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Abstract 

Non-pharmaceutical interventions during the COVID-19 pandemic significantly disrupted social mixing 
patterns, creating a need for updated mathematical models to guide an effective response. Accurately 
capturing evolving, age-specific social contacts has proven challenging. This study evaluates the 
effectiveness of mobility-driven synthetic contact matrices against survey-based empirical matrices in 
capturing the dynamics of COVID-19 observed in France from March 2020 to May 2022. Both matrices 
showed a gradual increase in average contacts following the first lockdown, with the closest agreement 
during school closures. However, when schools were open, empirical matrices recorded 3.4 times more 
contacts for individuals under 19 than synthetic matrices. The model parameterized with mobility-driven 
contact matrices provided the best fit to hospital admission data and captured hospitalization patterns 
for adolescents, adults, and seniors, whereas deviations remained for children across both models. 
Neither matrix allowed models to accurately reproduce serological trends in children in 2021, 
highlighting the challenges both approaches face in capturing disease-relevant contacts in children. These 
findings demonstrate the value of synthetic matrices as flexible, cost-effective tools for epidemic 
modeling, operationally ready in real-time. Routine collection of age-stratified mobility data is essential 
to improve pandemic response. 
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INTRODUCTION 

Mathematical models of infectious disease transmission represented a critical tool to guide real-time 
public health response during the COVID-19 pandemic1,2. However, one of the main challenges was 
accurately integrating changes in human behavior into transmission models3,4. The shifts in mobility and 
contact patterns produced by unprecedented social distancing measures significantly impacted the 
spread of SARS-CoV-25–7. How to best characterize these shifts and integrate them in real-time modeling 
remains an open issue.  

A key factor in the transmission of respiratory diseases is the pattern of social contacts between age 
groups8. Starting from pioneering work in mid-2000s9, an increasing number of studies used population-
based surveys10–12 to build static contact matrices describing age-stratified population-level mixing in 
European countries, as well as to generate synthetic contact matrices in other countries accounting for 
socio-demographical structures13–15. These pre-pandemic contact matrices were essential for early 
pandemic modeling16–18. But they became increasingly inadequate as the pandemic progressed and 
various interventions were implemented, such as school closures and remote working that affected age 
groups differently. Models relying on static matrices, or those assuming uniform rescaling of contacts19–

22, struggled to accurately estimate the impact of these interventions across ages, e.g. in terms of 
hospitalizations and cumulative infections. 

Ideally, time-varying contact matrices can be constructed from repeated social contact surveys, but such 
surveys are resource-intensive and often difficult to implement in real-time. During the COVID-19 
pandemic, the CoMix project conducted repeated social contact surveys in representative samples of the 
populations of over 20 countries in Europe23. Yet, only the UK continuously collected data throughout the 
pandemic through weekly waves24, and only three countries (the UK, Belgium, the Netherlands) covered 
also the first pandemic wave, the one reporting the largest shifts in behavior. In France, survey data 
covering the first wave were available through SocialCov25, a project collecting contact data from a 
convenient sample recruited online. While surveys with frequent waves, such as weekly data collection, 
can provide valuable information on social mixing patterns, they still present considerable challenges for 
real-time analysis. Processing raw survey data to construct accurate contact matrices in real-time is 
resource-intensive, requiring efficient data cleaning, aggregation, and interpretation to reflect dynamic 
behavioral shifts. When survey data were unavailable, transmission models had to rely on alternative 
proxies to estimate changes in social mixing. 

Mobility data26–29 proved essential30, providing insights into movement flows and location-specific activity 
in response to restrictions and recommendations. Early in the pandemic, members of our team 
developed a novel framework to generate mobility-based synthetic contact matrices for France, 
capturing shifts in contact patterns driven by the epidemic and governmental measures. Initially 
introduced to assess the impact of the first lockdown18, this framework was later expanded to integrate 
various data sources throughout the pandemic31. The synthetic contact matrices were constructed by 
applying age-specific contact reductions to the pre-pandemic contact matrix12 based on location and 
contact type. Google mobility data informed adjustments in workplace contacts, school attendance data 
shaped changes in the school contact layer, and pandemic survey data on physical contact avoidance 
reduced skin-to-skin interactions. These data streams enabled to produce weekly, real-time synthetic 
contact matrices throughout the pandemic18,31–35.   

Although mobility-based synthetic contact matrices offer a promising alternative for real-time modeling, 
their accuracy relative to empirical contact matrices remains unexplored. This study fills this critical gap 
by evaluating the effectiveness of these two approaches in modeling the pandemic dynamics in France 
from March 2020 to May 2022. Focusing on weekly mobility-based synthetic contact matrices that were 
used for pandemic response32 and empirical matrices from seven waves of social contact surveys25, we 
provide insights into the real-time parameterization of transmission models for future outbreak 
responses. 
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RESULTS 

