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Abstract 
 

Background: Patient identification for national registries often relies upon clinician recognition of 

cases or retrospective searches using potentially inaccurate clinical codes, potentially leading to  

incomplete data capture and inefficiencies. Natural Language Processing (NLP) offers a promising 

solution by automating analysis of electronic health records (EHRs). This study aimed to develop 

NLP models for identifying and classifying abdominal aortic aneurysm (AAA) repairs from 

unstructured EHRs, demonstrating proof-of-concept for automated patient identification in registries 

like the National Vascular Registry. 

Method: Using the MIMIC-IV-Note dataset, a multi-tiered approach was developed to identify 

vascular patients (Task 1), AAA repairs (Task 2), and classify repairs as primary or revision (Task 3). 

Four NLP models were trained and evaluated using 4,870 annotated records: scispaCy, BERT-base, 

Bio-clinicalBERT, and a scispaCy/Bio-clinicalBERT ensemble. Models were compared using 

accuracy, precision, recall, F1-score, and area under the receiver operating characteristic curve. 

Results: The scispaCy model demonstrated the fastest training (2 mins/epoch) and inference times 

(2.87 samples/sec). For Task 1, scispaCy and ensemble models achieved the highest accuracy (0.97). 

In Task 2, all models performed exceptionally well, with ensemble, scispaCy, and Bio-clinicalBERT 

models achieving 0.99 accuracy and 1.00 AUC. For Task 3, Bio-clinicalBERT and the ensemble 

model achieved an AUC of 1.00, with Bio-clinicalBERT displaying the best overall accuracy (0.98). 

Conclusion: This study demonstrates that NLP models can accurately identify and classify AAA 

repair cases from unstructured EHRs, suggesting significant potential for automating patient 

identification in vascular surgery and other medical registries, reducing administrative burden and 

improving data capture for audit and research. 
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Introduction 

The integration of Natural Language Processing (NLP) in vascular surgery has gained increasing 

interest, due to its ability to help analyse data from electronic health records (EHRs), provide 

feedback on current practice and develop support systems to optimise care [1]. NLP techniques have 

evolved significantly over the years. Initially, text classification tasks relied on rule-based approaches, 

which, despite being somewhat effective, faced limitations in managing the complexity and variability 

of natural language, particularly in the biomedical field [2]. These techniques have since evolved from 

simple heuristic-based models to sophisticated neural network-based architectures [3]. The integration 

of word embeddings, contextualised embeddings, and transfer learning has significantly enhanced the 

capability of models to understand and classify text accurately [3]. 

 

The application of domain-specific NLP models, such as scispaCy, has further improved the accuracy 

and relevance of text classification in specialised fields like biomedical research and clinical practice 

[4]. ScispaCy, a specialised extension of the spaCy NLP library, is tailored for scientific and clinical 

text, making it highly effective for tasks that require an understanding of domain-specific terminology 

and contexts [4,5]. 

 

A major breakthrough in NLP came with the development of transformer-based models, leading to 

the rapid rise of large language models (LLMs) [6]. Among these, Generative Pre-trained 

Transformer (GPT) models, such as ChatGPT, have gained widespread recognition for their 

autoregressive capabilities [7]. In contrast, Bidirectional Encoder Representations from Transformers 

(BERT) models, developed by Google, can understand the context of words in both directions, 

offering a different and often superior approach for NLP tasks [8]. These foundational models require 

extensive pre-training on large text corpora and subsequent fine-tuning on specific tasks using 

labelled datasets to achieve high performance in domains like text classification, named entity 

recognition, and span categorisation. Domain-specific adaptations, such as Bio-clinicalBERT for 

medical texts, further enhance their utility in specialised fields by using transfer learning to improve 

their applicability and accuracy in various biomedical NLP tasks [9–12]. 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.12.11.24318852doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.11.24318852
http://creativecommons.org/licenses/by-nc/4.0/


 

Currently, the UK-based National Vascular Registry (NVR) gathers national data on primary AAA 

repairs, revision AAA repairs, lower limb bypass, lower limb angioplasty, major limb amputation, and 

carotid endarterectomy. The registry relies on the manual entry of patient data, which is not only time-

consuming but also necessitates manual tracking for follow-up data such as outcomes at 30 days post-

procedure. The adoption of NLP technologies could significantly reduce this burden by automating 

data extraction and analysis processes [1,13]. 

