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Abstract

No existing algorithm can reliably identify metastasis from pathology reports across multiple
cancer types and the entire US population. In this study, we develop a deep learning model that
automatically detects patients with metastatic cancer by using pathology reports from many
laboratories and of multiple cancer types. We trained and validated our model on a cohort of
29,632 patients from four Surveillance, Epidemiology, and End Results (SEER) registries linked
to 60,471 unstructured pathology reports. Our deep learning architecture trained on task-specific
data outperforms a general-purpose LLM, with a recall of 0.894 compared to 0.824. We
quantified model uncertainty and used it to defer reports for human review. We found that
retaining 72.9% of reports increased recall from 0.894 to 0.969. This approach could streamline
population-based cancer surveillance to help address the unmet need to capture recurrence or
progression.
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Introduction

Survival rates after an initial cancer diagnosis have improved drastically over the past 50 years.
There are currently an estimated 18.1 million cancer survivors in the United States, and this
number is projected to rise to 22.5 million by 20321. Despite these advances, US
population-based cancer surveillance is focused primarily on cancer mortality, thereby hindering
our ability to assess long-term survivor outcomes. Metastasis, a critical indicator of disease
progression and recurrence, remains difficult to monitor at a population scale because there are
no explicit federal mandates for collecting this information, and the required extended follow-up
period strains already limited hospital and registry resources.
 
The National Cancer Institute’s (NCI) Surveillance, Epidemiology, and End Results (SEER)
program has a robust infrastructure for collecting and utilizing pathology reports for cancer
incidence ascertainment. In this paper, we demonstrate how this infrastructure can be leveraged
to expand the collection of information about metastatic disease, thus addressing an unmet need
by cancer patients, clinicians, researchers, and policymakers. By expanding the scope of data
collection, this work will enhance our understanding of metastatic disease and ultimately inform
cancer treatment strategies and survivorship care. To this end, the rapid and accurate
summarization of large volumes of unstructured information is crucial for effective
population-level cancer surveillance. Natural language processing (NLP) facilitates the real-time
analysis and automated classification of clinical texts2–6. NLP approaches typically require
numerous pathology reports paired with labels to train models that accomplish these objectives.
However, labeled data is scarce in the medical domain and studies that leverage NLP to identify
metastases from pathology reports typically focus on a single cancer type12–16.

General-purpose large language models (LLMs) enable a new paradigm for automated
summarization of unstructured data. Unlike traditional NLP approaches, LLMs are pre-trained
for general use and can be employed without labeled data to extract information across a broad
set of tasks using carefully crafted prompts, a technique known as zero-shot learning. A recent
study evaluated the use of LLMs in the zero-shot setting to classify breast cancer pathology
reports, demonstrating superior performance over task-specific supervised models12 with limited
annotated data.  This result demonstrates the advantage of LLMs for tasks with limited annotated
data. Although LLMs hold great promise13–15, methods for validating their predictions are still
scarce16,17, and their use for text classification remains largely unexplored18.
 
The reliability of predictions from NLP algorithms, including those used in LLMs, can vary
significantly, with some predictions being confident and others uncertain. This uncertainty is
often overlooked due to the predominant focus on the overall accuracy of model results rather
than a nuanced understanding of individual predictions. For confident predictions, automated
classification can aid in population surveillance by enabling low-cost information extraction. For
unconfident predictions, case identification can be facilitated through human-machine
collaboration for unconfident predictions.
 
This study compares a task-specific deep learning approach with a general LLM for
automatically detecting a metastatic disease diagnosis for five common cancer types in
unstructured clinical pathology reports from local and national laboratories (Figure 1: Data
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Gathering). Using these 60,471 pathology reports from 29,632 patients, we sought to understand
(1) if a task-specific deep learning model trained on the annotated reports can accurately identify
metastatic disease in a population-scale dataset, (2) how uncertainty in its predictions can be
evaluated and appropriately managed, and (3) if this task-specific model can outperform the
zero-shot performance of a pre-trained LLM. In contrast to previous studies, the patient data
came from numerous laboratories/hospital systems across multiple regions in the United States,
leading to wide variability in the format, patient pools, and pathologists who drafted these
reports.

