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Abstract (250 words max, one paragraph) 32 

Parental genetic variants can indirectly influence the traits of their child through the 33 

environment, a concept termed "genetic nurture", or indirect genetic effects (IGE). This study 34 

estimated the direct genetic effects (DGE), via direct allelic transmission, and IGE shaping 35 

height, body mass index (BMI), and bone mineral density (BMD) in a multi-ethnic Dutch 36 

pediatric cohort, examining children with repeated measurements at ages six, nine, and 37 

thirteen. We imputed missing parental alleles from the phased haplotypes of 1,931,478 38 

variants (MAF >1%), utilizing snipar (single nucleotide imputation of parents). We 39 

constructed polygenic risk scores (PRSs) and jointly regressed the proband’s trait on their 40 

own PRS, while controlling for the proband’s maternal and paternal PRSs. A total of 4,488 41 

probands, with genetic data, underwent at least one of the three specified measurements. We 42 

found statistically significant DGE estimates for the three traits across ages six, nine and 43 

thirteen. For instance, 71-77% of the BMI variance explained by the BMI-PRS can be 44 

attributed solely to the DGE. IGE estimates reached significance only for BMI measured at 45 

ages nine (Beta: 0.05, 95%CI: 0.01-0.09) and thirteen (Beta: 0.05, 95%CI: 0.01-0.09). 46 

Maternal and paternal IGE were of a similar magnitude in all our analyses. Our findings 47 

indicate that genetic nurture has limited influence on anthropometric traits during formative 48 

years. In addition, we do not observe differences between the maternal and paternal indirect 49 

contributions to these traits, opposite to the stronger maternal nurturing effect reported for 50 

other traits.    51 

 52 

 53 

 54 

Introduction 55 
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 56 

Heritability, in the context of genetics, refers to the proportion of phenotypic variance 57 

determined by genetic factors [1]. Inherited DNA is passed from parent to offspring during 58 

reproduction. Inheritance is governed by Mendel’s laws of genetics, such that each parent 59 

passes half of their autosomal DNA to their offspring through meiosis. Consequently, parents 60 

and offspring share a resemblance in heritable traits. Parents can also influence the traits of 61 

their offspring through the shaping of their offspring’s environment, a phenomenon often 62 

referred to as nurture. If the offspring’s trait is influenced by the environment and is heritable, 63 

then the genetic variants of the parents can indirectly influence the offspring’s trait via the 64 

parent's own trait and therefore the environment of the child [2]. Thus, the variants of the 65 

parent can influence the trait of their offspring through two causal paths: directly by allele 66 

transmission and indirectly through the environment. The latter phenomenon was coined 67 

“genetic nurture”. Kong et al and Bates et al first demonstrated this concept in a human 68 

population by examining the genetic nurture, also known as indirect genetic effects (IGE), for 69 

educational attainment [3, 4]. Kong et al showed that the non-transmitted alleles of the 70 

parents had an effect on the educational attainment of the proband that is 29.9% (P = 1.6 × 71 

10−14) of that of the transmitted polygenic score.We can estimate the direct genetic effects 72 

(DGE), i.e. the direct allelic transmission, and IGE by jointly regressing the proband’s 73 

phenotype with the polygenic risk score (PRS) of the proband (i.e., child), the mother and the 74 

father. A PRS consists of the sum of risk alleles associated with a particular trait, weighted by 75 

the effect sizes of those variants as identified in genome-wide association studies (GWAS). In 76 

the joint regression model, the DGE are estimated as the magnitude of the effect of the 77 

proband’s PRS on the trait of interest, whereas, the IGE are estimated by taking the average 78 

effect estimate of the mother’s and father’s PRS within the model [5]. 79 
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Nurturing conditions play an important role in child development. Growing evidence 80 

suggests that early childhood experiences, particularly family environment shape, among 81 

others, dietary and physical activity behaviors associated with growth velocity [6, 7]. For 82 

example, the adequate intake of basic nutrients through childhood and adolescence plays a 83 

crucial role in determining height, accumulation of muscle and fat mass, and accrual of peak 84 

bone mass [8-11]. These traits are partially influenced by genetics and are also shaped by the 85 

environmental conditions provided by parents. Large GWAS have identified thousands of 86 

genetic variants associated with height [12], body mass index (BMI) [13], and bone mineral 87 

density (BMD) [14], providing valuable information to estimate an individual’s genetic 88 

liability for growth. However, classical GWAS can only estimate the combined effects of the 89 

direct and indirect effects [2, 15]. The influence of the family environment on phenotypic 90 

variation can change throughout an individual's life, as interactions among family members 91 

evolve. For example, the magnitude of parental nurturing may diminish as a child grows 92 