Comparison of contact patterns over time 

We derived weekly synthetic contact matrices using pre-pandemic empirical contact data (Fig. 1a) and 
behavioral data collected during the pandemic. These matrices incorporated age-specific contact 
reductions across different locations and contact types (Fig. 1b). Workplace contacts were adjusted using 
Google mobility data26 related to workplaces (Fig. 1c), while reductions in physical contacts across all 
settings outside the household were informed by health protective behaviors from the French CoviPrev 
survey36 (Fig. 1d). These data sources captured changes in behavior in response to public health 
measures, spontaneous adaptation to rising case numbers, and seasonal variations. Both indicators 
showed a general upward trend from the levels measured during the first lockdown, approaching pre-
pandemic levels by the end of the pandemic crisis, although these levels were yet not fully reached in 
May 2022. Contacts in other settings (school, transport, leisure) were reduced in the matrix according to 
closure schedules of school and non-essential businesses (Tables S4 and S5). Detailed methodology for 
matrix construction is available in the Methods and Supplementary Information.  

We compared the weekly synthetic contact matrices with empirical contact matrices from seven waves 
of the SocialCov survey25 conducted during different phases of the pandemic in France (Fig. 2a). SocialCov 
recruited participants through the governmental app TousAntiCovid. Since the survey sample was not 
representative of the French population, it was adjusted using sampling with replacement in each wave 
to reproduce age and gender distribution in France. 

In the first lockdown (spring 2020), synthetic matrices estimated 3.4 daily contacts, consistent with 
survey estimates of 3.6 (Fig. 2b). This corresponded to a 76% reduction in contacts compared to pre-
pandemic values. Over time, the number of synthetic contacts exhibited an increasing trend, modulated 
by intermittent school closures and social distancing measures, reaching 10.4 contacts by May 2022 (age 
stratification shown in Fig. 2e,f). This number was highly correlated with the Normalcy Index (Pearson’s 
coefficient = 0.86, p-value < 10-236; Fig. 2c, S7), which reflects pandemic-driven behavioral shifts, and the 
Stringency Index (Fig. S7), quantifying the intensity of social distancing measures (see Methods). The 
same increasing trend was observed in the empirical SocialCov contacts, but following the first lockdown 
they were on average generally twice as high as synthetic estimates, with the ratio gradually decreasing 
from 2.1 in December 2020 to 1.5 in May 2022, except during summer 2021 when it fell to 1.2 (Fig. 2d). 
These differences were largely driven by discrepancies in children and adolescents. Indeed, comparisons 
of the matrices by age groups revealed good agreement in contact numbers among adults and seniors, 
with contact ratios ranging between 0.9 and 1.4 (Fig. 2d, 2e, 3a). However, contacts among individuals 
under 19yo were 3-4 times higher in survey-based matrices compared to synthetic matrices, except 
during school closures in April 2020 and August 2021 (Fig. 2d, 2f, 3b). 

Normalized contact matrices, which disregard contact intensity, showed strong cosine similarity between 
survey-based and synthetic matrices, exceeding 97% during school closures and ranging between 84-90% 
otherwise (Fig. 3c). Age-assortativity analysis revealed that survey-based matrices were less assortative, 
indicating weaker preferential mixing within the same age groups compared to synthetic matrices (Fig. 
3d). Additionally, young individuals under 19yo accounted for approximately 50% of average connectivity 
in survey-based matrices, compared to 25% in synthetic matrices (Fig. 3d). 

Transmission dynamics, model selection and validation 

The structural differences in contact matrices, which cannot be fully captured by a single scaling factor, 
lead to varying estimates of the reproductive number (Fig. S8). To assess the impact of these differences 
on transmission dynamics, we used an age-stratified compartmental model for COVID-19 (Fig. S1), fitting 
it to daily hospital admissions using either weekly synthetic contact matrices obtained from mobility data 
or survey-based matrices (Fig. 4a). For the latter, we extended the seven empirical contact matrices to 
periods beyond the survey waves based on assumed similarity of mixing conditions, e.g. we used the 
matrix estimated for August 2021 for all following periods with school holidays, but also in previous 
periods, i.e. in periods antecedent to data collection (see Methods and Fig. 4b). The model estimated a 
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baseline transmission rate per contact in the pre-lockdown phase and a time-varying multiplicative factor 
to adjust the transmission rate over time, accounting for shifts in the force of infection not captured by 
the contact matrices, nor by other relevant aspects explicitly included in the model (e.g., age-dependent 
susceptibility and severity, transmission advantages of variants, vaccine effectiveness; see Methods). In 
practice, this correcting factor acts as a global rescaling of the contact matrices. A correcting factor closer 
to 1 indicates better alignment between the contact matrices and actual disease-relevant contacts. We 
also considered a model using the static pre-pandemic contact matrix for comparison.  

The model parameterized with synthetic contact matrices best fitted hospital admission data in terms of 
AIC (Table S8), also yielding lower mean absolute error compared to models using survey-based matrices 
or pre-pandemic matrices (Fig. 4c). Discrepancies were most pronounced during the Alpha and Omicron 
waves (Fig. 4c, S3). Hospitalization patterns by age, not used to fit the models, were also better captured 
by the synthetic matrices model for adolescents, adults and seniors (Fig. S5).  For children, larger 
deviations between model predictions and observed hospitalizations were found in all models. 

