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Abstract

Despite the increased availability of serological data, understanding serodynamics remains challeng-
ing. Serocatalytic models, which describe the rate of seroconversion (gain of antibodies) and serore-
version (loss of antibodies) within a population, have traditionally been fit to cross-sectional serological
data to capture long-term transmission dynamics. However, a key limitation is their binary assumption on
serological status, ignoring heterogeneity in optical density levels, antibody titers, and/or exposure his-
tory. Here, we implemented Gaussian mixture models - an established statistical tool - to cross-sectional
data in order to characterize serological diversity of seasonal human coronaviruses (sHCoVs) throughout
the lifespan. These methods identified four (NL63, 229E, OC43) to five (HKU1) distinct seropositive
levels, suggesting that among seropositive individuals, the number of prior exposures or response to in-
fection may vary. For each sHCoV, we fit adapted, multi-compartment serocatalytic models across 10
scenarios with different assumptions on exposure history and waning of antibodies. The best fit model
for each sHCoV was always one that accounted for a gradient of seropositivity as well as host variation
in the scale of serological response to infection. These models allowed us to estimate the strength and
frequency of serological responses across sHCoVs, finding that the time for a seronegative individual to
become seropositive ranges from 2.33-4.07 years across sHCoVs, and most individuals mount a strong
antibody response reflected in high optical density values, skipping lower levels of seropositivity. We
also find that despite frequent infection and strong serological responses, it is rare for an individual to
remain seropositive throughout the lifetime. Crucially, our reimagined serocatalytic methods can be
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flexibly adapted across pathogens, having the potential to be broadly applied beyond this work.

* To whom correspondence should be addressed: sll4@illinois.edu, pamelapm@illinois.edu
** These authors contributed equally

Introduction

Serological data, combined with robust statistical and mathematical methods, are widely used to infer key
parameters guiding the behavior of pathogens [1]. When working with cross-sectional serological data,
serocatalytic models are traditionally used, which divide the population into seronegative (no detected sero-
logical response to a pathogen) and seropositive (a serological response is present), and capture movement5

between these compartments across continuous age [1, 2]. This tool has long been used to address questions
about infectious disease transmission (e.g. [3–7]). To account for heterogeneity in behavior or exposure
risk, serocatalytic implementations often include stratification of the force of infection by age. However,
age is only one of many sources of host heterogeneity in infectious disease (e.g.[8–11]), and one of the
main limitations of serocatalytic models is that they collapse serological diversity to two compartments with10

binary seropositivity, ignoring the potential role of serological heterogeneity on disease transmission and
control.

Seasonal human coronaviruses (sHCoVs) are an ideal pathogen system with which to test adapted serocat-
alytic approaches that incorporate heterogeneity in host exposure history. There are four known sHCoVs
in circulation and they account for 15%-30% of common colds [12]. This widespread circulation in the15

human population [13, 14] not only motivates further investigation into their dynamics but also enables ro-
bust serological sampling across the lifespan that can inform modeling approaches. Additionally, their close
relationship with SARS-CoV-2 has been leveraged throughout the pandemic to gain insight into potential
future dynamics (e.g. [15–18]). Therefore, understanding sHCoV transmission and serodynamics can have
broad implications for public health.20

Here, we implemented Gaussian mixture models to characterize diversity in serology for the four sHCoVs,
using cross-sectional samples from China covering 0-67 years of age [19]. After identifying patterns in
this serological data, we expanded classical serocatalytic models to capture a range of hypotheses for the
development of exposure history and serological variation. By fitting these models to data, we estimated
seroconversion rates across a gradient of serostatus levels, including the scalar change in protection from25

reinfection for each class, as well as variation in the strength of serological responses to exposure. We also
estimated the rate of maternal antibody loss and the median age of first infection for each sHCoV, which
can inform the optimal timing of infant SARS-CoV-2 vaccination. The flexibility of this approach has the
potential to be used for other pathogens of interest.