Figure 1: The proposed framework processes pathology reports aggregated from numerous
laboratories and hospital systems within SEER registries, focusing on five primary cancer sites:
breast, lung, ovary/fallopian, colorectal, and melanoma (Data Gathering). Oncology data
experts annotate each report as Metastasis Positive, Metastasis Negative, or Undetermined,
creating a labeled dataset for model training. During Data Preprocessing, the raw text data is
converted into tokenized embeddings using BARDI. A deep learning model based on the HiSAN
architecture is then trained to classify reports as either Metastasis Positive or Metastasis
Negative (Model Training). The model utilizes multi-headed self-attention and generates class
probabilities. In the Uncertainty Quantification stage, softmax probabilities are evaluated to set
a sensitivity-maximizing threshold for Metastasis Positive cases. Patient-level uncertainty is
quantified by comparing the model’s confidence scores against this threshold. Cases with
certainty scores below the threshold are flagged for expert review to ensure accuracy, while
cases above the threshold are classified automatically.
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Results

First, we present the characteristics of the dataset used in this study. Second, we present the
results of training the task-specific HiSAN model and evaluate its performance across different
confidence thresholds by utilizing 5-fold cross-validation (see Table S1). This evaluation allows
us to select a threshold that balances the model’s performance with the number of reports marked
for a second review. After selecting the optimal threshold, we compare our task-specific HiSAN
model with the general-purpose Llama3 across different cancer types. Finally, we analyze the
task-specific model benefits from training on multiple cancer types by comparing it to a set of
models trained on individual cancer types.

No. (%) Number of
Patients

(N=29,632)

Total
Pathology
Reports
(N= 60,471)

Metastasis
Negative
(n=43,286
[71.58%])

Metastasis
Positive
(n=14,959
[24.74%])

Metastasis
Undetermined
(n=2,226
[3.68%])

All Registries
Seattle 12,732 (42.97) 26,507 (43.83) 21,277 (49.15) 4,800 (32.09) 430 (19.32)

New Jersey 8,607 (29.05) 16,770 (27.73) 10,833 (25.03) 5,163 (34.51) 774 (34.77)
Louisiana 5,723 (19.31) 11,886 (19.66) 7,689 (17.76) 3,451 (23.07) 746 (33.51)

Utah 2,570 (8.67) 5,308 (8.78) 3,487 (8.06) 1,545 (10.33) 276 (12.40)
Sex

Female 20,765 (70.08) 43,102 (71.28) 30,634 (70.77) 10,896 (72.84) 1,572 (70.62)
Male 8,858 (29.89) 17,359 (28.71) 12,644 (29.21) 4,061 (27.15) 654 (29.38)

Age at Diagnosis

Under 44 3,890 (13.13) 7,817 (12.92) 5,305 (12.26) 2,303 (15.40) 209 (9.39)
Ages 45 to 70 19,949 (67.32) 41,015 (67.83) 29,232 (67.53) 10,227 (68.37) 1,556 (69.90)

71 or Older 5,793 (19.55) 11,639 (19.25) 8,749 (20.21) 2,429 (16.24) 461 (20.71)
Race

White 24,310 (82.04) 49,991 (82.67) 36,274 (83.80) 11,950 (79.89) 1,767 (79.38)
Black 3,035 (10.24) 6,186 (10.23) 3,880 (8.96) 1,941 (12.98) 365 (16.40)

Other/Unknown 2,287 (7.72) 4,294 (7.10) 3,132 (7.23) 1068 (7.14) 94 (4.22)
Cancer Type

Breast 13,227 (44.64) 27,607 (45.65) 19,769 (45.67) 6,918 (46.25) 920 (41.33)
Melanoma 5,866 (19.80) 11,710 (19.36) 9,949 (22.98) 1,480 (9.89) 281 (12.62)

Lung 4,034 (13.61) 8,713 (14.41) 5,651 (13.06) 2,493 (16.67) 569 (25.56)
Colorectal 5,517 (18.62) 10,513 (17.39) 6,825 (15.78) 3,353 (22.41) 335 (15.05)

Ovarian/Fallopian 706 (2.38) 1,377 (2.28) 679 (1.57) 604 (4.04) 94 (4.22)
Other 282 (0.95) 551 (0.91) 413 (0.95) 111 (0.74) 27 (1.21)

Table 1: Number of pathology reports with given metastasis status across various demographic
and clinical groups.
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Dataset
The dataset consists of 60,471 individual pathology reports from 29,632 patients. The reports
were processed at four SEER registries in Utah, New Jersey, Seattle/Puget Sound, and Louisiana
between 2019 and 2023. The reports were selected from those undergoing routine cancer
reportability screening at each registry over a 1-year period (from February 2022 to February
2023). The following criteria were used: First, the pathology reports had to be linked to patients
with cancer in one or more of five primary sites (breast, lung, ovary, colorectal, and/or
melanoma). Second, the report must have had a specimen collection date of more than 120 days
after the diagnosis. Some reports were reclassified during a second review, resulting in 551
reports associated with Other cancers. To create gold-standard labels, the oncology data
specialists annotated each report as metastasis negative, metastases positive, or metastasis
undetermined. The dataset was preprocessed as described in the Supplementary Material. Cancer
registries obtain race from various sources, including medical records, pathology reports, and
administrative databases.

