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Abstract 

Background
The ongoing H5N1 panzootic in mammals has amplified zoonotic pathways to facilitate 

human infection. Characterising key epidemiological parameters for H5N1 is critical should 

this become widespread.

Aim
To identify and estimate critical epidemiological parameters for H5N1 from past and current 

outbreaks, and to compare their characteristics with human influenza subtypes. 

Methods
We searched PubMed, Embase, and Cochrane Library for systematic reviews reporting 

parameter estimates from primary data or meta-analyses. To address gaps, we searched 

Google Scholar for studies of any design providing relevant estimates. We estimated the 

basic reproduction number for the outbreak in the US and estimated the serial interval using 

data from previous household clusters in Indonesia. We also applied a branching process 
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model to simulate transmission chain size and duration to assess if simulated transmission 

patterns align with observed dynamics. 

Results
From 32 studies, we identified H5N1’s epidemiological profile as having lower transmissibility 

(R0 < 0.2) but higher severity compared to human subtypes. Evidence suggests H5N1 has 

longer incubation (~4 days vs ~2 days) and serial intervals (~6 days vs ~3 days) than human 

subtypes, impacting transmission dynamics. Key gaps remain regarding latent and infectious 

periods.

Conclusions
We characterised critical epidemiological parameters for H5N1 infection. The current U.S. 

outbreak shows lower pathogenicity but similar transmissibility compared to prior outbreaks. 

Longer incubation and serial intervals may enhance contact tracing feasibility. These 

estimates offer a baseline for monitoring changes in H5N1 epidemiology.
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Introduction 
Highly Pathogenic Avian Influenza A (H5N1) was first isolated in 1997 in Hong Kong [1]. The 

primary reservoir of H5N1 are aquatic birds [2], with outbreaks occurring in the last two 

decades in  poultry and wild bird populations [3]. This has accelerated  in recent years 

following the emergence of a new genotype (belonging to clade 2.3.4.4b) following 

reassortment with low pathogenic avian influenza viruses in the Western hemisphere in 2020 

[4]. This has subsequently spread globally in wild bird populations [5] and caused 

devastating outbreaks in domestic flocks across the globe In addition, there is evidence of 

sustained mammal to mammal transmission of these viruses in European fur farms, marine 

mammals in South America and dairy cattle in the United States (US) [5].The H5N1 outbreak 

in US dairy cattle was detected in February 2024, in Texas [6], before spreading to other 

states [7].  As of 5th December 2024, there have been 58 documented human cases in the 

US, including two, from Missouri and California, without any known exposure to sick or 

infected animals [8] (Supplementary Table S1).

H5N1 continues to pose a threat to global biosecurity. Given the risk  of viral reassortment 

within a dually infected human or other mammalian species infected with a human influenza 

virus, there is a possibility  that the resulting variant could be capable of sustained human to 

human transmission[9]. Longini et al., emphasise the importance of key epidemiological 

parameters required at the start of an outbreak; the reproduction number, incubation, latent 

and infectious periods, the serial interval and the case fatality ratio (CFR) [9]. Outside of 

CFR and the reproduction number, the key parameters for H5N1 have not been well 

characterised in relation to human influenza. There is some evidence to suggest a longer 

incubation period for H5N1 infection [10], however key parameters such as the serial interval 

are not available. Given increased mammalian H5N1 infection and the increasing level of 

human exposure at the human-mammal interface, these parameters become key to 

understanding how H5N1 can be controlled compared to traditional human influenza 

outbreaks.  

This rapid review examines these critical epidemiological parameters for H5N1, 

incorporating seropositivity data, and provides a comparative analysis with other influenza 

subtypes. To address gaps in existing estimates, we utilised mathematical models to 

estimate the reproduction number for the current U.S. outbreak and calculated the serial 

interval using data from previous household clusters in Indonesia. Additionally, we applied a 
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branching process model to simulate transmission chain size and duration, enabling us to 

assess whether simulated patterns align with observed outbreak dynamics.

