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ABSTRACT

Complex disease genetics is a key area of research for reducing disease and improving human health.
Genome-wide association studies (GWAS) help in this research by identifying regions of the genome
that contribute to complex disease risk. However, GWAS are computationally intensive and require
access to individual-level genetic and health information, which presents concerns about privacy
and imposes costs on researchers seeking to study complex diseases. Publicly released pan-biobank
GWAS summary statistics provide immediate access to results for a subset of phenotypes, but they
do not inform about all phenotypes or hand-crafted phenotype definitions, which are often more
relevant to study. Here, we present WebGWAS, a new tool that allows researchers to obtain GWAS
summary statistics for a phenotype of interest without needing access to individual-level genetic and
phenotypic data. Our public web app can be used to study custom phenotype definitions, including
inclusion and exclusion criteria, and to produce approximate GWAS summary statistics for that phe-
notype. WebGWAS computes approximate GWAS summary statistics very quickly (<10 seconds),
and it does not store private health information. We also show how the statistical approximation
underlying WebGWAS can be used to accelerate the computation of multi-phenotype GWAS among
correlated phenotypes. Our tool provides a faster approach to GWAS for researchers interested in
complex disease, providing approximate summary statistics in short order, without the need to col-
lect, process, and produce GWAS results. Overall, this method advances complex disease research
by facilitating more accessible and cost-effective genetic studies using large observational data.

1 Introduction

Genome-wide association studies (GWAS) are fundamental to understanding the genetic basis of complex diseases and
traits, offering researchers valuable biological insights. However, conducting GWAS requires access to large-scale,
individual-level genetic and phenotypic data, such as are provided by the UK Biobank [1] or All of Us [2] projects.
Accessing and analyzing such data poses significant challenges, including substantial computational resources, access
costs, potential privacy concerns due to sensitive personal information, and the necessity for specialized expertise in
data processing and statistical analysis.

To mitigate some of these challenges, publicly released pan-biobank GWAS summary statistics have become invalu-
able resources for the research community [3, 4, 5, 6]. These studies pre-compute and share GWAS summary statistics
for thousands of phenotypes, giving researchers immediate access to genetic association results without handling
individual-level data. While this approach alleviates some computational burdens and privacy issues, it has notable
limitations—results are restricted to a predefined set of phenotypes and cannot easily be used to study custom pheno-
type definitions that may be more relevant.

To address these limitations, we present WebGWAS, a free, publicly available web application that allows users to
define arbitrary phenotypes and rapidly obtain approximate GWAS summary statistics. WebGWAS is built on a statis-
tical approximation we call indirect GWAS, which uses existing summary statistics to rapidly compute GWAS results
for user-defined phenotypes, including specific inclusion and exclusion criteria. Researchers can input custom phe-
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WebGWAS: A web server for instant GWAS on arbitrary phenotypes

Figure 1: Graphical overview of WebGWAS. A: Three artifacts are needed for WebGWAS: GWAS summary statis-
tics, a covariate-adjusted phenotypic covariance matrix, and anonymized phenotypes. No protected health information
(PHI) is included in these outputs, which can be uploaded to the WebGWAS server. B: Computations on WebGWAS
involve five main steps. First, a user defines a phenotype using the web interface. Second, that phenotype definition
is evaluated in anonymized data to produce a vector of values. Third, that vector is approximated by the anonymized
features using linear regression. Fourth, the fit quality of that linear regression is computed. Fifth, the GWAS summary
statistics for the user’s phenotype definition are computed using indirect GWAS. This process only uses the phenotype
approximation coefficients, the covariance matrix of the features, and the pre-computed GWAS summary statistics for
the features.

notype definitions and receive approximate GWAS summary statistics in under 10 seconds. Importantly, WebGWAS
neither accesses nor stores any private health information, thereby mitigating privacy concerns associated with the use
of sensitive individual-level data.

In addition to facilitating rapid GWAS analyses for custom phenotypes, the statistical approximation underlying We-
bGWAS can be employed to accelerate the computation of multi-phenotype GWAS when phenotypes are correlated.
By exploiting the correlations between phenotypes, our method enhances computational efficiency, reducing the time
and resources required for large-scale genetic studies across multiple traits.

Overall, WebGWAS provides a faster and more accessible approach to GWAS, lowering barriers for researchers in-
vestigating the genetic underpinnings of complex diseases. By eliminating the need for individual-level data access,
access fees, and extensive computational resources, WebGWAS empowers researchers to obtain approximate GWAS
results immediately, accelerating the pace of exploratory research into complex traits and diseases.

