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Abstract 16 

Background 17 

Lassa fever (LF) is an acute viral hemorrhagic disease endemic to West Africa that has been declared a 18 

priority disease by the World Health Organization due to its severity and the lack of a vaccine or 19 

effective treatment options. Several candidate vaccines are currently in development and are expected 20 

to be ready for phase III field efficacy trials soon. However, most LF cases and deaths are believed to go 21 

unreported, and as a result we lack a clear understanding of several aspects of LF epidemiology and 22 

immunology that are critical to the design of vaccine efficacy trials. 23 

Methods 24 

To help guide vaccine trial design and site selection we estimated the force of infection (FOI) in all 1st 25 

and 2nd administrative units in West Africa from published seroprevalence studies. We next estimated LF 26 

reporting probabilities using these FOI estimates and LF case and death reports and then projected FOI 27 

in all admin1 and admin2 areas without seroprevalence data. We then extrapolated age-specific LF 28 

incidence rates from FOI estimates under different assumptions regarding the level of protection against 29 

reinfection among seropositive and seronegative individuals with a history of prior infection. 30 

Results 31 

Projected FOI estimates and modeled annual LF incidence rates indicate that Sierra Leone, southern 32 

Guinea, and a few areas within Nigeria would likely yield the highest LF case incidence rates during a 33 

vaccine trial. Estimated LF incidence rates were highly sensitive to assumptions about Lassa 34 

immunology, particularly the frequency of seroreversion among previously infected individuals and the 35 

extent to which seroreverted individuals retain protection against reinfection and more severe disease 36 

outcomes. 37 

Conclusions  38 
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Our spatial LF incidence rate estimates, along with the interannual and seasonal variability in these 39 

estimates and estimates of baseline seroprevalence, could be used for vaccine trial site selection, 40 

choosing the target population (e.g., age and serostatus), and maximizing a trial’s statistical power.  41 

Author Summary 42 

Lassa fever virus infects an estimated 100,000-300,000 people and kills 5,000 people annually in West 43 

Africa. Incidence rates appear to be highly spatially heterogeneous within the endemic region; however, 44 

the true nature is uncertain due to significant surveillance gaps. We modeled Lassa Fever disease 45 

incidence at a sub-national scale throughout West Africa to inform the design of vaccine efficacy trials. 46 

We find considerable spatial heterogeneity in incidence rates, with the highest rates concentrated in 47 

Sierra Leone, Guinea, and a few areas of Nigeria. Even though we estimate that <1% of infections are 48 

reported, our estimates also indicate that using symptomatic LF as a primary endpoint will require tens 49 

of thousands of trial participants to demonstrate vaccine efficacy. Our work highlights data gaps and 50 

uncertainties related to the ecology and epidemiology of LASV that limit our ability to estimate and 51 

predict disease incidence. 52 

 53 

Introduction 54 

Lassa fever (LF) is an acute viral hemorrhagic illness endemic to West Africa. LF is caused by infection 55 

with Lassa virus (LASV), an arenavirus that circulates in rodent populations but can spill over to human 56 

populations.1 Transmission is thought to occur through human contact with rodents either due to 57 

infestation of human residences or processing for food.2 Importantly, direct human-to-human 58 

transmission in nosocomial settings also occurs, creating a potential for wider spread of the virus to 59 

naive populations.2 Most LASV infections are presumed to be asymptomatic or result in mild disease, 60 

but up to 20% can result in a severe, life-threatening hemorrhagic illness.2 In these instances, case 61 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.11.24318478doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.11.24318478


4 
 

fatality rates among clinical LF cases can reach 60%.1 Previous studies have estimated that 100,000-62 

300,000 LASV infections and 5,000 LF deaths occur annually in sub-Saharan Africa. However, these 63 

estimates were extrapolated from limited serological studies conducted decades ago and may not 64 

accurately reflect current conditions across West Africa.3,4  65 

Despite its severity and burden, there are currently few therapeutic options for LF and no licensed 66 

vaccines.1 In 2018, the World Health Organization (WHO) declared LF a ‘Priority Disease,’ and the 67 

Coalition for Epidemic Preparedness Innovations (CEPI) subsequently invested in the development of six 68 

LF vaccine candidates, four of which have entered clinical trials.11 Individuals previously infected with 69 

LASV maintain LASV-specific CD4+ memory T cells for years after the infection has cleared.6 This, along 70 

with animal vaccination models, suggests that vaccination will provide meaningful protective immunity 71 

against severe LF.12 However, there are currently no immunological correlates of protection against LF 72 

and the risk of severe disease rules out the option of controlled human infection studies to evaluate the 73 

clinical benefit of a candidate vaccine.13 Instead, field efficacy trials are necessary to determine the 74 

efficacy of vaccine candidates. 75 

Assuming a primary endpoint of PCR-positive symptomatic LF disease, CEPI has targeted a minimum 76 

annual LF incidence rate of 1% to ensure an adequately powered trial. An ideal study site will have a 77 

baseline seroprevalence that indicates the presence of frequent LASV spillover, but which is low enough 78 

that existing immunity in the population does not substantially reduce the LF incidence rate. Identifying 79 

populations in which these criteria are likely to be met is the most critical consideration in Lassa vaccine 80 

trial design.7,8 However, our understanding of Lassa epidemiology is limited by a lack of good prospective 81 

epidemiological data and inconsistent disease surveillance across West Africa. Since 2018, reported LF 82 

case counts have increased dramatically, although this is partly due to changes in surveillance and 83 

diagnostics.5 Other than a couple of prospective community studies in Sierra Leone and Mali that tested 84 

individuals for evidence of a recent LASV infection,3,7 and a few hospital-based surveillance studies of 85 
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severe LF cases,8,9 most epidemiological data on Lassa come from national surveillance programs. A 86 

majority of LF cases are not detected by current clinical surveillance systems because common LF 87 

symptoms—such as fever, malaise, headache, and muscle pain—closely resemble those of other febrile 88 

illnesses endemic to the region.1,2,11 In addition, the extent of national LF surveillance varies considerably 89 

from country to country in West Africa, complicating comparisons of incidence rates between different 90 

LF-endemic areas. For example, Nigeria has expanded LF surveillance over the past decade,5,12 while 91 

changes in healthcare-seeking behaviors in areas of Sierra Leone heavily impacted by the 2013-2016 92 

Ebola virus epidemic have led to declines in the detection of febrile illnesses, including LF.9,13  93 

Because of the limited availability of epidemiological data for Lassa, in 2020 CEPI initiated a long-term, 94 

multi-country, prospective epidemiological study of Lassa disease and infection in West Africa.14 This 95 

study, called Enable, is tracking over 20,000 participants across five West African countries with the goal 96 

of identifying baseline seroprevalence, LASV infection rates, LF incidence rates, serological dynamics, 97 

and individual and community-level risk factors for infection and disease. Due to the impact of the 98 

COVID-19 pandemic, data from the Enable study have not yet been published. However, preliminary 99 

findings from the study presented in an interim report suggest that LASV infection is common in several 100 

of the study locations and that prior infection does not confer lifelong immunity.15 Epidemiological data 101 

such as those being collected in Enable are essential for understanding the current status of Lassa in the 102 

region. In the absence of detailed epidemiological data across the entire geographic range of LF, 103 

statistical models can be used to anticipate the future disease incidence for the purpose of vaccine trial 104 

planning. Such a modeling framework, based on existing epidemiological data and accounting for the 105 

factors that drive pathogen transmission and infection risk, can incorporate new epidemiological data 106 

from Enable and other studies as it becomes available. This framework can include ecological factors 107 

that influence the spatial and temporal patterns of disease and immunological factors related to 108 

immunity. 109 
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LASV is thought to infect humans through exposure to the urine or feces of the multimammate rat, 110 

Mastomys natalensis, which serves as the primary reservoir host.16 As a result, LASV spillover typically 111 

occurs seasonally in rural and peri-urban areas of West Africa where agricultural practices, 112 

socioeconomic factors, and the built environment promote rodent-human interactions.17–19 Field studies 113 

have identified several risk factors associated with M. natalensis abundance in villages and individual 114 

houses, but have also found that M. natalensis abundance and LASV seropositivity in rodents are 115 

spatially heterogeneous at multiple spatial scales, from the village- to the subnational-level.20–22 116 

Moreover, incidence of disease can be markedly seasonal on broad spatial scales, suggesting important 117 

variation in either rodent infection rates or contact with humans. Overall, the substantial spatial and 118 

temporal variation in LASV prevalence is an important consideration for vaccine trial site selection, as 119 

potential trial locations might have different LF incidence rates despite their proximity and similar 120 

environmental conditions. 121 

Because of the scarcity of longitudinal data, it is difficult to assess LF incidence, the duration of immunity 122 

following infection, or reinfection rates. Two longitudinal serology studies have found evidence that 3-123 

6% of seropositive individuals seroreverted from IgG+ to IgG- between sampling periods, suggesting that 124 

infection-induced immunity may not be permanent.23,24 Preliminary data from CEPI’s Enable study also 125 

indicate that seroreversion occurs relatively frequently.14 A further complication for our understanding 126 

of LASV infection rates is that the frequency of severe LF following infection is uncertain. It is typically 127 

stated that 80% of Lassa fever infections are asymptomatic, but data supporting this assumption is 128 

extremely limited.2 129 

Reliable estimates of sub-national LF incidence rates and baseline population-level immunity are needed 130 

to inform trial site selection and enable successful LF vaccine efficacy trials. In lieu of detailed 131 

geographical measurements, these epidemiological indicators can be modeled from available incidence 132 

and seroprevalence data.  Here, we use an epidemiological model to estimate LASV spillover rates and 133 
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the annual number of community-level LF cases at the 1st and 2nd administrative levels across West 134 

Africa. We provide sub-national estimates of baseline seroprevalence and expected age-specific LF 135 

incidence rates to help guide trial selection. We also explore the sensitivity of our estimates to different 136 

assumptions of LF immunology, including the proportion of infections that are symptomatic, the level of 137 

protection provided by prior infection, and the duration of this protection. 138 

Methods 139 

Model development 140 

We integrated publicly available epidemiological data into a unified modeling framework for LF in West 141 

Africa. We applied this model to investigate key questions regarding vaccine trial design including the 142 

expected incidence rates for trial endpoints of disease and infection, the target population (e.g., 143 

geographical location, age range, and serostatus of participants), and sample size considerations 144 

(number of sites, number of enrollees). The model was adapted from an existing model originally 145 

designed to predict spillover of LASV and model reactive vaccination strategies during an LF outbreak.61 146 

To better understand the magnitude and spatiotemporal distribution of LASV spillover rates and LF 147 

incidence in endemic areas, we refined the model to focus on estimating the annual force of infection 148 

(FOI), the rate at which susceptible individuals in a population are infected. The updated model also 149 

incorporates the potential for seroreversion (seropositive individuals becoming seronegative over time 150 

due to antibody waning). FOI estimates at the 1st and 2nd administrative levels were used to estimate 151 

seasonal and interannual LF incidence rates across the study region. Rates were investigated in different 152 

potential target populations defined by serostatus and age. 153 

a. Epidemiological data 154 

In our epidemiological model, we included 14 West African countries (Senegal, Gambia, Guinea-Bissau, 155 

Guinea, Sierra Leone, Liberia, Côte D’Ivoire, Ghana, Benin, Togo, Nigeria, Niger, Burkina Faso, and Mali), 156 
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plus the administrative districts in Cameroon bordering Nigeria, which encompasses the known range of 157 

LASV (Figure 1). Given the extensive spatial heterogeneity in LF incidence, we collated epidemiological 158 

data at the 1st and 2nd administrative levels (admin1 and admin2) in each country within the study 159 

region. For example, in Nigeria admin1 is the state level and admin2 is the local government area (LGA) 160 

level; in Sierra Leone admin1 corresponds to the province level and admin2 is the district level. The 161 

epidemiological data included in the study comprised two types: (a) age-stratified serology data to 162 

detect evidence of past infection and (b) reports of suspected and confirmed LF cases and deaths in 163 

humans. Epidemiological data was initially collated through the end of 2020 from multiple sources 164 

(including WHO outbreak reports, ProMED reports, country-level reports, and a literature search) and 165 

used in a previous analysis (see Table S1 in Lerch et al. 2022).61 For the current analysis we searched the 166 

same sources for additional datasets through early 2023. We excluded seroprevalence studies from 167 

before 1980 or where the location of the study population could not be identified at a sub-national 168 

level. We also excluded seroprevalence studies that focused only a specific target population (generally 169 

healthcare workers) that may not be representative of the overall population in the study area due to 170 

unequal exposure to spillover or human-to-human transmission. All included studies were aggregated to 171 

the admin1 and admin2 levels. 172 

Where possible, case data was categorized into cases of documented or suspected human-to-human 173 

transmission, documented or suspected spillover cases, and cases of unknown origin. Cases of 174 

documented or suspected human-to-human transmission were excluded from the estimation of 175 

spillover rates. Only cases and deaths from 2010-2023 were included in our analysis, because the 176 

case/death data were used to estimate the fraction of LF cases that are reported and LF surveillance 177 

systems have changed substantially in the past decade.5,62 Yearly, age-specific country-level population 178 

data from 1960-2015 were obtained from UN World Population Prospects estimates and downscaled to 179 

the admin1 and admin2 levels using population raster data from Worldpop.64, 63 180 
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 181 

 182 

Figure 1. Study region covering the hypothesized zone of Lassa fever (LF) endemicity. Areas in orange 183 

are (A) 1st administrative level units and (B) 2nd administrative level units that have reported LF cases or 184 

deaths from 2010-2023. In some locations, data were only reported at the 1st administrative level. 185 

b. Covariate data 186 

To identify population-level covariates associated with LF occurrence, we used spatial datasets of 187 

environmental, climate, and socioeconomic variables that have been hypothesized to be associated with 188 

LF occurrence or transmission.8,31,40,42,43,51,53,64,65 These variables included monthly precipitation, monthly 189 

average temperature, monthly normalized difference vegetation index (NDVI), elevation, latitude, 190 

longitude, travel time to the nearest urban center,66 the Healthcare Access and Quality Index (HAQ) 191 
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based on mortality from causes amenable to personal health care,67 proportion of land cover that was a 192 

tropical ecotype68, proportion of agricultural land,69 average forest loss over the past 20 years,70 an 193 

improved housing measure,71 a poverty index (percentage of households with an International Wealth 194 

Index value below 35),72 the occurrence of hunting for bushmeat,73 the probability of Mastomys 195 

occurrence,25 and the probability of LASV occurrence in Mastomys (Table S2).25 Each covariate was 196 

averaged to the admin1 and admin2 level. Within the study region, the improved housing measure or 197 

Mastomys occurrence data was missing for some administrative units in northern Senegal, Mali, and 198 

Niger, where there is no evidence of LF occurrence, so these administrative units were excluded from 199 

our analysis. To reduce the number of variables in our regression models we performed principal 200 

component analyses for monthly precipitation, monthly temperature, and monthly NDVI using the 201 

‘prcomp’ function in R. The first two principal components (PCs) for NDVI explained >90% of the 202 

variation in monthly NDVI, and the first three PCs for precipitation and temperature each 203 

explained >90% of the variation for these two variables, so these PCs were used in place of the monthly 204 

values in subsequent analyses. 205 

c. Model 206 

A multistep process was used to model LF attack rates from recent epidemiological data: (1) estimation 207 

of the recent force of infection (FOI) in administrative units with available seroprevalence data, (2) 208 

estimation of the proportion of LF cases and deaths that were detected and reported in administrative 209 

units using both seroprevalence data and case/death data, (3) estimation of the annual LASV spillover 210 

infection rate in all administrative units with case/death data based on the underreporting estimates 211 

from the previous step, (4) projection of the annual FOI for these administrative units based on these 212 

spillover rates, (5) calculation of the population-level infection history in each administrative unit based 213 

on these FOI estimates, (6) calculation of age-specific infection attack rates and LF incidence rates in 214 

each administrative unit under several different scenarios regarding the rates of seroreversion and the 215 
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susceptibility to infection and disease among seropositive and seroreverted individuals (Table 1, Figure 216 