The median correcting factor over time was estimated at 1.16 (IQR 0.87–1.33) for the model using 
synthetic matrices and 0.79 (IQR 0.64–1.08) for the one survey-based matrices (Fig. 5a), suggesting that 
small adjustments were needed to accurately reflect shifts in the effective contact behavior relevant to 
transmission dynamics for both models. The correcting factors varied over time differently between the 
two models. For the model using synthetic matrices, the correcting factor was close to 1 during the 
Alpha, Delta, and Omicron BA.1 waves, while for the model using survey-based matrices, it was around 1 
in 2020 and during the Omicron BA.2 wave (Fig. S4). The synthetic matrices showed the largest deviations 
from 1 during summer 2020 (Fig. 5b). In contrast, a model using a static pre-pandemic contact matrix 
would generally require larger corrections throughout the pandemic period (Fig. 5a).  

We then compared model estimates of antibody-positive individuals (Methods) with age-specific 
serological data. Estimates for adults and seniors were similar across the three models and aligned well 
with serological data (Fig. 5e, f). However, for children and adolescents, the model informed by empirical 
contact matrices produced much higher estimates than the model using synthetic matrices, especially 
after summer 2020. These higher estimates matched the observed serological status of adolescents in 
June 2021 but were too high in February 2021, where the model using synthetic matrices better captured 
the serological status (Fig. 5d). For children, neither model successfully reproduced the observed trend in 
2021: the model parameterized with empirical matrices overestimated the serological status, while the 
model with synthetic matrices underestimated it (Fig. 5c). 

Sensitivity analyses confirmed overall these findings. Varying the specification of survey-based contact 
matrices (i.e., incorporating weekend effects or using May 2022 as the pre-pandemic matrix) did not 
improve the model fit with respect to a model using synthetic contact matrices (Fig. S9). Additionally, 
assuming lower relative susceptibility for children and adolescents (70% with respect to adults) also for 
the variants increased the correcting factors across all models (with a 5-6% relative increase in the 
median correcting factor with respect to the main analysis), but did not allow to fully capture serological 
data (Fig. S10). The synthetic model still outperformed the survey-based matrices model in terms of AIC 
and mean absolute error (Table S9, Fig. S10).  

 

DISCUSSION 

Effective modeling for real-time outbreak response requires continuously updated contacts that 
accurately capture shifts in behavior19,37,38. Traditional surveys, while strongly valuable, can be difficult 
and costly to implement. Moreover, delays from data collection to contact matrix construction and 
integration into models can potentially hamper timely decision-making39. In response to these challenges 
during the COVID-19 pandemic, synthetic contact matrices based on mobility data were used for the first 
time as an alternative18. These matrices offered the ability to update contact patterns in real time, 
enabling more agile modeling of transmission dynamics31–35,40,41. Our study demonstrates that mobility-
based synthetic matrices performed well in capturing the dynamic changes in contact behavior across 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.12.24318903doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.12.24318903
http://creativecommons.org/licenses/by-nc-nd/4.0/


5                                                                           

age groups throughout the pandemic, allowing accurate estimates of hospitalizations and infections 
across most age groups, and thus offer a valuable alternative to a model informed with empirical survey-
based matrices.  

The transmission model informed by weekly synthetic contact matrices better reproduced the COVID-19 
epidemic in France from March 2020 to May 2022, achieving the lowest AIC and mean absolute error 
compared to models based on empirical matrices or static pre-pandemic matrices. This finding extends 
previous modeling results limited to the post-first-lockdown phase31. The parameterization with synthetic 
matrices required only a small correction (i.e., a time-varying multiplicative factor close to 1) to 
reproduce observed hospitalizations, indicating the ability of these matrices to reflect temporal changes 
in contact behavior. Similar results were obtained with the model parameterizated with survey-based 
matrices, but adjustments differed over time between the two models. For example, the synthetic 
matrices struggled to capture contact patterns during summer 2020—the first summer of the COVID 
crisis—when contacts were highly impacted and not easily reflected by workplace presence or school 
calendars due to the summer holidays. While survey-based matrices performed slightly better during this 
period, they were retrospectively informed using data collected in summer 2021, highlighting the 
challenge of real-time application when survey waves are infrequent; higher survey frequency of surveys 
in critical periods would likely improve performance.  

Both models accurately captured hospitalization and infection rates among adults and seniors. However, 
the model using empirical contact matrices estimated higher infection rates in children and adolescents 
compared to the synthetic matrix model. Neither model fully captured the serological status of children 
in 2021. 