 

In vascular surgery, NLP applications have demonstrated significant potential. One such use has been 

the identification of AAA diagnoses from radiology reports streamlining the process for surveillance 

or referral initiation [14,15]. AAA features such as maximal diameter within the reports have also 

been extracted to guide the next management steps [16]. NLP has also shown the potential to be used 

as a decision support system for predicting aortic dissection, highlighting emergency department 

doctors for appropriate investigation and management with a reported AUC of 0.90 [17]. Beyond 

aortas, studies have demonstrated the use of NLP to more accurately identify patients with peripheral 

artery disease (PAD) from EHRs and radiology reports [18,19]. Further models have been developed 

to identify complications such as chronic limb threatening ischaemia [20]. For carotid stenosis, NLP 

has been used to categorise stenosis severity from imaging reports, achieving a positive predictive 

value of 99% for ultrasound and 96.5% for CTA and MRA [21]. However, there is no published 

literature of NLP models trained to idenitify patients who have undergone AAA repairs nor whether 

they have undergone a primary or revision repair. The differentiation between primary and revision 

AAA repairs is of clinical importance due to there being two separate forms for NVR data collection 

of those undergoing primary or revision AAA repairs. 

 

This paper outlines a framework for the development and comparison of four NLP models: a  fine-

tuned BERT-base LLM, a fine-tuned biomedical domain specific BERT LLM (Bio-clinicalBERT), a 

biomedical SpaCY based model (scispaCy) and a Bio-clinicalBERT/scispaCy ensemble model to 
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identify and classify abdominal aortic aneurysm (AAA) repair cases from unstructured free-text EHRs 

into categories of primary repair and revision repair. 

 

Methods 

Data Collection and Preparation 

The publicly available MIMIC-IV-Note dataset was used, comprising of 331,794 deidentified 

discharge summaries from 146,815 patients admitted to the Beth Israel Deaconess Medical Center in 

Boston, MA, USA between 2008 and 2022 [22]. The data was unstructured, free text clinical notes 

containing discharge summaries detailing admission clerking, observations, hospital course, pertinent 

radiology reports, blood test results, and relevant discharge instructions. All records were stripped of 

protected health information in compliance with the Health Insurance Portability and Accountability 

Act (HIPAA) Safe Harbor provision. 

 

To simulate a real-life clinical utility whilst maintaining data privacy, the dataset was pseudo-

anonymised using the Python Faker library. Identifiable information placeholders, such as names, unit 

numbers, dates of birth, admission and discharge dates, and attending physician names, were replaced 

with realistic fake data. Anonymised names and dates in the clinical narrative were not synthetically 

generated and a deidentification placeholder remained in place. 

 

Multi-Tiered Classification Approach 

The classification model used a structured multi-tiered approach using three classification tasks to 

achieve the aim of classifying AAA repairs. Task 1 was trained to identify vascular surgery related 

admissions. The model was then used to extract vascular-related admissions from the dataset using a 

probability threshold of 0.2 to maximise recall. This subset dataset was further annotated and then 

used to identify AAA repair cases (Task 2)  which was then used to extract AAA repair records from 

the vascular dataset using a threshold of 0.5. A further model (Task 3) was trained to classify these 

AAA cases into primary and revision repairs. Task 3 also included a ‘Non-AAA’ classification to be 
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able to appropriately categorise cases that had been misidentified in previous steps. In this paper the 

scispaCy model was used to extract the data for each task as demonstrated in Figure 1. 