2 Results

2.1 Overview of WebGWAS

We built WebGWAS.org, a free, public, efficient web app that can rapidly compute approximate GWAS summary
statistics. WebGWAS allows users to define arbitrary phenotypes, compute GWAS results, visualize them, and down-
load them. No protected health information (PHI) is stored on the WebGWAS server—only GWAS summary statistics,
phenotypic covariance matrices, and anonymized phenotypic data with k = 10 anonymity. No user data are collected
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WebGWAS: A web server for instant GWAS on arbitrary phenotypes

Figure 2: Validation of indirect GWAS using five GWAS methods. GWAS chi-squared statistics are compared be-
tween direct and indirect approaches for 100 randomly projected phenotypes, 10,000 genetic variants using simulated
data. Each point represents one genetic variant and one phenotype (1,000,000 total points in each facet). R2 values
indicate goodness of fit between the direct and indirect statistics.

beyond which phenotype definitions are submitted. At present, WebGWAS contains data for ICD-10 codes and quan-
titative measurements in the White British subset of the UK Biobank. Figure 1 shows an overview of WebGWAS.

2.2 Indirect GWAS method

WebGWAS depends on a statistical approach that we term indirect GWAS. The core idea of indirect GWAS is that
GWAS summary statistics for a linear combination of phenotypes can be computed without individual-level data,
provided certain summary statistics are available for all phenotypes included. For example, a GWAS on the sum
of systolic and diastolic blood pressure can be computed given only summary statistics about systolic and diastolic
blood pressure, separately. What follows is a high-level overview of this method. A full derivation is provided in the
methods.

Consider a genetic association test for a single quantitative phenotype (y) and a single genetic variant (g), y ∼ g.
Assuming both have zero mean, the coefficient and standard error are the following:

β̂ =
g⊺y

g⊺g
SE(β̂) =

√
1

N − 1

(
Var(y)

Var(g)
− β̂2

)
. (1)

Suppose y can be written as a linear combination of m feature phenotypes x1 . . . xm, (i.e. y =
∑

xipi, for some
coefficients p1 . . . pm). Define two m-vectors, b and s, that hold the coefficient and standard error estimates for
regressions of the genetic variant against the feature phenotypes (i.e. bi = g⊺xi/g

⊺g and si = SE(bi)). Let C be the
phenotypic covariance matrix of the features. Then the coefficient and standard error for y can be written in terms of
feature summary statistics as

β̂ = b⊺p SE(β̂) =

√
1

N − 1

(
p⊺Cp

Var(g)
− (b⊺p)2

)
. (2)

Var(g) can be estimated using the coefficients, standard errors, and variances from each feature phenotype and taking
the mean across features.

Var(g)i =
Var(xi)

s2i (N − 1) + b2i

ˆVar(g) = Var(g)i (3)

To summarize, the association test summary statistics for phenotype y =
∑

xipi can be computed using only the
coefficients and standard errors for all xi, the covariance matrix among xi, and the coefficients pi. In other words, given
appropriate summary statistics about a set of phenotypes, the GWAS summary statistics for any linear combination
of those phenotypes can be computed without individual-level data. In the methods we show how this approach is
applicable to any linear GWAS method, and how covariates can be included.

2.3 Validation of indirect GWAS

To evaluate whether this derivation is correct, we compared to the standard method of direct GWAS on the evaluated
linear combination. We used PhenotypeSimulator [7] to simulate genetic and phenotypic data for 10,000 individuals,
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Figure 3: Indirect approach maintains GWAS fidelity for many nonlinear phenotypes. A: Phenotype fit quality
predicts GWAS fidelity. Nonlinear phenotypes (140 Phecodes and 300 boolean definitions) were approximated using
linear combinations of ICD-10 codes via OLS. GWAS fidelity (Pearson R between direct and indirect chi-squared
statistics) is worsened by linearization alone, and it is highly correlated (Pearson correlation 0.99) with phenotype fit
quality (R2 between exact and linearly approximated phenotypes). Outliers above the line of unity are inflated due to
exceptionally high association statistics (see supplementary materials). B: Anonymization degrades performance but
phenotype fit quality is still highly correlated with GWAS fidelity (Pearson correlation 0.76). ICD-10 code data were
first anonymized using MDAV with k = 10. Nonlinear phenotypes were evaluated on the anonymized data, then the
best linear combinations were estimated in anonymized rather than original data. GWAS fidelity is worsened both due
to linearization and anonymization. C: Increasing privacy degrades GWAS fidelity. ICD-10 data were anonymized
using MDAV at various degrees of anonymity. In each anonymized dataset, all nonlinear phenotype definitions were
evaluated, linearized, and used to perform indirect GWAS. GWAS fidelity in this subplot refers to the Pearson R
between anonymized and non-anonymized indirect GWAS chi-squared statistics. This definition intentionally differs
from the previous subplots to isolate the effect of anonymization.