This discrepancy between synthetic and survey-based matrices suggests that contact patterns 
established by young individuals and relevant to transmission are particularly challenging to capture. The 
synthetic matrices applied uniform reductions in physical contacts across all age groups, using the 
CoviPrev survey36, which however was limited to adults only. This may have led to an underestimation of 
school contacts, as children likely had less opportunity to avoid physical interactions in structured 
environments like classrooms. Indeed, contact estimates from the two methods reconcile during periods 
of school closure. Conversely, the survey-based matrices likely overestimated these contacts, leading 
then to inflated infection estimates for children and adolescents. This may stem from several factors. 
First, safety measures like mask-wearing in schools and staggered schedules likely mitigated the risk of 
transmission, meaning the same level of contact did not necessarily result in higher transmission. Second, 
the data collection method could contribute to the overestimation of contacts in the survey-based 
matrices for SocialCov. The SocialCov survey used convenience sampling rather than quota sampling, 
even though data were then adjusted for representativeness. Moreover, the pre-pandemic surveys 
required detailed listings of individual contacts, while the pandemic-era SocialCov surveys used 
aggregated contact reports by age group, which may have made it easier for respondents, especially 
parents reporting for children, to overestimate contacts. Indeed, previous work has shown that 
aggregated formats tend to report higher contact numbers compared to detailed individual listings42. 
Overall, the smaller number of contacts generated synthetically in the younger age groups better 
captured the disease dynamics of hospitalizations when integrated into the transmission model.  

Contact patterns for adults and seniors, as well as infection rates, were consistent across both synthetic 
and empirical approaches. Our approach to build synthetic matrices assumed that reductions in 
workplace attendance, inferred from mobility data, corresponded to reductions in contact rates, using an 
approximation between a fully density-dependent and a fully frequency-dependent transmission 
scheme. This assumption aligns with recent findings that workplace mobility reductions significantly 
impact contact patterns40. The strong agreement between model predictions and age-stratified 
surveillance and serological data for adults and seniors supports the use of mobility data as an effective 
approach for modeling workplace-related contacts during a pandemic. Previous studies observed a 
strong correlation between mobility data and COVID-19 spread in the early stages of the outbreak43–45, 
which weakened over time as behavior changes and preventive measures (e.g., masking) became 
widespread46–49. This diminishing correlation exposed the limitations of a simplistic use of mobility data in 
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predicting pandemic trends47. However, these limitations critically depend on the mobility metrics 
chosen, their integration into transmission models, and the specific epidemiological objectives. Although 
linear relationships with transmission rates did not persist over time, our findings demonstrate that 
workplace attendance data from mobility sources can be informative when effectively integrated into a 
synthetic modeling framework. This approach provides a valuable alternative to empirical contact data, 
contingent on selecting appropriate mobility sources and methods to generate synthetic contacts from 
these sources. In our model, we specifically used workplace-related mobility to non-linearly adjust the 
work layer of the contact matrix, allowing it to reflect real-time mobility restrictions. 

A key advantage of synthetic contact matrices is their ability to be updated weekly, a flexibility generally 
lacking in survey-based matrices24. For survey-based matrices without continuous follow-up, assumptions 
are required to extend contact patterns between survey waves. We tested various matrix specifications, 
and the model parameterized with mobility-based synthetic matrices consistently outperformed those 
with survey-based matrices. However, we did not explore optimal methods for extending empirical 
contact matrices, as these methods may be context-specific and and warrant further research. 
Additionally, infrequent survey waves may require the use of data from different periods (e.g., using data 
from summer 2021 to inform summer 2020), limiting the applicability of these surveys in real-time and 
introducing further assumptions for temporal extensions. Even with frequent survey waves, such as 
weekly, the process of generating contact matrices from raw survey data remains resource-intensive, 
posing a challenge for real-time modeling. Automated tools and streamlined methods are essential to 
transform survey data into actionable insights efficiently23,50. 

On the other hand, empirical matrices offer higher age resolution, which is theoretically achievable with 
synthetic matrices but critically depends on the availability of age-stratified mobility data. In some cases, 
cellphone mobility data can provide such age-specific stratification51. Google mobility data, though not 
age-stratified, effectively reflects adult behavior through workplace attendance trends. For school-
related contacts, we used data from the Ministry of Education during the reopening period after the first 
lockdown, when school attendance was voluntary. Afterward, we relied on the school calendar, including 
reactive closures due to non-pharmaceutical interventions. The availability of real-time or near-real-time 
data remains a challenge for generating synthetic matrices, especially in terms of age-specific detail, and 
particularly in younger age groups. 

Our study has a set of limitations. First, our model assumed distinct daily contacts, ignoring the repetition 
of contacts, which could underestimate transmission risks52. However, this assumption was intrinsic to 
the modeling framework chosen and could be improved only moving to an agent-based framework. 
Second, we considered age-specific susceptibility for the original strain53,54, and assumed homogeneous 
susceptibility across age groups for the variants due to limited evidence and following other works22,55. 
However, sensitivity analyses considering age-specific susceptibility also for variants showed that our 
best model, informed by synthetic contact matrices, continued to outperform other models in terms of 
AIC and error. Third, due to a lack of age-specific estimates, we assumed that the average time to 
seroreversion for young individuals was the same as that for adults. This assumption may limit the 
accuracy of comparisons between model predictions and serological data for children and adolescents. 
Finally, the mobility and behavioral data used to construct synthetic matrices were not age-stratified, 
although the proxies employed (e.g., workplace attendance, school calendar) were indirectly age-specific. 
Despite these limitations, our results demonstrate that mobility-informed synthetic contact matrices 
provide a robust, adaptable approach for modeling transmission dynamics during pandemics, and they 
offer a real-time alternative to static or infrequently updated empirical contact data, with strong 
implications for pandemic preparedness and response. We did not include here French social contact 
data from the COMIX survey23. These survey data for France refer to a rather restricted period 
(December 2020 to April 2021) that does not cover the first wave, and data for minors were collected 
only for 2 waves out of 7 adult waves. Future work could extend this analysis to other countries.  