 

1. Task 1 and Task 2: Models were fine-tuned using annotated datasets with two labels: 

a. Task 1- Vascular or Non-Vascular 

b. Task 2 - AAA repair or Non-AAA repair 

2. Task 3: Model was fine-tuned using an annotated dataset with 3 labels. Non-AAA cases were 

included in this classification as previous models were not 100% accurate and Non-AAA cases 

had been included within the dataset. 

a. Task 3 - Primary AAA Repair or Revision AAA Repair or Non-AAA 

Annotation 

The data annotation process was conducted using Prodigy annotation software (Explosive AI, Berlin, 

Germany), by a Vascular Surgery Specialty Registrar. Terms related to vascular surgery and AAA 

repairs were used as ‘seeds’ for annotation, and an active learning approach was implemented 

utilising SciSpacy’s en_core_sci_md model. Seed terms can be found in appendix 1.  

 

For Task 1, EHRs were categorised as ‘Vascular’ if there was a pathology relevant to vascular surgery 

during their admission as per National Health Service (NHS) England Service Specifications for 

Vascular Services [23]. Diabetic foot infections requiring debridement +/- revascularisation were also 

included. Stable chronic vascular conditions not being actively treated during the admission were 

annotated as ‘Non-vascular’. For Task 2, EHRs were categorised as ‘AAA repair’ if there was a repair 

of a thoracic and/or abdominal aortic and/or iliac aneurysm during the admission. Isolated ascending 

aortic aneurysm repairs were excluded. For Task 3, EHRs were categorised as ‘Primary AAA repair’ 

if a repair occurred on a previously untreated segment of the thoracic and/or abdominal aorta. 

‘Revision AAA repair’ was defined as a further repair on a previously treated thoracic and/or 

abdominal aortic segment such as endoleak or aneurysmal disease at, or adjacent to, the anastomosis 

site. 
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A training curve function was utilised for each annotated dataset to determine the quality of the 

collected annotations, and whether more training examples would improve accuracy. Annotation was 

deemed sufficient if a training curve stopped showing improvement in the last 25% of the dataset. 

Annotated data was split into 80% for training and 20% for evaluation. 

 

SpaCy model training 

The ‘en_core_sci_md’ model from the open-source biomedical NLP library, scispaCy, using the 

spaCy Python framework, was used to develop an NLP pipeline [4,5]. The pipeline used ‘tok2vec’ 

tokenization and ‘textcat_multilabel’ components with other components frozen for training. The 

training process was configured with a dropout rate of 0.1, Adam optimizer with a learning rate of 

0.001, and L2 weight decay. Training was performed for a maximum of 20 epochs using an Apple 

Macbook M2 Pro (California, USA) 16-core Graphics Processing Unit (GPU). 

 

BERT model training 

Tokenization and Sliding Window Approach 

Given the varying lengths of medical records, a sliding window tokenization approach was used to 

overcome the 512 maximum token sequence length constraint of BERT models. To accommodate 

BERT’s special tokens [CLS] and [SEP], the actual token window was set to 510 tokens. The 

BertTokenizer from the Hugging Face Transformers library was used for tokenizing the input texts. A 

stride of 255 tokens was used to allow sufficient overlap between segments, preserving contextual 

information across the segmented texts. 

 

The segments were converted into model inputs, and probabilities for each segment were predicted 

using the BERT based models. Softmax function was applied to convert logits into probabilities, 

ensuring each class probability was normalised. Segment probabilities were then averaged across all 

segments of the record to obtain aggregated probabilities. A default threshold of 0.5 was applied to 

these aggregated probabilities to implement classification. 
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Model Architecture and Training 

A BERT-base-uncased and a biomedical domain-specific BERT model (Bio-clinicalBERT) were used 

[8,9]. The fine-tuning process was conducted using a Google Colabatory (California, USA) Tensor 

Processing Unit (TPU) runtime environment using TensorFlow’s TPU strategy. 

