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Abstract—Skin lesion prediction using artificial intelligence
(AI) models is highly dependent on skin tone, yet current
approaches largely overlook this critical factor. The Fitzpatrick
17k dataset, which contains six skin tone categories: lighter to
darker, is severely imbalanced, with most models biased toward
lighter skin tones. Previous efforts to improve overall accuracy
fall short: overall accuracy fails to reflect true performance
across imbalances. This creates a significant gap, as effective
skin lesion detection must work across all skin tones, not just a
few. To address this, we introduce the Cost-Aware EfficientNet
(CAEN) model, combining cost-sensitive learning (CSL) and
attention mechanisms to tackle imbalanced data and ensure
the model generalizes well across all skin tones with detailed
interpretability. Rather than simply improving accuracy, our
model enhances class-specific performance, achieving 79% recall
for non-neoplastic, 88% for benign, and 80% for malignant
lesions. This indicates an overall improvement in darker tones of
approximately 44.86% compared to state-of-the-art results from
prior studies. Furthermore, it remains robust across augmented
test conditions, such as changes in brightness, contrast, blur, and
zoom, providing balanced outcomes for diverse skin tones. This
novel approach offers a significant leap toward fair and reliable
skin lesion prediction for all skin tones with interpretability.

Index Terms—Skin Disease, Fitzpatrick 17k, Imbalance, Cost-
Sensitive Learning, Attention Mechanisms.

I. INTRODUCTION

Skin lesions affect individuals across all skin tones, but
diagnosing them can be difficult due to variations in pig-
mentation [1]. The Fitzpatrick 17k [2] dataset provides a
valuable resource for classifying skin diseases using artificial
intelligence (AI) [3]–[5] approaches, as it covers a diverse
range of skin tones [6]–[9]. However, a major challenge in
applying AI to this dataset is the imbalance among different
skin tone classes [10]. Ensuring accurate diagnosis for all skin
tones is critical, as biased AI models can lead to incorrect
diagnoses, especially for underrepresented skin tones [1], [9],
[10].

Previous studies using the Fitzpatrick 17k dataset have
applied AI models for skin lesion classification, often us-
ing accuracy as the main performance measure [1], [6]–
[9]. However, this metric can hide how much better these
models perform on majority classes (more common skin
tones) compared to minority classes (less represented skin
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tones), leading to biased results [11]–[13]. While augmentation
techniques were applied, they focused on improving overall
accuracy and did not clearly show whether the models were
effective at identifying minority skin disease classes across
different skin tones [1], [6]–[9]. Prior studies [7]–[10] did
not explore how models trained on one skin tone performed
against others, missing a clearer analysis of bias. Additionally,
these studies [7]–[10] showed significantly lower performance
on darker tones compared to lighter ones. It raises questions
about the generalizability of these models across different
skin tones, highlighting a potential gap in understanding
their applicability and effectiveness across diverse populations.
Furthermore, these studies [1], [6]–[10] did not address the
impact of image quality during testing, such as variations in
brightness, contrast, blur, and zoom, which could affect model
performance.

The need for accurate diagnosis across all skin tones makes
it essential to address the limitations of prior approaches
[1], [6]–[10]. The reliance on overall performance metrics
does not offer a reliable measure of fairness in class-wise
predictions, especially when dealing with imbalanced datasets
like Fitzpatrick 17k [12], [13]. These studies also fail to
demonstrate the model’s generalizability and robustness across
different skin tones, as indicated by their poor performance on
darker skin tones [7]–[10]. Therefore, it is essential to explore
how imbalances can be more carefully addressed, improve
fairness, and ensure more equitable predictions across all skin
tones.

This research addresses and improves upon key questions, as
outlined below.

1) Are AI algorithms biased when detecting skin lesions
across different skin tones?

2) Can we rely on accuracy metrics when the dataset is
imbalanced, like in the Fitzpatrick 17k skin tone dataset,
despite prior research [1], [6]–[9] efforts to improve
accuracy for each skin tone?