Table 1 presents a detailed breakdown of the pathology report dataset categorized by metastasis
status across various demographic and clinical groups. Most reports in this dataset are from the
Seattle registry, accounting for 26,507 out of 60,471 total reports, and provide information about
nearly 13,000 unique patients. Among racial groups, 27.4% of the reports for White patients and
31.4% of the reports for Black patients are associated with metastasis. The proportion of
metastatic reports decreases with age: 32.1% of reports for patients under 44 are metastasis
positive compared to 24.9% for patients between 45 and 70 years old and 20.8% for 71 and older.
Most of the reports are from patients aged 45–70, which is consistent with general cancer trends
in the United States20. Over 70% of the cases involve female patients, with the dataset
predominantly featuring breast malignancies. Most of these breast cancer cases are
non-metastatic, driving an imbalance of classes.
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Figure 2: HiSAN precision-recall-abstention curves for metastasis negative (A) and metastasis
positive (B). Lines indicate validations for each of the experiments at different abstention
thresholds. Each dot indicates the average across the five validation results, and the error bars
indicate ±1 standard deviation. The dashed-black lines are the unity line and indicate equal
precision and recall. Recall (C) and precision (D) on validation data for HiSAN and Llama3.
HiSAN results are shown as a function of the fraction of data removed to achieve a given
recall/precision. Each dot indicates the average across the five validation results, and the error
bars indicate ±1 standard deviation. For Llama3 (which has no abstention mechanism), the
horizontal-dashed lines and shaded region indicate the average recall/precision ±1 standard
deviation.

Task-Specific HiSAN Approach
We present the results of the three-class classification without applying confidence thresholds for
abstention in Table 2 and Fig. 3B. The model achieves a mean precision of 0.864 and recall of
0.894. These results are negatively impacted by the presence of the undetermined class in the test
set that the model is forced to classify as either metastasis positive or metastasis negative. For
the results that consist only of metastasis positive and metastasis negative, see Table S2 in
Supplementary Materials.
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HiSAN Evaluation on Three Classes HiSAN Trained on each Primary Site
Separately Evaluation on Three Classes

Precision
Mean

(Low, High)

Recall
Mean

(Low, High)

F1
Mean

(Low, High)

Precision
Mean

(Low, High)

Recall
Mean

(Low, High)

F1
Mean

(Low, High)
All Data 0.864

(0.856,0.868)
0.894

(0.890,0.899)
0.878

(0.872,0.883)
NA NA NA

Breast 0.879
(0.872,0.884)

0.905
(0.899,0.909)

0.890
(0.886,0.894)

0.876
(0.871,0.881)

0.904
(0.901,0.909)

0.889
(0.885,0.893)

Melanoma 0.902
(0.886,0.923)

0.920
(0.909,0.936)

0.910
(0.897,0.929)

0.890
(0.877,0.900)

0.909
(0.903,0.915)

0.899
(0.889,0.903)

Lung 0.785
(0.762,0.807)

0.841
(0.827,0.862)

0.812
(0.797,0.834)

0.782
(0.758,0.805)

0.838
(0.819,0.851)

0.809
(0.791,0.825)

Colorectal 0.876
(0.849,0.885)

0.902
0.877, 0.912

0.888
(0.862,0.898)

0.868
(0.831,0.880)

0.895
(0.860,0.909)

0.881
(0.845,0.894)

Ovarian/
Fallopian

0.709
(0.613,0.835)

0.763
(0.674,0.875)

0.733
(0.641,0.854)

0.577
(0.516,0.610)

0.581
(0.549,0.635)

0.550
(0.525,0.619)

Other 0.823
(0.631, 0.913)

0.862
(0.744,0.930)

0.839
(0.682,0.917)

0.644
(0.431,0.816)

0.734
(0.513,0.806)

0.678
(0.442,0.810)

Table 2: Comparison of a HiSAN model trained on all cancers vs. HiSAN models trained on
individual cancers.