Results30

Capturing serostatus heterogeneity

To capture the seroprevalence trajectories of sHCoVs across the lifespan, we analyzed the reactivity of
plasma samples from individuals between age 0−67 (n = 2, 414) to the major antigens of the four sHCoVs,
namely the spike S1 subunits of NL63, 229E, and HKU1, as well as the hemagglutinin esterase protein of
OC43. Plasma reactivity was measured by ELISA based on the values of optical density at 450 nm (OD450).35
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Figure 1: Distribution of OD450 values. (A) OD450 values by age under gradient classification. (B) OD450 probability
density under gradient classification. Colors indicate the serostatus classification of 2,414 individuals based on the
Gaussian mixture model. Four seropositive groups are identified for sHCoVs 229E, OC43, and NL63, and five for
sHCoV HKU1 (Figure S1). Outcomes under the binary classification, as well as the frequency of OD450 values are
shown in Figure S2.

The plasma reactivity data for donors between age 0−18 were obtained in our previous study [19], whereas
all the data for adults (age > 18) were measured in the present study. To identify the threshold OD450 values
between seronegative and seropositive samples in our data for all individuals, we applied 2-component
Gaussian mixture models [20], which are commonly used for this purpose [1, 2], to data for infants under
age one. This population subset was chosen to ensure capturing true seronegatives: maternal antibodies40

are likely to wane during this time period [21], and many have not yet had a natural infection [6]. With
this approach, the OD450-value threshold for each sHCoV ranged from 0.408 − 0.513, and the range of
seropositive OD450 values was wide (Figures 1A, S2). The widest range of OD450 values for seropositives
was observed for HKU1-S1, varying from 0.422 to 2.651, representing a 6-fold change in OD450 values
between the upper and lower values.45

To explore serological diversity and test whether seropositive samples could be further distinguished, we
reran the mixture model on only seropositive samples, this time allowing the number of seropositive com-
ponents to be inferred based on the Bayesian Information Criterion (Figures 1, S1). This approach returned
mixture models with five seropositive components for HKU1-S1, and four for 229E-S1, NL63-S1, and
OC43-HE. We refer to this as a gradient of seropositivity. When looking at OD450 values throughout the50

lifespan, the distribution of OD450 values at each serostatus level widens with increasing mean OD450 value
(Figure 1), representing increased heterogeneity as serostatus level increases. In order to disentangle varying
hypotheses for the development of gradient sHCoV seropositivity throughout the lifespan, we implemented
mathematical models of seroconversion (via exposure) and seroreversion (loss of antibodies).

Reimagining serocatalytic models55

We first implemented a binary serocatalytic model with a compartment for maternal seropositives (individ-
uals who are seropositive due to maternal antibodies rather than previous pathogen exposure) (Figure 2A,
Equation S1). This model has traditionally been used to measure seroconversion rates from cross-sectional
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data that has been classified into seronegative and seropositive [1, 3], and it is referred here as the “Bi-
nary Model”. In this work, we consider seroconversion to occur from exposure only (no vaccination), and60

the time to seroconversion (1/rate) is measured as the time until getting infected plus the time to become
detectably seropositive from an infection. In order to test potential mechanisms for the development of
gradient seropositivity, we also developed more complex serocatalytic models that include a number of
seropositive compartments corresponding to the gradient identified by the mixture models. In the first such
gradient model, which we call the “Ordered Model”, seroconversion moves an individual to the next-highest65

serostatus level - for example, moving from P− to P+ (Figure 2B-C, Equation S2). In the second of these
gradient models, which we call the “Variation Model”, individuals can increase their serostatus level by one
or more seropositive compartments - for example, P− to P4+ (Figure 2D-E, Equation S3). For these two
gradient models, we assumed that seroreversion either proceeded one serostatus level at a time (“Sequential
Waning”, Figures 2B, D) or direct to seronegative (“Direct Waning”, Figures 2C, E) at a rate ρ. Compart-70

ments for maternal seropositivity are also included in the gradient models, for individuals whose maternal
antibodies have not yet waned. For all models, candidate values for the seroreversion rate ρ were estimated
from longitudinal data [22].