3) Can a model trained on lighter skin tones accurately
predict skin lesions on darker skin tones and vice versa?

This research addresses the class imbalance in the Fitz-
patrick 17k [2] dataset by exploring various modeling ap-
proaches combined with augmentation techniques. The pri-
mary contribution is the evaluation of class-wise performance
and its improvement instead of just overall metrics, alongside
the introduction of a novel Cost-Aware EfficientNet (CAEN)
model to effectively handle class imbalance. CAEN, based on
EfficientNet architecture, incorporates dynamic cost-sensitive
learning (CSL) [14] and attention mechanism [15], fine-tuned
to predict skin lesions, including i. non-neoplastic, ii. benign,
and iii. malignant, across six skin tones from light to dark.
The study discusses the issue of generalizability and robust-
ness by training the proposed model on lighter skin tones
and testing it on darker tones, and vice versa. It also ensures
generalizability and robust, reliable performance across all
skin tones through the proposed model. Additionally, we have
tested our proposed model across different augmented samples

from the test set, varying brightness, contrast, blur, and zoom,
highlighting the importance of fairness in AI models to ensure
accurate predictions for all skin tones. Our study also includes
detailed interpretability [3], [11], [16] of its predictions across
different skin tones, ensuring transparency in how the model
makes decisions for diverse populations.

The findings of this research have significant implications
for dermatology by enhancing class-wise accuracy in skin
lesion classification across diverse skin tones. This work
promotes more equitable diagnostic methods and serves as
a valuable reference for future researchers aiming to select
strategies that mitigate bias in predictions [1] across different
skin tones.

A. Related Works and Their Limitations

Previous studies [17], [18] on skin disease prediction have
often overlooked how well models perform across different
skin tones. Although datasets like Fitzpatrick 17k aim to
address skin tone representation, prior studies [1], [6]–[10]
have not effectively demonstrated how model improvements
vary by skin tone. Many studies [1], [6]–[9] rely on overall
accuracy metrics, which can be misleading, reflecting high
performance on majority classes while neglecting minority
groups [12], [13].

In contrast, our study introduces a new CAEN modeling
technique that shows clear class-wise recall improvements
in skin disease prediction for all skin tones. For instance,
state-of-the-art recalls from prior research [10] for benign and
malignant classes across light skin tones improved from 0.52
and 0.73 to 0.86 and 0.75. For moderate skin tones, these
classes improved from 0.60 and 0.65 to 0.88 and 0.84, and
for dark skin tones, from 0.55 and 0.45 to 0.88 and 0.86.
These studies [7]–[10] consistently showed lower performance
for minority classes, such as benign and malignant, on darker
tones. However, we have significantly improved performance
on darker tones for these minority classes. Further, we validate
the generalizability and robustness of our model by testing it
on a diverse set of augmented samples with varying image
qualities, ensuring balanced performance, which has been
lacking in previous research.

II. MATERIALS AND METHODS

We utilized the Fitzpatrick 17k [2] dataset, which includes
six different skin tones, ranging from lighter to darker, to
predict skin lesions using AI approaches as detailed in Fig
1. To address biases caused by class imbalances and limited
samples from specific skin tones, we fine-tuned a novel
CAEN modeling technique. We compared our proposed model
with several existing techniques, analyzing class-wise recall
performance to identify improvements. We also examined
how performance varies by training the proposed model on
lighter skin tones and testing it on darker skin tones, as well
as the reverse scenario. Additionally, we tested the model’s
performance under varying conditions, such as changes in
brightness, contrast, blur, and zoom in the samples from the
test set. Lastly, this study also comprehensively interprets
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its predictions across various skin tones. This comprehensive
evaluation allowed us to assess the robustness and reliability
of our model across different skin tones and image quality
variations.