Methods

Review of critical parameters estimates from previous outbreaks

We conducted a rapid review to identify existing estimates of critical epidemiological 

parameters for H5N1 and to compare these with other human influenza subtypes. The 

review consisted of two stages. First, an initial search for systematic reviews was conducted 

in PubMed, Embase, and Cochrane Library. We included systematic reviews that provided 

parameter estimates for the reproduction number (R0), dispersion parameter (k), incubation 

period, latent and infectious periods, CFRs, IFRs, or serological estimates (for H5N1 only) in 

humans. The search terms used are listed in Supplementary Table S2. Studies were 

included if they provided quantitative estimates based on primary epidemiological data or 

meta-analyses of such data. Studies were excluded if they lacked quantitative estimates, 

focused solely on animal models, or did not distinguish between influenza strains.

Following the initial search, a tailored search was conducted in Google Scholar 

(Supplementary Table S2) to address gaps and identify missing parameters. This search 

targeted studies reporting estimates for the dispersion parameter, incubation period, latent 

and infectious periods, and CFR in humans as these were not adequately covered by the 

initial search. Search terms were adapted to capture specific epidemiological parameters 

and chosen to broaden the scope of studies which would appear in the search. We included 

studies of any design that provided relevant estimates using epidemiological data. We 

excluded studies which reported assumed values (parameters had been assumed for 

modelling purposes and had been based on opinion or other data sources). The Google 

Scholar search was limited to the first 30 results per query (sorted by relevance) to ensure 

relevance and feasibility within the constraints of the rapid review. All searches were 

conducted up to and including November 25, 2024. In addition we included pertinent studies 

which had been identified without a focused search strategy.

For each included study, the study design, the study description, parameter estimate, 

subtype and, in the case of systematic reviews, the original studies referenced were 
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extracted. This information was consolidated into a central database, which is provided as a 

supplementary resource. Ethical approval was not required as this was a review of published 

literature.

A meta-analysis was not conducted due to the large heterogeneity across the included 

studies. Additionally, the limited availability of comparable data for certain parameters, such 

as the dispersion parameter and infectious periods, constrained the  practicality of pooling 

results. Given the evolving situation, a narrative approach was deemed more appropriate for 

summarising existing evidence and identifying gaps in the literature.

Reproduction number estimation

We estimated the basic reproduction number for the current outbreak in the US using the 

package {epichains} [11,12]. We estimated the R0​ distribution under two scenarios. Scenario 

1 assuming 56 single spillover cases and two clusters of two cases: the Missouri case of 

unknown exposure with a hypothetical source case, and the Californian case of unknown 

exposure with a hypothetical source case [8]. Scenario 2 assuming 56 independent spillover 

cases, a cluster of 3 (the Missouri case of unknown exposure, their probable household 

contact, and a hypothetical source case), and a cluster of two (Californian case with a 

hypothetical source case) [8]. Full details are given in the Supplementary Information.

Serial interval estimation
We did not identify any primary estimates for the serial interval of H5N1 in the literature. To 

address this, we estimated the serial interval using data collected by Aditama et al. from 22 

human cases not exposed to zoonotic sources during H5N1 outbreaks in Indonesia between 

2005 and 2009 [13] (Supplementary Figure S3). We fitted lognormal and gamma 

distributions to the number of onsets for a given day from this data to estimate the serial 

interval. Full details are given in the Supplementary Information.

Outbreak size distribution estimation 
To assess how varying transmission parameters influence H5N1 outbreak size and duration, 

we used a branching process model to explore the transmission chain size and length, 

across scenarios of varying reproduction numbers, dispersion (k), and offspring distributions. 

We used a reproduction number between 0 and 1.1 at 0.1 intervals, and for the Negative 

Binomial offspring distribution we varied the dispersion parameter (𝑘) at 0.1, 0.5, 1, 5, 1000. 