Figure 2: Model diagrams for all five model structures considered. (A) In the Binary Model, only seronegative (P−),
seropositive (P+), and maternally seropositive (M+) compartments are considered. (B-C) In the Ordered Model, we
incorporate a gradient of seropositive compartments (M+,M2+,. . . , P+, P2+, . . . ) and individuals can seroconvert
one serostatus level at a time, with higher levels indicating higher OD450 values. Seroreversion is “sequential” (B),
moving individuals to successively lower serosatus levels, or “direct” (C), moving individuals directly to seronegative
(P−). (D-E) The Variation Model includes the same gradient of seropositivity as the Ordered Model, but also includes
heterogeneity in serological response to infection. In particular, individuals can seroconvert not just from Pi → Pi+1

but also to Pn where n is any higher serostatus level. Sequential (D) and direct (E) seroreversion are considered.
Individuals seroconvert at a rate λ and serorevert at a rate ρ.
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Figure 3: Identification of best-fit serocatalytic models. (A) Akaike Information Criterion (AIC) values across binary
serostatus classifications. (B-C) AIC values across Ordered and Variation models are shown with direct (B) or sequen-
tial (C) waning. Two values for the seroreversion rate ρ are tested, based on estimates from longitudinal data [22],
and the effects of these values on waning serostatus classes over time are compared in Figure S3. Lower AIC values
indicate better model performance, and the AIC values of the best (white text) and worst (black text) performing mod-
els are shown for each sHCoV. Fit parameters are listed in Tables S1-S2, starting parameters and boundary values are
shown in Table S4, and initial conditions are shown in Tables S5-S6.

When comparing these models with the Akaike Information Criterion (AIC), the Binary Model was always
outperformed by models capturing gradient serostatus levels, regardless of the assumptions used for fitting75

(Figure 3). Across all four sHCoVs, we found that the best-performing set of assumptions was the Variation
Model with a slow, sequential seroreversion rate (ρ = 0.39, Figure 3C). We also compared the models
using the Root Mean Square Error (RMSE), finding a 2- to 3-fold difference in RMSE values favoring the
Variation Model over the Binary Model (Figures S4). Finally, we profiled all fit parameters for the Binary
Model and Variation Model, and there was no loss of identifiability in the Variation Model (Figure S6, Tables80

S4, S7).

Disentangling exposure history

Having identified the best-performing model, we next sought to explore the implications for seroconversion
and seroreversion rates and, more broadly, the development of exposure history. When looking at param-
eter estimates (Table 1), the maternal seroreversion rate (ρm) was similar across sHCoVs with a range of85

5.13 − 7.65 years−1, corresponding to 48 − 71 days of maternal seropositivity. When looking at serocon-
version, we first estimated that seroconversion rates were similarly frequent across sHCoVs. For example,
the estimated time to seroconversion for seronegative individuals (λ−→n+) ranged from 2.33 to 4.07 years.
When comparing seroconversion rates across sHCoVs, all showed similar rates of seroconversion out of
each serostatus level until P3+, where HKU1-S1, 229E-S1, and OC43-HE all showed frequent serocon-90

version (3.51 − 6.89 years) but NL63-S1 seroconversion was infrequent (one in a lifetime). These rates
are also reflected in the trajectories of Figure 4A. For example, NL63-S1 serostatus trajectories stabilized
in adulthood with P3+ as the dominant serostatus level. In contrast, P3+ and P4+ serostatus levels ex-
hibited similar prevalence for 229E-S1 and OC43-HE, and P5+ was dominant for HKU1-S1. We also
observed that the proportion of seronegative individuals peaked rapidly before age 1, which reflects our fit-95

ted maternal seroreversion rates and is consistent with maternal antibody kinetics for other pathogens (e.g.
[23, 24]). While we did not explicitly fit age-varying seroconversion rates, these are readily recovered from
serostatus-class-specific seroconversion rates and the proportion at each serostatus level by age (Figure S7).
Seroconversion peaks for all sHCoVs in early childhood, reflecting the rapid loss of maternal antibodies.
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We find that NL63-S1 exhibits the fastest seroconversion rate of all SHCoVs during infancy until 2.25 years100

of age, when OC43-HE becomes dominant throughout early childhood. At 12.75 years, NL63-S1 again has
the highest seroconversion rate and this persists for the rest of the lifespan. 229E-HE showed the slowest
seroconversion rate for all ages.