A. Data Description

The Fitzpatrick 17k [2] dataset comprises a diverse col-
lection of skin disease images categorized by six distinct skin
tones: Type I (very fair), Type II (fair), Type III (medium),
Type IV (olive), Type V (brown), and Type VI (dark). In our
study, we utilized a total of 16,012 images from this dataset to
predict skin lesions, specifically focusing on three categories:
(i) non-neoplastic, (ii) benign, and (iii) malignant lesions.
However, it is important to note that the images for different
skin lesions are heavily imbalanced, with very limited samples
available for certain skin tones represented in Table I, posing
challenges for accurate model training and evaluation.

TABLE I
DISTRIBUTION OF SKIN LESIONS ACROSS DIFFERENT FITZPATRICK

SCALES (SKIN TONES). THE DATA DISTRIBUTION OF BENIGN AND
MALIGNANT CASES APPEARS TO BE HIGHLY IMBALANCED COMPARED TO
NON-NEOPLASTIC CASES, AND THERE ARE ALSO SIGNIFICANTLY FEWER

IMAGES REPRESENTING DARK SHADES.

Fitzpatrick Scale Non- Benign Malignant
(Skin Tone) Neoplastic

Type I (very fair) 2050 444 453
Type II (fair) 3395 671 742
Type III (medium) 2377 475 456
Type IV (olive) 2113 367 301
Type V (brown) 1227 159 147
Type VI (dark) 530 44 61

B. Train/Test Formulation

The dataset is divided into a training set and a testing set
in an 80:20 split ratio. To ensure balanced training and im-
prove model performance, we implemented data augmentation
strategies tailored to each skin tone. Specifically, we conducted
augmentation separately for each skin tone to balance the
benign and malignant lesion classes against the non-neoplastic
class. This process involved applying various transformations,
including rotation, brightness adjustment, contrast enhance-
ment, zooming, and blurring, to create a more diverse set of
training images. To effectively address the class imbalances
within our dataset, we significantly increased the number of
benign samples by a factor of 5.55, aligning it more closely
with the non-neoplastic class. Similarly, we augmented the
malignant samples by a factor of 4.86 to achieve a comparable
balance represented in Table II. These augmentation ratios
were determined through iterative testing of various sampling
strategies within our predictive model, allowing us to optimize
the balance for each class and improve the overall robustness
of our model.

C. Proposed Cost-Aware EfficientNet

The proposed CAEN model represented in Equation 1
builds upon the EfficientNet architecture, integrating CSL [14]
and an attention mechanism [15] to tackle class imbalance and

TABLE II
COMPARISON OF NON-NEOPLASTIC, BENIGN, AND MALIGNANT

COUNTS PRE- AND POST-AUGMENTATION IN TRAIN SET. THE
AUGMENTATION PROCESS INVOLVED APPLYING SEVERAL

TRANSFORMATIONS TO THE IMAGES, SUCH AS VARYING ROTATION,
ADJUSTING BRIGHTNESS, ENHANCING CONTRAST, ZOOMING, AND

ADDING BLUR.

Fitzpatrick Non- Benign Malignant
Scale (Skin Tone) Neoplastic (Pre → Post) (Pre → Post)
Type I (very fair) 1654 347 → 1884 365 → 927

Type II (fair) 2729 535 → 3108 589 → 2905
Type III (medium) 1901 377 → 2049 366 → 1391

Type IV (olive) 1692 295 → 1604 237 → 1264
Type V (brown) 973 137 → 744 120 → 636
Type VI (dark) 409 35 → 194 48 → 252

improve model performance. CSL [14] assigns higher weights
to underrepresented classes, such as benign and malignant
cases, ensuring the model focuses more on accurately detecting
these categories that are often overlooked in imbalanced
datasets. The attention mechanism [15] allows the model
to focus dynamically on the most important areas within
an image, improving its ability to capture subtle differences
between classes. These improvements make CAEN better at
mitigating bias, as it directly addresses the imbalance issue
that standard EfficientNet [19] struggles with. Furthermore,
CAEN is more effective at developing a model that generalizes
well across different skin tones, as the attention mechanism
enables the model to focus on key visual patterns rather than
being biased toward skin tone variations, which can be limited
in certain datasets. This ability to extract relevant features
across diverse cases allows CAEN to perform robustly in a
wider range of real-world scenarios compared to the standard
EfficientNet [19], which tends to struggle with such diversity
due to its reliance on the limited sample present for particular
scenarios.

