
(
r
(h)
MiMj

)]
i ̸=j

)
, (4)

where N represents the number of brain modules (default mode, central245

executive, salience, sensorimotor, and visual networks), Mi is the set of voxels246

in module i, Ki is the number of voxel pairs in module i, r
(p)
vpvq is the Pearson247

correlation coefficient between voxels vp and vq for the patient p, r
(h)
vpvq is the248

Pearson correlation coefficient between voxels vp and vq for a healthy control249

h, r
(p)
MiMj

is the Pearson correlation coefficient between the average time series250

of modules i and j for the patient p, r
(h)
MiMj

is the same for a healthy control251

h, z(r) = 1
2 ln

(
1+r
1−r

)
is the Fisher z-transformation, ρ denotes the Spearman252

correlation coefficient, H is the set of healthy controls and |H| is the number of253

healthy controls.254

PubMed citation check revealed no studies employing the normative index255

from this publication in their computations of functional connectivity met-256

rics. The closest possible match [35] relied on computing both the within- and257

between-network connectivity but did not compute the nPBSI itself. Modest258

validation for bipolar disorder and lack of nPBSI validation for other disorders259

justifies the assignment to this metric of a TRL 4 out of 9.260
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3.2.4 The Network Topography Spatial Similarity Index261

Silvestri and Corbetta present a spatial similarity index (SSI) for network to-262

pographies derived from independent component analysis (ICA) in their 2022263

publication on gliomas [36]. Briefly, it is computed as follows: (1) rs-fcMRI264

data of the control population (308 individuals) are subjected to a group ICA265

(G-ICA) to yield group-level template independent component (IC) maps for266

ten functional networks (specifically, visual, sensorimotor, auditory, cingulo-267

opercular, dorsal attention, fronto-parietal, default mode, cognitive control,268

frontal and language networks); (2) the group-level template IC maps are used269

as spatial constraints for group information-guided ICA (GIG-ICA) of both con-270

trols and patients (24 individuals) to produce individual-specific, single-subject271

level IC maps; (3) for each IC in subject, a cosine similarity is computed be-272

tween a single-subject IC map and a template IC map thresholded at a value of273

1 and is yielded as the network topography spatial similarity index.274

Analytically, this can be expressed as follows:275

SSIIC =

(
GIG-ICA

(
Ds; {Tk}10k=1

)
j

)
· (Threshold1(Tj))∥∥∥GIG-ICA (Ds; {Tk}10k=1)j

∥∥∥ · ∥Threshold1(Tj)∥
(5)

where SSIIC is the spatial similarity index for a given independent compo-276

nent, D = {Di}308i=1 represents the rs-fMRI data of the control population,277

T = G-ICA(D) = {Tj}10j=1 are the group-level template IC maps for the ten278

functional networks obtained from group ICA, Ds is the rs-fMRI data of sub-279

ject s, GIG-ICA(Ds; {Tk}10k=1)j produces the single-subject IC map Ss,j for sub-280

ject s and component j using the group-level templates as spatial constraints,281

Threshold1(Tj) denotes the template IC map Tj thresholded at a value of 1,282

the numerator (·) represents the dot product between the two vectors and the283

denominator (∥ · ∥) represents the Euclidean norm (magnitude) of the vectors.284
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The team around Silvestri and Corbetta reported testing structural and285

functional proximity of their index to the tumor sites, describing partial over-286

lap of index abnormalities and glioma-infiltrated areas and highlighting index287

abnormalities in non-infiltrated areas. They also analyzed changes in network288

topography scores and neuropsychological performance and were able to capture289

a statistically relevant relationship between the SSI and the attention domain.290

PubMed citation check revealed no studies employing this normative index in291

their computations of functional connectivity metrics. Modest validation for292

gliomas and lack of validation for other disorders justifies the assignment to this293

metric of a TRL 4 out of 9.294

3.2.5 The Morgan Network Topology Method295

Morgan et al. present various metrics and indices in their publication on the role296

of anterior hippocampus in mesial temporal lobe epilepsy (mTLE) [37]. Their297

computations rely on multi-modal data and operate within four topologies: the298

streamline length (TLEN ), structural connectivity (TSC), functional connectiv-299

ity (TFC) and resting-state network topology (TRSN ). Within the scope of our300

review, we will focus on the functional connectivity topology and its respec-301

tive distance index, as no similar index has been reported for the resting-state302