As serostatus levels increased, the overall time to the next seroconversion event subtly increased - meaning
fewer infections are estimated to occur in higher serostatus levels. This could suggest that prior exposure105

is mildly protective against future infection, however these small increases in seroconversion time out of a
given serostatus level were almost entirely driven by drop-off in the number of destination serostatus com-
partments (Table 1). We estimated the scalar change in protection between serostatus levels during fitting,
and protection was unchanged for all but one sHCoV and serostatus level (Figure S6, Table 1). For example,
for HKU1-S1, the overall time to seroconvert out of P− was 3.1 years, and the time to seroconvert out of110

P+ was 3.23 years, but there was no change in protection between P− and P+. That is, when looking at the
sub-rates of seroconversion into P+ through P5+, our model estimated that 1/λ−→4+ and 1/λ+→4+ were
both 3.67 years, and all other sub-rates were estimated at once-in-a-lifetime (1/80years−1). The difference
between 3.1 years to seroconversion vs. 3.23 years to seroconversion is, therefore, due to the drop-off of
λ−→+. Given that increases in the time to seroconversion are driven almost completely by a decreased num-115

ber of serostatus levels to convert to, this suggests the possibility that some individuals at higher serostatus
levels are not boosting antibodies upon exposure. The single exception to a lack of increasing protection was
observed for NL63-S1, where seroconversion from P3+ → P4+ occurred once in a lifetime, but serocon-
version from P2+ → P4+ occurred every 8 years. However, P4+ is the maximum serostatus level attainable
for NL63-S1, and therefore a low seroconversion rate into P4+ out of P3+ compared to P2+ could still be120

due to a lack of detectable antibody boosting rather than protection.

Next, the fine-grain seroconversion rates captured by the Variation Model allowed us to compare the prob-
ability of seroconverting from a given origin serostatus level, to a given destination serostatus level (Figure
4B). For all sHCoVs, seroconverting into P+ or P2+ was unlikely (also seen in Table 1), suggesting that these
serostatus levels are more likely to be observed after an individual has seroreverted from a higher serostatus125

level. For 229E-S1, and OC43-HE, serostatus level P4+ was the most likely destination serostatus level
when converting from any lower status, followed by P3+. For NL63-S1, P3+ was the most probable desti-
nation serostatus level, followed by P4+. For HKU1-S1, seroconversions were almost entirely concentrated
into P4+.

Finally, we wanted to estimate the sHCoV exposure landscape across the lifespan. Using the Gillespie algo-130

rithm [25] with fit parameters from the serocatalytic models, we generated stochastic serostatus trajectories
for each sHCoV with 1, 000 individuals. By tracking seroconversion and seroreversion times for all trajec-
tories, we estimated numerically the number of lifetime infections, likely age of first seroconversion due
to infection, as well as the dynamics of maternal antibody loss (Figures 4C, S8). The first infection after
waning of maternal antibodies is likely to be NL63, occuring at a median age of 1.73 years, followed by135

OC43 (median 2.06 years of age), HKU1 (median 2.42 years of age) and finally 229E (median 3.00 years of
age) (Figure 4C). Nearly all individuals with maternal seropositivity have lost this status by age 1, regardless
of sHCoV. We estimate the average number of seroconversion events for a given sHCoV to be 10.79-13.17
throughout the lifetime (Figure S8), which is about half the number of events inferred by the Binary Model.
When looking at the characteristics of individual trajectories, we observed that most individuals fluctuate140

between seronegative and seropositive throughout the lifespan (Figure S8). Few individuals remain lifelong
seropositive after the first infection, and no individuals maintain lifelong seronegativity, consistent with our
age-of-first-infection estimates (Figure S8). Thus, the maintenance of seronegative adults in Figure 4A
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Description HKU1-S1 229E-S1 NL63-S1 OC43-HE
1/λ− 3.1 years 4.07 years 2.33 years 2.9 years
1/λ−→+ Once in a lifespan (OIL) OIL OIL OIL
1/λ−→2+ OIL OIL OIL 30.27
1/λ−→3+ OIL 20.70 3.58 6.50
1/λ−→4+ 3.67 5.79 8.00 6.89
1/λ−→5+ OIL – – –
1/λ+ 3.23 years 4.28 years 2.40 years 3.01 years
1/λ+→2+ OIL OIL OIL 30.27
1/λ+→3+ OIL 20.70 3.58 6.50
1/λ+→4+ 3.67 5.79 8.00 6.89
1/λ+→5+ OIL – – –
1/λ2+ 3.36 years 4.52 years 2.47 years 3.34 years
1/λ2+→3+ OIL 20.70 3.58 6.50
1/λ2+→4+ 3.67 5.79 8.00 6.89
1/λ2+→5+ OIL – – –
1/λ3+ 3.51 years 5.79 years OIL years 6.89 years
1/λ3+→4+ 3.67 5.79 OIL 6.89
1/λ3+→5+ OIL – – –
1/λ4+ OIL – – –
1/λ4+→5+ OIL – – –
1/ρm 69.35 days 69.35 days 47.45 days 54.75 days