generated 100 random linear combinations of traits, and compared GWAS summary statistics between direct and
indirect approaches to validate our derivation and implementation. The results of this evaluation show that indirect
GWAS is mathematically correct in the case of linear models and a good approximation for linear mixed models
(Figure 2).

2.4 Generating summary statistics for arbitrary phenotypes

Research phenotypes are not exclusively defined as linear combinations; they often include boolean operations like
“and” and “or”, and inequalities like “greater than”. For example, one could define diabetics as anyone with either
an ICD-10 E11 diagnosis or an HbA1c measurement ≥ 6.5%. While arbitrary phenotypes may be nonlinear, indirect
GWAS requires them to be linear, so we first linearize each phenotype using linear regression.

Linear approximations perform well for many nonlinear phenotypes, including Phecodes [8] and Boolean operators
(Figure 3A). Using ICD-10 code data from the UK Biobank, we generated 140 Phecodes and 300 random nonlinear
Boolean combinations, and we approximated these using linear regression against ICD-10 codes. The quality of linear
approximations varied greatly between phenotypes. Pairs of codes combined like “x and not y” or “x or y” were the

4

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.12.11.24318870doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.11.24318870
http://creativecommons.org/licenses/by/4.0/


WebGWAS: A web server for instant GWAS on arbitrary phenotypes

best approximated, with median R2 values of 0.96 and 0.98, respectively. Phecode performance ranged widely, with
regression R2 values ranging from 0.15 to 0.98, but overall they performed well with a median of 0.82. We found
consistently poor performance among phenotypes defined as “x and y”, with R2 values between 0.01 and 0.39. In
short, many nonlinear phenotypes could be approximated with reasonable performance using a linear approximation
(74% (324/440) above 0.5, 66% (289/440) above 0.75).

GWAS fidelity is the key metric for evaluating WebGWAS. We quantified GWAS fidelity using the Pearson correlation
between direct and indirect GWAS chi-squared statistics. While GWAS fidelity is the metric of greatest interest, it
cannot be computed in WebGWAS, because it requires direct GWAS summary statistics. However, we found that
phenotypic fit quality (R2 as above) is an excellent predictor of GWAS fidelity (Pearson correlation 0.99; Figure 3A).

This analysis led us to draw two conclusions. First, many real phenotypes (e.g. Phecodes) can be well-approximated
using linear regression (e.g. against ICD-10 codes). Second, phenotypic fit quality—which can be computed in
WebGWAS—is an acceptable gauge for GWAS fidelity. In summary, indirect GWAS is applicable to arbitrary pheno-
types, and phenotype fit quality, which can be computed cheaply, provides a quality gauge for the results.

2.5 Protecting privacy by anonymizing phenotype data

Phenotypic data are used for one purpose in WebGWAS: to find the linear combination of features that best predicts the
user-defined phenotype. We hypothesized that anonymized data would give similar coefficients to non-anonymized
data, while reducing the risk of exposing sensitive information. To anonymize phenotype data, we chose maximum
distance to the average vector (MDAV), an anonymization method that ensures every record is at least k-anonymous
in the dataset.

Anonymization involves a loss of fidelity. We evaluated whether this loss is empirically tolerable for WebGWAS.
We anonymized ICD-10 code data from the UK Biobank to k = 10, applied the previous phenotype definitions (i.e.
Phecodes and Booleans) to the anonymized data, regressed anonymized nonlinear phenotypes against anonymized
ICD-10 codes, then used those coefficients to compute indirect GWAS using GWAS summary statistics from the
non-anonymzied ICD-10 codes. Both sources of noise (linearization and anonymization) are present in these GWAS
summary statistics. Anonymization worsened the phenotype fit quality (R2) of linearized phenotypes from 0.71 to 0.37
(Figure 3B). As in the non-anonymized analysis, phenotype fit quality predicted GWAS fidelity (Pearson correlation
0.76), and only phenotypes with fit quality above 0.5 lead to GWAS fidelity above zero. Overall, GWAS fidelity was
high for a large fraction of nonlinear phenotypes (65% (285/440) above 0.5, 60% (265/440) above 0.75), indicating
that indirect GWAS is applicable even with the added noise from anonymization.