network topology.303

Briefly, it is computed as follows: (1) functional connectivity maps are built304

for controls (70 individuals) and patients (40 individuals, of them 29 with right305

mTLE and 11 with left mTLE) from z-transformed functional connectivity306

matrices through age regression and subsequent averaging of signal over 109307

anatomical ROIs; (2) a topology is built from the functional connectivity maps308

by selecting 55 ROIs of a single hemisphere for patients and controls; (3) a seed309

vector is used to slice anterior hippocampal connectivity from the topology into310

a connectivity vector for both patients and controls; (4) the connectivity vec-311
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tor is stratified along connectivity intensity into ”bins” to yield their respective312

connectivity vectors of k elements for both patients and controls; (5) for patient313

and bin, the Mahalanobis distance between the patient’s bin connectivity vector314

and the mean of controls’ bin connectivity vectors is computed and yielded as315

connectivity deviation metric.316

Analytically, this can be summarized as follows:317

MDi,b =

√
(ϕi,b − µb)

⊤
Σ−1

b (ϕi,b − µb) (6)

with patient’s connectivity vector in bin, controls’ mean vector in bin and con-318

trols’ covariance matrix in bin as, respectively,319

ϕi,b = Bb (RS(Mi)) (7)

320

µb =
1

Nc

Nc∑
j=1

Bb (RS(Mj)) (8)

and321

Σb =
1

Nc − 1

Nc∑
j=1

(Bb (RS(Mj))− µb) (Bb (RS(Mj))− µb)
⊤

(9)

where Mi is a functional connectivity matrix (size 109 × 109) for individual322

i, S(Mi) denotes a selection operator extracting a 55 × 55 hemisphere-specific323

submatrix from Mi, R is a seed vector (size 1× 55) with 1 at the anterior hip-324

pocampus position and 0 elsewhere, Bb(·) symbolizes the binning function that325

selects elements belonging to bin b based on connectivity intensity, Nc = 70 is326

the number of control individuals, µb is the mean vector of controls’ connectivity327

vectors in bin b and Σb is the covariance matrix of controls’ connectivity vectors328

in bin b.329

PubMed citation check revealed two studies which reported intriguing use of330

the logic behind this computational approach. The first publication of interest331
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by Morgan et al. [38] reports use of similar connectivity profiling techniques and332

the Mahalanobis distance for outcome prediction in mTLE patients by means of333

distance computation between a patient’s connectivity profile and a normative334

population of individuals who achieved seizure-free status after mesial temporal335

lobe surgery. Notably, the team around Morgan reported sensitivity of 100%336

and specificity of 90% for their prediction approach.337

The second publication by Guerrero-Gonzalez et al. [39] does not pertain to338

functional MRI, but describes use of the comparable logic of normative modeling339

and Mahalanobis distance computing to quantify abnormality in tractography340

of traumatic brain injury patients.341

The epilepsy-specific focus of Morgan’s distance-based approach limits the342

scope of potential use of this metric; however, success of similar computational343

approaches in other modalities and remarkable performance of the Mahalanobis344

distance-based index in the surgical outcome prediction task support the assign-345

ment to this metric of a TRL 5 out of 9.346

4 Discussion347

4.1 Group Comparison Currently Prevails in Studies of348

Abnormal Connectivity349

In this scoping review, we have been able to show that, despite the strong350

knowledge base to support the concept of neurodegenerative [8, 9], psychiatric351

[10] and neuro-oncological [11, 12, 13] as “network disorders”, a metric capable352

of evaluating and quantifying large-scale functional brain network disruptions in353

individual patients is yet to be developed, validated and made accessible enough354

for potential incorporation into diagnostic practice.355

We also demonstrated that, despite the significant benefits of relational met-356
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rics as integral elements of normative modeling [40], we could only retrieve five357

such metrics of functional connectivity deviation that have been proposed within358

the last ten years. Of note, in many studies that we evaluated for this review, the359

findings and the hypotheses that lead to these findings were built around the as-360

piration to illustrate binary differences between patients and healthy controls,361

which resulted in reports of metrics being increased or decreased in patients362

without a clearly specified relation between the increment of metric and incre-363

ment of pathological state. The development of patient-centric fcMRI markers364

requires moving beyond group comparison and toward relational metrics based365

on normative populations that span variability in demographic and procedural366

factors.367

4.2 Artificial Intelligence and Big Data Emerge as Meth-368

ods in fcMRI Research369

The advent of big data and artificial intelligence-based methods in fcMRI re-370

search may boost the development of relational connectivity metrics by enhanc-371

ing the current computational approaches and data accessibility.372

The drastic progress in computing technology [41] has made possible the373

widespread use of industrial-grade hardware acceleration of previously strictly374

linear computing through parallel computing with the help of much more read-375

ily accessible graphical processing units (GPUs) [42, 43]. Improved hardware-376

software synergy now permits optimization of both speed and efficiency of377

data engineering and machine learning, allowing for faster simultaneous read-378

/write operations and deeper insight into highly complex multidimensional data.379