Confidence Threshold Determination for Task-Specific HiSAN Approach
Next, we evaluate the model at different confidence thresholds to determine how precision and

recall are related. We score the model at threshold values ranging from 0.5 to 1.0. Any prediction
with the highest softmax score below the threshold is excluded from the performance metrics.
We refer to the proportion of these omitted reports as the abstained percentage. Figure 2 (top
row) illustrates the relationship between the precision and recall for the metastasis negative (Fig.
1A) and metastasis positive (Fig. 2B) classes at each threshold. The error bars denote one
standard deviation from the mean. In the case of metastasis negative, the precision and recall are
close to the unity line, indicating a relatively equal number of false positives and false negatives.
The recall for the metastasis positive class is always higher than the precision, indicating fewer
false negatives than false positives.  Figure 2 (bottom row) shows the recall (C) and precision
(D) as a function of the abstained percentage at a given confidence threshold for the model. All
precision and recall curves show a steep increase with a small loss of reports, followed by a
plateau at which further increases in precision or recall require a significant reduction in the
number of retained reports. All curves are monotonically increasing, demonstrating that the
model is correct about reports in which it is most confident.

We define the optimal confidence threshold as the knee point in the nonlinear recall-abstention
curve for the metastasis positive class (i.e. the blue line in Fig. 2C). To this end, we use a
knee-finding algorithm21 (see Methods), identifying a threshold of 0.955. At this threshold, the
model achieves a mean precision of 0.951 (see Table 3) and mean recall of 0.969 with a mean
abstention rate of 0.271.
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Figure 3: Comparing Llama3 and HiSAN for metastasis prediction. (A) Left: Workflow for
zero-shot Llama3-based classification of clinical pathology reports. The pathology report along
with a prompt are passed to the LLM, which returns a partially formatted response. The response
is parsed and the predicted class (metastasis positive, metastasis negative, undetermined) is
extracted. Right: Workflow of HiSAN-based model predictions. The model is trained and
validated using 5-fold cross validation. After training, the model is evaluated on the held-out
pathology reports. The reports above the determined confidence threshold are included forα
evaluation. (B) Mean Recall of each model across five different test sets for all cancers together
and separate cancers. Percentages indicate the prevalence of each cancer type across the entire
data set. The error bars indicate the minimum and maximum recall for each model/cancer across
the five test sets.

General LLM Approach
Next, we demonstrate our prompt-based, zero-shot classification results. Llama3 is provided
Prompt 1 (see Methods) and a pathology report to classify into one of the three original classes
(Fig. 3A). This method leads to an F1 score of 0.825, mean precision of 0.842 and recall of 0.824
(Table 3).

Results by Cancer Type
Across the population, different cancers occur at different rates and have varying propensities for
metastasis22. Our dataset categorizes cancers based on their primary sites of origin. To evaluate
the model’s performance in identifying metastasis across different cancer types, we stratified
weighted precision, recall, and F1 score by cancer type (Table 3). We present direct comparison
between the task-specific and the general LLM for each cancer type in Fig. 3, showing that the
task-specific HiSAN model has superior performance across all cancer types.

Our evaluation reveals that the pathology reports associated with melanoma consistently achieve
the highest predictive scores, ranging from an average F1 score of 0.863 for Llama3 to 0.878 for
the HiSAN without the confidence threshold, to 0.964 for the HiSAN model with a threshold of
0.955. On the other hand, the ovarian/fallopian cancers present the most challenging reports to
classify. Llama3 achieves a mean F1 score of 0.694, while HiSAN without thresholding achieves
0.733. The precision, recall, and F1 scores for ovarian/fallopian cancer show significant
improvement when an abstention threshold is applied—increasing from 0.709 (precision), 0.763
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(recall), and 0.733 (F1) to 0.919 (precision), 0.947 (recall), and 0.932 (F1). At a mean abstention
rate of 0.578, we are able to identify and omit 92% of misclassified reports. 

HiSAN Three Classes with Threshold of
0.955

Llama3 Zero-Shot Learning on Three Classes

Precision
Mean

(Low, High)

Recall
Mean

(Low, High)

F1
Mean

(Low, High)

Precision
Mean

(Low, High)

Recall
Mean

(Low, High)

F1
Mean

(Low, High)

All Data 0.951
(0.941,0.960)

0.969
(0.964,0.974)

0.960
(0.952,0.967)

0.842
(0.833,0.851)

0.824
(0.817,0.832)

0.825
(0.816,0.834)

Breast 0.956
(0.942,0.965)

0.973
(0.963,0.978)

0.964
(0.952,0.971)

0.852
(0.843,0.861)

0.836
(0.828,0.845)

0.837
(0.829,0.846)

Melanoma 0.962
(0.950,0.973)

0.976
(0.967,0.982)

0.968
(0.959,0.977)

0.896
(0.885,0.907)

0.850
(0.833,0.867)

0.863
(0.848,0.877)