CAEN(x) = σ (w · Att(f(x)) + b) · CSL(y) (1)

The description of the Equation 1: Where: x represents the
input image, while f(x) denotes feature extraction from the
EfficientNet base model. The variable w signifies the weights
of the dense layer, and b indicates the bias term. The function
σ represents the softmax activation function, which is applied
to the output of the attention mechanism, Att(f(x)), that
highlights relevant features in the extracted data. Additionally,
y represents the true labels, and CSL(y) denotes the cost-
sensitive function that adjusts the loss based on class weights,
enhancing the model’s ability to address class imbalances
effectively.

III. RESULTS AND ANALYSES

First, the proposed CAEN model was trained on images
of various skin tones together and compared with existing
models. Next, it was trained and tested separately for each
skin type, and the model with the best accuracy was compared
to the CAEN model. Finally, the proposed model was trained
on light skin tones and tested on dark tones, and vice versa to
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Fig. 1. Complete workflow of improved skin lesion prediction across heavy skin tone imbalances. This includes optimized data augmentation, a cost-aware
model for imbalance correction, and detailed explainability.

examine how model performance varies. Results are computed
ten times each by changing the model hyper-parameters and
conventional probability threshold [20], and the standard devi-
ation (SD) [21] for each is calculated to demonstrate variance
in results. Finally, our study also offers an in-depth explanation
of its predictions for different skin tones.

A. Experimental Results

TABLE III
CLASS-WISE RECALL AND ACCURACY COMPARISON OF THE

PROPOSED MODEL WITH EXISTING APPROACHES. THE MODEL IS
TRAINED USING DATA FROM ALL SKIN TONES TOGETHER. THE TEST SETS

ARE DIVIDED INTO LIGHT (I-II), MODERATE (III-IV), AND DARK (V-VI)
SKIN TONES, WITH CLASS-WISE RECALL AND ACCURACY PRESENTED FOR

EACH AND OVERALL IN THE LAST SECTION. AUGMENTED INDICATES
THAT THE MODEL WAS TESTED ON AN AUGMENTED VERSION OF THE TEST

SET, WHICH VARIED BRIGHTNESS, CONTRAST, BLUR, AND ZOOM.

Fitzpatrick Non- Benign Malignant Accuracy
Scale (Skin Tone) Neoplastic (%)

Inception ResNet V2 0.01 ± 0.9 0.01 ± 0.6 0.92 ± 0.4 17.28 ± 0.8
CLIP 0.14 ± 0.8 0.41 ± 0.7 0.07 ± 0.4 19.54 ± 0.9

NASNetLarge 0.74 ± 0.6 0.20 ± 0.7 0.36 ± 0.8 58.26 ± 0.7
Inception V3 0.69 ± 0.5 0.27 ± 0.8 0.38 ± 0.9 55.96 ± 0.8

Xception 0.69 ± 0.7 0.35 ± 0.5 0.37 ± 0.9 58.81 ± 0.7
MobileNet V2 0.57 ± 0.8 0.37 ± 0.7 0.53 ± 0.6 64.20 ± 0.9

ResNet 50 0.88 ± 0.5 0.41 ± 0.6 0.70 ± 0.4 80.64 ± 0.6
VGG 19 0.83 ± 0.6 0.50 ± 0.7 0.62 ± 0.8 76.02 ± 0.7

EfficientNet B0 0.84 ± 0.4 0.50 ± 0.9 0.70 ± 0.7 78.35 ± 0.8
CAEN (Augmented) 0.75 ± 0.3 0.82 ± 0.2 0.75 ± 0.3 75.25 ± 0.3