Outbreaks with no secondary transmission were categorised as size and length 0. Full 

details for the branching process are given in the Supplementary Information.
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Results 
We included 32 studies in this review (Supplementary Figure S1), comprising of 7 

systematic reviews, 14 modelling studies (including 1 preprint), 2 observational or 

retrospective studies, 2 seroprevalence studies (including 1 preprint), 2 

reviews/commentaries, 1 viral dynamics study, 1 human challenge study, 2 sources of grey 

literature and 1 news article (to confirm case recovery in the US).

H5N1 transmission dynamics

H5N1 reproduction number estimates were reported in one systematic review and two 

additional studies, ranging from 0—0.25 [13–17], with one outlier: Yang et al. reported an R0 

of 1.14 (95% CI: 0.61—2.14) during a 2006 household outbreak in Indonesia [18].  A 

systematic review by Biggerstaff et al. summarised reproduction number estimates for 

human influenza subtypes[17], reporting median values between 1.27 and 1.80 [17] (Figure 
1). In our analysis, we estimated the median R0 for the US outbreak as 0.04 (95%CI: 

0.02–0.08) for scenario 1, and 0.05 (95%CI: 0.02–0.10) for scenario 2 (Supplementary 
Figure S2). For scenario 1, the posterior estimate for k was extremely high (median = 4030), 

due to the predominance of single spillover cases. For scenario 2, k was estimated as a 

median of 2.69 (95% CI: 0.06–6.0). One study provided a k estimate for H5N1 of 0.75 [16], 

while Fraser et al. estimated k for H1N1 at 0.94 (95% CI: 0.59—1.72) [19]. 
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Figure 1. Reproduction number estimates for influenza
Estimates for H5N1 from the current US outbreak and previous outbreaks where a reproduction 

number was reported. Compared to estimates from previous influenza pandemics (Median point 

estimate of R in the community setting for all waves of illness). Solid coloured bars represent the 

uncertainty around the central estimate, which was reported as IQR, and 95% CI.

We used a branching process model to further illustrate H5N1 transmission dynamics. With 

a Poisson offspring distribution, most outbreaks result in no secondary transmission when R 

< 0.6, and clusters of more than 20 are rare but can occur when R > 0.5 (Figure 2A). 

Introducing moderate heterogeneity (k = 0.5) reduces secondary transmission and limits 

outbreaks to fewer than 50 cases, even for R = 1.1 (Supplementary Figure S4). Variations 

in k, from 0.1 (highly heterogeneous) to 1000 (approximately Poisson), show that greater 

heterogeneity leads to smaller and shorter outbreaks [20], typically lasting fewer than five 

transmission generations (Figure 2B & Supplementary Figure S5). These patterns align 

with observed dynamics, suggesting limited potential for large outbreaks under current 

transmission parameters.
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Figure 2. Simulated H5N1 outbreak size
Simulated outbreak size (secondary cases excluding the index case) using a single-type branching 

process model across values of the reproduction number (R), with (A) a Poisson offspring 

distribution and (B) a Negative binomial offspring distribution. The latter with varied values of k 

between 0.1 and 1000.

Incubation period

Three studies (one systematic review) identified five estimates for the incubation period for 

H5N1, with estimates ranging from 2 to 9.5 days [18,21–25].  Seven studies (including one 

systematic review) reported eight incubation period estimates for human influenza subtypes. 

Estimates for Influenza A subtypes ranged from 1.34 to 2.1 [26–32]. One estimate was 

identified for Influenza B, with a median incubation period of 0.6 days [31] (Figure 3).  
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Figure 3. Incubation period estimates across influenza subtypes
Incubation period estimates for H5N1 from previous outbreaks, compared to estimates for other 

influenza subtypes. Mean estimates are represented by triangle points, and median estimates are 

shown using circle points. Uncertainty is represented 95% CI, IQR and range. 