 

The models were compiled with the Adam optimizer. Sparse Categorical Crossentropy loss and 

accuracy were used as training evaluation metrics. Early stopping and learning rate reduction on 

plateau callbacks were implemented to prevent overfitting and dynamically adjust the learning rate. 

 

The training process used a maximum of 5 epochs, with a batch size of 16. A validation set was used 

to monitor performance and adjust training dynamically through callbacks which included early 

stopping if validation loss did not improve for 2 consecutive epochs to reduce the chance of 

overfitting. 

 

Ensemble model 

Predictions from both trained scispaCy and fine-tuned Bio-clinicalBERT models were integrated into 

a single pipeline. Predictions from the fine-tuned Bio-clinicalBERT model were obtained by 

averaging the softmax probabilities across all segmented texts. Predictions from the scispaCy model, 

configured with a multi-label text categorisation component ('textcat_multilabel'), were collected and 

processed. The aggregated probabilities from both models were then combined by averaging to form a 

combined prediction output. 

 

Evaluation Metrics 

All inference was performed using a single Nvidia L4 (California, USA) GPU. SciSpaCy, BERT 

models and ensemble model were evaluated using accuracy, precision, recall and F1-score 

calculations per class using a probability threshold of 0.5. ROC curves were calculated with AUC 

values to assess class discrimination based on predicted probabilities. 
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Results 

A total of 4870 admission records were annotated with 1952 records annotated as vascular or non-

vascular for Task 1, 1950 records annotated as AAA repair or non AAA repair for Task 2, and 968 

records annotated as primary AAA, revision AAA repair or non-AAA repair for Task 3. Model 

training and inference times for BERT and scispaCy models are summarised in Table 1. The average 

training time across the 3 models was 3.03 mins/epoch for BERT-base, 2.75 mins/epoch for Bio-

clinicalBERT and 2 mins/epoch for scispaCy. Inference time for scispaCy model was faster that 

BERT models with an average throughput of 2.87 samples/secs compared with 2.28 samples/secs for 

BERT-base and 2.32 samples/secs for Bio-clinicalBERT. 

Table 1: Comparison of training and inference metrics for BERT and scispaCy models for Task 1 (Vascular vs 
Non-Vascular classification), Task 2 (AAA vs Non-AAA classification) and Task 3 (Primary AAA repair vs 
Revision AAA repair vs Non-AAA classification). Bio-clinicalBERT and BERT-base fine-tuned using Google 
Colab Tensor Processing Unit v2. ScispaCy trained using Apple Macbook M2 Pro 16-core Graphics Processing 
Unit (GPU). All inference performed using an Nvidia Tesla L4 GPU. 

 
 Task 1 (n=1952) Task 2 (n=1950) Task 3 (n=968)  

BERT-
base 

Bio-
clinical 
BERT 

scispaCy Ensemble BERT-
base 

 

Bio-
clinical 
BERT 

 

scispaCy Ensemble BERT-
base 

Bio-
clinical 
BERT 

scispaCy Ensemble 

Annotated 
data for 
training   

1,561 1,561 1,561 1,561 1,560 1,560 1,560 1,560 774 774 774 774 

Annotated 
data for 
evaluation 

391 391 391 391 390 390 390 390 194 194 194 194 

Number of 
epochs for 
training 

4 3 20 - 4 4 20 - 3 3 20 - 

Fine-Tuning 
Time (mins 
per epoch) 

3.5 2.66 2 - 3.25 3.25 2 - 2.33 2.33 2 - 

Inference 
Time (Total, 
secs) 

186 199 153 347 181 163 133 296 75 74 62 136 

Inference 
Time 
(secs/sample) 

0.476 0.509 0.391 0.887 0.464 
 

0.418 0.341 0.759 0.387 0.381 0.320 0.701 

Throughput 
(samples/secs) 

2.10 1.96 2.56 1.13 2.15 2.39 2.93 1.32 2.59 2.62 3.13 1.43 

 

For Task 1, the scispaCy and ensemble models had the highest overall accuracy of 0.97 and BERT-

base had the lowest accuracy of 0.92 (Table 2). Bio-clinicalBERT demonstrated the worst recall for 

classification of vascular cases of all models with 0.70 compared to 0.79 for BERT-base and 0.89 for 
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scispaCy and ensemble models. ScispaCy had the best discriminative ability with an AUC of 0.99 and 

Bio-clinicalBERT and BERTbase had the worst discrimination with 0.95 (Figure 2). 