Lung 0.918
(0.900,0.944)

0.950
(0.939,0.962)

0.934
(0.919,0.953)

0.770
(0.746,0.794)

0.755
(0.731,0.779)

0.749
(0.722,0.777)

Colorectal 0.950
(0.940,0.957)

0.966
(0.962,0.970)

0.958
(0.951,0.963)

0.850
(0.828,0.872)

0.843
(0.825,0.861)

0.843
(0.823,0.863)

Ovarian/
Fallopian

0.919
(0.875,0.977)

0.947
(0.919,0.979)

0.932
(0.898,0.975)

0.702
(0.618,0.785)

0.712
(0.637,0.787)

0.694
(0.613,0.774)

Other 0.996
(0.979,1.000)

0.996
(0.979,1.000)

0.995
(0.977,1.000)

0.823
(0.696,0.950)

0.737
(0.624,0.851)

0.758
(0.655,0.861)

Abstention Rate: Mean: 0.271, Min: 0.232, Max: 0.320

Table 3: Comparison of a HiSAN model with abstention vs. Llama3.

Figure 4: Modeling all cancers improves model performance compared to modeling each
independently. (A) Top: all cancers are modeled by a single task-specific HiSAN model. Bottom:
Each model trained only on the specific cancer type. (B) Mean recall of a model trained on all
cancers simultaneously (white bars) and separately (dark bars) across five different test sets for
all cancers together and separate cancers. Percentages indicate the prevalence of each cancer
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type across the entire data set. The error bars indicate the minimum and maximum recall for
each model/cancer across the five test sets.

Analysis of Knowledge Transfer Across Cancer Types

To determine whether our HiSAN model benefits more from being trained on multiple cancer
types simultaneously (Figure 4A) or when dedicated models tailored to individual cancers are
used, we trained separate HiSAN models for each cancer type (Figure 4B). This approach allows
us to assess the trade-offs between leveraging shared knowledge across cancer types and
specializing in the unique characteristics of each cancer type. Our analysis reveals that HiSAN
models trained exclusively on individual cancer types generally underperform compared to those
trained on the entire dataset when evaluated on the same cancer type (Table 2). This discrepancy
is particularly pronounced for minority classes, such as ovarian/fallopian cancers (mean F1
improving from 0.577 to 0.709) and the heterogeneous "Other" category (mean F1 improving
from 0.644 to 0.823), which benefit substantially from the shared model's ability to transfer
knowledge across cancer types.

Analysis and Review of the Undetermined Class
Another means of assessing our model is analyzing its confidence on the 2,226 metastasis
undetermined reports. The HiSAN model abstains from making predictions on around 69% of
these reports (see Table 4), effectively managing uncertain cases by deferring them for human
review. The model shows high confidence with metastasis negative reports, flagging only 18%
for review. However, for metastasis positive reports, it abstains on 48%, likely due to their
complexity and fewer representative examples in the training data, reducing prediction
confidence.

Of the 31% (N=690) of metastasis undetermined reports that the model classified as metastasis
positive or metastasis negative with high confidence, we conducted a secondary review on a
random sample of 66. Among these, 21 reports should have been abstained on due to
insufficient information for a definitive determination. For the remaining 45 reports, our model
achieved 97.8% accuracy compared to the final review labels, with a recall of 0.97 for metastasis
negative and 1.0 for metastasis positive. These results highlight the model's strength in resolving
uncertain cases, offering valuable insights where human reviewers had initially expressed
uncertainty.

Threshold Abstention Rate
(AR)

Mean (Low, High)

Metastasis
Positive AR

Mean (Low, High)

Metastasis
Negative AR

Mean (Low, High)

Metastasis
Undetermined AR

Mean (Low, High)
0.955 0.271 (0.232, 0.320) 0.482 (0.410,0.549) 0.179 (0.156,0.222) 0.692 (0.498,0.716)

Table 4. Abstention rates for each class based on the 5-fold cross-validation.
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Discussion
This study presents a robust deep-learning approach for the automated extraction of metastasis
information from unstructured pathology reports. Our work provides three key insights into the
potential of deep learning for population-level metastasis identification.

First, our study is the first to integrate multiple cancer types from many pathology laboratories
into a single deep learning algorithm for metastasis identification. This diversity introduces
challenges; specifically, pathology reports from different laboratories vary significantly in
stylistic and structural formatting. However, the HiSAN model learns to overcome these
differences and only uses the relevant information in the reports. Furthermore, by including
multiple cancer types, our model has an opportunity to learn a rich and nuanced representation of
vocabulary associated with metastasis. We hypothesize that this improved performance is
attributed to shared features common to all cancers, which aid in distinguishing between
metastasis negative and metastasis positive cases. To validate this, we trained a HiSAN model on
each cancer type alone and observed that it performed worse compared to when it was trained on
the entire dataset (Table 2, Fig. 4). Ovarian/fallopian cancers, making up 2.28% of the data,
benefit the most from knowledge transfer across cancer types (Fig. 4).