This study highlights the potential of mobility-based synthetic contact matrices to accurately model 
changes in contact behavior and epidemic dynamics during a pandemic. Compared to infrequent survey-
based matrices often unavailable in near real time, synthetic matrices captured well the time-varying 
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nature of contacts, leading to good predictions of hospitalizations and infection rates, particularly when 
real-time data were critical. The findings advocate for greater integration of non-traditional digital data 
sources, such as mobility, into epidemiological modeling frameworks. These data streams are more 
flexible, scalable, and cost-effective than empirical surveys, making them valuable tools for real-time 
outbreak monitoring and response. As the world prepares for future pandemics, our study underscores 
the importance of leveraging real-time data to inform public health interventions and improve crisis 
management. 

 

METHODS 

Pre-pandemic baseline contact matrix. We considered four age groups: children [0-10], adolescents [11-
18], adults [19-64] and seniors with 65+ years old. We used pre-pandemic contact data collected from a 
large-scale survey in France in 201212, distinguishing between contacts engaged during regular weekdays, 
weekends or school holidays. We derived a social contact matrix corrected by reciprocity, and broken 
down by location (home, school, work, transport, leisure, other) and type of contact (skin-to-skin or non-
physical contact at short distance), using the Social Contact Rates (SOCRATES) Data Tool50. The original 
survey collected Supplementary Professional Contacts (SPC), i.e. participants with more than 20 daily 
professional contacts were asked not to report them but rather to provide their total number and age 
distribution. We included SPC only in the elements of the work matrix involving adults and seniors. This 
baseline matrix was then adapted to the French population in 2020 using demography data, applying an 
appropriate density correction (following Ref.15). Through the density correction, the original matrix 𝑀𝑖𝑗 

(whose elements represent the average number of contacts an individual in age group 𝑖  establishes with 
individuals in age group 𝑗) is projected to the demographic structure of 2020 by defining a new matrix 

𝑀′𝑖𝑗  = 𝑀𝑖𝑗 ∗ (𝑁/𝑁𝑗) ∗ (𝑁𝑗
′/𝑁′) , where 𝑁, 𝑁𝑗 ,  refer to the total population and the population in age 

group 𝑗, respectively, in the year of the survey, while  𝑁’, 𝑁′𝑗  refer to the population in 2020. This density 

correction preserves reciprocity, so that the projected matrix fulfills the condition 𝑀′𝑖𝑗𝑁′𝑖= 𝑀′𝑗𝑖𝑁′𝑗.  We 

considered the contact matrix estimated for a regular weekday. We did not model explicitly the 
weekday/weekend effect, which is absorbed in the correcting factor estimated when fitting the 
transmission model. However, we accounted for the impact of school holidays. We used the pre-
pandemic contact data collected during spring school holidays to model the synthetic pandemic contact 
matrix during spring, winter and Christmas holidays. We made some assumptions when modeling 
summer holidays in the lack of available pre-pandemic contact data. See the section below and the 
Supplementary Information for further details.   

Construction of synthetic contact matrices. We built time-varying synthetic contact matrices on a weekly 
basis (except for lockdown periods) from March 2020 to May 2022. Matrices were obtained applying 
reductions to the layers of the pre-pandemic contact matrix (location and type of contact) to simulate 
the social mixing conditions experienced during the pandemic. In particular, we parametrized the 
matrices to account for (i) impact of adoption of telework in reducing contacts at work and on transports, 
(ii) impact of full or partial school closure (or remote learning) and impact of school holidays on school-
related contacts, (iii) impact of social-distancing measures on contacts associated to non-essential 
activities, (iv) impact of adoption of health preventive behaviors such as avoiding physical contacts. We 
used proxy contact data collected during the pandemic to inform the parameterization of the synthetic 
contact matrices. In particular, we used Google mobility data26 related to workplaces to adjust the 
number of contacts in the work matrix over time. Google measures the change in the number of visitors 
to a specific location with respect to a pre-pandemic baseline; the mobility change related to workplaces 
can thus be interpreted as an effective reduction in attendance at work. We assumed that such reduction 
in attendance produces a reduction of contact rates that is in between the frequency-dependent and the 
density-dependent assumption56. We also used data on voluntary school attendance in the exit phase of 
the first lockdown, and the calendar of school holidays to adjust school-related contacts. Finally, we used 
data from the CoviPrev survey36 on declared avoidance of physical contacts during the pandemic to 
reduce the proportion of skin-to-skin contacts. The framework is fully detailed in Section 4.2 of the 
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Supplementary Information. The resulting average number of contacts over time was tested for 
correlation with the Normalcy Index and the Stringency Index. The Normalcy Index57 is a measure of the 
impact of the pandemic on human behavior, integrating multiple daily indicators of human activities in a 
score from 0 to 100, with 100 representing the pre-pandemic level. The Stringency Index58 is a composite 
measure of nine response metrics (e.g. as school closure, restrictions on public gatherings) to quantify 
the strictness of government policies for epidemic control, in a scale from 0 to 100, with 0 indicating 
absence of measures. 