2). This modeling process was conducted at both the 1st and 2nd administrative levels. In addition, we 217 

used statistical and machine learning methods to estimate annual FOI in each administrative unit based 218 

on the covariates in Table S2 and compared these estimates to the model projections from step 4. This 219 

analysis was conducted to determine whether environmental variables associated with LF occurrence 220 

could be used to estimate LASV spillover in the absence of human serology or case data. A brief 221 

description of each step in this process is provided below, with additional details of the complete 222 

process provided in the supplementary materials (S1 Appendix). 223 
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Figure 2. Modeling framework schematic. Our modeling framework involved seven sequential steps 225 

that result in a set of ensemble models of the FOI and annual incidence of LF in each of the 1st and 2nd 226 

administrative levels across West Africa. FOI estimates were projected and estimated for three different 227 

seroreversion rates, and LF incidence rates were estimated for 18 scenarios: 3 different seroreversion 228 

rates, 3 different assumptions about the susceptibility of seropositive individuals to disease, and 2 229 

different assumptions about the susceptibility of seroreverted individuals to disease. 230 

 231 

1. Estimating the Force of Infection from Serology Data 232 

Estimates of the annual FOI were obtained for each 1st or 2nd level administrative unit where serological 233 

data were available from 1980 - 2023 using a catalytic model and assuming a constant FOI (λ) over time. 234 

We estimated FOI assuming either a 0%, 3% (observed in Mali by Safronetz et al. 2017),7 or 6% 235 

seroreversion rate (observed in Sierra Leone by McCormick et al. 1987).23 In the absence of 236 

seroreversion, and assuming all infected individuals develop detectable antibody levels following 237 

infection, the proportion of a population that will be seropositive at age a is determined by the FOI (λ):  238 

𝑝𝑝(𝑎𝑎) = 1 − 𝑒𝑒−λ𝑎𝑎.    (1) 239 

If antibodies wane over time and some individuals serorevert from IgG+ to IgG-, then the proportion of 240 

the population seropositive at age a can be estimated using a reverse catalytic model: 241 

𝑝𝑝(𝑎𝑎) = λ
λ+π

�1 − 𝑒𝑒−(λ+π)𝑎𝑎�,  (2) 242 

where π is the annual seroreversion rate. Equation (2) simplifies to equation (1) when π = 0.  243 

Serology data for FOI estimation was obtained for 24 1st-level administrative units and 53 2nd-level 244 

administrative units. Additional details regarding how FOI was estimated from serology data are 245 

provided in S1 Appendix. 246 
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2. Estimating Country-specific Reporting Fractions 247 

For each administrative unit where the FOI was estimated from serology data in the previous step, we 248 

estimated the fraction of infections that went unreported from 2010-2023 based on the discrepancy 249 

between reported LF cases and deaths and the annual number of infections predicted by the FOI 250 

estimates from those sites under the three different seroreversion scenarios. We first estimated the 251 

location-specific fraction of infections that went underreported, the fraction that resulted in a reported 252 

LF case, and the fraction that resulted in a reported LF death using a method adapted from Perkins et al. 253 

(2021).74 The estimation process was repeated using 1000 draws from the posterior FOI estimates from 254 

step 1 to generate posterior distributions for the reporting fractions. Country-specific reporting fractions 255 

were then estimated from all available admin1 or admin2 level estimates within each country and used 256 

to extrapolate infections from LF case and death data in locations without serology data in step 3. 257 

3. Estimating LASV spillover rates 258 

For each administrative unit, we next estimated the total number of annual infections, Iii, based on the 259 

reported LF cases and deaths from 2010-2023 along with the estimated reporting fractions from the 260 

previous step using maximum likelihood estimation.  261 

4. Projecting the FOI from estimated LASV spillover rates 262 

For each administrative unit where LASV spillover infections were estimated from LF case/death data in 263 

step 3, we then projected the underlying FOI that would correspond to the estimated infection rate. The 264 

projected FOIi for each administrative unit i was obtained by minimizing the difference between the 265 

number of infections, Ii, estimated in the previous step and the expected number of infections arising 266 

from a given FOI in the reverse catalytic model from equation (2) using the optim function in R. This 267 

resulted in a posterior distribution of FOIi for each admin1 and admin2 unit. 268 

5. Estimation of Population-level Infection Histories  269 
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The FOI projections generated from serology and case data in step 4 were then used to simulate 270 

population-level infection histories for each admin1 and admin2 unit. For the FOI projections, we drew 271 

1,000 samples for each administrative unit from the posterior distribution and computed the proportion 272 

of the population that had been infected by age a using the catalytic model in equation (1), and the 273 

proportion of the population seropositive at age a using the reverse catalytic model in equation (2) for 274 

the three different seroreversion rates. 275 

6. Estimating LASV Infection and LF Attack Rates  276 

The inferred population-level infection histories and FOI estimates were then used to compute the 277 

expected number of infections in each admin1 or admin2 administrative unit. We examined several 278 

different scenarios regarding the risk of seropositive or seroreverted individuals becoming reinfected 279 

and developing LF (Table 1). Reinfection of seropositive individuals, as defined by a fourfold increase in 280 

antibody titers, was observed in Sierra Leone by McCormick et al. (1987) and in the preliminary results 281 

from the ongoing Enable study.27,14 In addition, the Enable study reported LF cases among individuals 282 

who were seropositive at baseline, indicating that prior infection does not entirely protect an individual 283 

from developing disease if they are reinfected (unpublished data).14 Therefore, we considered three 284 

scenarios for the susceptibility of seropositive individuals to symptomatic infection: (a) no risk, (b) a 285 

reduced risk informed by the rates of infection observed in seronegative vs. seropositive individuals 286 

observed by McCormick et al. (1987) and Enable (relative risk (RR) = 0.53), or (c) a reduced risk informed 287 

by the relative rates of LF cases observed in individuals who were seropositive vs. seronegative at 288 

baseline in the Enable study (RR=0.36).  289 

Table 1. Immunological parameters included in model sensitivity analysis, and the low, medium, and 290 

high values considered for each parameter. Lassa fever relative risk values are in comparison to fully 291 

susceptible individuals with no history of LASV infection. 292 

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.11.24318478doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.11.24318478


16 
 

Parameter Low Medium High 

Seroreversion rate 0% / yr 3% / yr 6% / yr 

Lassa fever relative risk 

(seropositive individuals) 

0 0.36 0.53 

Lassa fever relative risk 

(seroreverted individuals) 

0.53 - 1 

 293 

Although simple reverse catalytic models generally assume that seroreverted individuals are susceptible 294 

to reinfection, an individual may still have protection against developing moderate or severe disease 295 

even if their antibody titers have dropped below the detectable limit. At present this possibility has not 296 

been addressed for LASV, so we considered two scenarios: (a) seroreverted individuals are completely 297 

susceptible to reinfection and illness, and (b) seroreverted individuals can be reinfected but have a 298 

reduced probability of developing LF based on the reduced rate of reinfection experienced by 299 

seronegative vs. seropositive individuals (RR=0.53).  300 

Including our three seroreversion rate scenarios, we therefore consider a total of 18 (3x3x2) scenarios 301 

regarding the role of immunity in modulating susceptibility and influencing LF attack rates. The expected 302 

annual number of infections in administrative unit i were calculated from the FOIi using the reverse 303 

catalytic model in equation (2) for each of the 18 different scenarios at both the admin1 and admin2 304 

levels. The number of infections was multiplied by the symptomatic probability (20%) to obtain an 305 

estimate of the expected annual number of LF cases in each administrative unit.  306 

To account for the observed seasonality in human LF cases, we fit a beta distribution to the timing of 307 

reported LF cases in Nigeria, Liberia, and Sierra Leone, and simulated the timing of LF cases as a random 308 
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draw from that distribution. For countries where we could not estimate seasonality, we assumed an 309 

average of the observed seasonality in Nigeria, Liberia, and Sierra Leone. 310 

Modeling the FOI from covariate data 311 

There is a large degree of uncertainty in the estimated spillover rates for administrative units that have 312 

reported only a small number of LF cases due to the large proportion of asymptomatic infections and 313 

low reporting probabilities. Therefore, we used several statistical models to explore the relationships 314 

between our FOI estimates from step 4 and several key spatial covariates (Table S2). These statistical 315 

regression models were fit to the projected FOIi estimates from administrative units with either serology 316 

data or reported LF case/death data (N=77 of 164 admin1s, N=372 of 1,375 admin2s). The fitted models 317 

were then used to predict FOI in the administrative units with no serology or case data.  318 

Given that we have limited historical data and high uncertainty in our projected FOI estimates, we 319 

considered eight different statistical models, as well as a null model with a single FOI estimated across 320 

all administrative units. For each seroreversion scenario, we generated an ensemble model projection of 321 

FOI in each admin1 or admin2 from the eight statistical models. Ensemble weights for each of the eight 322 

models were calculated based on the performance of the individual model at predicting data withheld 323 

from the model fitting step using a ten-fold cross-validation technique. Further details on the individual 324 

statistical models and the ensemble approach are presented in S1 Appendix.  325 

Results 326 

Literature review 327 

Thirty-one papers were selected for in-depth literature review. Topics of interest were Lassa serology (n 328 

= 12), rodent epidemiology (n = 10), environmental risk factors and seasonality (n = 5), and LF 329 

incidence/symptomatic rates (n = 4). Studies took place in Sierra Leone (n = 7), Guinea (n = 7), Nigeria (n 330 

= 10), Ghana (n = 1), and Mali (n = 3). Three studies included all LF cases in Africa or globally (including 331 
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imported cases). Most studies were published in the last 10 years (n =21). Seven studies were published 332 

between 2000 and 2013, and three studies were from before 2000. LASV IgG seroprevalence varied 333 

from 4% to 60%; in general, rates were higher in forest and savannah regions and lower near the coast 334 

and in the highlands.40–43 Seroprevalence in rodents is similarly variable, with IgG positivity between 6-335 

52%,29,53–56 and PCR positivity between 1- 87%.58,59 One study in Guinea found that individual villages 336 

showed some interannual variation in rodent seropositivity, but that all villages studied maintained at 337 

least 20% positivity from year to year.57 Studies of seroreversion rates in Sierra Leone and Mali found 6 338 

and 3% of seropositive individuals, respectively, reverted to seronegative in a given year.23,29 It is 339 

typically assumed that 80% of Lassa fever infections are asymptomatic, but data supporting this 340 

assumption is extremely limited. All studies included are shown in Table S1. 341 

FOI estimates from serology 342 

The FOI was estimated from serology data available from 1980-2023 for 24 1st-level administrative units 343 

and 53 2nd-level administrative units. FOI was estimated for at least one administrative unit in Côte 344 

d’Ivoire, Ghana, Guinea, Liberia, Mali, Nigeria, and Sierra Leone (Figure 3). Under the assumption of no 345 

seroreversion, the highest FOI at the admin1 level was in Ondo State, Nigeria (0.036/yr; 95% Credible 346 

Interval (CrI): 0.027-0.047) and the highest FOI at the admin2 level was in Moyamba District, Sierra 347 

Leone (0.063/yr; 95% CrI: 0.042-0.090) followed by Ose LGA in Ondo State, Nigeria (0.052/yr; 95% CrI: 348 

0.037-0.071). The FOI estimates assuming annual seroreversion rates of 3% or 6% were higher than FOI 349 

estimates without seroreversion. Ondo State, Nigeria remained the highest FOI at the admin1 level, with 350 

the estimate increasing to 0.065 (95% CrI: 0.047-0.086) with a 3% seroreversion rate and 0.099/yr (95% 351 

CrI: 0.071-0.133) with a 6% seroreversion rate. At the admin2 level Ose LGA, Nigeria had the highest FOI 352 

estimate with 3% or 6% seroreversion rates, followed by Moyamba District, Sierra Leone and Esan West 353 

LGA in Edo State, Nigeria. 354 
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 355 

 356 

Figure 3. Map of areas with Lassa fever (LF) serology data. Blue areas are (A) 1st administrative level 357 

units and (B) 2nd administrative level units where age-specific serology data was available. 358 

Estimates of underreporting 359 

Estimates of the probability that a LASV infection would be reported as an LF case were estimated for 360 

each of the countries with serology and LF case data (Côte d’Ivoire, Ghana, Guinea, Liberia, Mali, Nigeria, 361 

and Sierra Leone). In addition, we estimated the average reporting probability across the study region, 362 

which was used to estimate LASV infections and FOI in countries that did not have serology data. Due to 363 
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the higher FOI estimates with seroreversion, the probability of a LASV infection being reported was 364 

highest when we assumed no seroreversion and lowest with a seroreversion rate of 6%. Assuming a 6% 365 

seroreversion rate, the average probability that a LASV infection would be reported as a LF case or death 366 

at the admin1 level was 0.18%. The country-specific reporting probability ranged from a low of 0.20% in 367 

Ghana and Guinea, to a high of 1.08% in Nigeria. At the admin2 level, the average probability that a 368 

LASV infection would be reported as a LF case or death was 2.1%. This higher reporting probability was 369 

largely driven by the results of one serology study that found low seroprevalence in two LGAs in Edo 370 

State, Nigeria that are considered transmission hotspots.75 371 

FOI projections from LF case data and reporting probabilities 372 

The projected FOI estimates from LF case data and estimated country-specific reporting probabilities 373 

varied considerably across the study region, with evidence of spatial heterogeneity within and between 374 

countries (Figure 4, Figures S1-S2). In particular, there was substantial heterogeneity in FOI estimates at 375 

the admin1 and admin2 levels within Nigeria. Because serology data were only available for 3 out of 774 376 

LGAs within Nigeria (admin2), these FOI estimates are primarily informed by the LF case and death data, 377 

which also shows significant spatial variability (e.g., see Redding et al. 2021).64 The magnitude of FOI 378 

estimates, but not their spatial distribution, varied with the seroreversion rate. 379 

 380 
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 381 

 382 

Figure 4. Maps of FOI projections from LF case/death data and reporting probabilities at the (A) 1st and 383 

(B) 2nd administrative levels with seroreversion = 6%. 384 

 385 

Estimates of FOI from individual statistical and ensemble models 386 

Among the statistical and machine learning models we explored to characterize the explanatory value of 387 

the covariates in Table S2, the random forest model provided the best fit to the projected FOI estimates 388 

at the admin1 level (r2=0.95), followed by the boosted regression model (r2=0.78; Figure 5, Figure S3). At 389 

the admin2 level, the random forest model again provided the best fit (r2=0.96), followed by the linear 390 
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model with interactions (r2=0.83; Figure S4). The Gaussian Markov random field (GMRF) models with 391 

covariates also fit the projected FOI estimates better than GMRF models without covariates (Figures S3-392 

S4) suggesting that the covariates provide some useful information. At the admin1 level, the most 393 

important covariates in the random forest model were longitude, travel time to the nearest urban 394 

center, and the Healthcare access and quality index (HAQ) (see Table S3 for full list of covariate 395 

importance). center, and the estimated probability of LASV presence in Mastomys natalensis (Table S4). 396 

At the admin2 level, the most important covariates in the random forest model were longitude, HAQ, 397 

and the 2nd precipitation PC (Table S5). The performance of the model predictions on data held out of 398 

the regression for model validation was much lower for the 1st administrative level, with random forest 399 

providing the best fit to the testing data (r2=0.32), suggesting that the models are overfitting to the 400 

training dataset (Figure S5).  The cross-validation performance of most regression models was better at 401 

the 2nd administrative unit, with the random forest model providing the best fit (r2=0.76), and the 402 

boosted regression and GMRF models with and without covariates all maintaining an r2>0.70 (Figure S6). 403 

The low ratio of data points per covariate at the admin1 level may explain the poor cross-validation 404 

performance relative to the admin2 level (N=77 for admin1 vs. N=372 for admin2). 405 

Our ensemble model consisted of a weighted combination of the FOI predictions of each individual 406 

statistical regression model, along with a noise term. The ensemble model FOI estimates at the 2nd 407 

administrative unit (Figures S7-S9) show much less spatial heterogeneity than the projected FOI 408 

estimates from LF case data and reporting probabilities (Figure 4B). This largely results from the higher 409 

weighting of the GMRF models, which include spatial smoothing (45.7% combined among the four 410 

GMRF models). This spatial smoothing results in lower FOI estimates in the few projected Nigerian 411 

hotspots, and lower within- and among-country variation in FOI estimates overall. Further details on the 412 

results of the statistical and ensemble modeling are presented in the supplement (SI Results). 413 