Second, our study demonstrates that a small, task-specific model can be better suited than a
general-purpose large language model for metastasis identification. We found that the HiSAN
performs 5 percentage points better than Llama3 in the three-class classification problem, raising
concerns about the accuracy of general-purpose models utilized for medical applications12,13.
Furthermore, LLMs are trained on vast amounts of internet data, which can lead to unpredictable
behavior and potential trust issues. Llama3 is resource-intensive, requiring significantly more
computational power and memory compared to HiSAN. Despite its lower accuracy, Llama3
offers several advantages. Its versatility allows it to perform a wide range of tasks without
requiring task-specific training examples, making it less vulnerable to issues like class imbalance
and dataset biases. However, while these benefits are promising, we believe that the current
accuracy of the LLM for zero-shot classification in medical contexts is not yet sufficient for
practical deployment.

Third, our approach addresses the often-overlooked need for UQ in medical machine learning.
We incorporate an abstention mechanism23, which serves as a crucial safeguard in real-world
settings, particularly when patient data deviates from the patterns well-represented in the training
set. The effectiveness of our method is underscored by its performance on ovarian and fallopian
cancers before (Table 2) and after (Table 4) applying the abstention threshold. We were able to
identify and omit 92% of misclassified reports, resulting in a notable increase of 0.201 in the F1
score, thereby enhancing the reliability of our model. Furthermore, we leverage data labeled as
undetermined to assess high-confidence model predictions, recognizing that this category likely
encompasses greater variability and functions as a catchall during manual labeling. Notably,
upon secondary review, we discovered that our model demonstrated the capability to correct
misclassifications originally made by human reviewers, underscoring its potential to serve as a
decision-support tool in complex diagnostic scenarios.Together, these findings demonstrate the
importance of tailored models and careful UQ in improving the reliability and accuracy of
metastasis identification in large-scale clinical datasets.
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In conclusion, we developed an accurate deep learning model for automatically identifying
metastasis from pathology reports across diverse hospitals, independent pathology laboratories,
geographical regions, and cancer types. We benchmarked our method against Llama3,
demonstrating superior accuracy across all cancer types. We also found that our model correctly
identifies ambiguous cases that warrant human review, enhancing its suitability for clinical
applications.

Methods

Models
We utilize two modeling approaches: (1) a task-specific Hierarchical Self-Attention Network
(HiSAN)3, which is a deep neural network trained from scratch for our specific classification
task, and (2) the Llama3 pre-trained LLM, which conducts classification through prompting. We
tailor the formulation of the classification problem to the strengths and weaknesses of these
modeling approaches.

Task-Specific Approach:  The HiSAN is a neural network architecture that incrementally
constructs representations of a given report from the word level, through the sentence level, up to
the document level using a self-attention mechanism. The final document-level representation is
then fed into a linear classification layer, which predicts the probabilities of various document
labels. This approach yields a model trained on a corpus of cancer patients’ pathology reports to
identify metastasis occurring after the initial diagnosis. For this approach, we exclude from the
training sets the potentially confusing reports that oncology data specialists labeled as metastasis
undetermined (3.7% of all the reports). We frame the task as a binary classification problem
focused on distinguishing between metastasis positive and metastasis negative conditions. Model
training details and further justification for this reformulation are provided in the Supplementary
Material.

General Model Approach: We utilize the pre-trained (i.e., trained on a large and diverse set of
internet data that is not oncology-specific) Llama3 LLM. It is capable of understanding and
generating human-like text and has been designed and trained to handle various NLP tasks
through prompting techniques. We prompt the LLM to distinguish between the metastasis
positive, metastasis negative, and metastasis undetermined categories and rely on its broader
contextual understanding and reasoning capabilities.
 