SocialCov contact surveys. Seven surveys were conducted in France to collect data on contact behavior. 
Survey participants were recruited online and contact matrices were adjusted to the French population 
for representativeness. SocialCov recruited participants through convenience sampling through the 
governmental app TousAntiCovid. In particular, the survey was promoted via the news channel of the 
app which invited individuals aged 18 and above to complete the questionnaire. Since the survey sample 
was not representative of the French population, synthetic populations were generated for each 
campaign to better reflect the age and gender distribution in France, using sampling with replacement 
from the SocialCov participant pool. The first survey was conducted during the first lockdown (matrix 
LD)25. The survey was then implemented in 6 additional waves, in December 9-22, 2020 (M1), January 10-
21, 2021 (M2), March 2-10, 2021 (M3), August 12-24, 2021 (M4), December 6-17, 2021 (M5), and May 
20-29, 2022(M6). Contacts were defined as either a physical contact (such as a kiss or a handshake) or a 
close contact (such as face-to-face conversation at less than 1 m distance). Contacts for each individual 
were truncated at 50 to reduce the impact of outliers. We used contacts reported on a weekday to allow 
comparison with the synthetic contact matrices that were built based on a regular weekday pre-
pandemic matrix. In a sensitivity analysis, we used matrices weighted by weekday and weekend. 
Participants in the survey reported contacts aggregated by age group, and were used to produce age-
stratified 10x10 contact matrices. We aligned the age groups of the contact survey with the four age 
groups used for the synthetic matrices to allow comparison (see Section 4.3 of the Supplementary 
Information). 

Comparison of contact patterns. From the set of weekly synthetic contact matrices, we extracted the 
ones with the closest matching period to the survey waves and made direct comparison between the two 
sets of matrices (Table S6).  We summarized the information contained in each contact matrix through 
different metrics in order to make the comparisons. We computed (i) the average number of contacts, 
overall and by age class, (ii) a measure of matrix correlation based on the cosine similarity, (iii) the 
proportion of average connectivity due to young individuals (<19 y.o., i.e. including children and 
adolescents) and (iv) an index for age-assortativity. These quantities are mathematically defined in the 
Supplementary Information (Section 5). The degree of assortativity measures the extent to which 
contacts occur between individuals who share their characteristics (in our case, the relevant 
characteristic is age). Contact matrices estimated from empirical data usually show some assortativity 
with age, i.e. they have a strong diagonal component, as individual tend to mix with individuals with 
similar age. By quantifying the degree of assortativity though an index, we compared the mobility-based 
synthetic matrices and the survey-based empirical matrices to understand whether contact patterns are 
more or less assortative. We also compared the two sets of matrices by computing the ratio of their 
largest eigenvalues and the ratio of basic reproductive number, using the next-generation matrix 
approach59,60 . 

Transmission model. We integrated the two sets of contact matrices into an age-stratified transmission 
model to simulate the unfolding of the COVID-19 pandemic in France from early 2020 to May 2022. The 
model has been presented in depth in a previous work32. We used a stochastic age-structured two-strain 
transmission model with vaccination, parameterized using French data on demography61, age profile61, 
and vaccine uptake62. Transmission dynamics follows a compartmental scheme illustrated in Fig. S1, 
which accounts for latency period, pre-symptomatic transmission, asymptomatic and symptomatic 
infections with different degrees of severity, and individuals affected by severe symptoms requiring 
hospitalization. Contact rates for each disease stage are adjusted to model the effect of spontaneous 
change of behavior due to severe illness and the impact of testing and self-isolation. The model 
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reproduces the co-circulation of two strains, and was applied to describe the Wuhan-Alpha period 
(February 2020 – May 2021), the Alpha-Delta period (June 2021 – August 2021), and the Delta-Omicron 
period (September 2021 – May 2022). Epidemiological parameter values and sources for the Wuhan 
strain are reported in Table S1. The model is parametrized with age-dependent susceptibility and disease 
severity. For the Wuhan strain, children and adolescents have a relative susceptibility of 70% with respect 
to adults. Variant-dependent parameters include the generation time, the transmission advantage, the 
infection-hospitalization ratio (Section 2 of the Supplementary Information). The model is further 
stratified by (i) vaccine dose, to build vaccine coverage in the population over time according to data on 
vaccine doses administered in France62, and (ii) time since vaccination, to model steps of waning in 
vaccine effectiveness. The model accounts for possible re-infection with Omicron after a prior infection, 
with waning in protection against re-infection. We distinguished between different levels of protection 
conferred by vaccine-only, natural (infection-only) and hybrid immunity (Section 3 of the Supplementary 
Information). In parallel to disease stage progression, we also modeled seropositivity to compare model 
results with seroprevalence data from Sante publique France measuring the presence of IgG-type 
antibodies. Following the modeling approach adopted in Ref.21, we assumed that upon becoming 
infectious (i.e. while exiting the 𝐸 compartment in Fig. S1), infected individuals also enter in a 
compartment 𝐴𝐵𝑝𝑟𝑒  (in parallel to 𝐼𝑝) which represents the pre-seropositivity compartment. Then, 