Table 1: Estimates of time to seroconversion (1/λ) and maternal seroreversion (1/ρ). Values are shown for the
Variation Model, in units of years or days. Blue highlighted rows show the overall time to seroconversion for a given
serostatus level (e.g. 1/λ− out of P−), calculated as the inverse of the sum of subrates out of that serostatus level.
Parameters for which a once-in-a-lifetime boundary value (1/80 years) is estimated, are marked by “OIL”. Profiles on
fit parameters are shown in Figure S6.

reflects individuals who have waned after a previous exposure, rather than immunologically naive adults.

Discussion145

Serocatalytic models have traditionally been used to gain insight into pathogen dynamics from cross-sectional
data [1]. Yet, these methods remain limited by the inability to capture heterogeneity in serological levels,
the exposure history, or the immune response of the host, despite complex adaptations [4] and new modeling
approaches [26]. Here, we used a Gaussian mixture model to characterize a gradient of serological status
for the four seasonal coronaviruses and leveraged this characterization to glean new insights from serocat-150

alytic models - using cross-sectional data. Crucially, we found that models capturing a serostatus gradient
always performed better than models that only captured seronegative/seropositive dynamics, regardless of
any other model assumptions tested. Moreover, the best-fit model for each virus was one that explicitly
captured heterogeneity in the strength of serological response to infection.

When comparing dynamics across sHCoVs, our models suggested that HKU1 infection is likely to generate155

the strongest serological responses measured by optical density, and NL63 the weakest. While empirical

7
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Figure 4: Estimates of exposure histories. (A) Predicted serostatus proportions (solid lines) vs. observed serostatus
proportions (points) for the Variation Model, including RMSE values. Observed data are aggregated every 1.5 months
for individuals < 1 year, every year for individuals < 5 years, and every five years for those >= 5 years of age. (B)
Given that an individual is seroconverting out of a serostatus compartment, the probabilities of ending up in a each des-
tination serostatus level are shown. Note that in the case of seroconverting out of the second-highest serostatus level,
the probability of ending at the maximum serostatus will always be 100%. (C) Median age of first seroconversion due
to infection (dashed lines) by sHCoV. These ages were inferred from the stochastic simulations with 1000 individuals
for each sHCoV. The proportions of unexposed, exposed, and individuals with maternal immunity are shown. Unex-
posed individuals are those who are in the seronegative class P− for the first time. Estimates of exposure histories for
the Binary Model are shown in Figure S5.

analyses have found that pre-existing antibodies to 229E showed the least neutralizing activity compared
to OC43 and NL63 [27], our model suggested that 229E has the second strongest serological responses as

8
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measured by optical density, higher than both OC43 and NL63. These differences might be explained by
differences between antibody avidity vs. quantity induced by sHCoV antigens, which could be tested in the160

future. Diversity in antibody responses across sHCoVs might also be associated with complex evolution-
ary processes that are challenging to disentangle (e.g. [28, 29]). With respect to the quality of antibody
responses, our results also showed that changes in protection against reinfection as serostatus increases are
generally minimal for all sHCoVs. Instead, slower seroconversion out of higher serostatus levels is driven by
a shrinking number of destination serostatus levels after seroconversion. Several possibilities could explain165

these dynamics. First, the wide distribution of OD450 values that we observed at high levels of serostatus
suggest that individuals with pre-existing antibodies could be seroconverting without large enough changes
in OD450 values to be detected by our models - or that there is more heterogeneity in responses to sero-
conversion that what our models can explicitly capture. Second, it is possible that some individuals at high
serostatus levels could get infected without a meaningful change in their antibody response, regardless of170