CAEN (Light) 0.75 ± 0.3 0.86 ± 0.1 0.75 ± 0.2 76.43 ± 0.3
CAEN (Moderate) 0.85 ± 0.2 0.88 ± 0.4 0.84 ± 0.3 84.53 ± 0.2

CAEN (Dark) 0.74 ± 0.4 0.88 ± 0.2 0.86 ± 0.1 84.98 ± 0.2
CAEN (Overall) 0.79 ± 0.4 0.88 ± 0.3 0.80 ± 0.4 80.67 ± 0.3

The Table III compares different models for skin lesion
classification across three classes: non-neoplastic, benign, and
malignant, with accuracy shown for each. Some models, like
VGG 19, EfficientNet B0, and ResNet 50, achieved higher
overall accuracy than the proposed CAEN model, but their
class-wise performance, especially for the minority classes
(benign and malignant), was significantly lower. The CAEN
model, however, showed balanced and improved performance
across all classes. It performed particularly well on dark skin
tones, which had fewer samples, while also maintaining good
accuracy on light skin tones. Even when tested on augmented
data with varying image quality, CAEN continued to perform
well, especially on darker tones, while balancing performance
for lighter tones.

Previous studies [7]–[10] have conducted methods to im-
prove accuracy for each skin tone outcome. Hence, in this
comparison in Table IV, models were trained separately for
each skin type, and the model with the highest overall accuracy
is compared with CAEN. While ResNet 50 achieved higher
overall accuracy, its performance for minority classes like
benign and malignant was significantly lower. In contrast,
CAEN maintained a balanced performance across all classes,
indicating that focusing solely on accuracy in imbalanced data
can be misleading, and class-wise performance provides a
more reliable evaluation.

Previous studies [7]–[10] failed to investigate how models
trained on one skin tone performed when applied to others,
overlooking a more thorough analysis of potential skin tone
bias. In Table V, we evaluated the CAEN model by training it
on one skin tone and testing it on others to see how generaliza-
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TABLE IV
CLASS-WISE RECALL PERFORMANCE COMPARISON OF MODELS TRAINED SEPARATELY BY SKIN TONE. MODELS WERE TRAINED ON DATASETS

DIVIDED BY SKIN TONES. THE PROPOSED MODEL IS COMPARED WITH THE ONE ACHIEVING THE HIGHEST ACCURACY TO HIGHLIGHT THE
UNRELIABILITY OF ACCURACY METRICS ACROSS IMBALANCED DATA.

Fitzpatrick
ResNet 50 CAEN

Scale Non- Benign Malignant Accuracy Non- Benign Malignant Accuracy

Neoplastic (%) Neoplastic (%)

Type 1 0.94 ± 0.7 0.14 ± 0.8 0.57 ± 0.9 76.27 ± 0.6 0.68 ± 0.3 0.66 ± 0.2 0.73 ± 0.4 68.50 ± 0.3

Type 2 0.94 ± 0.5 0.21 ± 0.6 0.58 ± 0.8 78.12 ± 0.7 0.68 ± 0.2 0.57 ± 0.1 0.75 ± 0.4 67.85 ± 0.3

Type 3 0.92 ± 0.8 0.30 ± 0.9 0.52 ± 0.7 77.34 ± 0.4 0.66 ± 0.2 0.70 ± 0.3 0.74 ± 0.4 67.92 ± 0.2

Type 4 0.97 ± 0.9 0.33 ± 0.7 0.33 ± 0.5 82.01 ± 0.8 0.75 ± 0.3 0.78 ± 0.4 0.70 ± 0.2 75.04 ± 0.4

Type 5 0.99 ± 0.4 0.25 ± 0.6 0.07 ± 0.8 83.01 ± 0.9 0.80 ± 0.2 0.68 ± 0.3 0.74 ± 0.4 78.55 ± 0.3