WebGWAS uses k = 10 to provide reasonable performance with minimal privacy risk. We evaluated how our other
choices of k affect GWAS fidelity. This comparison used the same sets of phenotypes (300 Boolean combinations
and 140 Phecodes) and features (340 ICD-10 codes) as before. Here, we compared GWAS fidelity of anonymized,
linearly approximated data relative to non-anonymized, linearly approximated data in order to isolate the effect of
anonymization. We found, unsurprisingly, that GWAS fidelity degraded as the degree of anonymity increased (Figure
3C). With k = 10, all phenotypes had a GWAS fidelity above zero, and this decreased with k across all phenotypes.

2.6 Interactive web app

WebGWAS provides two interfaces for defining phenotypes. The list interface allows users to define phenotypes
using ICD-10 codes and two operators, AND and NOT (Figure 4A). The tree interface allows users to define arbitrary
phenotypes using ICD codes and quantitative phenotypes, as well as 10 operators (e.g. less than, OR, etc.; Figure 4B).
After a phenotype is submitted, a quality gauge appears which shows the phenotype approximation quality, which
proxies GWAS fidelity. Finally, once the GWAS summary statistics are computed, an interactive Manhattan plot is
shown, and a download link to the full summary statistics appears (Figure 4C).

2.7 Accelerating pan-biobank GWAS

In addition to WebGWAS, the underlying indirect GWAS method can be used to accelerate pan-biobank GWAS in
exchange for a moderate reduction in result fidelity. To do so, we reduce the phenotype dimensionality with principal
component analysis (PCA), perform direct GWAS on some fraction of the principal components (PCs), then recon-
struct full-dimensional summary statistics using indirect GWAS. By reducing the number of direct GWAS that must
be computed, this approach can save a large fraction of computation time.

We found that a large fraction of ICD-10 codes from the UK Biobank could be reconstructed using only a fraction of
the PCs, and that performance increased as more PCs were used (Figure 5). Running this analysis in an even larger
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A

B

C

Figure 4: Screenshots of the WebGWAS interface A: The list interface allows users to pick series of ICD-10 codes
that define a phenotype using “and” and “not” operations. B: The tree interface enables defining truly arbitrary phe-
notypes using 10 unary and binary operators, constants, and both continuous (e.g. height) and binary (e.g. ICD-10
codes) phenotypes. C: Summary information is displayed after indirect GWAS is complete. The phenotype quality
gauge indicates the R2 between the anonymized user-defined phenotype and the anonymized, linearized phenotype.
An interactive Manhattan plot shows the results of the indirect GWAS, including clickable links to DBSNP for each
variant and color highlighting to indicate which variants also reached genome-wide significance for the feature phe-
notypes included in the user’s definition.

Figure 5: Indirect GWAS with PCA accelerates pan-biobank GWAS ICD-10 phenotypes from the UK Biobank
were compressed to various dimensionalities using PCA. GWAS on the reduced dimensions were used to reconstruct
GWAS summary statistics for the original ICD-10 codes using indirect GWAS. Using more PCs improves both phe-
notype fit quality and GWAS fidelity, and it improves correspondence between the two.

dataset, we found that GWAS sensitivity and specificity are largely preserved, even with a small fraction of the PCs
(Table 1). In other words, while using fewer PCs diminishes overall GWAS fidelity (Figure 5), fidelity is largely
maintained for the most extreme associations (Table 1), which are generally of greatest interest.