individuals move to the seroposivity compartment 𝐴𝐵+ after seroconversion, and finally they move to 

the seronegativity compartment 𝐴𝐵− after seroreversion. We informed the average time spent in 𝐴𝐵𝑝𝑟𝑒   

and 𝐴𝐵+  based on estimates from the literature for IgG-type antibodies. We used 12 days for 
seroconversion63 for all age groups, and 200 days for seroreversion for adults64–67. Given the evidence of 
slower seroreversion for more severe infections, we used 400 days for seniors68. In the lack of estimates 
specific for children and adolescents, we assumed the same value as adults. We then compared the 
proportion of 𝐴𝐵+ over time predicted by the model with French national seroprevalence estimates69 
collected by Sante publique France, available by age group, and corrected by test sensitivity.  

Inference framework. The model was fitted to daily hospital admission data since the start of the 
pandemic (February 2020) up to May 22, 2022. We used a maximum likelihood approach to fit a step-
wise transmission rate per contact (see Section 6 of the Supplementary Material for full details). More 
specifically, in the pre-lockdown phase (February – March 2020), we fitted the starting date of the 
epidemic and the baseline transmission per contact 𝛽𝑝𝑟𝑒−𝐿𝐷. Then, we fitted a correcting factor 𝛼𝑝ℎ𝑎𝑠𝑒  of 

the transmission rate in subsequent time-windows, each one representing a different pandemic phase, 
based on epidemic activity, behavior and interventions implemented (e.g. pre-lockdown, lockdown, exit 
phase, summer, curfew). As changes in the variant’s transmissibility are explicitly modeled through the 
transmission advantage, the parameter 𝛼𝑝ℎ𝑎𝑠𝑒  is meant to absorb other factors potentially affecting the 

transmission, that are not captured by the time-varying contact matrices, e.g. mask usage or 
outdoor/indoor activity, or misspecification of contacts. This correcting factor can be thus interpreted as 
a correction of the contact matrices used in the model. The product of the fitted 𝛼𝑝ℎ𝑎𝑠𝑒  at time 𝑡 with the 

corresponding contact matrix represents the effective contact rate needed to reproduce the observed 
epidemic dynamic. The closer the correcting factor to 1, the larger the ability of the model to incorporate 
the relevant changes in the effective contact rates through the time-varying contact matrices, and to 
reproduce the epidemic dynamic.  

Model comparison. We compared the outcomes of three models. The first model is informed with 
weekly mobility-based synthetic contact matrices, as done in our previous works during the 
pandemic18,31–35. The second model is informed with empirical contact matrices estimated from survey 
data (SocialCov25) collected during the pandemic. The contact matrices available from 7 distinct surveys 
were extended beyond the survey period in order to cover the time span of the model, as pictured in Fig. 
4b. We used the matrix estimated for summer 2021 as a proxy for school holidays, as this was the only 
survey wave fully occurring in a period with schools closed (excluding the lockdown). Both models used 
the empirical pre-pandemic contact matrix in the period prior to the implementation of the lockdown. 
The two models with time-varying contact matrices (either mobility-based or survey-based) were 
compared to a third reference model integrating the same static pre-pandemic contact matrix 
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throughout the whole pandemic period. To identify the model which better reproduced the change of 
behavior and the resulting epidemic dynamic, we compared the model outcomes in terms of (i) Akaike 
Information Criterion (AIC) as a measure of goodness of fit, (ii) mean absolute error of the model 
trajectory of daily hospital admissions with respect to the data, (iii) distribution of the correcting factor, 
(iv) age-specific model estimates of the proportion of antibody-positive individuals over time (accounting 
for seroconversion and seroreversion) in comparison with seroprevalence data, and (v) age-specific 
model estimates of hospital admissions compared to age-stratified data. We carried out sensitivity 
analyses on the susceptibility of young individuals with SARS-CoV-2 variants, and on the integration of 
the survey-based contact matrices into the transmission model, including (i) the effect of weekend and 
(ii) the empirical matrix of May 2022 as a pre-pandemic matrix. Further details are provided in Section 9 
of the Supplementary Information. 
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FIGURES 

 