 414 
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 415 

 416 

Figure 5. Scatterplots showing the relationship between the statistical regression predictions of FOI on 417 

the x-axis versus the FOI estimates projected from LF case data and reporting probabilities for the best 418 

performing statistical models included in our analysis. (A) Results of random forest model, and (B) 419 

results of boosted regression tree model. Plots are restricted to FOI estimates that were used in model 420 

fitting and do not include data held out for model validation. Results are for the 1st administrative level 421 

and a 6% seroreversion rate. Grey lines around points represent error bars for both direct and 422 

regression estimates of FOI values. 423 

 424 

LASV infection attack rates and LF incidence rates 425 

Due to the positive association between the assumed seroreversion rate and FOI, the highest LASV 426 

infection attack rates and LF case incidence rates occurred in scenarios with a seroreversion rate of 6%. 427 

For a given seroreversion rate, LF case incidence rates were lowest when seropositive individuals were 428 

assumed to be protected from infection, intermediate when they had a relative risk of 0.36 for 429 
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developing LF compared to seronegative individuals, and highest when they had a relative risk of 0.53 430 

for reinfection and disease. When seroreverted individuals were assumed to have partial protection 431 

against LF, incidence rates were lower than when seroreverted individuals were assumed to be fully 432 

susceptible. Therefore, estimated LF incidence rates were highest when we assumed that seroreversion 433 

was frequent (6%), and that both seroreverted and seropositive individuals remained susceptible to 434 

infection and disease.    435 

Due to the spatial heterogeneity in our FOI estimates, the highest LF incidence rates were found at the 436 

admin2 as opposed to the admin1 level. No admin1 units had an LF incidence rate of greater than 10 per 437 

1,000 (1%) with a 0% or 3% seroreversion rate, and only Ondo State in Nigeria had an LG incidence 438 

rate >10/1,000 at a 6% seroreversion rate based on our projected FOI estimates (Table 2 and Tables 439 

S7,S9).  In general, there was a wider range of annual LF incidence rates with the projected FOI 440 

estimates than the ensemble model FOI estimates, due to the smoothing effects of the ensemble model.    441 

For example, no Nigerian states were in the top-20 using the ensemble model estimates despite Ondo, 442 

Ebonyi, and Edo States all being in the top-20 based on the projected FOI estimates. Due to the over-443 

smoothing effect observed in the ensemble model, we focus on LF incidence rates derived from the 444 

projected FOI estimates in the rest of our results. 445 

At the 2nd administrative level, LF incidence rates calculated from projected FOI estimates were >10 per 446 

1,000 for several administrative units with seroreversion rates of 3% or 6%, but not 0% (Table 3 and 447 

Tables S8,S10). While the influence of different assumptions regarding the susceptibility of seropositive 448 

and seroreverted individuals to LF was minor at lower incidence rates, their impact is more apparent for 449 

the admin2 units with the highest incidence rates (Table 3). For example, for Ose LGA, Nigeria, the 450 

admin2 with the highest FOI, the median annual LF incidence rate increased from 9.7 per 1,000 when 451 

seropositive individuals had full immunity and seroreverted individuals had partial protection, to 12.4 452 

per 1,000 when seropositive individuals were fully immune but seroreverted individuals had no 453 
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protection, to 24.7 per 1,000 when seropositive individuals were only partially immune and 454 

seroreverted individuals had no protection. Four admin2 units (two in Sierra Leone, one in Nigeria, and 455 

one in Guinea) had LF incidence rates <10 per 1,000 when seropositive individuals were fully protected, 456 

but incidence rates above 10 per 1,000 when we assume seropositive individuals were susceptible to 457 

reinfection and illness.458 
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Table 2. The top 20 highest annual Lassa Fever (LF) incidence rates (per 1,000) at the 1st administrative level when the seroreversion rate is 459 

6%. LF rates are calculated using the projected force of infection (FOI) estimates under different assumptions regarding the level of immunity in 460 

seropositive and seroreverted individuals. Values in parentheses represent 95% prediction intervals. 461 

 

Country 

 

Admin1 

Annual Lassa Fever incidence rate (per 1,000) 

Seroreverted – No Immunity Seroreverted – Partial Immunity 

Seropos. – Full 

Immunity 

Seropos. – Part. 

Immunity (Hi) 

Seropos. – Part. 

Immunity (Lo) 

Seropos. – Full 

Immunity 

Seropos. – Part. 

Immunity (Hi) 

Seropos. – Part. 

Immunity (Lo) 

Nigeria Ondo 9.6 (8.1 – 11.0) 12.9 (10.1 – 16.0) 14.5 (11.1 – 18.6) 7.8 (6.7 – 8.7) 11.1 (8.7 – 13.8) 12.7 (9.7 – 16.3) 

Mali Sikasso 7.1 (6.3 – 7.8) 8.3 (7.3 – 9.4) 9.0 (7.7 – 10.3) 6.1 (5.5 – 6.6) 7.4 (6.5 – 8.3) 8.0 (6.9 – 9.1) 

Guinea Faranah 6.3 (5.9 – 6.8) 7.5 (6.8 – 8.1) 8.0 (7.3 – 8.8) 5.4 (5.0 – 5.7) 6.5 (6.0 – 7.0) 7.1 (6.4 – 7.7) 

Sierra 

Leone Southern 6.0 (4.9 – 7.0) 7.0 (5.5 – 8.5) 7.5 (5.8 – 9.2) 5.1 (4.3 – 5.9) 6.1 (4.9 – 7.3) 6.6 (5.2 – 8.0) 

Cote 

d'Ivoire Lacs 5.1 (3.8 – 6.3) 5.7 (4.1 – 7.4) 6.0 (4.3 – 8.0) 4.4 (3.4 – 5.4) 5.1 (3.8 – 6.5) 5.4 (3.9 – 7.0) 

Guinea Nzerekore 4.3 (4.1 – 4.5) 4.8 (4.5 – 5.0) 5.0 (4.7 – 5.3) 3.9 (3.7 – 4.0) 4.3 (4.1 – 4.5) 4.5 (4.3 – 4.8) 
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Sierra 

Leone Eastern 3.9 (3.8 – 4.1) 4.3 (4.1 – 4.5) 4.5 (4.2 – 4.7) 3.5 (3.4 – 3.7) 3.9 (3.7 – 4.1) 4.1 (3.9 – 4.3) 

Nigeria Edo 2.6 (2.2 – 3.0) 2.8 (2.3 – 3.2) 2.8 (2.3 – 3.3) 2.5 (2.1 – 2.8) 2.6 (2.2 – 3.0) 2.7 (2.2 – 3.1) 

Ghana Ashanti 2.5 (1.1 – 4.6) 2.7 (1.2 – 5.1) 2.7 (1.2 – 5.4) 2.3 (1.1 – 4.0) 2.5 (1.1 – 4.5) 2.6 (1.1 – 4.8) 

Sierra 

Leone Western 2.4 (1.4 – 3.5) 2.5 (1.5 – 3.8) 2.6 (1.5 – 4.0) 2.3 (1.4 – 3.2) 2.4 (1.4 – 3.5) 2.4 (1.4 – 3.7) 

Guinea Kindia 2.3 (2.1 – 2.6) 2.4 (2.1 – 2.8) 2.5 (2.2 – 2.8) 2.2 (1.9 – 2.4) 2.3 (2.0 – 2.6) 2.4 (2.1 – 2.7) 

Sierra 

Leone Northern 2.2 (2.1 – 2.4) 2.4 (2.2 – 2.5) 2.4 (2.2 – 2.6) 2.1 (2.0 – 2.3) 2.2 (2.0 – 2.4) 2.3 (2.1 – 2.4) 

Ghana Eastern 2.2 (1.1 – 3.7) 2.3 (1.2 – 4.0) 2.4 (1.2 – 4.2) 2.1 (1.1 – 3.3) 2.2 (1.1 – 3.6) 2.2 (1.1 – 3.8) 

Guinea Kankan 2.2 (1.7 – 2.7) 2.3 (1.7 – 2.9) 2.3 (1.7 – 3.0) 2.0 (1.6 – 2.5) 2.1 (1.6 – 2.7) 2.2 (1.7 – 2.8) 

Liberia Grand Bassa 2.2 (0.4 – 7.0) 2.3 (0.4 – 8.5) 2.3 (0.4 – 9.2) 2.0 (0.4 – 5.8) 2.2 (0.4 – 7.4) 2.2 (0.4 – 8.0) 

Liberia Bong 1.8 (0.3 – 7.0) 1.9 (0.3 – 8.5) 2.0 (0.3 – 9.1) 1.7 (0.3 – 5.8) 1.8 (0.3 – 7.3) 1.9 (0.3 – 8.0) 

Nigeria Borno 1.5 (1.0 – 2.2) 1.6 (1.1 – 2.3) 1.6 (1.1 – 2.3) 1.5 (1.0 – 2.0) 1.5 (1.0 – 2.1) 1.5 (1.0 – 2.2) 

Guinea Labe 1.3 (0.8 – 1.9) 1.3 (0.8 – 2.0) 1.3 (0.8 – 2.0) 1.2 (0.8 – 1.8) 1.3 (0.8 – 1.9) 1.3 (0.8 – 1.9) 

Nigeria Ebonyi 1.3 (0.2 – 7.4) 1.3 (0.2 – 9.0) 1.3 (0.2 – 9.8) 1.2 (0.2 – 6.2) 1.2 (0.2 – 7.8) 1.3 (0.2 – 8.5) 

Guinea Boke 1.1 (0.7 – 1.8) 1.2 (0.7 – 1.8) 1.2 (0.7 – 1.9) 1.1 (0.7 – 1.7) 1.1 (0.7 – 1.7) 1.1 (0.7 – 1.8) 

462 
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Table 3. The top 20 highest annual Lassa Fever (LF) incidence rates (per 1,000) at the 2nd administrative level when the seroreversion rate is 463 

6%. LF rates are calculated using the projected force of infection (FOI) estimates under different assumptions regarding the level of immunity in 464 

seropositive and seroreverted individuals. Values in parentheses represent 95% prediction intervals. 465 

 

Country 

 

Admin1 

 

Admin2 

Annual Lassa Fever incidence rate (per 1,000) 

Seroreverted – No Immunity Seroreverted – Partial Immunity 

Seropos. – Full 

Immunity 

Seropos. – Part. 

Immunity (Hi) 

Seropos. – Part. 

Immunity (Lo) 

Seropos. – Full 

Immunity 

Seropos. – Part. 

Immunity (Hi) 

Seropos. – Part. 

Immunity (Lo) 

Nigeria Ondo Ose 12.4 (10.1 – 13.8) 20.7 (14.1 –28.2) 24.7 (15.9 – 35.2) 9.7 (8.1 – 10.6) 18.0 (12.1 – 25.1) 22.0 (14.1 – 32.0) 

Sierra 

Leone Southern Moyamba 11.2 (9.5 – 12.5) 17.6 (13.0 – 22.7) 20.7 (14.7 – 27.6) 8.7 (7.6 – 9.5) 15.0 (11.1 – 19.8) 18.2 (12.7 – 24.7) 

Nigeria Edo Esan West 9.7 (8.3 – 10.9) 13.2 (10.5 – 16.0) 14.9 (11.4 – 18.5) 7.9 (6.8 – 8.7) 11.3 (9.0 – 13.8) 13.0 (10.0 – 16.2) 

Sierra 

Leone Northern Bombali 9.5 (5.8 – 12.2) 13.1 (6.7 – 21.4) 14.9 (7.2 – 25.9) 7.6 (5.0 – 9.3) 11.2 (5.8 – 18.6) 12.9 (6.3 – 23.0) 

Sierra 

Leone Northern Koinadugu 9.1 (2.2 -13.1) 12.2 (2.3 – 27.0) 13.8 (2.4 – 33.6) 7.3 (2.1 – 9.9) 10.4 (2.1 – 23.8) 12.0 (2.2 – 30.6) 

Guinea Nzerekore Macenta 9.0 (8.2 – 9.6) 11.8 (10.5 – 13.3) 13.2 (11.6 – 15.0) 7.2 (6.7 – 7.7) 10.1 (9.0 – 11.3) 11.5 (10.0 – 13.0) 
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Mali Sikasso Bougouni 7.0 (6.3 – 7.8) 8.3 (7.3 –9.4) 8.9 (7.8 – 10.2) 6.1 (5.5 – 6.6) 7.3 (6.5 – 8.3) 8.0 (6.9 – 9.1) 

Guinea Faranah Faranah 6.3 (5.8 – 6.8) 7.4 (6.8 – 8.1) 8.0 (7.2 – 8.8) 5.4 (5.0 – 5.7) 6.5 (5.9 – 7.1) 7.0 (6.4 – 7.7) 

Sierra 

Leone Southern Pujehun 6.3 (2.0 – 10.7) 7.4 (2.1 – 15.9) 7.9 (2.1 – 18.4) 5.4 (1.9 – 8.3) 6.5 (2.0 – 13.5) 7.0 (2.1 – 16.1) 

Nigeria Ondo Owo 5.9 (3.6 – 8.2) 6.7 (3.9 – 10.2) 7.1 (4.0 – 11.2) 5.1 (3.3 – 6.7) 5.9 (3.5 – 8.8) 6.4 (3.6 – 9.8) 

Sierra 

Leone Eastern Kailahun 5.6 (3.4 – 7.8) 6.4 (3.7 – 9.6) 6.8 (3.8 – 10.6) 4.8 (3.1 – 6.4) 5.6 (3.4 – 8.3) 6.0 (3.5 – 9.2) 

Cote 

d'Ivoire Montagnes Cavally 5.3 (3.7 – 6.9) 6.0 (4.1 – 8.3) 6.4 (4.2 – 9.0) 4.6 (3.4 – 5.8) 5.3 (3.7 – 7.2) 5.7 (3.9 – 7.9) 

Sierra 

Leone Eastern Kono 5.1 (0.2 – 12.1) 5.7 (0.2 – 20.9) 6.0 (0.2 – 25.2) 4.5 (0.2 – 0.2) 5.1 (0.2 – 18.0) 5.4 (0.2 – 22.5) 

Sierra 

Leone Western 

Western 

Rural 5.0 (0.1 – 12.2) 5.7 (0.1 – 21.0) 5.9 (0.1 – 25.5) 4.4 (0.1 – 9.3) 5.0 (0.1 – 18.2) 5.3 (0.1 – 22.4) 

Guinea Kindia Kindia 4.9 (4.0 – 5.9) 5.5 (4.4 – 6.8) 5.8 (4.5 – 7.2) 4.3 (3.6 – 5.1) 4.9 (3.9 – 5.9) 5.2 (4.1 – 6.4) 

Guinea Nzerekore Gueckedou 4.6 (4.3 – 5.0) 5.1 (4.7 – 5.6) 5.4 (4.9 – 5.9) 4.1 (3.8 – 4.4) 4.6 (4.3 – 5.0) 4.9 (4.5 – 5.3) 

Guinea Nzerekore Lola 4.4 (3.8 – 5.1) 4.9 (4.2 – 5.7) 5.1 (4.3 – 6.0) 3.9 (3.5 – 4.4) 4.4 (3.8 – 5.1) 4.6 (3.9 – 5.4) 
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Cote 

d'Ivoire Montagnes Guemon 4.4 (2.3 – 6.9) 4.8 (2.4 – 8.3) 5.1 (2.4 – 8.9) 3.9 (2.2 – 5.8) 4.4 (2.2 – 7.2) 4.6 (2.3 – 7.9) 

Guinea Nzerekore Yamou 4.2 (3.7 – 4.7) 4.6 (4.0 – 5.3) 4.8 (4.2 – 5.5) 3.8 (3.4 – 4.2) 4.2 (3.7 – 4.7) 4.4 (3.8 – 4.9) 

Sierra 

Leone Eastern Kenema 3.9 (3.7 – 4.1) 4.3 (4.0 – 4.5) 4.5 (4.2 – 4.7) 3.5 (3.4 – 3.7) 3.9 (3.7 – 4.1) 4.1 (3.8 – 4.3) 

 466 

 467 
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The age-specific infection histories calculated using the projected and ensemble FOI estimates can also 468 

be used to calculate annual LF incidence rates for specific age groups. LF incidence rates decrease with 469 

age as the likelihood of a previous infection and at least partial protection from infection and disease 470 

increases (Figure 6). 471 

 472 

473 

Figure 6. Age-group specific annual Lassa Fever (LF) incidence rates per 1,000 in the ten 2nd 474 

administrative units with the highest incidence. Incidence calculated using projected FOI estimates from 475 

LF case data and estimated reporting probabilities and assuming a seroreversion rate of 6%, seropositive 476 

individuals have partial protection from reinfection and disease (RR=0.53), and seroreverted individuals 477 

are partially protected (RR=0.36) from reinfections and disease. Boxes represent interquartile range 478 