our measurement tools. Both of these possibilities point to an antibody ceiling effect, which has been previ-
ously observed for influenza virus (e.g. [30]). Our samples were collected before the COVID-19 pandemic
became widespread, and target proteins exhibit minimal overlap across sHCoVs [19, 31], however other
cross-reactive antibodies and T cell immunity might additionally influence patterns observed here. Despite
our finding of limited protection against reinfection, exposure history might have some impact on outcomes175

from reinfection. For example, changes in the speed of antibody production upon reinfection have been
observed for RSV and influenza virus [32, 33]; this could be tested empirically for sHCoVs in the future.

Our models suggested that the earliest sHCoV seroconversion due to exposure occurs at a median age of 1.75
years (NL63) and the latest at 3.00 years (229E). When considering the age of first infection and early-life
disease dynamics, the fleeting window where most individuals have lost their maternal antibodies but have180

not yet been exposed to a pathogen can have consequences for childhood vaccination campaigns. While
there are no seasonal coronavirus vaccines, sHCoV dynamics can inform SARS-CoV-2 vaccine timing in
the future. Maternal antibodies have been known to inhibit vaccine-induced antibody responses in infants
for several pathogens such as influenza virus [21]. Though cell-mediated immunity may be spared from this
effect [34], antibody and T cell responses appear to play complementary roles in SARS-CoV-2 infection185

[35], which may lead to vaccine interference in young children. On the other hand, delaying vaccination
might mean a missed opportunity to prevent infection. Currently, SARS-CoV-2 vaccination is recommended
for infants 6 months and older [36]. Considering that SARS-CoV-2 is a betacoronavirus like OC43 and
HKU1, and that the dynamics of early exposure estimated here are consistent across both alpha- and beta-
coronaviruses, if SARS-CoV-2 continues to move toward an endemic pattern similar to that of the seasonal190

coronaviruses our models support this vaccine timing. Furthermore, vaccinating for SARS-CoV-2 before
the age of first seasonal coronavirus infection may be prudent, as evidence for interactions between SARS-
CoV-2 and other HCoV immunity remains inconsistent [27, 37–39].

While we focused on sHCoVs as a case study in this work, our approach can be broadly applied to other
pathogens of interest, with potential differences in serological classification. For example, dengue differs195

from SARS-CoV-2 and sHCoVs in that the second infection can be associated with more severe disease [40].
Given this dynamic, we might expect that the development of serostatus levels is related to heterogeneous
antibody boosting after infection, but with a higher density of serological observations at lower OD450

values and fewer serostatus components detected by mixture models - reflecting that a stronger antibody
response might predispose individuals to severe disease and death. This sparsity can indeed be seen in200

DENV-2 OD450 values reported by other authors [41]. Here, we estimated candidate seroreversion rates
from longitudinal data [22] - but longitudinal data is not essential to this process. Our methods can be
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applied with cross-sectional data alone for pathogens such as SARS-CoV-2, where seroreversion is better
characterized (e.g. [42]), or by testing a wider range of seroreversion rates when these rates are not known.
Moreover, our approach enabled us to stochastically generate individual serological trajectories, which can205

be validated in the future with longitudinal data collection. Crucially, our methods provide an opportunity
to infer highly-detailed pathogen dynamics from cross-sectional data alone, when longitudinal data - which
is definitionally resource- and time-intensive to collect - is not available.

While the findings presented here have potentially wide-ranging implications, it is important to acknowl-
edge key limitations. First, this work leverages cross-sectional data. Increased collection of longitudinal210

serological data, especially for infants, will be important to clarify patterns in exposure history and sero-
logical heterogeneity reported here. Second, we did not incorporate seasonality in this work because our
serocatalytic models captured population-level serology across age, which obscures seasonal signals. The
seasonal pattern of sHCoVs in Hong Kong is variable by pathogen [43, 44] and the dominant sHCoV varies
year to year [45]. In the future, exploring sHCoV seasonality with nonlinear transmission models might215

yield further insights, including for the age of first infection. Finally, we did not evaluate multi-sHCoV
interactions or possible interactions with SARS-CoV-2. While these interactions might alter the outcomes
of our analyses, they are beyond the scope of this work.