For our classification task, the LLM is provided a prompt along with a pathology report. The
model analyzes the report and generates the required output based on the instructions in the
prompt. We test two prompts to optimize Llama3 performance: Prompt 1 mimics the instructions
provided to human annotators, whereas Prompt 2 (see Supplementary Material) employs a
technique in which the LLM is asked to take the role of an expert19. We found that Prompt 1
results in higher F1 scores on validation sets and thus use it in our final evaluation.
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Prompt 1
Classify the provided pathology reports. Return 1 for one or more metastasis, return 0 for no
metastasis reported on this path, return 8 for undetermined whether metastasis or subsequent
primary or direct invasion from known primary. Provide output in the format: Answer: 0,1,8

Data Preprocessing
Data for our experiments was prepared using BARDI, an AI-readiness package for clinical text
preprocessing24 (Figure 1: Data Preprocessing) The pathology reports were first normalized
through a series of custom regular expressions and then split into word-based tokens. We employ
5-fold cross-validation to provide more accurate estimates of our models’ performance. In
contrast to an entirely random split, we ensure that pathology records associated with the same
patient are entirely contained within a single fold.
 
Model Training
The Hierarchical Self-Attention Network (HiSAN) model was trained on 80% of the pathology
reports that were labeled as either indicative of metastasis or not for all cancer types at all
registries. The model was trained using FrESCO25 with a learning rate of 10-4, patience of 5, and
a dropout rate of 0.1, and it converged after 15–20 epochs (Figure 1: Model Training). For the
HiSAN architecture, which consisted of 8 attention heads, we selected max words per line to be
15, attention dimension per head to be 50, and max document length to be 3,000 words.

Uncertainty Quantification
Uncertainty quantification (UQ) is essential for decision-making with classification models. In
the task-specific approach, prediction confidence is indicated by the softmax score, representing
the probability of a report belonging to a specific class (Figure 1: Uncertainty Quantification).
By setting a confidence threshold, reports likely to be correct can be retained, while uncertain
ones are discarded. This study explores the trade-offs between performance metrics and the
abstention rate, where flagged reports are reviewed by humans. Minimizing the number of
reports needing manual review is a crucial goal, given the time-consuming nature of the process.
Because research investigating UQ in the context of LLMs is still in its early stages, we have not
explored it in the present study (see Supplementary Material).

Threshold selection
Because we care about accurately identifying metastasis, we aim to determine a confidence
threshold . Data samples with a maximum softmax score are to beα 𝑥

𝑘
𝑚𝑎𝑥(𝑓

θ
(𝑥

𝑖
)) >  α

automatically classified, and those below the threshold deferred for manual review. Therefore,
we aim to maximize the recall of the metastasis positive cases while minimizing the number of
reports that need to be manually reviewed. We observed that the recall-abstention curve has a
characteristic “knee” shape, in which further increases in the threshold result in a relatively
minimal increases in recall. The output of the HiSAN gives the probability of each class.𝑓

θ
(𝑥

𝑖
)
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where is the set of labels, is the set of pathology reports predicted to be{𝑦
𝑘
} {𝑓

θ
(𝑥

𝑖
) >  α}

metastasis with confidence more than . The knee-finding algorithm outlined in21 determines theα
knee point of , by identifying the point of maximum curvature. This is estimated by𝑟(α) α 

^

where is the sensitivity parameter which we set to 1. are the local maxima determined by𝑆 𝑟
~

(α
𝑖
)

the kneedle algorithm.
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Supplementary Material: Large-Scale Deep Learning for Metastasis Detection in
Pathology Reports

Data Preprocessing
Data for our experiments was prepared using BARDI, an AI-readiness package for clinical text
preprocessing24. The pathology reports were first normalized through a series of custom regular
expressions and then split into word-based tokens. We employ 5-fold cross-validation to provide
more accurate estimates of our models’ performance. In contrast to an entirely random split, we
ensure that pathology records associated with the same patient are entirely contained within a
single fold.
 
Model Training
The Hierarchical Self-Attention Network (HiSAN) model was trained on 80% of the pathology
reports that were labeled as either indicative of metastasis or not for all cancer types at all
registries. The model was trained using FrESCO25 with a learning rate of 10-4, patience of 5, and
a dropout rate of 0.1, and it converged after 15–20 epochs. For the HiSAN architecture, which
consisted of 8 attention heads, we selected max words per line to be 15, attention dimension per
head to be 50, and max document length to be 3,000 words.
 
Justification for Reformulating the Classification into Two–Class Problem
Learning a rich representation of the metastasis undetermined reports is challenging due to the
ambiguity of the concept and the limited number of available samples in the dataset. By training
the model without these reports, we aim to ensure that it can learn to effectively discern features
indicative of these two conditions with high confidence. After training, we anticipate that the
model will exhibit uncertainty when faced with challenging and ambiguous reports, such as those
in the metastasis undetermined category. For that reason, we introduce an abstention mechanism
that allows the model to refrain from making predictions when its confidence is low. This
abstention approach flags reports from the undetermined class for manual review. More broadly,
it allows our model to reduce the incidence of false positives and false negatives by choosing not
to classify ambiguous cases.
 