(IQR) and lines the 95% prediction interval. 479 

Interannual variability in incidence 480 
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The 1,000 samples from the posterior distribution of the projected FOI estimates incorporate both the 481 

uncertainty and the interannual variability in our FOI estimates and the corresponding annual LF 482 

incidence rates. Figure (7) provides an example of the variability in LF incidence rates (per 1,000) for the 483 

nine highest incidence admin2 units under a scenario where the seroreversion rate is 6%, seroprotected 484 

individuals have a relative risk = 0.36 of developing LF if infected, and seroreverted individuals are also 485 

partially susceptible to reinfection and disease (relative risk = 0.53). The variation in LF incidence rates is 486 

highest for locations where FOI was estimated from LF case data and reporting probabilities only (no 487 

serology data) because these estimates incorporate uncertainty in reporting probabilities in addition to 488 

interannual variability. Locations where FOI estimates were informed by serology data, such as Macenta 489 

and Faranah Districts in Guinea and Sikasso District in Mali, have lower uncertainty. However, even in 490 

these locations, the estimated annual LF incidence rate can vary by 10-50% from year-to-year. For 491 

example, the narrowest estimated range in annual LF incidence is in Faranah District, Guinea with a 492 

median annual incidence of 7.0 per 1,000 (95% CrI: 6.4-7.7), where 95% of years would be expected to 493 

be within +/- 10% of the median value. Esan West LGA in Edo State, Nigeria has a median LF incidence 494 

rate of 13.0 per 1,000 (95% CrI: 10.0-16.2), with variability of +/- 25% from the median. An example of a 495 

location with a high uncertainty and interannual variability is Ose LGA in Ondo State, Nigeria which has a 496 

median annual LF incidence rate of 22.0 per 1,000 (95% CrI: 14.1-32.0) with variability of approximately 497 

+/- 50%. 498 

Seasonality 499 

Reported LF cases in Nigeria and Liberia, and to a lesser extent in Sierra Leone, show a clear seasonal 500 

pattern with a peak in cases in January to March (Figure 8). Liberia also shows a secondary peak later in 501 

the year, although this may be part of the January peak in cases. In Sierra Leone, LF cases peak in March, 502 

but there appears to be considerable transmission throughout the year. 503 
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Figure 7. Posterior distribution of annual Lassa fever (LF) case incidence rates in the nine highest admin2 512 

units. LF incidence estimates are based on projected FOI estimates from LF case data and reporting 513 

probabilities. Results presented are for a scenario with 6% seroreversion rate, partial protection against 514 

reinfection and disease in seropositive individuals (relative risk = 0.36), and partial protection against 515 

reinfection or disease among seroreverted individuals (RR = 0.53). The red dashed line is the median of 516 

the posterior distribution. 517 

 518 

 519 

Figure 8. Seasonality of LF incidence in (A) Nigeria, (B) Liberia, (C) Sierra Leone, and (D) averaged across 520 

these three countries. Blue line represents a generalized additive model with a cyclical cubic regression 521 

spline fit to the weekly fraction of annual cases (grey represents the 95% confidence interval). 522 

 523 
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Discussion 524 

Using a modeling framework that incorporated LF serology, case, and death data, we found considerable 525 

spatial variation in LASV spillover and LF incidence across West Africa, with the highest incidence rates in 526 

areas within Nigeria, Sierra Leone, and Guinea. We also estimate that as few as 0.2% of LASV infections 527 

are captured by current surveillance systems. These results represent the most extensive and 528 

geographically detailed estimates of LF surveillance and incidence across the entire endemic range in 529 

West Africa to date. Our LF incidence estimates were sensitive to assumptions about the duration and 530 

strength of infection-induced immunity. LF incidence rates were particularly sensitive to the rate of 531 

seroreversion among previously infected individuals because this value affects both susceptibility to 532 

reinfection and the interpretation of serology data. Our spatial LF incidence rate estimates, along with 533 

the interannual and seasonal variability in these estimates, could be used to target high incidence areas 534 

suitable for inclusion in a vaccine trial and estimate expected trial event rates. However, the 535 

uncertainties in our LF incidence estimates highlight critical knowledge gaps regarding the number of 536 

asymptomatic and mild LASV infections that go undetected and the extent to which these infections 537 

provide long-lasting immunity.  538 

Our estimates of LF incidence rates indicate that there are few 1st or 2nd level administrative districts 539 

where the predicted attack rate would be at least 1% as is desired for vaccine field trials. Our estimates 540 

assumed that 20% of LASV infections are symptomatic, as frequently reported. However, if substantially 541 

fewer than 20% of infections are captured by active syndromic surveillance, as has initially been 542 

reported for the Enable study, then none of these districts would be likely to reach an LF attack rate of 543 

1%.15 Therefore, ensuring sufficient statistical power may require a large increase in the number of 544 

individuals enrolled in a field trial. One alternative to increasing the size of the study population would 545 

be to use protection against infection as a primary endpoint instead of protection against symptomatic 546 

disease. Due to the high number of asymptomatic infections, active monitoring for seroconversion—547 
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while more difficult and costly than symptom-based surveillance methods—would increase the number 548 

of expected endpoints without increasing the size of the study population. Another option would be to 549 

adopt a responsive trial design that employed ring vaccination or a similar strategy to focus study efforts 550 

on locations with active transmission. Given the focal nature of LF spillover to humans, and the 551 

substantial interannual and seasonal variation in incidence, such a strategy would ensure that areas of 552 

active transmission are targeted.23,40,46 553 

Trial site selection also needs to account for the baseline seroprevalence in a target population as that 554 

will influence the fraction of the population that is susceptible to infection. Locations with high baseline 555 

seroprevalence may experience few LF cases even if LASV is actively circulating in the rodent population. 556 

However, there is considerable uncertainty about the duration of immunity to LASV, and several studies 557 

suggest that seroreversion is relatively common.23,24,76 Assumptions about the seroreversion rate had 558 

the largest impact on estimated LF incidence among the different immunological scenarios included in 559 

our analysis. Without seroreversion, our FOI estimates were too low for the resulting annual LF 560 

incidence rates to exceed 10 per 1,000 (1%) anywhere within the study region. Further results from the 561 

longitudinal serology samples from the Enable study should help refine our understanding of 562 

seroreversion rates and whether they vary by location or age.  563 

The level of protection against reinfection and disease among both seropositive and seroreverted 564 

individuals also influenced expected LF incidence rates in our model, with higher levels of protection 565 

against disease resulting in lower expected incidence rates. The different scenarios explored in our 566 

model could be leveraged to select the most plausible scenario for estimating event rates in a particular 567 

site and target population. This model can also be used to explore how LF incidence rates vary by both 568 

age and serostatus under different assumptions regarding how serostatus affects susceptibility to 569 

(re-)infection and disease, which can help to inform selection of a target population and trial size 570 

calculations. Results from the Enable study will also help refine future model scenarios regarding the 571 
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role of immunity and serostatus, as the study will report relative LF incidence rates among individuals 572 

who were seropositive or seronegative at baseline (or in the previous sampling period) and may also be 573 

able to capture the reinfection and LF incidence rates among individuals who serorevert over the course 574 

of the study. 575 

Our model projections represent the most extensive and geographically detailed estimates of LF 576 

surveillance and incidence across the entire endemic range in West Africa to date. Previous modeling 577 

studies have generated fine-scale maps of the likely distribution of LASV, but have not estimated LF 578 

incidence rates or seroprevalence in the human population.26,28,51 Basinski et al. (2021) modeled LASV 579 

risk in rodents and then fit a regression model of this risk measure against historical seroprevalence data 580 

to generate fine-scale estimates of LASV seroprevalence in the human population.25 However, their 581 

study did not incorporate LF incidence data or account for certain epidemiological features of LF in 582 

generating these estimates. Our projected FOI estimates and modeled annual LF incidence rates indicate 583 

that Sierra Leone, southern Guinea near the border with Sierra Leone and Liberia, and a few high 584 

incidence regions within Nigeria would likely yield the highest LF case incidence rates during a vaccine 585 

trial. Comparisons of our estimates at the 1st and 2nd administrative levels show that there is 586 

considerable spatial heterogeneity among different admin2s within the same 1st administrative unit 587 

(particularly in Nigeria, Guinea, and Mali), and therefore predictions from the 2nd administrative level 588 

are likely to be more useful for site selection.  589 

The 2nd administrative level FOI estimates that were projected from LF case data and reporting 590 

probabilities appear to be more accurate than the FOI estimates from our ensemble model that used 591 

spatial covariates to improve model predictions in areas lacking data, particularly in areas that are 592 

projected to have the highest incidence. The ensemble model smoothed over the spatial heterogeneity 593 

in FOI to an extent that lowered the incidence rate in some regions with a high number of reported 594 

cases and deaths, particularly in Edo and Ondo states in Nigeria. Therefore, at present, the projected FOI 595 
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estimates likely provide more reliable estimates for field trial site selection than the estimates from the 596 

ensemble model. Further model refinements, including model selection techniques to determine the 597 

most influential spatial covariates, and further model validation using serology data from the literature 598 

and forthcoming Enable results could improve the ensemble model predictions. However, regression 599 

analyses and ensemble modeling methods are most useful for predicting incidence where data is sparse 600 

and the relationship between the response variable (incidence) and the explanatory variables is strong. 601 

There is still a lot of uncertainty about what conditions distinguish areas with high LASV spillover rates 602 

from areas with similar environmental conditions and where Mastomys spp. are present, but spillover is 603 

rare or nonexistent. Hopefully additional field studies and serological surveys will help explain these 604 

discrepancies, but at present we lack the ability to predict the occurrence of LF at a fine spatial scale 605 

outside of the well-documented hotspots of transmission. In the absence of this ability, our admin2 606 

incidence estimates could help identify broader regions to target for vaccine trials, and baseline serology 607 

surveys can be conducted at the local level to confirm LASV spillover in the area. In particular, evidence 608 

of past infection in younger children would indicate recent transmission. 609 

Our modeling framework did incorporate estimation of country specific LF case and death reporting 610 

probabilities, but it also seems unlikely that areas within the study region that haven’t reported any LF 611 

cases or deaths have as high a burden of LF as the known hotspots in Nigeria, Sierra Leone, Guinea, and 612 

Liberia. The burden of LF outside of the known hotspots is an important outstanding question, but it is 613 

likely that observed spatial patterns of reported LF cases and deaths reflect at least some important 614 

differences in the spatial distribution of the disease. Although mild and moderate LF cases are difficult to 615 

distinguish from other febrile illnesses such as malaria, severe LF cases requiring hospitalization have 616 

been associated with nosocomial outbreaks in Nigeria, Sierra Leone, and Liberia, but not in other areas 617 

West Africa.77–79 A seroprevalence study in multiple locations within Ghana, and preliminary 618 

seroprevalence results from the Enable site in Benin also suggest that transmission is lower in these 619 
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countries than it is in the known hotspots for transmission.51 However, high seroprevalence were 620 

recently observed in southern Mali, suggesting that there may be undocumented areas of LF incidence 621 

outside of the historical hotspots.80,81 622 

Model limitations 623 

Despite recent efforts to prioritize the study of LF, there are still many unknowns, which limit the 624 

predictive power of our model. LF incidence rates vary significantly based on many confluent factors, 625 

and the limited number of longitudinal and broad scale studies makes it difficult to draw significant 626 

conclusions about the risk of LF in a particular time and place. Our model does not account for non-627 

epidemiological considerations that may influence site selection, such as the strength of the existing 628 

local or national health infrastructure system, political stability, or cultural barriers to trial 629 

implementation. However, the model results can be used to rank potential trial sites by expected LF 630 

incidence rates and seroprevalence (e.g., expected serostatus by age group), and then other factors can 631 

be used to select appropriate trial sites from locations with suitable characteristics. 632 

The current model also cannot estimate the geographical variation in expected LF incidence rates within 633 

a given 2nd administrative area. Past serology studies in Guinea and Sierra Leone, and preliminary results 634 

from the Enable study, show that seroprevalence rates can vary significantly from village to village 635 

within the same state or district.23,40,46 However, the identification of risk factors associated with small-636 

scale variations in seroprevalence, infection attack rates, or LF incidence have been inconsistent, limiting 637 

our ability to predict high incidence areas within a given administrative region. The Enable study will 638 

provide some additional context on this finer-scale heterogeneity in attack rates and incidence due to 639 

the large sample size and the relatively high number of villages sampled. However, the targeted criteria 640 

used for site selection may limit our ability to extrapolate the study results beyond these study sites. 641 

Variation in our estimated LF incidence rates for a given location results from a combination of 642 
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parameter uncertainty and interannual variability in reported LF cases and deaths. Longitudinal 643 

serological or incidence data was insufficient to explicitly estimate interannual variability across the 644 

study area.  645 

Conclusions 646 

Our modeling framework enabled us to leverage multiple data sources to estimate LF incidence at the 647 

2nd administrative level across West Africa. Expected incidence varied considerably and showed marked 648 

geographic variation across spatial scales. Although an ensemble of regression models showed 649 

moderate success at predicted incidence based on environmental and socioeconomic data, it tended to 650 

underestimate incidence in high-risk regions, which are the most relevant for disease control and 651 

vaccine trial planning. Our work highlights the importance of ecological and immunological factors and 652 

underscores large uncertainties in our understanding of LF epidemiology. Our findings emphasize the 653 

need for more prospective data (e.g., the Enable study), particularly regarding the fraction of infections 654 

that are detectable by syndromic surveillance and the duration of infection-induced immunity. At the 655 

scales considered, very few locations in West Africa are predicted to experience LF incidence at the 656 

levels needed to conduct a vaccine efficacy trial (annual incidence of at least 10 per 1000). Designs 657 

would need to accommodate low disease incidence (e.g., preparatory observational studies and active 658 

monitoring for asymptomatic infections) or look to prospectively enrich the trial population with at risk 659 

individuals (e.g., ring vaccination). Our modeling framework is designed to be updated iteratively with 660 

future serological survey data and LF surveillance data. Our estimated incidence rates are intended to 661 

assist with trial site selection, sample size calculations, and the decisions regarding the appropriate 662 

target population and primary endpoint. 663 
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S1 Appendix 686 

Model Details 687 

1. Estimating the Force of Infection from Serology Data 688 

For administrative units with serology data binned by age group, we calculated the likelihood of the FOI 689 

(λ) based on the number of individuals between ages a1 and a2 (the upper and lower bounds of the age 690 

group) who tested positive, P(a1:2), out of the total number sampled, T(a1:2). The likelihood was 691 

calculated for each age between a1 and a2 assuming a binomial distribution, P(a1:2) ~ 692 

Binomial(T(a1:2),p(a)) where p(a) is the probability that an individual was seropositive as determined by 693 

equation (2). We then took a weighted average of the likelihood for each age group, with the weighting 694 

determined by the proportion of the population in that administrative unit in each age within the age 695 

group. We calculated the likelihood of the overall FOI (λi) in administrative unit i by summing the logs of 696 

the binomial probabilities of Pi(a1:2) across all age groups in a given seroprevalence dataset. The 697 

likelihood of a given FOI (λi) for each administrative unit i was calculated across a range of values 698 

between 10-6 and 101. We then fit a gamma distribution using the optim function in R to estimate shape 699 

and scale parameters representing the mean and variance in FOI (λi), and these parameters were used 700 

as inputs to the subsequent steps in the modeling framework. 701 

2. Estimating Country-specific Reporting Fractions 702 

For each administrative unit where the FOI was estimated from serological data in the previous step, we 703 

estimated the fraction of LF infections from 2010-2023 that went unreported based on the discrepancy 704 

between reported LF cases and deaths and the number of infections predicted by the FOI estimates 705 

from those sites under the three different seroreversion scenarios. We assume that all individuals within 706 

an administrative unit are at risk of LASV infection and that each individual has the potential to fall into 707 
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one of three categories during the study period: an observed LF case, an observed LF death, or 708 

unobserved. The unobserved category includes both individuals who were not infected and individuals 709 

who had an unobserved LASV infection (either because it was an asymptomatic infection or was an LF 710 

case/death that was not reported). We therefore modeled the distribution of person-years from 2010-711 

2023 across these three categories: observed deaths, D; observed cases, C; and the total unobserved 712 

person-years, N. For administrative unit i, the total unobserved person-years, Ni, is calculated as Ni = Yi – 713 