Table 2:Table showing classification report for Task 1 – classifying admissions for patient with acute vascular 
conditions with a threshold of 0.5 

 Vascular Non-Vascular 
Model Accuracy Precision 

(Vascular) 
Recall 

(Vascular) 
F1-Score 

(Vascular) 
Precision 

(Non-
Vascular) 

Recall (Non-
Vascular) 

F1-Score 
(Non-

Vascular) 
BERT-base 0.92 0.74 0.79 0.76 0.96 0.95 0.95 

Bio-clinicalBERT 0.94 0.88 0.70 0.78 0.95 0.98 0.96 
ScispaCy 0.97 0.92 0.89 0.90 0.98 0.98 0.98 
Ensemble 0.97 0.93 0.89 0.91 0.98 0.99 0.98 

 

For stage 2, all model performed very well across all metrics as shown in Table 3. The ensemble, 

scispaCy and Bio-clinicalBERT models showed the highest degree of accuracy of 0.99 with all 

models achieving an AUC of 1.00 (Figure 3). BERTbase had a slightly worse recall of 0.97 when 

compared with the other models for AAA classification (0.98 and 1.00). 

Table 3:Table showing classification report for stage 2 – classifying admissions for patients who undergone 
AAA repair during their admission with a threshold of 0.5 

 Non-AAA Primary AAA repair Revision AAA repair 
Model Accuracy Precision Recall F1-

Score 
Precision Recall  F1-

Score  
Precision  Recall  F1-

Score 
BERT-base 0.92 0.97 0.96 0.96 0.90 0.95 0.93 0.86 0.72 0.78 

Bio-
clinicalBERT 

0.98 1.00 0.96 0.98 0.97 0.99 0.98 0.96 1.00 0.98 

ScispaCy 0.93 0.99 0.93 0.96 0.93 0.93 0.93 0.79 0.92 0.85 
Ensemble 0.93 0.99 0.93 0.96 0.93 0.94 0.94 0.82 0.92 0.87 

 

For Task 3, Bio-clinicalBERT and ensemble models achieved an AUC of 1.00 (Figure 4) with Bio-

clinicalBERT displaying the best overall accuracy of 0.98 (Table 4). Bert-base had the lowest F1-

score across all classification tasks for Task 3 with Bio-ClincialBERT having the highest. 
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Table 4: Table showing classification report for Task 3 – classifying type of AAA repair undertaken during 
admission with a threshold of 0.5 

 
 AAA Non-AAA 

Model Accuracy Precision 
(AAA) 

Recall 
(AAA) 

F1-Score 
(AAA) 

Precision (Non-
AAA) 

Recall (Non-
AAA) 

F1-Score 
(Non-AAA) 

 BERT-base 0.98 0.99 0.97 0.98 0.98 0.99 0.99 
Bio-

clinicalBERT 
0.99 0.99 0.98 0.98 0.99 0.99 0.99 

ScispaCy 0.99 0.97 1.00 0.99 1.00 0.98 0.99 
Ensemble 0.99 0.97 1.00 0.99 1.00 0.98 0.99 

 

Across the three classification tasks in this paper Task 2 showed the most consistent highly accurate 

results across all models. The ensemble model consistently had the highest or joint highest f1-score 

across all classification tasks, apart from Task 3, demonstrating its robustness and reliability. BERT-

base was the worst performing model across all tasks with the lowest f1-scores. 
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Discussion 

This multi-tiered NLP approach demonstrates a proof of concept for tackling classification tasks in 

healthcare, shown here by the identification and classification of AAA repairs from unstructured 

EHRs. The tiered approach allows for iterative refinement of the dataset, starting with broad 

classifications and progressively narrowing down to more specific categories. This method could be 

particularly useful in scenarios where traditional categorisation methods, such as ICD-10 codes, lack 

sufficient granularity for certain conditions, like acute limb ischemia [24]. The integration of NLP 

models into existing EHR infrastructure has the potential to enhance data extraction and auditing 

processes across various medical specialties and other domains dealing with unstructured text data. 