Type 6 1.00 ± 0.8 0.00 ± 0.4 0.33 ± 0.9 87.30 ± 0.5 0.78 ± 0.4 0.78 ± 0.3 0.69 ± 0.1 76.92 ± 0.2

TABLE V
COMPARISON OF RECALL GENERALIZABILITY WHEN TRAINED ON

LIGHTER TONES AND TESTED ON DARKER TONES, AND VICE VERSA.
THE SKIN TONE ON WHICH THE MODEL IS TRAINED IS MARKED IN BOLD,
WHILE PERFORMANCE IS ALSO TESTED ON THE OTHER TWO SKIN TONES.

LIGHTER TONES INCLUDE FITZPATRICK TYPES I-II, MODERATE TONES
INCLUDE TYPES III-IV, AND DARKER TONES INCLUDE TYPES V-VI.

Skin Tone Non-Neoplastic Benign Malignant Accuracy

Lighter 0.72 ± 0.4 0.49 ± 0.3 0.70 ± 0.4 68.29% ± 0.3

Moderate 0.71 ± 0.4 0.52 ± 0.3 0.60 ± 0.2 66.67% ± 0.2

Darker 0.74 ± 0.4 0.35 ± 0.4 0.53 ± 0.2 69.73% ± 0.3

Moderate 0.73 ± 0.3 0.61 ± 0.4 0.58 ± 0.4 72.48% ± 0.3

Lighter 0.66 ± 0.4 0.49 ± 0.2 0.63 ± 0.3 65.62% ± 0.3

Darker 0.79 ± 0.4 0.53 ± 0.3 0.53 ± 0.3 78.92% ± 0.4

Darker 0.82 ± 0.4 0.45 ± 0.3 0.62 ± 0.4 79.82% ± 0.3

Lighter 0.61 ± 0.4 0.41 ± 0.3 0.49 ± 0.4 58.92% ± 0.2

Moderate 0.70 ± 0.4 0.32 ± 0.3 0.49 ± 0.2 65.36% ± 0.3

tion varies across different skin tones. From our results, when
the model was trained on lighter tones, it performed better
on darker tones for non-neoplastic cases, but its performance
for benign and malignant cases was lower compared to when
it was trained on moderate tones. For models trained on
moderate tones, the results varied: they performed better on
non-neoplastic cases for darker tones than for lighter tones, but
both darker and lighter tones showed lower performance for
benign cases. When the model was trained on darker tones, its
performance on lighter and moderate tones dropped, especially
for non-neoplastic cases on lighter tones and benign cases on
moderate tones, which were significantly low.

B. Explainability

Gradient-Weighted Class Activation Mapping (Grad-CAM)
[22] in the Fig 1 highlights affected areas in skin lesions,
distinguishing non-neoplastic, benign, and malignant types.
While green is prominent, indicating significant regions, or-
ange and yellow mark the most critical areas. Blue and
pink/magenta shades primarily indicate less significant regions
but still contribute to the lesion assessment. The color intensity
reflects how the model identifies skin tone across the Fitz-

patrick scale, as seen from the consistent focus on lesion areas
across diverse skin tones (Type 1 to Type 6), capturing lesions
accurately despite varying pigmentation.

C. Discussion

In this research, we aimed to address key questions re-
garding the performance of AI algorithms in detecting skin
lesions across various skin tones. The following summarizes
our findings based on the results presented in Table III,
Table IV, and Table V, offering insights into the addressed
questions.

Question 1: In our research, we first explored whether AI
models are biased when detecting skin lesions on different skin
tones. The results in Table IV highlight that models trained
separately for each skin tone, like ResNet 50, achieved higher
overall accuracy but performed poorly on minority classes,
particularly for darker skin tones. This indicates a significant
bias, as the model tended to favor lighter tones, confirming
that AI models can indeed be biased based on skin tone.
Additionally, Table V illustrates that the performance of the
CAEN model varied significantly depending on the skin tone
it was trained on. This variation suggests that models can
be biased and can not be generalized well across different
skin tones, as their effectiveness fluctuates depending on the
training set.