Ci – Di, where Yi = ΣPopi is the sum of the annual population sizes from 2010-2023. The probability that a 714 

person of age a in year y would die from LF and be reported as such was, 715 

Pr(𝑟𝑟𝑒𝑒𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 𝑟𝑟𝑒𝑒𝑎𝑎𝑟𝑟ℎ,𝑎𝑎 |𝜆𝜆𝑖𝑖 ,𝑈𝑈𝑖𝑖 ,𝜌𝜌𝐷𝐷 ,π) = �1 − 𝑝𝑝(𝑎𝑎)�
λ

λ + π
�1 − 𝑒𝑒−(λ+π)�(1 − 𝑈𝑈𝑖𝑖)𝜌𝜌𝐷𝐷,      (𝐴𝐴1) 716 

where Ui is the proportion of infections that are unobserved in location i and ρD is the proportion of 717 

observed infections that result in death. Equation A1 represents the probability that an individual was 718 

susceptible at time y, and subsequently becomes infected in year y (based on the FOI, λ) and 719 

experienced an infection that was both observed and resulted in death. The probability of a reported 720 

case was the same as equation (A1) but with ρD replaced by 1 − ρD. The probability of an unobserved 721 

person-year, Pr(𝑢𝑢𝑢𝑢𝑟𝑟𝑒𝑒𝑝𝑝𝑟𝑟𝑟𝑟𝑟𝑟𝑒𝑒𝑟𝑟 𝑝𝑝𝑒𝑒𝑟𝑟𝑝𝑝𝑟𝑟𝑢𝑢~𝑦𝑦𝑒𝑒𝑎𝑎𝑟𝑟,𝑎𝑎 |𝜆𝜆𝑖𝑖 ,𝑈𝑈𝑖𝑖 ,π), takes into account the multiple ways in which 722 

a person-year would not result in a reported death or case, including currently being immune due to a 723 

past infection, by not being infected during the study time period from 2010-2023, or by being infected 724 

in year y but not being reported. From Pr(reported death), Pr(reported case), and Pr(unreported person-725 

year) we calculate the probability of Di, Ci, and Ni among Yi total person-years, Pr(Di, Ci, Ni |𝜆𝜆𝑖𝑖, 𝑈𝑈𝑖𝑖 ,𝜌𝜌𝐷𝐷), 726 

using a multinomial distribution. Given estimates of λi from step 1, we used this distribution to estimate 727 

the parameter Ui for each i, and country-specific values for 𝜌𝜌𝐷𝐷. The log likelihood of Ui and 𝜌𝜌𝐷𝐷 was 728 

calculated by summing the logs of the probabilities from Pr(Di, Ci, Ni |𝜆𝜆𝑖𝑖, 𝑈𝑈𝑖𝑖 ,𝜌𝜌𝐷𝐷) assuming 729 

noninformative priors between 0 and 1 for all Ui  and a beta-distributed prior for 𝜌𝜌𝐷𝐷 with shape 730 
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parameters 2.05 and 6.85. The posterior distributions of the parameters were then sampled using the 731 

BayesianTools package in R. 732 

To extrapolate reporting fractions beyond the few administrative units with both serological and 733 

case/death data, we fit a Dirichlet distribution to the posterior predictions of the proportions of 734 

infections that result in a reported death, a reported case, or an unreported infection. For each draw j 735 

from the posterior, the proportions of reported deaths, reported cases, and unreported infections were 736 

calculated respectively as �1 − 𝑈𝑈�𝑗𝑗�𝜌𝜌𝐷𝐷,𝑗𝑗, ( 1 −  𝜌𝜌𝐷𝐷,𝑗𝑗), and 𝑈𝑈�𝑗𝑗; with 𝑈𝑈�𝑗𝑗   𝜌𝜌𝐷𝐷,𝑗𝑗  representing the country-737 

specific averages across all sites i within a country for each draw j from the posterior distribution. The 738 

corresponding Dirichlet parameters associated with reported cases, reported deaths, and unreported 739 

infections were 𝛼𝛼𝐷𝐷, 𝛼𝛼𝐶𝐶, and 𝛼𝛼𝑈𝑈. We estimated these Dirichlet parameters by maximum likelihood using 740 

the optim function in R, treating posterior predictions of the proportion of infections that result in a 741 

reported death, a reported case, or an unreported infection as data points drawn from the Dirichlet 742 

distribution being fitted. 743 

3. Estimating LASV spillover rates 744 

For each administrative unit we next estimated the total number of annual infections, Ii, based on the 745 

reported LF cases and deaths from 2010-2023 along with the estimated reporting probabilities from the 746 

previous step. The likelihood of a given number infections, Ii, in administrative unit i was calculated using 747 

the Dirichlet-multinomial probability of obtaining the reported deaths, Di, and reported cases, Ci, and Ii - 748 

Di - Ci unobserved infections following Ii draws of those categories according to Dirichlet-distributed 749 

probabilities with parameters αD, αC, and αU from step 2: 750 

𝐿𝐿(𝐼𝐼𝑖𝑖|𝐶𝐶𝑖𝑖 ,𝐷𝐷𝑖𝑖 ,𝛼𝛼𝐷𝐷,𝛼𝛼𝐶𝐶 ,𝛼𝛼𝑈𝑈) = Pr(𝐷𝐷𝑖𝑖 ,𝐶𝐶𝑖𝑖 , 𝐼𝐼𝑖𝑖 − 𝐷𝐷𝑖𝑖 − 𝐶𝐶𝑖𝑖|𝐼𝐼𝑖𝑖 ,𝛼𝛼𝐷𝐷,𝛼𝛼𝐶𝐶 ,𝛼𝛼𝑈𝑈). 751 

We normalized the likelihoods from this equation across all values of Ii  to obtain posterior probabilities 752 

of each Ii, which we used to obtain a set of posterior samples of Ii for each admin1 and admin2 unit. 753 
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4. Projecting the Force of Infection from estimated LASV spillover rates 754 

For each administrative unit where LASV spillover infections were estimated from LF case/death data, 755 

we projected the underlying FOI that would correspond to the estimated infection rate. The projected 756 

FOIi for each administrative unit i was obtained by minimizing the difference between the number of 757 

infections, Ii, estimated in the previous step and the expected number of infections arising from a given 758 

FOI in the reverse catalytic model from equation (2) using the optim function in R. This resulted in a 759 

posterior distribution of FOIi for each admin1 and admin2 unit. 760 

5. Estimation of Population-level Infection Histories  761 

The FOI projections generated from serology and case data in step 4 were next used to simulate 762 

population-level infection histories for each admin1 and admin2 unit. For the FOI projections, we drew 763 

1000 samples for each administrative unit from the posterior distribution using the estimated shape and 764 

scale parameters from the gamma distribution estimated in step 1.  For each value FOIi,j, (where j=1000 765 

is the sample set) we computed the proportion of the population in administrative unit i that had been 766 

infected by age a using the catalytic model in equation (1), and the proportion of the population 767 

seropositive at age a using the reverse catalytic model in equation (2). 768 

6. Estimating LASV Infection and LF Attack Rates  769 

The population-level infection histories and FOI estimates were then used to compute the expected 770 

number of infections in each administrative unit i. We examined several different scenarios regarding 771 

the risk of seropositive or seroreverted individuals becoming reinfected and developing LF as described 772 

in the Methods section of the main text. The expected annual number of infections in administrative 773 

unit i were calculated from the FOIi using the reverse catalytic model for each of the 18 different 774 

scenarios at both the admin1 and admin2 levels. The number of infections was multiplied by the 775 
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symptomatic probability (20%) to obtain an estimate of the expected number of LF cases in each 776 

administrative unit.  777 

Modeling the Force of Infection from Covariate Data 778 

The estimation of LASV spillover rates and the projection of the FOI from these spillover rates was 779 

performed for all admin1 and admin2 administrative units within the study region. However, LF cases or 780 

deaths have been reported in <50% of administrative units within the region (Figure 1), and infection 781 

estimates for these administrative units without any reporting are contingent on our estimated 782 

underreporting probabilities. In addition, there is also a large degree of uncertainty in the true spillover 783 

rate in administrative units that have reported only a small number of LF cases due to the large 784 

proportion of asymptomatic infections and low reporting probabilities. Therefore, we used several 785 

statistical models to explore the relationships between our FOIi estimates from step 4 and several key 786 

spatial covariates (Supplemental Table S2). These models were fit to the projected FOIi estimates from 787 

administrative units with either serology data or reported LF case/death data (N=77 of 164 admin1s, 788 

N=372 of 1375 admin2s). The fitted models were then used to predict FOI in the administrative units 789 

with no serology or case data. Given that we have a relatively small dataset and high uncertainty in our 790 

projected FOI estimates, we considered eight different models, as well as a null model with a single FOI 791 

estimated across all administrative units. The first two models were linear regression models with or 792 

without two-way interaction terms between covariates. We also considered four different Gaussian 793 

Markov random field (GMRF) models: two with no covariates and two with linear effects of the 794 

covariates. GMRF models use a minimum mean squared error linear prediction with spatial covariance 795 

for spatial prediction or interpolation82. The GMRF models with or without linear effects for the 796 

covariates were run at two spatial resolutions: a low resolution (k=10 free parameters for admin1 and 797 

k=25 for admin2) or high resolution (k=40 for admin1 and k=100 for admin2). The seventh model was a 798 
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random forest model implemented in R with the randomForest package. The eighth, and final, model 799 

was a boosted regression model implemented in R with the gbm package. 800 

For each of the models we took 1000 samples from the posterior distributions of FOIi from step 4 and 801 

regressed log10 FOI against the covariates (where applicable), resulting in 1000 separate fits per model. 802 

The predicted values for both the fitted and unfitted administrative units from each model were then 803 

treated as point estimates to construct a set of 1000 posterior samples of FOIi for each administrative 804 

unit and each model. 805 

Ensemble model 806 

For each seroreversion scenario, we generated an ensemble model projection of FOI in each admin1 or 807 

admin2 using a form of stacked generalization83. Stacked generalization treats the eight statistical 808 

models as being at one level and uses the first-level models to generate a higher-order model that 809 

weights the predictions of the first-level models into its own prediction. The performance of each first-810 

level model was assessed using a ten-fold cross-validation technique, with 90% of the data partitioned 811 

into the training set to fit the model, and the remaining 10% withheld for model validation. This process 812 

was performed ten times, with a different 10% of the dataset withheld for validation each time. Model 813 

performance was then assessed based on the model predictions on the withheld data and ensemble 814 

weights for each model were calculated based on relative model performance.  815 

 816 

  817 
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S1 Results 818 

1. Statistical and ensemble model results 819 

At the admin1 level, the most important covariates in the random forest model were longitude, travel 820 

time to the nearest urban center, and the Healthcare access and quality index (HAQ) (Table S3). The 821 

most influential covariates in the boosted regression model were longitude, travel time to the nearest 822 

urban center, and the estimated probability of LASV presence in Mastomys natalensis (Table S4). At the 823 

admin2 level, the most important covariates in the random forest model were longitude, HAQ, and the 824 

2nd precipitation PC (Table S5). The covariates with the largest t-values in the linear model with 825 

interactions were longitude, the fraction of forest loss since 2000, and percentage of tropical habitat 826 

(Table S6). 827 

The performance of the model predictions on data held out of the regression for model validation was 828 

much lower for the 1st administrative level, with random forest providing the best fit to the testing data 829 

(r2=0.32), suggesting that the models are overfitting to the training dataset (Figure S5).  The cross-830 

validation performance of most regression models was better at the 2nd administrative unit, with the 831 

random forest model providing the best fit (r2=0.76), and the boosted regression and GMRF models with 832 

and without covariates all maintaining an r2>0.70 (Figure S6). The low ratio of data points per covariate 833 

at the admin1 level may explain the poor cross-validation performance relative to the admin2 level 834 

(N=77 for admin1 vs. N=372 for admin2). 835 

Ensemble model 836 

Our ensemble model consisted of a weighted combination of the FOI predictions of each individual 837 

statistical regression model, along with a noise term. Each model weight was calculated based on its 838 

negative marginal log likelihood in ten-fold cross-validation. Assuming a 6% seroreversion rate, the 839 

highest model weight for the admin1 ensemble model was the random forest model (43.7%), followed 840 
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by the boosted regression model (35.1%), the high resolution GMRF with covariates (9.9%), the high 841 

resolution GMRF without covariates (6.0%), and the low resolution GMRF with covariates (5.2%). For the 842 

admin2 ensemble model the model weights of at least 5% in decreasing order were: the random forest 843 

model (46.3%), the high resolution GMRF with covariates (15.1%), the low resolution GMRF without 844 

covariates (13.7%), the high resolution GMRF without covariates (11.5%) and the boosted regression 845 

model (5.8%). 846 

Ensemble model estimates of FOI at the 1st administrative level show a similar spatial pattern and 847 

magnitude to the projected FOI estimates (Figure 4A), with predicted high FOI areas in Sierra Leone, 848 

Guinea, and southern Nigeria (Figure S9A). However, there are admin1 units that did not report any LF 849 

cases or deaths from 2010-2023, and therefore had low projected FOI values, but are predicted by the 850 

ensemble model to have high FOI values. The ensemble model FOI estimates at the 2nd administrative 851 

unit (Figure S9B) show much less spatial heterogeneity than the projected FOI estimates from LF case 852 

data and reporting probabilities (Figure 4B). This largely results from the higher weighting of the GMRF 853 

models, which include spatial smoothing (45.7% combined among the four GMRF models). This spatial 854 

smoothing results in lower FOI estimates in the few projected Nigerian hotspots, and lower within- and 855 

among-country variation in FOI estimates overall. 856 

 857 

  858 
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1. Table S1. Papers selected for in-depth literature review. 

Title Author Study topic Publication 

date 

Stud

y 

date

s 

Country Sampl

e size 

Pop details IgG 

pos 

IgM 

pos 

PCR 

pos 

Symp

. rate 

Seasonalit

y (Y/N) 

Rainfa

ll 

(Y/N) 

Vegetatio

n (Y/N) 

Risk factors 

Quantifying the 

seasonal drivers 

of transmission 

for Lassa fever in 

Nigeria  

Akhmetzhan

ov et al31 

Environment

/ seasonality 

2019 
 

Nigeria 
  

na na na na na Y na LF seasonality not 

associated w 

number of 

infected rodents, 

but yes w rainfall  

A seasonal model 

to assess 

intervention 

strategies for 

preventing 

periodic 

recurrence of 

Lassa fever 

Barua et al84 Environment

/ seasonality 

2021 2018

-

2020 

Nigeria 
 

Edo and 

Ondo states 

na na na na na na na 
 

Risk Maps of Lassa 

Fever in West 

Africa  

Fichet-Calvet, 

Rogers51 

Environment

/ seasonality 

2009 1963

-

2007

  

All 

publishe

d Lassa 

cases 

  
na na na na na Y N Rainfall, not 

vegetation  
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Mapping the 

zoonotic niche of 

Lassa fever in 

Africa  

Mylne et al52 Environment 

/seasonality 

2015 1963

-

2014

  

All 

publishe

d Lassa 

cases 

  
na na na na na Y Y Vegetation, land 

surface temp, rat 

dist, elevation, 
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Geographical 

drivers and 

climate-linked 

dynamics of Lassa 

fever in Nigeria  

Redding et 

al5 

Environment

/ seasonality 

2021 2012

-
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Nigeria 
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vegetation 

decline  

Annual Incidence 

of Lassa Virus 

Infection in 

Southern Mali 

Safronetz et 

al7 

Incidence 2017 2015

-

2016 
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villages in 

southern 

Mali 
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Bamba, and 
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2015 study 
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Lassa Virus 

Circulation in 

Small Mammal 

Populations in Bo 

District, Sierra 
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Bangura et 

al58 

Rodent epi 2021 2014

-

2016 
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Leone  

1490 1490 small 

mammals in 

6 villages in 

Bo District; 

357 M 

natalensis, 
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rsotratus, 

261 R rattus 
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seasonal 

variation, 40% at 

the start of rainy 

season; trapping 
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inside houses 

Geographic 

Distribution and 

Genetic 

Characterization 

of Lassa Virus in 

Sub-Saharan Mali 

Safronetz et 

al29 

Rodent epi 2013 2007

-

2012 

Mali 511 Villages 

across Mali; 

715 total, 

511 M nat 

6.8% na 8% na na na na 
 

Lassa Serology in 

Natural 

Populations of 

Rodents and 

Horizontal 

Transmission 

Fichet-Calvet 

et al55 

Rodent epi 2014 2002

-

2004 

Guinea 1551 17 villages in 

different 
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18.0

% 

na 10% na N na na No seasonality, 
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Fluctuation of 

Abundance and 

Lassa Virus 

Prevalence in 

Mastomys 

natalensis in 

Guinea, West 

Africa 

Fichet-Calvet 

et al65 

Rodent epi 2007 2003

-

2005 

Guinea 553 Northern 

Guinea; 

1123 total 

animals, 553 

M natalensis 

na na 15% na Y na na Highest in rainy 

season 

Sequence 

Variability and 

Geographic 

Distribution of 

Lassa Virus, Sierra 

Leone 

Leski et al85 Rodent epi 2015 2009 Sierra 

Leone  

681 199 M 

natalensis at 

13 locations 

in 3 districts 

in the south 

and east of 

SL 

na na 18% na na na na 
 

Prevalence of 

Lassa virus among 

rodents trapped 

in three South-

South States of 

Nigeria 

Agbonlahor 

et al59 

Rodent epi 2017 2015

-

2016 

Nigeria 1500 Edo (North: 

100, South: 

200, Central: 

200) Delta 

(N: 200, C: 

200, S: 100) 

and Bayelsa 

(W: 200, C: 

na na 11-

87% 

na na na na 
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200, E: 100) 

states 

Increased 

Prevalence of 

Lassa Fever Virus-

Positive Rodents 

and Diversity of 

Infected Species 

Found during 

Human Lassa 

Fever Epidemics 

in Nigeria 

Happi et al86 Rodent epi 2022 2018

-

2020 

Nigeria 942 Ondo and 

Ebonyi; 942 

includes not 

just M 

natalensis 

(did not 

provide 

number) 

na na 41.2-

72.1

% 

na na na na 
 

Lassa Fever in 

Guinea: II. 