This is well-manifested by the packages for accelerated Python computing (e.g.380

CuPy[44] or Dask [45]), optimized tensor storage solutions (e.g. Zarr [46] or381

Xarray [47]), new Neuroimaging Informatics Technology Initiative (NifTI) im-382
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age manipulation modules (e.g. Xibabel [48]) or the advancements in the field383

of machine learning (ML) frameworks [49, 50, 51].384

Simultaneously, high-quality data can be accessed freely by virtue of rec-385

ognized cohorts (e.g. Human Connectome Project, Alzheimer’s Disease Neu-386

roimaging Initiative or Brain Genomics Superstruct Project [52, 53, 54]) and387

open-access data repositories (e.g. OpenNeuro [55]), which permits compila-388

tion of harmonized, statistically powerful reference datasets, capturing vari-389

ability across demographics and technical parameters. The utility of account-390

ing for these factors is well-substantiated by evidence of variables such as age391

[56, 57, 58], sex [59, 60] and scan parameters [61, 62] having significant influ-392

ence on fcMRI metrics. Therefore, creation of large-scale reference datasets393

augmented by technical and demographic parameters may help pave the way394

for normative modelling in fcMRI.395

Moreover, the current rise of deep learning models for operations on fcMRI396

data can help streamline previously time-consuming elements of data prepro-397

cessing and enrichment, potentially accelerating research on relational fcMRI-398

based metrics manyfold. This is prominently exemplified by ML breakthroughs399

in the area of structural image preprocessing with algorithms such as FastSurfer400

[63], a deep learning pipeline for brain segmentation, cortical surface reconstruc-401

tion, cortical label mapping and thickness analyses. Similar advancements have402

also been reported for affine registration with tools such as SynthMorph [64],403

a model that resolves a tensor-to-tensor mapping problem for an image pair,404

yielding a compatible spatial transform. Lastly, experimental ML-boosted inte-405

grated pipelines for fcMRI image preprocessing (e.g. DeepPrep [65]) have also406

been proposed.407

In summary, the current circumstances create a uniquely favorable setting408

for more practical progress on relational fcMRI-based metrics of abnormal con-409
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nectivity.410

4.3 Limitations411

Our search only comprises sources released before mid-May 2024. Addition-412

ally, our search terms might not include all relevant publications. In particular,413

preprints, theses and dissertations have been excluded as reports that have not414

undergone a peer review process. Additionally, not all publications could be415

accessed for full text. Furthermore, due to considerably less generalizable dy-416

namics of neurobiological development in pediatric and adolescent individuals,417

a decision was made not to consider publications that concerned persons under418

18 years of age. Finally, if a publication matched more than one exclusion crite-419

rion during screening, its exclusion was attributed to a single most prominently420

matching criterion in an effort to prevent redundant statistical entries.421

5 Summary422

Patients suffering from neuro-oncological, psychiatric and neurodegenerative423

disorders can benefit from individualized detection and quantification of ab-424

normal functional connectivity. However, no fcMRI-derived biomarkers have425

yet seen widespread adoption in clinical research or practice. Within the scope426

of this scoping review, we have asserted both the necessity and the current427

absence of a well-established relational and countable metric for abnormal func-428

tional connectivity in individuals. We have subsequently leveraged the Google429

Scholar database to retrieve sources that matched our search criteria and sub-430

jected them to PRISMA-compliant screening and selection to yield items for431

subsequent in-depth analysis. We have yielded and demonstrated five currently432

reported methods/metrics for relational, normative quantification of abnormal433

connectivity and formalized their computation methods. Building upon our434
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results, we have discussed the need of moving beyond group comparison and to-435

ward quantitative fcMRI anomaly metrics for application in individual patients436

and briefly elucidated the emerging trends and technical innovations in fcMRI437

research that may facilitate development of relational metrics of functional con-438

nectivity.439
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