We found that indirect GWAS can substantially reduce computation time for pan-biobank GWAS (Table 1). The time
costs for PCA and indirect GWAS are small compared to the runtime savings from computing fewer direct GWAS.
In fact, the computation time savings are roughly in line with the latent space fraction used (Table 1), meaning that
roughly 50% of computation time can be saved by excluding 50% of PCs. Overall, these results show that indirect
GWAS can accelerate pan-biobank GWAS in cases where some degree of approximation is acceptable, and the time
savings can be immense.
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% of PCs % of time FP TP FN TN Sensitivity Specificity Precision F1
10 10.1 2015 1222 24 496739 0.981 0.996 0.378 0.545
25 24.0 1148 1756 24 497072 0.987 0.998 0.605 0.750
50 48.2 533 2234 24 497209 0.989 0.999 0.807 0.889
75 73.5 244 2354 24 497378 0.990 1.000 0.906 0.946
90 88.6 121 2553 24 497302 0.991 1.000 0.955 0.972

100 100 1 2899 24 497076 0.992 1.000 1.000 0.996

Table 1: Indirect GWAS performance across various dimensionality reductions. This analysis considered 500,000
variants, 342,350 samples, 1238 ICD-10 phenotypes, and used Plink 2 for GWAS. Variants were considered genome-
wide significant if their p-values were less than 5×10−8. “% of time” indicates what fraction of the full, direct runtime
would be needed for the indirect approach. FP, TP, FN, and TN indicate false positive, true positive, false negative,
and true negative.

3 Discussion

In this work, we introduced WebGWAS, a free, open source, publicly-available web app for approximate GWAS on
arbitrary phenotypes. The underlying method, indirect GWAS, enables computing GWAS for any linear combination
of phenotypes, using only GWAS summary statistics and a phenotypic covariance matrix. In order to approximate
arbitrary phenotypes in our web app, we paired indirect GWAS with anonymized phenotype data, so that arbitrary
phenotypes can be linearly approximated quickly, without exposing PHI. Finally, we showed how indirect GWAS can
accelerate pan-biobank GWAS by reducing the number of phenotypes, running GWAS in this reduced dimension, and
reconstructing full GWAS results.

WebGWAS has limitations. First, the underlying indirect GWAS method only produces exact results for linear com-
binations of phenotypes. We showed that linear approximations work well for many real phenotypes, but there remain
plenty of phenotypes that are not well approximated. Nonetheless, our approach can quantify the fidelity of its results
by measuring the phenotypic goodness-of-fit, thereby providing users with a sense about the accuracy of WebGWAS’s
results.

The second major limitation of WebGWAS is that it can only provide GWAS results for linear methods (linear re-
gression and linear mixed models), not logistic regression or generalized linear mixed models. However, linear and
logistic regressions produce summary statistics that match closely for variants with small or moderate effects [9], so
this limitation is not critical.

Third, WebGWAS can run GWAS on arbitrary phenotypes only insofar as they can be defined in terms of phenotypes
with pre-computed summary statistics. For example, a new measurement type that is not already present in the UK
Biobank cannot be evaluated with WebGWAS, because it cannot be defined in terms of existing data. Fully out-of-
domain phenotypes can be approximated, but doing so is likely to result in poor performance toward the phenotype of
interest (see supplementary materials).

Fourth, WebGWAS can only produce results for cohorts, phenotypes, and genetic variants that we have pre-selected
and for which we have pre-computed input data (GWAS summary statistics, covariance matrix, and anonymized data).
At present, we only include data from the UK Biobank, though we aim to include additional data sets in future updates.

Finally, WebGWAS only produces approximate GWAS summary statistics for nonlinear phenotypes. Even when
a user’s phenotype is well-approximated, the GWAS summary statistics are not identical to a direct GWAS using
individual-level data. Our web app is intended to be a fast, convenient tool for exploratory analyses. It is not intended
to replace a direct approach when producing final research results, which should include thoughtful phenotype defini-
tions, careful quality control, and appropriate GWAS methods. On the other hand, WebGWAS is currently the fastest
way to get approximate results without writing code or interacting with data directly and is perfect for exploratory
analysis.

We showed how indirect GWAS can be used to accelerate pan-biobank GWAS when approximate results are sufficient.
We observed that highly significant associations (low p-values) were generally well-approximated, even at small latent
dimensions. As highly significant variants are generally most interesting for further analysis, this suggests that indirect
GWAS’s overall lower precision is not critical.
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4 Methods

4.1 Indirect GWAS method

Indirect GWAS is a method to exactly reproduce GWAS summary statistics for a phenotype defined as a linear com-
bination of other phenotypes without directly running a new GWAS. For example, given m feature phenotypes x1,
..., xm, define a linear combination y =

∑
xipi. Indirect GWAS can reproduce the GWAS results for y given only

information about the features (xi) and coefficients (pi). To do so, our method needs to compute the following for each
genetic variant: coefficient estimate, coefficient standard error, p-value, and sample size. We take the indirect sample
size to be the minimum of the sample sizes available for each feature trait, as this is the number of samples that would
be available in the equivalent direct approach. We will focus on the coefficient estimate and its standard error, as the
p-value can be computed from these statistics.