Question 2: We questioned the reliability of accuracy met-
rics in imbalanced datasets, like the Fitzpatrick 17k skin tone
dataset. From our comparisons in Table IV, it became evident
that focusing solely on overall accuracy can be misleading.
Although ResNet 50 in Table IV had a higher accuracy, its
performance on benign and malignant cases was significantly
lower, highlighting the limitations of using accuracy metrics
alone. This aligns with findings in prior studies [7]–[10] that
often fail to adequately address class imbalances, leading to
potentially biased conclusions about model effectiveness.

Question 3: Finally, we examined whether a model trained
on one skin tone can accurately predict lesions on others.
Previous studies [7]–[10] failed to assess model performance
when trained on one skin tone and tested on another, missing
a critical opportunity to comprehensively evaluate skin tone
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bias. Additionally, their improvements mainly benefited light
skin tones, failing to generalize across other tones [7]–[10].
This emphasizes the need for a model that delivers consistent
performance across all skin tones, as confirmed by the results
in Table V, which show the presence of skin tone bias. Our
study advocates for the CAEN model, as outlined in Table
III, which trains on all skin tones simultaneously. By utilizing
CSL and an attention mechanism, the CAEN model effectively
generalizes its performance across diverse skin tones, ensuring
better reliability and reducing bias.

IV. LIMITATIONS

The Fatzpartc 17k [2] dataset has very few images of
malignant lesions, especially for dark skin tones, making it
hard to train a model to accurately classify these lesions on
darker skin. Besides, the area of skin disease is often under-
represented, with many images showing only small portions
of the affected skin, making it difficult to distinguish between
categories, which could be improved by reshaping the images
under the guidance of a skin disease professional for better
visibility and prediction. Additionally, besides the images,
important clinical information, such as patient history and
other findings, is essential for accurate diagnosis but is not
provided in the dataset.

V. CONCLUSION

In this research, we addressed the bias of AI algorithms
in detecting skin lesions across diverse skin tones. Previous
research [1], [6]–[10] has mainly focused on increasing the
overall accuracy of skin lesion detection across various skin
tones. However, our experimentation, as shown in Table IV,
indicates that AI models often perform better on lighter skin
tones, leading to lower accuracy for darker skin tones, even
when the overall accuracy appears high. Therefore, improving
overall accuracy can not be a reliable strategy for imbalanced
datasets like Fitzpatrick 17k. Previous studies [7]–[10] did not
examine how models trained on one skin tone performed on
others, missing a comprehensive analysis of potential skin tone
bias. Furthermore, the enhancements they achieved primarily
favored light skin tones and did not generalize well to other
tones [7]–[10]. This underscores the necessity for a model
that provides consistent performance across all skin tones,
as evidenced by the results in Table V, which indicate the
existence of skin tone bias.

Our findings highlight the unreliability of overall accuracy
metrics in imbalanced datasets represented in Table IV and
advocate for the CAEN model, which effectively generalizes
class-wise recall performance across all skin tones by employ-
ing dynamic CSL [14] and attention mechanism [15]. Class-
wise performance metrics were used to effectively indicate
improvements, rather than focusing solely on overall accuracy.
Even when tested on augmented data with varying image
quality—such as differences in brightness, contrast, blur, and
zoom—CAEN continued to perform well, especially on darker
tones, while balancing performance for lighter tones, demon-
strating its reliability across diverse conditions. Our study

further presents an extensive analysis of its predictions across
various skin tones, promoting transparency in the model’s
decision-making for diverse populations. These improvements
not only enhance class-wise accuracy in skin lesion clas-
sification but also promote equitable diagnostic methods in
dermatology, ensuring that all patients receive accurate and
fair assessments, regardless of their skin tone.
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