Large Language Model Prompting
To run the Llama3 large language model (LLM), we utilized HuggingFace’s pipeline module
with sampling turned off for deterministic outputs. We used two prompts.
 
Prompt 1
Classify the provided pathology reports. Return 1 for one or more metastasis, return 0 for no
metastasis reported on this path, return 8 for undetermined whether metastasis or subsequent
primary or direct invasion from known primary. Provide output in the format: Answer: 0, 1, 8.
 
Prompt 2
You are a specialist tasked with annotating pathology reports at a SEER registry. Your role
involves reading and understanding pathology reports. You look for key terms and phrases
related to metastasis and classify each report as indicating metastasis, no metastasis, or
inconclusive. Return 1 for metastasis, 0 for no metastasis, 8 for inconclusive. Provide output in
the format: Answer: 0, 1, or 8.
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We find that Prompt 1 outperforms Prompt 2. The results for the Prompt 2 show an F1 score
ranging from 0.775 to 0.802, with mean of 0.790.
 
Privacy Considerations When Using LLMs for Clinical Applications
Although numerous models have been trained for medical applications, the interfaces likely to be
used by a clinician day-to-day are those that enable easy interaction (e.g., OpenAI’s ChatGPT).
However, exposing private patient data to companies such as OpenAI is illegal and unethical.
Comparable open-source models such as Llama enable researchers to understand how accurate a
system like ChatGPT would be while running the model in a safe and secure environment.
 
On Uncertainty Quantification for LLMs
Research into uncertainty quantification for LLMs is still in its early stages. Some of the recently
proposed approaches rely on the nondeterministic nature of LLMs, in which the next token
prediction can be sampled across more or less likely choices using a parameter called
temperature. While performing multiple inference calls on the same case, we can quantify the
confidence via voting. These methods complicate the automation of using LLMs because
structured output is required. At high temperatures, the outputs are less likely to follow the
prescribed structures. Additionally, repeated runs for the same prompt increase computational
expense, making it impractical for high-throughput applications.

Training Set
(Metastasis Negative /
Metastasis Positive /
Undetermined)

Validation Set
(Metastasis Negative /
Metastasis Positive /
Undetermined)

Test Set
(Metastasis Negative /
Metastasis Positive /
Undetermined)

Experiment 1 48,396
(34,695 / 11,882 / 1,819)

6,137
(4,346 / 1,578 / 213)

5,938
(4,245 / 1,499 / 194)

Experiment 2 48,456
(34,614 / 12,074 / 1,768)

6,089
(4,462 / 1,419 / 208)

5,926
(4,210 / 1,466 / 250)

Experiment 3 48,415
(34,690 / 11,943 / / 1,782)

6,081
(4,341 / 1,519 / 221)

5,975
(4,255 / 1,497 / 223)

Experiment 4 48,167
(34,566 / 11,856 / 1,745)

6,087
(4,374 / 1,575 / 268)

6,217
(4,374 / 1,575 / 213)

Experiment 5 48,550
(34,561 / 12,081 / 1,790)

6,131
(4,432 / 1,482 / 217)

5,890
(4,275 / 1,396 / 219)

 
 
 
Table S1: Counts of Metastasis Negative, Metastasis Positive, and Undetermined labeled reports
in each fold. Employing 5-fold cross-validation, we train five distinct models on 4 of 5 folds, with
the 5th designated for validation and testing. The folds are created with patient-level
stratification.
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HiSAN Evaluation on Two Classes
Precision

Mean
Low, High

Recall
Mean

Low, High

F1
Mean

Low, High
All Data 0.932

0.924, 0.938
0.930

0.920, 0.938
0.931

0.921, 0.938
Breast 0.941

0.933, 0.946
0.937

0.925, 0.943
0.938

0.926,0.944
Melanoma 0.947

0.939, 0.959
0.944

0.937, 0.956
0.945

0.938, 0.957
Lung 0.905

0.889, 0.920
0.904

0.889, 0.921
0.904

0.889, 0.920
Colorectal 0.932

0.909, 0.945
0.931

0.908, 0.944
0.931

0.908, 0.944
Ovarian/

Fallopian
0.827

0.744, 0.920
0.824

0.744, 0.919
0.824

0.744, 0.919
Other 0.921

0.879, 0.955
0.914

0.879, 0.952
0.916

0.879, 0.950

Table S2: Results for HiSAN on two-class classification (metastasis negative/ metastasis
positive).
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