Consider a regression involving a single genetic variant, a single phenotype, and N samples. Let y be the N -vector of
phenotype values, g be the N -vector of genotype values (coded in any way), and Z be the N ×C matrix of covariates
that includes an intercept and is assumed to be full-rank.

y = Zα+ gβ + ε

Above, α is the C-vector of covariate fixed effects, β is the scalar effect of the genotype on the phenotype, and ε is
the N -vector of errors. Covariate effects can be removed using a residual projection matrix, P = IN −Z(Z⊺Z)−1Z⊺.
Removing covariates results in residualized phenotype (ỹ ≡ Py), genotype (g̃ ≡ Pg), and error (ε̃ ≡ Pε) vectors,
and it allows writing the regression more compactly.

ỹ = g̃β + ε̃ (4)

Equation 4 is a univariate least squares regression. Let d be the appropriate degrees of freedom for this analysis. The
coefficient estimate for this regression is β̂ = g̃⊺ỹ/g̃⊺g̃, and the standard error is

SE(β̂)2 =
1

d

(
Var(ỹ)

Var(g̃)
− β̂2

)
(5)

Suppose y can be written as a linear combination of m feature phenotypes. Let X be an N × m matrix of feature
phenotypes and let p be an m-vector of the projection coefficients.

y = Xp

Suppose that for every phenotype in X, the same genotype-phenotype regression has been performed. Let b and
s be m-vectors holding coefficient estimates and standard errors, respectively, from these regressions (i.e. bi =

(g̃⊺x̃i)/(g̃
⊺g̃), and si = SE(b̂i)). To estimate the standard error for β̂, we first need an estimate of Var(g̃), which we

obtain by rearranging equation 5 using b and s.

Var(g̃)i =
Var(x̃i)

s2i d+ b2i
(6)

This equation for the genotypic partial variance is written in terms of variables that can be obtained from a GWAS
study—the phenotypic partial variance, the estimated coefficient, the estimated coefficient standard error, and the
number of degrees-of-freedom (d = N − C − 1). Every input phenotype i may result in a slightly different estimate
for this value, so we use the mean across phenotypes as the final estimate for genotype partial variance (Var(g̃) =

Var(g̃)i). The final term to be estimated is Var(ỹ), which can be computed using the partial covariance matrix of the
feature traits, C.

Var(ỹ) = p⊺Cp

Finally, we can write the coefficient and standard error estimates for y as follows:

β̂ = b⊺p SE(β̂) =

√
1

N − C − 1

(
p⊺Cp

Var(g̃i)
− (b⊺p)2

)
(7)
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4.2 Linear mixed models

Linear mixed models GWAS methods can also be evaluated indirectly. However, the specifics of these operations
vary depending on the specifics of the method to be used. In general, linear mixed models are only treated differently
when computing the phenotypic partial covariance matrix and when estimating the genotype partial variance. Mixed
effect terms should be treated as additional covariates that can be residualized out before computing the phenotypic
covariance matrix. This process is simplified for methods like Regenie, which produce intermediate results that include
phenotypes residualized against the mixed effect terms. However, some methods (like Regenie) treat chromosomes
differently (i.e. they use leave-one-chromosome-out computations), meaning that indirect GWAS needs a different
phenotypic covariance matrix for each chromosome. There is no general approach to including linear mixed models,
as they all use different approximations and report different intermediate results.

4.3 Validation

To confirm that indirect GWAS is mathematically correct, we compared direct vs indirect GWAS summary statistics
using simulated data. First, we used PhenotypeSimulator [7] to simulate the following for 10,000 individuals: geno-
types for 10,000 genetic variants, 10 phenotypes (x1 . . . x10), and 5 covariates. Next, we simulated 10 random linear
combinations of the phenotypes (e.g. y1 = 0.5 × x1 + · · · + 1.1 × x10). We performed association tests for all 10
phenotypes against all genetic variants using several different methods: univariate ordinary least squares (OLS; only
genotype and intercept), multivariate OLS (genotype, intercept, age, sex, 10 genetic PCs), FastGWA [10] (with co-
variates), SAIGE [3] (with covariates), and Regenie [11] (with covariates). Finally, we performed association tests on
the random projections using both direct and indirect GWAS approaches and compared GWAS chi-squared statistics
to verify that indirect GWAS produces equivalent results.