Distribution and 

Prevalence of 

Lassa Virus 

Infection in Small 

Mammals 

Demby et al54 Rodent epi 2001 1996

-

1997 

Guinea 884 444 

households; 

1616 total 

rodents, 884 

Mastomys 

11.0

% 

na na na Y na Y Relates animal 

positivity w 

humans by 

region/forestatio

n 

Widespread 

arenavirus 

occurrence and 

seroprevalence in 

Olayemi et 

al56 

Rodent epi 2018 2011

-

2015

  

Nigeria 906 M natalensis 

in 11 sites in 

Nigeria  

1-

52% 

na na na N na na Didn’t find 

evidence of 

seasonality but 
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small mammals, 

Nigeria  

also small sample 

size  

Predicting the 

evolution of the 

Lassa virus 

endemic area and 

population at risk 

over the next 

decades 

Klitting et al87 Rodent epi 2022 
 

Africa 
  

na na na na na 
   

Lassa Virus 

Seroprevalence in 

Sibirilia 

Commune, 

Bougouni District, 

Southern Mali 

Sogoba et 

al47 

Serology 2016 2015 Mali 600 Three 

villages in 

southern 

Mali 

(Soromba, 

Bamba, and 

Bazana) 

33.2

% 

0.7% na na na na na Higher age, no 

sex 

Lassa fever in 

Nigeria: Insights 

into 

seroprevalence 

and risk factors in 

rural Edo State: A 

pilot study  

Tobin et al48 Serology 2015 
 

Nigeria 177 Edo, Esan 

West LGA; 

50 

households, 

177 

individuals 

58.2

% 

1.1% na na na na na No assn sex, 

education, social 

class (IgG); lower 

in age < 20 and 

unmarried  
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Seroepidemiologic

al study reveals 

regional co-

occurrence of 

Lassa- and 

Hantavirus 

antibodies in 

Upper Guinea, 

West Africa  

Klempa et 

al41 

Serology 2012 2004

  

Guinea 253 
 

40.3

% 

2.8% 0% na na na na No assn sex or 

month of 

collection (May 

vs Oct), lower 

seroprevalence in 

youngest and 

oldest  

Space-Time 

Trends in Lassa 

Fever in Sierra 

Leone by ELISA 

Serostatus, 2012–

2019 

Shaffer et al8 Serology 2021 2012

-

2019 

Sierra 

Leone 

3277 tested at 

KGH LF Lab 

33.6

% 

31.5

% 

na na na Y Y Temp, 

precipitation, and 

presence of 

pastures main 

factors for 

ecological 

suitability in M 

natalensi; <20% 

pastureland and 

temps < 25 C not 

suitable 

Rodent-borne 

infections in rural 

Nimo-Paintsil 

et al50 

Serology 2019 
 

Ghana 657 7 northern 

villages 

(savannah 

5.2% na na na N na Y No seasonality, 

no sex, no age 
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Ghanaian farming 

communities 

woodland) 

and 3 

transition 

zone villages 

Prevalence and 

Risk Factors of 

Lassa 

Seropositivity in 

Inhabitants of the 

Forest Region of 

Guinea: A Cross-

Sectional Study 

Kerneis et 

al40 

Serology 2009 2000 Guinea 977 Gueckedou, 

Lola, and 

Yomou 

prefectures 

11.3

% 

na na na na na na Slightly higher 

IgG in rural vs 

urban; no 

association with 

any rat 

interaction 

behaviors 

Influence of 

Landscape 

Patterns on 

Exposure to Lassa 

Fever Virus, 

Guinea  

Longet et al42 Serology 2023 2016

-

2017 

Guinea 702 
 

11-

59.6

% 

na na na na na Y No assn with sex, 

age only in 

coastal, yes 

environmental 

fragmentation  

Lassa virus activity 

in Guinea: 

distribution of 

human antiviral 

antibody defined 

Lukashevich 

et al43 

Serology 1993 
 

Guinea 3100 3100 

households, 

27 villages; 

split 

between 

4-

55% 

na na na na na Y High prev in 

secondary forest 

areas and 

savannah, lower 

in mountains and 
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using enzyme-

linked 

immunosorbent 

assay with 

recombinant 

antigen  

four biome 

regions 

coast, no age or 

sex differences 

Lassa Fever in the 

Eastern Province 

of Sierra Leone, 

1970–1972  

Fraser et al44 Serology 1974 1970

-

1972

  

Sierra 

Leone 

  
6.0% na na na na na na 

 

Seroprevalence of 

anti-Lassa Virus 

IgG antibodies in 

three districts of 

Sierra Leone: A 

cross-sectional, 

population-based 

study  

Grant et al46 Serology 2023 2015

-

2018 

Sierra 

Leone 

10642 Sierra 

Leone, 

“endemic”, 

“emerging”, 

and “non 

endemic” 

regions 

10.6-

20.1

% 

na na na na na Y Poor housing 

construction; 

proximity to 

bushland, 

forested areas, 

and refuse; male; 

work in transport, 

healthcare, 

farming, and 

mining; reverse 

assn with age; 

several house 

quality factors  
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Serosurveillance 

of viral pathogens 

circulating in West 

Africa  

O’Hearn et 

al45 

Serology 2016 2007

-

2014

  

Sierra 

Leone 

675 Serum 

samples 

submitted to 

Lassa Diag 

Lab at 

Kenema Gov 

Hospital 

50.2

% 

na na na na na na 
 

A Prospective 

Study of the 

Epidemiology and 

Ecology of Lassa 

Fever  

McCormick 

et al23 

Serology 1987 
 

Sierra 

Leone  

5213 5213 

individuals, 

15 village 

8-

52% 

na na na na na na Age 20-50 IgG 

peaks, mining 

village > 

agricultural 

village, 

'disheveled' 

homes, food left 

out, etc 

Lassa Fever, 

Nigeria, 2003 and 

2004 

Aremu 

Omilabu et 

al88 

Symptomatic 

rate 

2005 2003

-

2004 

Nigeria 50 Specialist 

Teaching 

Hospital in 

Irrua -- 31 

febrile, 17 

healthy 

contacts, 12 

na na na 67% na na na 
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healthy 

hospital staff 

A cluster of 

nosocomial Lassa 

fever cases in a 

tertiary health 

facility in Nigeria: 
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Table S2. Population-level covariates with a potential association with LF occurrence. 

Covariate Reference 

Population (2020) 63 

Monthly precipitation (12) – Reduced by PCA 91 

Monthly mean temperature (12) – Reduced by PCA 91 

Monthly NDVI (12) – Reduced by PCA 92 

Elevation 93 

Longitude  

Latitude  

Healthcare access and quality index (HAQ) 67 

Percent urban population 94 

Mean travel time to nearest urban center 66 

Percent frontier land cover (e.g., forest edge) 95 

Percent tropical habitat 68 

Percent agricultural land 69 

Fraction forest loss since 2000 70 

Probability of Mastomys spp presence 25 

Probability of LASV presence in Mastomys spp 25 

Presence of improved housing 71 
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International Wealth Index 72 

Occurrence of bushmeat hunting 73 

Malaria parasite prevalence 96 
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Table S3. Variable importance in the Random Forest model at the 1st administrative level. Variable 

importance calculated with median projected FOI as the response variable. 

Covariate 

Variable 

Importance 

Longitude 8.1 

Mean travel time to nearest urban center 5.9 

Healthcare access and quality index (HAQ) 3.4 

Latitude 2.3 

Probability of LASV presence in Mastomys spp 2.3 

Fraction forest loss since 2000 2.3 

Probability of Mastomys spp presence 2.1 

Temperature – first principal component 1.9 

Temperature – second principal component 1.9 

NDVI – second principal component 1.7 

Occurrence of bushmeat hunting 1.5 

Precipitation – first principal component 1.5 

Elevation 1.5 

NDVI – first principal component 1.5 

Temperature – third principal component 1.4 

Presence of improved housing 1.3 

Precipitation – second principal component 1.2 

Malaria prevalence 1.2 
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Percent frontier land cover 1.2 

Precipitation – third principal component 1.1 

Percent agricultural land 0.9 

Percent tropical habitat 0.3 
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Table S4. Variable importance in the Boosted regression tree model at the 1st administrative level. 

Variable importance calculated with median projected FOI as the response variable. 

Covariate 

Variable 

Importance 

Longitude 43.7 

Mean travel time to nearest urban center 31.2 

Probability of LASV presence in Mastomys spp 19.9 

Probability of Mastomys spp presence 11.0 

Latitude 9.8 

Temperature – second principal component 7.9 

Fraction forest loss since 2000 7.9 

Percent frontier land cover 7.0 

Malaria prevalence 6.2 

Presence of improved housing 6.1 

Temperature – first principal component 6.1 

Healthcare access and quality index (HAQ) 4.8 

Elevation 4.8 

Percent agricultural land 4.2 

NDVI – second principal component 3.6 

Temperature – third principal component 3.6 

Precipitation – first principal component 3.5 

Precipitation – second principal component 3.0 
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Occurrence of bushmeat hunting 1.9 

Precipitation – third principal component 1.8 

NDVI – first principal component 1.2 

Percent tropical habitat 0.0 
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Table S5. Variable importance in the Random Forest model at the 2nd administrative level. Variable 

importance calculated with median projected FOI as the response variable. 

Covariate 

Variable 

Importance 

Longitude 91.3 

Healthcare access and quality index (HAQ) 53.0 

Precipitation – second principal component 20.6 

Fraction forest loss since 2000 14.7 

Mean travel time to nearest urban center 11.7 

NDVI – first principal component 10.4 

Probability of LASV presence in Mastomys spp 8.8 

Occurrence of bushmeat hunting 8.0 

Precipitation – third principal component 6.7 

Malaria prevalence 5.9 

Probability of Mastomys spp presence 5.5 

Temperature – second principal component 5.2 

Precipitation – first principal component 4.7 

Temperature – third principal component 4.6 

Presence of improved housing 3.9 

NDVI – second principal component 3.7 

Latitude 3.7 

Elevation 3.7 
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Temperature – first principal component 3.6 

Percent agricultural land 2.7 

Percent frontier land cover 2.1 

Percent tropical habitat 0.6 

 

  

for use under a CC0 license. 
This article is a US Government work. It is not subject to copyright under 17 USC 105 and is also made available 

preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 
The copyright holder for thisthis version posted December 13, 2024. ; https://doi.org/10.1101/2024.12.11.24318478doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.11.24318478


69 
 

Table S6. Coefficient estimates and t-values for the linear model with interaction terms at the 2nd 

administrative level with median projected FOI as the response variable.  

Covariate Estimate SE T value P-value 

Longitude -1.38 0.43 -3.21 0.0015 

Fraction forest loss since 2000 0.23 0.07 3.07 0.0024 

Percent tropical habitat -0.12 0.05 -2.64 0.0088 

Percent frontier land cover -0.10 0.05 -2.23 0.0265 

Latitude -2.25 1.03 -2.19 0.0297 

Presence of improved housing -0.23 0.12 -1.91 0.0575 

Temperature – second principal component -0.50 0.26 -1.90 0.0588 

Temperature – first principal component 0.39 0.23 1.73 0.0843 

Mean travel time to nearest urban center 0.48 0.30 1.62 0.1057 

(Intercept) -1.85 1.20 -1.54 0.1242 

Malaria prevalence -0.18 0.13 -1.35 0.1780 

Precipitation – second principal component 0.35 0.28 1.25 0.2116 

Precipitation – first principal component -0.44 0.38 -1.18 0.2410 

Healthcare access and quality index (HAQ) -0.03 0.04 -0.95 0.3441 

Precipitation – third principal component -0.59 0.92 -0.64 0.5198 

Percent agricultural land -0.03 0.05 -0.59 0.5573 

Elevation 0.26 0.46 0.56 0.5773 

Probability of LASV presence in Mastomys 

spp -0.07 0.15 -0.43 0.6651 
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NDVI – second principal component -0.10 0.25 -0.41 0.6852 

Occurrence of bushmeat hunting -0.02 0.06 -0.34 0.7368 

Temperature – third principal component -0.15 0.45 -0.33 0.7446 

NDVI – first principal component 0.02 0.09 0.24 0.8125 

Interaction terms         

NDVI PC1:NDVI PC2 -0.05 0.07 -0.76 0.4478 

NDVI PC1:Precipitation PC1 0.06 0.09 0.60 0.5499 

NDVI PC1:Precipitation PC2 0.01 0.06 0.24 0.8119 

NDVI PC1:Precipitation PC3 0.31 0.26 1.18 0.2402 

NDVI PC1:Temperature PC1 -0.11 0.09 -1.25 0.2117 

NDVI PC1:Temperature PC2 -0.12 0.09 -1.33 0.1854 

NDVI PC1:Temperature PC3 -0.12 0.22 -0.52 0.6034 

NDVI PC1:Elevation -0.28 0.18 -1.56 0.1202 

NDVI PC1:Longitude -0.30 0.15 -1.95 0.0518 

NDVI PC1:Latitude 0.61 0.50 1.22 0.2243 

NDVI PC1:Mastomys occurrence -0.02 0.07 -0.35 0.7241 

NDVI PC1:Mastomys infection 0.01 0.07 0.14 0.8875 

NDVI PC1:Improved housing 0.00 0.04 -0.12 0.9043 

NDVI PC1:Malaria prevalence -0.20 0.08 -2.43 0.0159 

NDVI PC2:Precipitation PC1 0.23 0.27 0.87 0.3847 

NDVI PC2:Precipitation PC2 -0.07 0.17 -0.40 0.6913 

NDVI PC2:Precipitation PC3 0.36 0.65 0.55 0.5825 

NDVI PC2:Temperature PC1 -0.41 0.23 -1.79 0.0742 
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NDVI PC2:Temperature PC2 0.48 0.19 2.50 0.0130 

NDVI PC2:Temperature PC3 -0.42 0.50 -0.84 0.4005 

NDVI PC2:Elevation 0.18 0.55 0.32 0.7480 

NDVI PC2:Longitude 0.51 0.39 1.30 0.1936 

NDVI PC2:Latitude 2.44 1.16 2.10 0.0364 

NDVI PC2:Mastomys occurrence -0.27 0.19 -1.45 0.1470 

NDVI PC2:Mastomys infection -0.03 0.19 -0.13 0.8956 

NDVI PC2:Improved housing -0.08 0.11 -0.70 0.4837 

NDVI PC2:Malaria prevalence -0.42 0.18 -2.32 0.0209 

Precipitation PC1:Precipitation PC2 -0.25 0.12 -2.07 0.0396 

Precipitation PC1:Precipitation PC3 0.41 0.21 1.98 0.0494 

Precipitation PC1:Temperature PC1 0.11 0.20 0.52 0.6063 

Precipitation PC1:Temperature PC2 -0.03 0.20 -0.16 0.8705 

Precipitation PC1:Temperature PC3 0.43 0.44 0.98 0.3292 

Precipitation PC1:Elevation 0.08 0.37 0.21 0.8345 

Precipitation PC1:Longitude 0.14 0.26 0.54 0.5897 

Precipitation PC1:Latitude 0.06 0.56 0.11 0.9148 

Precipitation PC1:Mastomys occurrence -0.18 0.16 -1.14 0.2535 

Precipitation PC1:Mastomys infection 0.00 0.14 -0.02 0.9870 

Precipitation PC1:Improved housing -0.06 0.11 -0.50 0.6195 

Precipitation PC1:Malaria prevalence 0.16 0.15 1.10 0.2740 

Precipitation PC2:Precipitation PC3 -0.11 0.21 -0.51 0.6074 

Precipitation PC2:Temperature PC1 0.49 0.13 3.78 0.0002 
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Precipitation PC2:Temperature PC2 -0.45 0.14 -3.27 0.0012 