Figure 1. Input data for synthetic contact matrices. (a) Pre-pandemic empirical contact matrix M 
estimated for France, for a regular weekday from Ref.12. The element 𝑀𝑖𝑗 represents the average number 

of contacts that one individual in participant age group 𝑖 (columns) engages with individuals in the 
contact age group 𝑗 (rows). (b) Breakdown of the total number of contacts for each age group by location 
(color) and type (pattern), where physical means skin-to-skin contact, non-physical otherwise. (c) Google 
mobility data related to workplaces26. The plot shows the weekly average of the daily variation in 
mobility, excluding weekends. The mobility variation is computed by Google as the variation in the 
number of people visiting workplaces with respect to a pre-pandemic baseline. (d) Survey data (black 
dots) and piece-wise polynomial fit (dashed line) of the proportion of people declaring to avoid physical 
contacts over time, from the French survey CoviPrev36. In panels (c) and (d), vertical grey bars indicate 
the periods of the three national lockdowns in France.   
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Figure 2. Synthetic and empirical contacts over time. (a) Timeline of the COVID-19 pandemic in France. 
Trajectory of daily hospital admissions (left y-axis) is shown in black, with colored areas indicating the 
frequency of SARS-CoV-2 circulating variants. Proportion of vaccinated population with 1 dose (right y-
axis) is shown in orange. The grey horizontal bars annotated with LD indicate the periods of the three 
national lockdowns. Data collection periods for the empirical contacts (SocialCov surveys) are indicated 
with vertical shaded areas. (b) Average number of contacts over time, in the synthetic (dark blue line) 
and empirical contact matrices (orange dots). The value of the pre-pandemic empirical contact matrix 
used for baseline is shown in black. (c) Average number of contacts over time in the synthetic matrix 
(dark blue line, left y-axis) shown in comparison with the Normalcy Index (pink line, right y-axis), vertical 
grey bars indicate the periods of the three national lockdowns. (d) Ratio of the number of contacts 
estimated in the empirical contact matrices with respect to the synthetic matrices, broken down by 
survey wave (x-axis) and by age group (filled dots) or overall (void diamonds). (e-f) Average number of 
contacts over time by age groups (adults and seniors in panel e, children and adolescents in panel f), in 
the synthetic (lines) and in the empirical contact matrices (dots), color-coded as in panel (d). 
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Figure 3. Comparison of contact patterns. (a) Contacts among adults and seniors, i.e. matrix elements 
𝑀𝑖𝑗 with 𝑖, 𝑗 ∈ {[19-64], 65+}, in the synthetic (x-axis) vs the empirical matrices (y-axis). Colors indicate 

the seven waves. (b) As in panel (a), showing the rest of the elements of the matrix involving individuals 
in the younger age groups. (c) Cosine similarity (invariant to contact intensity) between the survey-based 
and the corresponding synthetic contact matrices. (d) Proportion of the overall connectivity produced by 
young individuals (<19 y.o.) vs age-assortativity index, in the empirical (reds) and synthetic matrices 
(blues), for the seven survey periods. The value for the pre-pandemic contact matrix (void black dot) is 
shown for reference.  
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Figure 4. Model fit. (a) Model median trajectory of daily hospital admissions (median values out of 100 
independent stochastic simulations), obtained by fitting the transmission model using weekly synthetic 
contact matrices (synthetic, blue), extended survey-based contact matrices (empirical, orange) and a 
constant pre-pandemic matrix (pre-pandemic, green). Data used for the fit are displayed with grey dots. 
Uncertainty around the median trajectory is displayed in Fig. S2. The vertical dashed lines define the 
epidemic phases used in panel (c). (b) Sequence of contact matrices used in the transmission model. Each 
row corresponds to one of the three models, i.e. the model informed with synthetic mobility-based 
contact matrices (first row), with survey-based empirical contact matrices (second row), or with a static 
pre-pandemic contact matrix (third row); each tick indicates a change in the contact matrix used in the 
model. Colors indicate the source of the matrix, i.e. pre-pandemic (green), synthetic (blue) and empirical 
(orange). The empirical contact matrices estimated from the 7 pandemic survey waves are denoted with 
LD, M1, M2 up to M6, following the notation in Methods and Table S6. They have been extended beyond 
the survey period to cover the whole study period. They are highlighted in bold in the periods that 
overlap the survey wave. (c) Mean absolute error (MAE) of daily model predictions with respect to the 
daily observed data, on the overall period (March 2020 – May 2022) and broken down by epidemic phase 
(epidemic waves and in-between periods). For each stochastic run, we computed the MAE as the sum of 
absolute differences between daily model predictions and the observed daily data, divided by the 
number of days in the epidemic phase under consideration. Dots and lines represent the average MAE 
and 95% confidence interval computed across 100 stochastic runs.  
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Figure 5. Model comparison. (a) Distribution of the correcting factor, fitted with the model using 
synthetic matrices (synthetic, blue), survey-based matrices (empirical, orange), and a constant pre-
pandemic matrix (pre-pandemic, green). The box plot indicates median (line), interquartile range (box), 
and quantiles 2.5% and 97.5% (whiskers). The distribution by pandemic phase is shown in Fig. S4. (b) 
Correcting factor over time, fitted with the model using synthetic matrices, survey-based matrices, and a 
constant pre-pandemic matrix. (c-f) Proportion of antibody-positive population over time, estimated with 
the three models, by age class (in (c) children [0,10], in (d) adolescents [11-18], in (e) adults [19-64], in (f) 
seniors 65+). Dashed lines and shaded areas indicate the median and 95% probability ranges, 
respectively, computed across 100 stochastic simulations. Black symbols indicate estimates from 
serological data. 
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