While several studies have explored the use of NLP in cardiovascular medicine, to the best of our 

knowledge, this is the first study that specifically focuses on using NLP models to identify patients 

who have undergone an AAA repair during their admission and to classify the repair as either primary 

or revision [14–16,25]. The most closely related work is by Weissler et al., who developed an NLP 

model called 'PAD-ML' to identify patients with peripheral arterial disease (PAD) from EHRs using 

an artificial neural network approach [18]. PAD-ML achieved an AUC of 0.888. In contrast, our 

overall best-performing model, the scispaCy/Bio-clinicalBERT ensemble, achieved AUROCs of 0.99, 

1.00, and 1.00 for identifying vascular patients, AAA repairs, and classifying repairs as primary or 

revision, respectively. Although both Bio-clinicalBERT and scispaCy performed well individually, 

combining these methods resulted in more robust performance across all tasks. This highlights the 

effectiveness of integrating domain-specific embeddings, contextual understanding, and state-of-the-

art NLP architectures for clinical tasks. While direct comparisons with PAD-ML are limited due to 

differences in tasks, datasets, and metrics, our models demonstrate strong results in the context of 

related work [14–16]. 

The comparison between BERT-base, Bio-ClinicalBERT, and scispaCy highlights the trade-off 

between model complexity and performance in clinical NLP tasks. The domain-specific Bio-

ClinicalBERT outperformed BERT-base, particularly in distinguishing primary and revision AAA 
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repairs showing the effectiveness of transfer learning in LLMs. However, the lighter-weight scispaCy 

model achieved comparable performance while being more computationally efficient. With the 

development of increasingly complex generalised LLM models such as GPT-4 and Llama 3, and 

larger clinical foundation models such as GatorTron, clinical NLP developer will need to balance 

model complexity, performance and interpretability to ensure that the model delivers on accuracy 

whilst maintaining computational efficiency and transparency in decision-making [26]. 

There are limitations to the models developed in this paper which need to be considered in future 

development and implementation. The model was annotated by a single clinically trained annotator, 

which whilst following a structured annotating guide, reduces the reliability of the annotated dataset. 

Future models intended for clinical use would require multiple clinically trained annotators to ensure 

reliability of the training dataset. The models were trained on a dataset from one hospital in the USA, 

thereby narrowing the breadth of medical language and style used in medical record keeping across 

the world. There were some differences in vascular practices identified in the US medical records 

compared to standard UK NHS practice, such as the management of acute diabetic foot infections by 

podiatry in the US EHRs. Although fundamental clinical practice is similar across countries, there 

may be subtleties in the records which could reduce the generalisability of the models when used on 

different datasets. External validation of the models would assist in identification of this issue. The 

methodology outlined in this paper provides a framework for fine-tuning/training of both LLMs and 

NLP models enabling models to be trained and validated locally, thereby capturing local variation in 

practices and not relying on the generalisability of an externally trained model. 

Future work should include validating the model across multiple healthcare institutions to assess its 

generalisability and robustness. This can help identify any institution-specific biases and need for 

model refinement. The integration of other NLP tasks such as named entity recognition and/or span 

recognition would allow vascular pathology specific data (e.g AAA diameter) to be identified and 

extracted from unstructured free text data, potentially enabling the automated data extraction and 

upload to national registries such as the NVR.[16] The development of such a pipeline would remove 
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barriers such as administrative and time burden to allow a much broader data capture of patients. 