Latent & Infectious period 

We could not identify any estimates of the latent period distribution for human H5N1 

infections. The latent period for human influenza subtypes were reported in four studies with 

mean values ranging from 0.4 to 2.62 days [32–35] (Supplementary Figure S6). There was 

limited literature regarding the infectious period for H5N1. One study reported a probable 

range of  5–13 days for a household outbreak in Indonesia 2006 [18]. Five studies reported 

seven estimates for the infectious period for human influenza subtypes, the mean infectious 

period ranged from 1 to 3.8 days [32–36] (Supplementary Figure S6).
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Serial interval

From the outbreak in Indonesia we estimated the serial interval distribution to have a median 

of 6.8 days (95% CrI: 0.3–13.3) when fit to a gamma distribution, and a median of 6.4 days 

(95% CrI: 0.3–12.7) when fit to a lognormal distribution (Supplementary Figure S3). The 

results from the LOO analysis suggested that the gamma distribution would predict unseen 

data more accurately, and is therefore the preferable parametric distribution in this case 

(Supplementary Table S3). We did not identify other studies providing serial interval 

estimates for H5N1 specifically. However, for human influenza subtypes, four studies 

(including one systematic review) reported 15 serial interval estimates which ranged from 

1.7–3.7 days [32,35,37,38] (Figure 4). 

Figure 4. Serial interval estimates across influenza subtypes
Serial interval estimates for H5N1 from previous outbreaks, compared to estimates for other 

influenza subtypes. Mean estimates are represented by triangle points, and median estimates are 

shown using circle points. Uncertainty is represented by 95% CI, 95% CrI and range. Data source 

studies for the Vink et al. estimates are referenced in the data collection document. The upper 95% 

Crls for the two estimated values extend to 13.3 (gamma) and 12.6 days (log normal)
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Serological evidence of H5N1 human infections

We identified a systematic review by Chen et al. [39], which provides a comprehensive 

estimate of serological evidence of human infections with H5N1, across populations with 

different occupational and behavioural exposures[39].  Studies adhering to the WHO 

seropositivity criteria (neutralising antibody titer ≥1:80 confirmed by a second assay, such as 

hemagglutination inhibition test [HAI, titer ≥1:160], enzyme-linked immunosorbent assay, or 

western blot [39]) reported higher seroprevalence among high-risk occupational groups, 

particularly poultry cullers and workers [39]. In contrast, no seropositive results were 

detected among close contacts of cases in healthcare, household, or social settings [39] 

(Figure 5). Chen et al. also reported estimates of seroprevalence utilising non-standardised 

antibody titer criteria (different antibody titer threshold defined by each study [39]) (Figure 5). 

Since this review was published, there have been three further serological studies in 

high-risk occupational settings specific to the 2.3.4.4b clade. Gomaa et al. reported an 

estimated seroprevalence of 4.6% (95% CI: 3.3—6.2) in workers exposed to poultry infected 

with clade 2.3.4.4b H5N1 in five live bird markets in Egypt [40]. The criteria for seropositivity 

was not clearly defined in this study. In the US, Shittu et al. conducted microneutralization 

assays (MN) on sera samples taken from 14 recently symptomatic farm workers at two 

Texas dairy farms. Two (14.3% 95% CI: 4.0—40) showed evidence of having neutralising 

antibodies to a recombinant influenza A H5N1 virus [41], although only MN assay results 

were reported. A larger study by Mellis et al. 2024 analysed sera samples from 115 dairy 

workers from dairy farms in Michigan and Colorado [42]. Workers were deemed eligible for 

sampling if they had worked on dairies with herds with laboratory-confirmed infection with 

HPAI A(H5) viruses within 90 days prior to sampling and had reported no illness on the day 

of specimen collection [42]. Out of the 115 workers, 8 (7%, 95% CI: 3.6—13.1) had 

serological evidence of recent infection with H5N1. All positive cases reported milking cows 

or cleaning the milking parlour [42]. This study reported neutralising antibody titers and HAI 

antibody titers ≥1:40 which does not meet the WHO criteria. 
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Figure 5. Serological evidence of H5N1 human infections
Relevant serological evidence of H5N1 human infections across estimates from 1997—2020, Egypt 