Precipitation PC2:Temperature PC3 0.31 0.31 0.99 0.3212 

Precipitation PC2:Elevation 0.18 0.25 0.72 0.4727 

Precipitation PC2:Longitude -0.60 0.25 -2.35 0.0197 

Precipitation PC2:Latitude -1.84 0.59 -3.10 0.0022 

Precipitation PC2:Mastomys occurrence 0.06 0.12 0.54 0.5910 

Precipitation PC2:Mastomys infection 0.08 0.10 0.75 0.4517 

Precipitation PC2:Improved housing 0.02 0.07 0.26 0.7957 

Precipitation PC2:Malaria prevalence 0.07 0.12 0.62 0.5341 

Precipitation PC3:Temperature PC1 -0.36 0.47 -0.75 0.4512 

Precipitation PC3:Temperature PC2 0.96 0.42 2.28 0.0236 

Precipitation PC3:Temperature PC3 -1.21 1.25 -0.97 0.3325 

Precipitation PC3:Elevation 1.70 0.98 1.73 0.0845 

Precipitation PC3:Longitude 1.61 0.94 1.72 0.0865 

Precipitation PC3:Latitude 3.31 2.13 1.55 0.1216 

Precipitation PC3:Mastomys occurrence 0.48 0.40 1.18 0.2384 

Precipitation PC3:Mastomys infection 0.43 0.31 1.37 0.1727 

Precipitation PC3:Improved housing 0.28 0.25 1.14 0.2534 

Precipitation PC3:Malaria prevalence 0.37 0.29 1.28 0.2015 

Temperature PC1:Temperature PC2 0.14 0.07 1.84 0.0673 

Temperature PC1:Temperature PC3 -0.12 0.35 -0.33 0.7454 

Temperature PC1:Elevation 0.09 0.13 0.69 0.4906 

Temperature PC1:Longitude -0.37 0.24 -1.54 0.1253 
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Temperature PC1:Latitude 0.18 0.50 0.36 0.7155 

Temperature PC1:Mastomys occurrence -0.17 0.15 -1.14 0.2564 

Temperature PC1:Mastomys infection 0.12 0.13 0.91 0.3636 

Temperature PC1:Improved housing 0.11 0.10 1.06 0.2924 

Temperature PC1:Malaria prevalence -0.17 0.16 -1.06 0.2886 

Temperature PC2:Temperature PC3 0.65 0.33 1.94 0.0533 

Temperature PC2:Elevation 0.15 0.20 0.76 0.4468 

Temperature PC2:Longitude -0.20 0.26 -0.78 0.4350 

Temperature PC2:Latitude -0.38 0.56 -0.67 0.5026 

Temperature PC2:Mastomys occurrence -0.29 0.13 -2.26 0.0248 

Temperature PC2:Mastomys infection -0.12 0.11 -1.04 0.2974 

Temperature PC2:Improved housing -0.23 0.08 -2.98 0.0032 

Temperature PC2:Malaria prevalence -0.12 0.14 -0.86 0.3883 

Temperature PC3:Elevation 0.26 0.92 0.29 0.7756 

Temperature PC3:Longitude 0.95 0.72 1.31 0.1921 

Temperature PC3:Latitude 1.03 2.03 0.51 0.6124 

Temperature PC3:Mastomys occurrence -0.39 0.39 -1.01 0.3153 

Temperature PC3:Mastomys infection 0.47 0.37 1.27 0.2045 

Temperature PC3:Improved housing 0.41 0.33 1.24 0.2179 

Temperature PC3:Malaria prevalence -0.11 0.32 -0.35 0.7273 

Elevation:Longitude -0.67 0.57 -1.17 0.2447 

Elevation:Latitude 1.52 1.29 1.18 0.2400 

Elevation:Mastomys occurrence -0.81 0.28 -2.94 0.0036 
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Elevation:Mastomys infection -0.14 0.23 -0.59 0.5548 

Elevation:Improved housing -0.23 0.21 -1.09 0.2765 

Elevation:Malaria prevalence -0.79 0.38 -2.07 0.0392 

Longitude:Latitude -0.07 0.75 -0.09 0.9253 

Longitude:Mastomys occurrence -0.29 0.25 -1.16 0.2490 

Longitude:Mastomys infection -0.28 0.21 -1.34 0.1817 

Longitude:Improved housing -0.06 0.22 -0.25 0.8045 

Longitude:Malaria prevalence 0.15 0.31 0.48 0.6320 

Latitude:Mastomys occurrence 0.31 0.82 0.38 0.7020 

Latitude:Mastomys infection -0.33 0.59 -0.56 0.5734 

Latitude:Improved housing -0.66 0.55 -1.20 0.2298 

Latitude:Malaria prevalence 0.51 0.77 0.65 0.5133 

Mastomys occurrence:Mastomys infection 0.10 0.12 0.81 0.4173 

Mastomys occurrence:Improved housing 0.05 0.07 0.77 0.4450 

Mastomys occurrence:Malaria prevalence 0.01 0.12 0.07 0.9457 

Mastomys infection:Improved housing 0.12 0.07 1.64 0.1015 

Mastomys infection:Malaria prevalence 0.22 0.12 1.83 0.0677 

Improved housing:Malaria prevalence -0.01 0.08 -0.08 0.9325 
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Table S7. The top 20 highest annual Lassa Fever (LF) incidence rates (per 1,000) at the 1st administrative level when the seroreversion rate is 

0%. LF rates are calculated using the projected force of infection (FOI) estimates under different assumptions regarding the level of immunity in 

seropositive and seroreverted individuals. Values in parentheses represent 95% prediction intervals. 

 

Country 

 

Admin1 

Annual Lassa Fever incidence rate (per 1,000) 

Seroreverted – No Immunity Seroreverted – Partial Immunity 

Seropos. – Full 

Immunity 

Seropos. – Part. 

Immunity (Hi) 

Seropos. – Part. 

Immunity (Lo) 

Seropos. – Full 

Immunity 

Seropos. – Part. 

Immunity (Hi) 

Seropos. – Part. 

Immunity (Lo) 

Nigeria Ondo 3.9 (3.3 – 4.4) 5.0 (4.1 – 6.1) 5.6 (4.5 – 6.9) 3.9 (3.3 – 4.4) 5.0 (4.1 – 6.1) 5.6 (4.5 – 6.9) 

Mali Sikasso 3.1 (2.7 – 3.4) 3.6 (3.1 – 4.1) 3.9 (3.3 – 4.4) 3.1 (2.7 – 3.4) 3.6 (3.1 – 4.1) 3.9 (3.3 – 4.4) 

Sierra 

Leone Southern 2.7 (2.2 – 3.1) 3.2 (2.5 – 3.9) 3.4 (2.7 – 4.2) 2.7 (2.2 – 3.1) 3.2 (2.5 – 3.9) 3.4 (2.7 – 4.2) 

Guinea Faranah 2.3 (2.2 – 2.5) 2.7 (2.4 – 2.9) 2.8 (2.6 – 3.1) 2.3 (2.2 – 2.5) 2.7 (2.4 – 2.9) 2.8 (2.6 – 3.1) 

Cote 

d'Ivoire Lacs 2.2 (1.7 – 2.8) 2.5 (1.9 – 3.3) 2.6 (2.0 – 3.5) 2.2 (1.7 – 2.8) 2.5 (1.9 – 3.3) 2.6 (2.0 – 3.6) 

Liberia Grand Bassa 2.1 (0.4 – 6.5) 2.4 (0.4 – 49.7) 2.5 (0.4 – 70.8) 2.1 (0.4 – 6.5) 2.4 (0.4 – 49.7) 2.5 (0.4 – 70.8) 

Guinea Nzerekore 1.8 (1.7 – 1.8) 1.9 (1.8 – 2.0) 2.0 (1.9 – 2.1) 1.8 (1.7 – 1.8) 1.9 (1.8 – 2.0) 2.0 (1.9 – 2.1) 
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Liberia Bong 1.7 (0.3 – 6.5) 1.9 (0.3 – 47.5) 2.0 (0.3 – 67.8) 1.7 (0.3 – 6.5) 1.9 (0.3 – 47.7) 2.0 (0.3 – 67.6) 

Sierra 

Leone Eastern 1.7 (1.6 – 1.7) 1.8 (1.7 – 1.9) 1.9 (1.8 – 2.0) 1.7 (1.6 – 1.8) 1.8 (1.7 – 1.9) 1.9 (1.8 – 2.0) 

Nigeria Ebonyi 1.2 (0.2 – 6.9) 1.3 (0.2 – 21.6) 1.3 (0.2 – 28.7) 1.2 (0.2 – 6.8) 1.3 (0.2 – 21.6) 1.3 (0.2 – 28.8) 

Nigeria Taraba 1.1 (0.1 – 7.0) 1.2 (0.1 – 24.8) 1.2 (0.1 – 33.5) 1.1 (0.1 – 7.0) 1.2 (0.1 – 24.8) 1.2 (0.1 – 33.5) 

Nigeria Edo 1.1 (0.9 – 1.3) 1.1 (1.0 – 1.3) 1.2 (1.0 – 1.4) 1.1 (0.9 – 1.3) 1.1 (1.0 – 1.3) 1.2 (1.0 – 1.4) 

Benin Borgou 1.1 (0.2 – 6.1) 1.1 (0.2 – 22.8) 1.1 (0.2 – 31.0) 1.1 (0.2 – 6.0) 1.1 (0.2 – 22.8) 1.1 (0.2 – 31.1) 

Sierra 

Leone Northern 1.0 (0.9 – 1.0) 1.0 (0.9 – 1.1) 1.0 (1.0 – 1.1) 1.0 (0.9 – 1.0) 1.0 (0.9 – 1.1) 1.0 (1.0 – 1.1) 

Liberia Nimba 1.0 (0.1 – 6.2) 1.0 (0.1 – 25.0) 1.0 (0.1 – 34.2) 1.0 (0.1 – 6.1) 1.0 (0.1 – 25.2) 1.0 (0.1 – 34.3) 

Sierra 

Leone Western 1.0 (0.6 – 1.5) 1.0 (0.6 – 1.6) 1.0 (0.6 – 1.6) 1.0 (0.6 – 1.5) 1.0 (0.6 – 1.6) 1.0 (0.6 – 1.6) 

Guinea Kankan 0.9 (0.7 – 1.2) 1.0 (0.7 – 1.3) 1.0 (0.8 – 1.3) 1.0 (0.7 – 1.2) 1.0 (0.7 – 1.3) 1.0 (0.8 – 1.3) 

Guinea Kindia 0.9 (0.8 – 1.1) 1.0 (0.9 – 1.1) 1.0 (0.9 – 1.2) 0.9 (0.8 – 1.1) 1.0 (0.9 – 1.1) 1.0 (0.9 – 1.2) 

Ghana Ashanti 0.9 (0.4 – 1.7) 1.0 (0.4 – 1.9) 1.0 (0.4 – 2.0) 0.9 (0.4 – 1.7) 1.0 (0.4 – 1.9) 1.0 (0.4 – 2.0) 

Ghana  Eastern 0.8 (0.4 – 1.3) 0.9 (0.5 – 1.5) 0.9 (0.5 – 1.5) 0.8 (0.4 – 1.3) 0.9 (0.5 – 1.5) 0.9 (0.5 – 1.5) 
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Table S8. The top 20 highest annual Lassa Fever (LF) incidence rates (per 1,000) at the 2nd administrative level when the seroreversion rate is 

0%. LF rates are calculated using the projected force of infection (FOI) estimates under different assumptions regarding the level of immunity in 

seropositive and seroreverted individuals. Values in parentheses represent 95% prediction intervals. 

 

Country 

 

Admin1 

 

Admin2 

Annual Lassa Fever incidence rate (per 1,000) 

Seroreverted – No Immunity Seroreverted – Partial Immunity 

Seropos. – Full 

Immunity 

Seropos. – Part. 

Immunity (Hi) 

Seropos. – Part. 

Immunity (Lo) 

Seropos. – Full 

Immunity 

Seropos. – Part. 

Immunity (Hi) 

Seropos. – Part. 

Immunity (Lo) 

Sierra 

Leone Southern Moyamba 4.7 (4.0 – 5.2) 7.5 (5.6 – 9.7) 8.8 (6.3 – 11.8) 4.7 (4.1 – 5.2) 7.5 (5.6 – 9.6) 8.8 (6.3 – 11.9) 

Nigeria Ondo Ose 4.6 (3.9 – 5.2) 6.6 (5.1 – 8.3) 7.6 (5.6 – 9.7) 4.6 (3.9 – 5.1) 6.6 (5.1 – 8.2) 7.6 (5.7 – 9.8) 

Sierra 

Leone Northern Bombali 3.7 (2.5 – 4.8) 4.9 (2.9 – 7.6) 5.5 (3.0 – 9.1) 3.7 (2.5 – 4.8) 4.9 (2.9 – 7.6) 5.5 (3.1 – 9.0) 

Sierra 

Leone Eastern Kono 3.4 (0.2 – 5.7) 4.3 (0.2 – 13.4) 4.7 (0.2 – 17.1) 3.4 (0.2 – 5.7) 4.3 (0.2 – 13.3) 4.7 (0.2 – 17.1) 

Sierra 

Leone Northern Koinadugu 3.4 (1.4 – 4.9) 4.3 (1.5 – 8.2) 4.7 (1.5 – 9.7) 3.4 (1.4 – 4.9) 4.2 (1.5 – 8.1) 4.6 (1.5 – 9.7) 
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Nigeria Edo Esan West 3.3 (2.8 – 3.7) 4.1 (3.3 – 4.8) 4.4 (3.6 – 5.3) 3.3 (2.8 – 3.8) 4.0 (3.3 – 4.8) 4.4 (3.6 – 5.3) 

Liberia Bong Suakoko 3.3 (0.9 – 6.5) 4.1 (0.9 – 49.8) 4.6 (1.0 –70.9) 3.3 (0.9 – 6.5) 4.2 (1.0 – 49.8) 4.6 (1.0 – 70.9) 

Guinea Nzerekore Macenta 3.2 (3.0 – 3.5) 4.0 (3.6 – 4.4) 4.4 (3.9 – 4.9) 3.2 (3.0 – 3.5) 4.0 (3.6 – 4.4) 4.4 (3.9 – 4.9) 

Sierra 

Leone Southern Pujehun 3.1 (1.1 – 4.9) 3.8 (1.2 – 8.1) 4.2 (1.2 – 9.7) 3.2 (1.1 – 4.9) 3.8 (1.2 – 8.1) 4.2 (1.2 – 9.7) 

Mali Sikasso Bougouni 3.1 (2.7 – 3.4) 3.6 (3.1 – 4.1) 3.8 (3.3 – 4.4) 3.1 (2.7 – 3.4) 3.6 (3.1 – 4.1) 3.8 (3.3 – 4.4) 

Sierra 

Leone Western 

Western 

Rural 2.4 (0.1 – 5.2) 2.8 (0.1 – 9.5) 2.9 (0.1 – 11.6) 2.4 (0.1 – 5.2) 2.8 (0.1 – 9.5) 2.9 (0.1 – 11.6) 

Liberia 

Grand 

Bassa District #3 2.4 (0.5 – 6.4) 2.7 (0.6 – 44.6) 2.9 (0.6 – 63.0) 2.4 (0.5 – 6.4) 2.7 (0.6 – 44.6) 2.9 (0.6 – 62.8) 

Guinea Faranah Faranah 2.4 (2.2 – 2.5) 2.7 (2.4 – 2.9) 2.8 (2.6 – 3.1) 2.4 (2.1 – 2.5) 2.7 (2.4 – 2.9) 2.8 (2.6 – 3.1) 

Cote 

d'Ivoire Montagnes Cavally 2.3 (1.7 – 2.9) 2.7 (1.9 – 3.5) 2.8 (2.0 – 3.8) 2.3 (1.7 – 2.9) 2.7 (1.9 – 3.5) 2.8 (2.0 – 3.8) 

Nigeria Ondo Owo 2.3 (1.4 – 3.2) 2.6 (1.5 – 3.9) 2.7 (1.5 – 4.2) 2.3 (1.4 – 3.2) 2.6 (1.5 – 3.9) 2.7 (1.5 – 4.2) 

Sierra 

Leone Eastern Kailahun 2.3 (1.5 – 3.1) 2.6 (1.6 – 3.7) 2.7 (1.6 – 4.0) 2.3 (1.5 – 3.1) 2.5 (1.6 – 3.7) 2.7 (1.6 – 4.0) 

Guinea Kindia Kindia 2.1 (1.7 – 2.6) 2.4 (1.9 – 2.9) 2.5 (2.0 – 3.2) 2.1 (1.7 – 2.5) 2.4 (1.9 – 2.9) 2.5 (2.0 – 3.1) 
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Guinea Nzerekore Gueckedou 1.9 (1.8 – 2.1) 2.1 (2.0 – 2.3) 2.2 (2.0 – 2.4) 1.9 (1.8 – 2.1) 2.1 (2.0 – 2.3) 2.2 (2.0 – 2.4) 

Guinea Nzerekore Lola 1.9 (1.7 – 2.2) 2.1 (1.8 – 2.5) 2.2 (1.9 – 2.6) 1.9 (1.6 – 2.2) 2.1 (1.8 – 2.4) 2.2 (1.9 – 2.6) 

Cote 

d'Ivoire Montagnes Guemon 1.9 (0.9 – 3.0) 2.1 (0.9 – 3.7) 2.2 (1.0 – 3.9) 1.9 (0.9 – 3.0) 2.1 (0.9 – 3.6) 2.2 (1.0 – 3.9) 
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Table S9. The top 20 highest annual Lassa Fever (LF) incidence rates (per 1,000) at the 1st administrative level when the seroreversion rate is 

3%. LF rates are calculated using the projected force of infection (FOI) estimates under different assumptions regarding the level of immunity in 

seropositive and seroreverted individuals. Values in parentheses represent 95% prediction intervals. 