4.4 Implementation

Indirect GWAS is mathematically straightforward but challenging to implement efficiently. The method requires
potentially thousands of input files, including GWAS summary statistics for every input phenotype, a phenotypic
covariance matrix, and a phenotype projection matrix. As the total size of these files can be very large, we provide
a high-performance implementation that uses multithreading and chunked processing to provide results efficiently.
Our implementation is easily installable, written in Rust, and available on GitHub [12]. We also developed a fast
implementation of the data anonymization method (MDAV) [13]. The complete code powering the web application is
available on GitHub [14].

4.5 UK Biobank data processing

WebGWAS currently contains only data from White British individuals in the UK Biobank. We are working to expand
this as soon as possible.

To create the input data to WebGWAS, we first removed individuals whose data were flagged for various reasons
as being potentially flawed or erroneous, specifically individuals whose genetic sex was mismatched with their self-
reported sex, individuals who were outliers for heterozygosity or missingness (defined by the UK Biobank using the
outlier detection algorithm, abberant [15]), individuals with ten or more third-degree relatives in the UK Biobank,
individuals with sex chromosome aneuploidy, and we restricted to individuals used in the computation of genetic
principal components by the UK Biobank. Finally, we restricted to individuals with both binary and quantitative
phenotype data available, described below.

For binary phenotypes, we considered all International Statistical Classification of Diseases and Related Health Prob-
lems, 10th revision (ICD-10) codes. We mapped and included ICD-10 codes from all six sources available in the
UK Biobank: hospital inpatient ICD-9 codes, hospital inpatient ICD-10 codes, self-reported non-cancer illness codes,
primary cause of death, secondary cause of death, and general practitioner outpatient diagnoses. Where necessary,
we used mappings provided by the UK Biobank to convert each coding to ICD-10. Only codes with at least 100
observations were retained.

For quantitative phenotypes, we considered all quantitative data fields and excluded fields that were not relevant to
this study. Specifically, we chose fields meeting the following criteria: only field data (exclude all bulk data, e.g.
imaging), unisex fields only, only fields with continuous or integer values, only fields with at least 75,000 samples (per
the UK Biobank data dictionary), no strictly genetic fields (e.g. exclude genetic principal components (PCs), exclude
pre-computed polygenic scores), no fields dealing with sample quality control (QC) or calibration (e.g. genotyping
batch, Affymetrix QC metrics), no fields dealing with home location (e.g. amount of traffic around home location),

9

 . CC-BY 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.12.11.24318870doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.11.24318870
http://creativecommons.org/licenses/by/4.0/


WebGWAS: A web server for instant GWAS on arbitrary phenotypes

and no fields dealing strictly with data collection (e.g. the number of samples taken). We manually filtered fields using
these criteria.

Many fields have both instance and array indices. Instances correspond to visits to the UK Biobank assessment center.
Array indices indicate that multiple measurements or values result from a single investigation instance. We kept array
indices as separate fields and took the per-individual mean across instances for each field. Finally, we transformed
all quantitative phenotypes using the inverse rank normal transformation, leading to approximately standard normal
distributions. Applying the above QC and filtering procedure resulted in 1378 quantitative phenotypes, 1238 binary
phenotypes, and 342,350 samples. To save computation time, we restricted our analysis to HapMap3 SNPs, resulting
in 1,166,145 SNPs in our final dataset.
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6 Supplementary methods

6.1 Translation between datasets

Figure S1: Indirect GWAS can translate between datasets. Phecodes were approximated using ICD-10 codes with
linear regression for various training and evaluation datasets. Phenotype approximation coefficients were computed
in the training dataset. GWAS fidelity and phenotype fit quality were computed in the evaluation dataset. A: Phecode
approximations from Cedars-Sinai are similar to UK Biobank approximations. Trained in Cedars-Sinai, evaluated
against linear approximations from UK Biobank. B: Many Phecode approximations from Cedars-Sinai perform well
in UK Biobank as well. Trained in Cedars-Sinai, evaluated against true Phecodes in UK Biobank. C: For comparison,
approximations from the UK Biobank perform similarly. Linear approximation trained in UK Biobank, evaluated
against true Phecodes in UK Biobank.