2022—2023 and the current outbreak in the US. WHO seropositivity criteria refers to neutralising 

antibody titer ≥ 1:80 with a positive result using a 2nd confirmatory assay [i.e., hemagglutination 

inhibition test (HAI) (HAI antibody titer ≥ 1:160), enzyme-linked immunosorbent assay, or western 

blot assay] [39]. Non-standard (NS) criteria refers to different antibody titer threshold defined by 

each study rather than a neutralising (NT) antibody titer ≥1:80 with a positive result confirmed by a 

2nd assay (i.e. HAI antibody titer ≥1:40, ELISA or western blot assay) [39]

Severity profile of Infections

We identified a systematic review by Lai et al. which reported the CFR of H5N1 from 1997 to 

2015 [43]. The overall CFR was estimated to be 53.5% with clade-specific CFRs ranging 

from 33.3% to 100% [43] (Figure 6). This is significantly higher than estimates from previous 

influenza pandemics reported by the WHO, which range from 0.02% to 3% [44] (Figure 6). 

Additionally, three other studies provided five human influenza  CFR estimates, ranging from 

0.016% to 4.08% [33,45,46] (Figure 6). For the current outbreak in the US, as of the 7th 

November 2024, the CFR is 0% (95% CI: 0-7.71) with all 46 documented cases having 

recovered [8,47]. 
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One study, conducted by Li et al, estimated the IFR for H5N1, using surveillance and 

seroprevalence studies [48]. The authors analyse  the 1997 Hong Kong and 2006 Turkey 

outbreaks and estimate IFRs of 14% (95% CI: 7—29) and 33% (95% CI: 14—61) 

(respectively) [48].  In contrast, IFR estimates for human H1N1 influenza were estimated in 

Hong Kong from the 2009 pandemic by Wong et al. [49], where they estimated an IFR of 

0.00001% in children and 0.01% in 60–69 year olds [49]. 

 

Figure 6. Severity profile of previous H5N1 outbreaks compared across influenza 
subtypes
Fatality risk estimates by outbreak. Case fatality risk (CFR) estimates are represented by circles 

and infection fatality risk (IFR) estimates by triangles. Uncertainty around these estimates are 

represented by 95% CI, IQR and range.  

Discussion
We reviewed the critical parameters for H5N1 and human influenza subtypes, and  

additionally we estimated the R0 for the current H5N1 outbreak in the US and the serial 

interval for H5N1. To our knowledge this is the first estimate for the serial interval distribution 

for H5N1 using H5N1 epidemiological data. We show that H5N1 has a different 
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epidemiological profile when compared to human influenza subtypes. Currently, H5N1 has a 

much lower transmission potential than previous pandemic or seasonal human influenza 

subtypes, with R0 < 0.2. H5N1 also appears to have a longer incubation period (~4 days vs 

~2 days) and likely has a longer serial interval than is typical of human influenza (~6 days vs 

~3 days). Latent and infectious period estimates are limited. Previous outbreaks of H5N1 

have been typified by a high CFR and IFR, however the current US outbreak has yet to 

record a fatality [47], which places it as an outlier. Serological studies point to poultry 

workers and cullers being the groups at most risk of infection, though this risk is low. There 

may be weak evidence indicating that workers exposed to infection with Clade 2.3.4.4b in 

similar settings might be more likely to be seropositive than workers exposed to other strains 

of H5N1(Figure 5) [40–42]. 

Our results reaffirm the low transmissibility of H5N1 to or between humans. This could be 

attributed to its replication preference for α2,3-linked sialic acid receptors predominantly 

located in the lower respiratory tract (LRT) and the eye [10], specifically lung alveoli and 

conjunctiva [50] in humans. In comparison human influenza viruses preferentially bind to 

α2,6-linked sialic acid receptors (SAα2,6) [51], which are found in higher levels in the upper 

respiratory tract (URT) [52]. 