Additionally, integrating other data modalities such as imaging would allow AAA morphology to be 

captured in detail helping with predictive modelling [27]. The pipeline should also incorporate a 

clinician-in-the-loop mechanism that allows clinicians to provide feedback to the model and 

contribute to ongoing model refinement. Other than using the framework developed in this paper to 

identify other NVR-relevant patients such as lower limb bypass or carotid endarterectomies the 

technique could be expanded to other medical speciality registries such as National Joint Registry or 

National Confidential Enquiry into Patient Outcome and Death. 

This study presents a robust framework for developing NLP models to identify and classify AAA 

repairs from unstructured EHRs. The high accuracy achieved by our models demonstrates the 

potential for implementing these techniques in clinical data pipelines to improve auditing of AAA 

repairs at both local and national levels. Our work represents a significant step towards harnessing the 

untapped potential of unstructured EHR data across various medical specialties. By automating the 

extraction and classification of pertinent clinical information, NLP models can reduce administrative 

burden, increase data capture, and ultimately contribute to improved patient care and outcomes in 

vascular surgery and beyond.  
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Fig. 1 Flowchart showing the extraction of cases using a trained scispaCy model for each classification task. 
Task 1 - Vascular vs Non-Vascular classification performed using a threshold of 0.2. Task 2 - AAA vs Non-
AAA classification performed using a threshold of 0.5. Task 3 – Primary AAA repair vs Revision AAA repair 
vs Non-AAA classification performed using a threshold of 0.5. AAA – Abdomional aortic aneurysm.  
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Fig. 2 Comparison of receiver operating characteristic curves for Task 1 - Vascular vs Non-Vascular 
classification 

Fig. 3 Comparison of receiver operating characteristic curves for Task 2 - AAA vs Non-AAA classification 
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Fig. 4 Comparison of receiver operating characteristic curves for Task 3 - Primary AAA repair vs Revision 
AAA repair vs Non-AAA classification 
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Appendix 1 
 
Seed terms – Task 1 
 
{"label":"VASCULAR","pattern":"vascular_identifiers.txt"} 
{"label":"VASCULAR","pattern":"endarterectomy"} 
{"label":"VASCULAR","pattern":"aneurysm"} 
{"label":"VASCULAR","pattern":"bypass"} 
{"label":"VASCULAR","pattern":"amputation"} 
{"label":"VASCULAR","pattern":"vascular"} 
{"label":"VASCULAR","pattern":"vascular_identifiers.txt"} 
{"label":"VASCULAR","pattern":"bypass"} 
{"label":"VASCULAR","pattern":"endarterectomy"} 
{"label":"VASCULAR","pattern":"vascular"} 
{"label":"VASCULAR","pattern":"amputation"} 
{"label":"VASCULAR","pattern":"aneurysm"} 
{"label":"VASCULAR","pattern":"endovascular"} 
{"label":"VASCULAR","pattern":"arterial"} 
{"label":"VASCULAR","pattern":"enovenous"} 
 
Seed terms – Task 2 
{"label":"AAA Repair","pattern":"AAA"} 
{"label":"AAA Repair","pattern":"aneurysm"} 
{"label":"AAA Repair","pattern":"abdominal aortic aneurysm"} 
{"label":"AAA Repair","pattern":"aortic aneurysm"} 
{"label":"AAA Repair","pattern":"EVAR"} 
{"label":"AAA Repair","pattern":"TEVAR"} 
{"label":"AAA Repair","pattern":"thoracic aorta"} 
{"label":"AAA Repair","pattern":"thoracic aneurysm"} 
 
Seed terms – Task 3 
{"label":"AAA Revision","pattern":"endoleak"} 
{"label":"AAA Revision","pattern":"revision"} 
{"label":"AAA Revision","pattern":"redo"} 
{"label":"AAA Revision","pattern":"revised"} 
{"label":"AAA Revision","pattern":"relined"} 
 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.12.11.24318852doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.11.24318852
http://creativecommons.org/licenses/by-nc/4.0/