In conclusion, the approach presented here is highly flexible, and has the potential to be applied to other
pathogens of interest. Gaussian mixture models can help to identify serological patterns beyond the seroneg-220

ative/seropositive binary. The design of our multi-exposure models can be adapted to pathogens with any
number of serostatus components, and the optimal model structure might differ by pathogen. Understand-
ing the landscape of serological diversity and mechanisms underlying it can advance our understanding of
pathogen ecology and best practices for public health.

Methods225

Sample Collection

Between January and March 2020, a cross-sectional study was undertaken [19] at Guangzhou and Red Cross,
Hong Kong on seroprevalence of four HCoVs in volunteers from Guangdong Women and Children Hospital
and The Chinese University of Hong Kong. Plasma samples were collected from 1886 pediatric patients
under 18 years old without signs of influenza-like illness as well as 528 volunteers whose age ranging230

from 16-67 years old. All peripheral blood samples were centrifuged at 3000 x g for 10 minutes at room
temperature for plasma collection and kept at -80°C until used. All study procedures were performed after
informed consent. The study was approved by the Human Research Ethics Committee at the Guangdong
Women and Children Hospital (Approval number: 202101231) and The Chinese University of Hong Kong
(IRB: 2020.229).235

Enzyme-linked immunosorbent assay (ELISA)

Nunc MaxiSorp ELISA plates (Thermo Fisher Scientific) were coated overnight at 4°C with 100 µL of
recombinant proteins at 1 µg/mL in PBS. Of note, the S1 subunits of spike protein (His tag) of HCoV-
229E (Seattle/USA/SC1073/2016), HCoV-HKU1 (Hong Kong/isolate N5/2006), HCoV-NL63 (Florida/UF-
2/2015) and the hemagglutinin-esterase (HE) protein (His Tag) of HCoV-OC43 (Seattle/USA/SC9741/2016)240

were purchased from Sino Biological (China). On the next day, the plates were blocked with 100 µl of
Chonblock blocking/sample dilution ELISA buffer (Chondrex Inc, Redmon, US) and incubated at room
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temperature for 1 hour. Each human plasma sample was diluted to 1:100 in Chonblock blocking/sample
dilution ELISA buffer and then added into the ELISA plates for a 2-hour incubation at 37°C. Plates were then
washed thrice and incubated with horseradish peroxidase (HRP)-conjugated goat anti-human IgG antibody245

(Thermo Fisher Scientific) at 1:5,000 dilution for 1 hour at 37°C. After six washes with PBS containing
0.05% Tween 20, 100 µL of 1-Step TMB ELISA Substrate Solution (Thermo Fisher Scientific) was added
to each well. After incubation for 10 minutes, the reaction was stopped with 50 µL of 2 M H2SO4 solution,
and absorbance values were measured at 450 nm using a BioTek Synergy HTX Multimode Reader (Agilent).

Classification of serostatus250

We implemented Gaussian mixture models to classify serological samples across each sHCoV, using the
MCLUST package in R [20]. In order to identify a seronegative/seropositive threshold value, we selected the
pool of individuals younger than one year, which is expected to include both seropositive and seronegative
samples due to the waning of maternal antibodies. For each sHCoV, we fixed n = 2 compartments and fit
mixture models, estimating the seropositive/seronegative threshold as the midpoint between mean optical255

density (OD450) values in each of the two serostatus levels. In the full set of samples across age, we
considered samples seropositive if they fell above the threshold value, and seronegative if they fell below
it. In this way, we classified all data into seronegative or seropositive. In order to test a gradient serostatus
classification, we reran mixture models on the seropositive data identified above, without specifying the
number of components n in the model. This enabled the optimal number of seropositive compartments to260

be selected by the Bayesian Information Criterion (BIC), and yielded a gradient of seropositive groups for
each sHCoV.