 

Country 

 

Admin1 

Annual Lassa Fever incidence rate (per 1,000) 

Seroreverted – No Immunity Seroreverted – Partial Immunity 

Seropos. – Full 

Immunity 

Seropos. – Part. 

Immunity (Hi) 

Seropos. – Part. 

Immunity (Lo) 

Seropos. – Full 

Immunity 

Seropos. – Part. 

Immunity (Hi) 

Seropos. – Part. 

Immunity (Lo) 

Nigeria Ondo 6.7 (5.6 – 7.5) 8.8 (7.0 – 10.8) 9.9 (7.6 – 12.3) 5.9 (5.1 – 6.6) 8.0 (6.4 – 9.8) 9.1 (7.1 – 11.3) 

Mali Sikasso 5.0 (4.5 – 5.6) 5.9 (5.1 – 6.8) 6.4 (5.5 – 7.4) 4.6 (4.2 – 5.1) 5.5 (4.8 – 6.3) 6.0 (5.2 – 6.9) 

Sierra 

Leone Southern 4.3 (3.6 – 5.1) 5.0 (4.0 – 6.2) 5.3 (4.2 – 6.8) 3.9 (3.3 – 4.6) 4.6 (3.8 – 5.7) 5.0 (4.0 – 6.2) 

Guinea Faranah 4.3 (4.0 – 4.6) 5.0 (4.5 – 5.4) 5.3 (4.8 – 5.8) 3.9 (3.7 – 4.2) 4.6 (4.2 – 5.0) 4.9 (4.5 – 5.4) 

Cote 

d'Ivoire Lacs 3.6 (2.8 – 4.5) 4.1 (3.0 – 5.2) 4.3 (3.1 – 5.6) 3.3 (2.6 – 4.1) 3.8 (2.9 – 4.9) 4.0 (3.0 – 5.3) 

Guinea Nzerekore 3.0 (2.9 – 3.1) 3.3 (3.1 – 3.5) 3.4 (3.3 – 3.6) 2.8 (2.7 – 2.9) 3.1 (3.0 – 3.3) 3.3 (3.1 – 3.4) 
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Sierra 

Leone Eastern 2.8 (2.6 – 2.9) 3.0 (2.8 – 3.2) 3.1 (2.9 – 3.3) 2.6 (2.5 – 2.7) 2.9 (2.7 – 3.0) 3.0 (2.8 – 3.1) 

Liberia Grand Bassa 2.4 (0.3 – 6.9) 2.6 (0.3 – 9.6) 2.7 (0.3 – 11.0) 2.3 (0.4 – 6.0) 2.5 (0.4 – 8.7) 2.6 (0.3 – 10.0) 

Liberia Bong 1.9 (0.3 – 6.8) 2.0 (0.3 – 9.6) 2.0 (0.3 – 10.9) 1.8 (0.3 – 6.0) 1.9 (0.3 – 8.7) 2.0 (0.3 – 10.0) 

Nigeria Edo 1.8 (1.6 – 2.1) 1.9 (1.6 – 2.2) 2.0 (1.7 – 2.3) 1.8 (1.5 – 2.0) 1.9 (1.6 – 2.2) 1.9 (1.6 – 2.2) 

Ghana Ashanti 1.7 (0.7 – 3.1) 1.8 (0.7 – 3.4) 1.8 (0.7 – 3.6) 1.6 (0.7 – 2.9) 1.7 (0.7 – 3.2) 1.8 (0.7 – 3.4) 

Sierra 

Leone Western 1.6 (1.0 – 2.5) 1.7 (1.0 – 2.7) 1.7 (1.0 – 2.8) 1.6 (0.9 – 2.4) 1.6 (1.0 – 2.6) 1.7 (1.0 – 2.7) 

Guinea Kindia 1.6 (1.4 – 1.8) 1.7 (1.5 – 1.9) 1.7 (1.5 – 1.9) 1.5 (1.4 – 1.8) 1.6 (1.4 – 1.8) 1.7 (1.4 – 1.9) 

Sierra 

Leone Northern 1.6 (1.5 – 1.7) 1.6 (1.5 – 1.8) 1.7 (1.6 – 1.8) 1.5 (1.4 – 1.6) 1.6 (1.5 – 1.7) 1.6 (1.5 – 1.8) 

Guinea Kankan 1.5 (1.2 – 2.0) 1.6 (1.2 – 2.1) 1.6 (1.2 – 2.1) 1.5 (1.2 – 1.9) 1.6 (1.2 – 2.0) 1.6 (1.2 – 2.0) 

Ghana Eastern 1.5 (0.7 – 2.4) 1.6 (0.7 – 2.6) 1.6 (0.7 – 2.7) 1.5 (0.7 – 2.3) 1.5 (0.7 – 2.5) 1.6 (0.7 – 2.6) 

Nigeria Ebonyi 1.4 (0.2 – 7.4) 1.4 (0.2 – 10.3) 1.5 (0.2 – 11.8) 1.4 (0.2 – 6.4) 1.4 (0.2 – 9.4) 1.4 (0.2 – 10.8) 

Liberia Nimba 1.2 (0.1 – 6.4) 1.2 (0.1 – 8.6) 1.3 (0.1 – 9.7) 1.2 (0.1 – 5.6) 1.2 (0.1 – 7.8) 1.2 (0.1 – 8.8) 

Nigeria Borno 1.1 (0.7 – 1.6) 1.1 (0.7 – 1.7) 1.2 (0.7 – 1.7) 1.1 (0.7 – 1.6) 1.1 (0.7 – 1.6) 1.1 (0.7 – 1.7) 

Benin Borgou 1.1 (0.2 – 6.3) 1.1 (0.2 – 8.4) 1.2 (0.2 – 9.5) 1.1 (0.2 – 5.5) 1.1 (0.2 – 7.7) 1.1 (0.2 – 8.7) 
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Table S10. The top 20 highest annual Lassa Fever (LF) incidence rates (per 1,000) at the 2nd administrative level when the seroreversion rate is 

3%. LF rates are calculated using the projected force of infection (FOI) estimates under different assumptions regarding the level of immunity in 

seropositive and seroreverted individuals. Values in parentheses represent 95% prediction intervals. 

 

Country 

 

Admin1 

 

Admin2 

Annual Lassa Fever incidence rate (per 1,000) 

Seroreverted – No Immunity Seroreverted – Partial Immunity 

Seropos. – Full 

Immunity 

Seropos. – Part. 

Immunity (Hi) 

Seropos. – Part. 

Immunity (Lo) 

Seropos. – Full 

Immunity 

Seropos. – Part. 

Immunity (Hi) 

Seropos. – Part. 

Immunity (Lo) 

Nigeria Ondo Ose 8.3 (6.8 – 9.5) 12.9 (9.2 – 17.1) 15.0 (10.2 – 20.8) 7.2 (6.1 – 8.0) 11.7 (8.4 – 15.7) 13.9 (9.5 – 19.5) 

Sierra 

Leone Southern Moyamba 7.9 (6.7 – 8.9) 12.4 (9.2 – 16.4) 14.6 (10.4 – 19.9) 6.8 (5.9 – 7.4) 11.3 (8.3 – 14.8) 13.4 (9.6 – 18.4) 

Nigeria Edo Esan West 6.4 (5.4 – 7.4) 8.4 (6.6 – 10.3) 9.3 (7.2 – 11.8) 5.7 (4.9 –6.4) 7.6 (6.1 – 9.4) 8.6 (6.7 – 10.9) 

Sierra 

Leone Northern Bombali 6.4 (4.0 – 8.3) 8.6 (4.6 – 13.7) 9.6 (4.8 – 16.3) 5.6 (3.7 –7.0) 7.8 (4.3 – 12.5) 8.9 (4.5 – 15.0) 

Sierra 

Leone Northern Koinadugu 6.0 (2.1 – 8.8) 7.6 (2.2 – 15.8) 8.5 (2.3 – 19.2) 5.3 (2.0 –7.4) 7.0 (2.2 – 14.4) 7.9 (2.2 – 17.9) 

Guinea Nzerekore Macenta 5.9 (5.4 – 6.4) 7.6 (6.7 – 8.4) 8.4 (7.3 – 9.5) 5.2 (4.8 – 5.6) 6.9 (6.2 – 7.7) 7.7 (6.8 – 8.7) 
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Mali Sikasso Bougouni 5.0 (4.5 – 5.6) 6.0 (5.2 – 6.8) 6.4 (5.5 – 7.4) 4.7 (4.2 – 5.1) 5.6 (4.9 – 6.3) 6.0 (5.2 – 6.9) 

Sierra 

Leone Southern Pujehun 4.7 (1.6 – 7.7) 5.6 (1.6 – 11.9) 6.0 (1.7 – 13.8) 4.3 (1.5 – 6.6) 5.1 (1.6 – 10.8) 5.6 (1.7 – 12.8) 

Guinea Faranah Faranah 4.3 (3.9 – 4.6) 5.0 (4.5 – 5.4) 5.3 (4.8 – 5.8) 3.9 (3.6 – 4.2) 4.6 (4.2 – 5.0) 5.0 (4.5 – 5.4) 

Sierra 

Leone Eastern Kono 4.2 (0.2 – 9.2) 4.9 (0.2 – 18.2) 5.2 (0.2 – 22.5) 3.9 (0.2 – 7.7) 4.6 (0.2 – 16.7) 4.9 (0.2 – 21.0) 

Nigeria Ondo Owo 3.9 (2.4 – 5.4) 4.4 (2.6 – 6.6) 4.7 (2.6 – 7.2) 3.6 (2.3 – 4.9) 4.1 (2.5 – 6.2) 4.4 (2.6 – 6.7) 

Sierra 

Leone Eastern Kailahun 3.8 (2.4 – 5.2) 4.4 (2.6 – 6.4) 4.6 (2.7 – 7.0) 3.5 (2.3 – 4.7) 4.1 (2.5 – 5.9) 4.3 (2.5 – 6.5) 

Cote 

d'Ivoire Montagnes Cavally 3.8 (2.8 – 4.9) 4.3 (3.0 – 5.8) 4.5 (3.1 – 6.3) 3.5 (2.6 – 4.4) 4.0 (2.9 – 5.4) 4.3 (3.0 – 5.8) 

Guinea Kindia Kindia 3.5 (2.9 – 4.2) 3.9 (3.1 – 4.8) 4.1 (3.3 – 5.1) 3.2 (2.7 – 3.8) 3.7 (3.0 – 4.5) 3.9 (3.1 – 4.8) 

Sierra 

Leone Western 

Western 

Rural 3.5 (0.1 – 8.5) 3.9 (0.1 – 14.7) 4.1 (0.1 – 17.6) 3.2 (0.1 – 7.2) 3.6 (0.1 – 13.3) 3.9 (0.1 – 16.3) 

Liberia Bong Suakoko 3.4 (0.9 – 7.2) 3.8 (0.9 – 10.4) 4.0 (0.9 – 12.0) 3.2 (0.9 – 6.2) 3.6 (0.9 – 9.5) 3.8 (0.9 – 11.0) 

Guinea Nzerekore Gueckedou 3.2 (3.0 – 3.5) 3.6 (3.3 – 3.9) 3.8 (3.4 – 4.1) 3.0 (2.8 – 3.3) 3.4 (3.1 – 3.7) 3.6 (3.3 – 3.9) 

Guinea Nzerekore Lola 3.1 (2.7 – 3.5) 3.5 (2.9 – 4.0) 3.6 (3.0 – 4.2) 2.9 (2.5 – 3.3) 3.3 (2.8 – 3.8) 3.4 (2.9 – 4.0) 
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Cote 

d'Ivoire Montagnes Guemon 3.1 (1.5 – 4.9) 3.4 (1.5 – 5.9) 3.5 (1.6 – 6.3) 2.9 (1.4 – 4.4) 3.2 (1.5 – 5.4) 3.4 (1.5 – 5.9) 

Guinea Nzerekore Yamou 2.9 (2.6 – 3.2) 3.2 (2.8 – 3.6) 3.3 (2.9 – 3.7) 2.7 (2.4 – 3.0) 3.0 (2.6 – 3.4) 3.1 (2.8 – 3.5) 
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Figure S1. Maps of FOI projections from LF case/death data and reporting probabilities at the (A) 1st and 

(B) 2nd administrative levels with seroreversion = 0%. 
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Figure S2. Maps of FOI projections from LF case/death data and reporting probabilities at the (A) 1st and 

(B) 2nd administrative levels with seroreversion = 3%. 
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Figure S3. Scatterplots showing the relationship between the statistical regression predictions of FOI on 

the x-axis vs. the FOI estimates projected from LF case data and reporting probabilities for each of the 

eight statistical models (plus a null intercept-only model) included in our analysis. Plots are restricted to 

FOI estimates that were used in model fitting and do not include data held out for model validation. 

Results are for the 2nd administrative level and a 6% seroreversion rate. 
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Figure S4. Scatterplots showing the relationship between the statistical regression predictions of FOI on 

the x-axis vs. the FOI estimates projected from LF case data and reporting probabilities for each of the 

eight statistical models (plus a null intercept-only model) included in our analysis. Plots are restricted to 

FOI estimates that were used in model fitting and do not include data held out for model validation. 

Results are for the 2nd administrative level and a 6% seroreversion rate. 
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Figure S5. Scatterplots showing the cross-validation performance of each statistical regression model. 

Regression predictions of FOI for withheld data are on the x-axis vs. the FOI estimates projected from LF 

case data and reporting probabilities on the y-axis. Results are for the 1st administrative level and a 6% 

seroreversion rate. 
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Figure S6. Scatterplots showing the cross-validation performance of each statistical regression model. 

Regression predictions of FOI for withheld data are on the x-axis vs. the FOI estimates projected from LF 

case data and reporting probabilities on the y-axis. Results are for the 2nd administrative level and a 6% 

seroreversion rate. 
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Figure S7. Map of ensemble model-based FOI estimates at the (A) 1st and (B) 2nd administrative levels 

with seroreversion = 0%. 
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Figure S8. Map of ensemble model-based FOI estimates at the (A) 1st and (B) 2nd administrative levels 

with seroreversion = 3%. 
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Figure S9. Map of ensemble model-based FOI estimates at the (A) 1st and (B) 2nd administrative levels 

with seroreversion = 6%. 
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