A limitation of indirect GWAS is that it can only operate on phenotypes defined in terms of its input features (i.e.
the phenotypes for which a covariance matrix and GWAS summary statistics are available). In examples presented
previously in this paper, the features are ICD-10 codes, meaning that indirect GWAS can only approximate phenotypes
that are defined in terms of ICD-10 codes. This is limiting, because there are many phenotypes which might be of
interest in GWAS but which do not deal with diagnoses and cannot be explicitly defined as such by a researcher. For
example, a researcher interested in genetic associations of UK Biobank questionnaire responses could not explicitly
define the response in terms of ICD-10 codes.

However, a large set of real human phenotypes, such as measurements and diagnoses, will span a reasonable fraction
of the phenotypes of interest for GWAS. This means that a large dataset like this should have a reasonable amount
of statistical predictive power for many real human phenotypes. In some cases, that predictive power could be large
enough that a user could reasonably approximate their phenotype of interest using features included in WebGWAS,
and use that approximation to gather immediate, approximate GWAS summary statistics. In short, for example, a
researcher interested in a particular phenotype could train a statistical or machine learning model to approximate the
phenotype using diagnoses and measurements as features, and obtain approximate GWAS summary statistics for that
phenotype using WebGWAS. This would be particularly valuable if they could train this model in completely separate
phenotype data, for example, an entirely different cohort than the UK Biobank.

Whether this is possible depends on several factors. First, the phenotype of interest needs to be approximable using
the features that WebGWAS includes. In building WebGWAS, we attempted to include as many features as possible,
to maximize this flexibility for users. However, the space of real human phenotypes is vast, and there are undoubtedly
many phenotypes which cannot be approximated well using the features WebGWAS includes. Second, the statistical
relationships between the phenotype of interest and the features need to be similar between datasets. For example, even
if a user can approximate questionnaire responses using ICD-10 codes and measurements in EHR data from a hospital,
this can only translate to good performance in WebGWAS if the correlations among features and the questionnaire are
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Figure S2: Two outlier phenotypes had moderate phenotype fit quality but exceptional GWAS fidelity, as shown in
Figure 3. Upon investigation, the reason for this exceptional GWAS fidelity is that they are outliers in terms of GWAS
chi-squared statistics, which leads to inflated variance of chi-squared statistics and inflated Pearson correlation.

similar in the UK Biobank cohort as in the EHR cohort. This is a fundamental limitation of a cross-dataset approach,
and it cannot easily be evaluated statistically without individual-level data from both cohorts.

In a simple evaluation, we found that Phecode approximations translate very well between a large EHR cohort and the
UK Biobank (Figure S1). As features, we used ICD-10 code diagnosis data from Cedars-Sinai Medical Center. We
gathered data for 491,822 patients at Cedars-Sinai, and took all 266 ICD-10 codes that had at least 1000 cases in both
the UK Biobank and Cedars-Sinai datasets. We then constructed all non-trivial Phecodes that could be constructed
with these ICD-10 codes (N=52). In both datasets, we ran linear regressions to approximate the Phecodes using the
ICD-10 codes. Finally, we evaluated both regressions in the UK Biobank to obtain three definitions for each Phecode:
one exact, one using a UK Biobank linear approximation, and one using a Cedars-Sinai linear approximation.

6.2 Investigation of outlier performance

In Figure 3, we noticed that two Phecodes showed GWAS fidelity far above their phenotype fit quality. These two
Phecodes were 250.1 (Type 1 diabetes) and 557 (Intestinal malabsorption (non-celiac)). We investigated and found
that both were among the lowest prevalence Phecodes in this analysis. Upon further investigation, we discovered that
these two phenotypes were outliers in terms of their GWAS summary statistics (Figure S2). Both had a very small
number of extreme associations, far beyond the distribution of effects observed for other phenotypes. These outlier
variants were also well-approximated with our indirect approach (Figure 2), and they therefore inflated the GWAS
fidelity by massively increasing the variance of the chi-squared statistics. Overall, this is an artifact that appears
because we used a limited number of genetic variants for this analysis. Our target outcome variable was GWAS
fidelity, not genome-wide statistical significance, so we reduced the number of variants that we considered in order to
improve computation times. These outliers are in the direction of better fit, not worse, so we believe that they represent
a limitation with our evaluation metric (GWAS fidelity) rather than an issue with the method.
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