Preparation of data and initial conditions

Seropositive samples in our data were grouped into “maternal” and “self-acquired” based on the age that
the proportion of seronegative samples peaks. That is, seropositive individuals with age less than the peak265

are classed as “maternal” and those older than the peak are “self-acquired”. We aggregated continuous age
measurements into age groups ranging in size from every 1.5 months (ages 0-1), one year (ages 1-5), or five
years (age 5+), labeling by the lowest age in a group. These bin sizes were chosen to generate adequately
smooth data for fitting while still capturing rapid changes in the distribution of OD450 measurements for
young children.270

The proportion of individuals in each serostatus and age group was then calculated. Fitting dynamic
birth/death processes is not possible in these model formulations, because simulations progress over age
since birth. Therefore, initial conditions for simulations at age 0 were based on the observed proportion of
infants that were seronegative or maternally seropositive in data, and are provided in Table S6-S5.

Estimating the seroreversion rate275

To estimate the seroreversion rate for sHCoVs, we classified previously published longitudinal data for 10
individuals spanning 205.6 person-years [22] into serostatus levels using Gaussian mixture models. While
we cannot determine the mapping of serostatus levels in this data with groups in the cross-sectional data due
to the lack of a seronegative reference group, this allowed us to identify points in the data where an individual
has likely seroconverted or seroreverted (serostatus level increased or decreased compared to their previous280

sample). For each individual and sHCoV, whenever a seroconversion event was followed by a seroreversion
event, we took the time in years between these events. We then calculated the 5th and 95th quantiles of these
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values (including all sHCoVs), and the inverse values are used as upper and lower scenarios for the general
seroreversion rate of all sHCoVs (Figure S3).

Fitting and Profiling285

To test and compare model performance, we fit seroconversion and maternal seroreversion rates across a
range of model scenarios (Equations S1-S3, Figure 2) using maximum likelihood [46]. Models were fit to
the proportion at each serostatus level in our cross sectional data, which was grouped by age, serostatus,
and type (maternal vs. self-acquired serostatus). We calculated log-likelihood with the probability density
function for the normal distribution.290

In the Binary Model, we fit the seroconversion and maternal seroreversion parameters (Table S1). In the
Ordered Model, we fit the seroconversion rate into the highest serostatus level (λn+) as well as the relative
changes in seroconversion rates at each serostatus level (Table S2). That is, if λi is the seroconversion rate
at serostatus i, then bi−1 is the multiplicative change in seroconversion rate such that

λi−1 = bi−1 ∗ λi (1)

This enabled us to bound relative changes in seroconversion to be monotonically increasing with increased295

serostatus. In the Variation Model, we fit the set of seroconversion rates λk−1→k for all serostatuses k, as
well as parameters {b−, b+, . . . , bn+} that modulate the change in seroconversion at each serostatus level
(Table S3). In particular, we used the following scaling:

λk−j→k = λk−1→k ∗
k−2∏

i=k−j

bi (2)

For all models, we additionally fit the standard deviation σ used in calculating log-likelihood.

During fitting, we assumed that each possible seroconversion event must occur at a rate at least 1/80 years−1
300

(approximately once in a lifetime [47]), and no more frequently than once per month. In order to further
assure parameter identifiability, we assumed that seroconversion rates must either stay the same or decrease
with increasing serostatus, informed by the fact that antibody titers for SARS-CoV-2 correlate with increased
protection [48]. After fitting each scenario to the data, we selected the best-performing scenario for each
sHCoV using the Akaike Information Criterion (AIC), and profiled the parameters.305

For each sHCoV we tested a set of 10 distinct scenarios across three axes:

1. Models: Binary, Ordered, Variation

2. Waning of serostatus: sequential (Pi → Pi−1) or direct (Pi → P−)

3. Seroreversion rate: 5th vs. 95th quantile

Stochastic Trajectories310

For each sHCoV and best-fit model (Binary and Variation), we generated n = 1000 stochastic individual
trajectories using the rates of seroreversion and seroconversion found during fitting. Each individual simula-
tion was initialized by probabilistically selecting a seronegative or maternally seropositive state according to
Tables S6-S5. Then, the next event and the time until this event occurs were selected using the Gillespie al-
gorithm [25]. We classified these trajectories into lifelong seronegative (excluding maternal seropositivity),315
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lifelong seropositive, and fluctuating. Additionally, we estimated the total number of lifetime seroconversion
events and age of first seroconversion post-waning of maternal antibodies.
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