We found the incubation period of H5N1 to be longer compared to human subtypes (Figure 
3). This may be partially explained by H5N1’s potential use of the eye as a portal of entry 

before subsequent transmission to the respiratory tract [10]. Initial ocular infection may be 

mild or subclinical, prolonging the incubation period before respiratory symptoms appear 

[10].  Relevant  for contact tracing purposes, we found limited evidence of a longer infectious 

period of 5–13 days [18] though further studies are clearly required to confirm or refute these 

data (Supplementary Figure S6). For the serial interval we estimated a median of ~6 days. 

This is nearly double the length of typical human influenza subtypes [37] (Figure 4). There is 

limited literature to provide a direct comparison for our estimate for H5N1 however avian 

influenza A (H7N9) was estimated to have a median serial interval of 9 days in humans [53], 

providing further evidence that avian influenza may exhibit longer serial intervals in humans. 

The prolonged incubation period and serial interval of H5N1 may also be influenced by 

reduced host susceptibility. It has been suggested that the expression of initial symptoms 

after H5N1 infection stems from cellular damage compared to human subtypes where initial 

symptoms may arise earlier due to the adaptive immune response triggered by previous 

exposure [54].
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A systematic review by Chen et al. indicated that individuals involved in poultry culling and 

processing are at the highest risk of H5N1 infection [39]. Recent US studies additionally 

highlight the risks of occupational exposure, suggesting that milking cows or cleaning milking 

machinery pose significant risks [42]. The seroprevalence rates among both the dairy 

workers in the US and the poultry workers in Egypt exceed those of poultry workers 

reviewed by Chen [39,41,42] (Figure 5), perhaps pointing to higher levels of asymptomatic 

infection in workers exposed to Clade 2.3.4.4b viruses compared with other H5N1 viruses. 

However, the seroprevalence estimates in the US and potentially the Egyptian study did not 

follow WHO criteria for defining thresholds for seropositivity. It is also not possible to 

standardise exposure across these studies and as such, it is not clear whether there is 

higher seropositivity in workers exposed to clade 2.3.4.4b than other H5N1 clades. 

Nevertheless, this finding does suggest that the level of asymptomatic infection needs to be 

monitored closely.

The reported CFR and IFR for H5N1, based on previous outbreaks, were much higher than 

previous seasonal and pandemic influenza strains [44]. Despite this historical severity, the 

current U.S. outbreak remains unique, with no fatalities reported among 46 cases with a 

reported outcome (as of 7th November 2024) [8,47]. As of 7th November, all cases have 

presented with either mild respiratory symptoms and/or conjunctivitis [47], contrasting with 

previous outbreaks where symptoms typically included fever, cough, shortness of breath, 

and pneumonia [55]. High rates of conjunctivitis as a primary symptom have been observed 

in other avian influenza outbreaks, such as the 2007 H7N7 outbreak in the Netherlands, 

where 88% of cases developed conjunctivitis as their only symptom, one fatality (1.1% CFR) 

was recorded in a patient who developed pneumonia [56]. However, given the high 

prevalence of H5N1 among cattle[57] and level of human exposure, there is risk of 

reassortment leading to a subtype capable of sustaining human to human transmission. 

Therefore, proactive containment measures are crucial to mitigate the potential for a global 

health crisis. 

Conclusion

We have assessed and estimated critical epidemiological parameters for H5N1 based on 

past and current outbreaks. The outbreak in the US appears to have lower pathogenicity 

than observed in previous H5N1 outbreaks, but appears similar in terms of transmissibility. 

H5N1 may have a longer incubation period, and serial interval compared to human influenza 
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subtypes. These characteristics may allow for more effective contact tracing more than is 

typically the case for influenza. Despite these insights, data on H5N1 infections remain 

sparse and critical gaps remain in our understanding. Addressing these gaps and continually 

monitoring the epidemiology is imperative to enhance our preparedness and assess whether 

the risk from these viruses is potentially escalating.
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