older [16]. It is then plausible that parental IGE, if present, will have the greatest impact on 93 

anthropometric traits during childhood and adolescence. To our knowledge, no study has 94 

examined the genetic nurturing effect on anthropometric traits in a pediatric population across 95 

multiple developmental stages. Therefore, we aimed to estimate the direct and indirect 96 

genetic effects in in developmental traits (i.e., height, BMI and BMD) at multiple timepoints 97 

through childhood development and test how these effects might vary. Our study surveyed 98 

longitudinal data of participants from a Dutch multi-ethnic cohort at ages six, nine and 99 

thirteen. 100 

 101 

Methods 102 

 103 

Study characteristics 104 
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The Generation R Study is a multi-ethnic population-based prospective cohort study from 105 

fetal life onwards based in Rotterdam, The Netherlands. The study recruited pregnant women 106 

who were expected to deliver between 2002 and 2006, and encompasses 9,778 mothers and 107 

their children  [17]. During these years, a vast array of data ranging from detailed 108 

questionnaires and regular medical examinations to advanced imaging techniques and 109 

extensive biosampling were gathered, and children and parents are in ongoing follow-up. For 110 

this study, height, BMI and BMD were measured in the probands during three visits to the 111 

research center at a mean age of 6.0, 9.7, and 13.5 years. 112 

 113 

Acquisition of the phenotype data 114 

 115 

In the Generation R Study, at each wave of the study, participants removed shoes, heavy 116 

clothing, and metal items before measurements. Height was measured to the nearest 117 

millimeter by a stadiometer (Holtain Limited, Dyfeld, UK). Weight was measured to the 118 

nearest gram using an electronic scale (SECA, Almere, The Netherlands). BMI was 119 

calculated [weight (kg)/height (m2)]. Height and BMI were then transformed into age- and 120 

sex-adjusted standard deviation scores (SDS) using LMSGrowth [18]. Total body BMD was 121 

assessed via Dual-energy- X-ray absorptiometry (DXA) scans using a GE-Lunar iDXA 122 

device operated by a skilled research assistant with daily quality checks, following standard 123 

manufacturer protocols [19]. Total body less head BMD was used for analysis as 124 

recommended by the International Society for Clinical Densitometry guidelines [20].  125 

 126 

Genotyping and imputation of the Study population 127 

 128 
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Probands and parents were genotyped in three batches using three different arrays over a 129 

period of 10 years. Due to the limited overlap in overall content across genotyping arrays, the 130 

genotype data was first subjected to imputation to increase the number of overlapping 131 

variants. Probands were genotyped in two batches. The first round of genotyping was carried 132 

out with either the Illumina HumanHap 610 or 660 Quad chips and is referred to here as 133 

Generation R3 (GENR3). It comprised data from 5,722 probands after quality control (QC). 134 

A detailed description of the genotyping can be found elsewhere [21]. Genotypes were then 135 

imputed to the 1000 genomes project phase3v5 (1KGP) reference panel using minimac3. The 136 

subset of genome-wide-variants with an r-squared > 0.95 and a minor allele frequency (MAF) 137 

> 1%, after imputation, comprised 4,789,340 SNPs.  138 

The second round of proband genotyping, referred to as Generation R4 (GENR4), was 139 

conducted together with a subset of participants’ mothers in the study. In total, 3,424 samples 140 

(i.e., including both children and mothers) were genotyped in the HuGE facility at Erasmus 141 

Medical center. Genome Studio 2.0 was used to initially QC genetic variants and genotype 142 

clusters after genotyping. Data was further processed in PLINK 1.9 for the following steps. 143 

Exclusion of samples and variants with call rates below 97.5%, variants with an excess of 144 

heterozygosity (> 4 standard deviations from the mean), Hardy-Weinberg equilibrium (HWE) 145 

deviation (P<1x10-4), or samples deemed to be sex mismatches and/or genetic duplicates. In 146 

addition, we detected and excluded potential sample swaps by comparing reported familiar 147 

relationships based on questionnaires across all Generation R samples (i.e., both children and 148 

mothers) and IBD-based relationships. Lastly, zCall was used on the previously uncalled 149 

genotypes aiming to improve the call rate of less-frequent to rare variants [22]. More 150 

stringent filtering of both samples and variants after zCall filtering was applied including 151 

missingness (>99%) and HWE (P<1x10-7). In total, 1,809 children and 708,478 variants are 152 

included in the final genotyped dataset distributed to Generation R researchers.  Next, 153 
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imputation was carried out. GENR4 variants were surveyed in the 1KG panel, and these not 154 

present or with different reported alleles, excluded. The remaining variants were phased using 155 

ShapeIT v2 [23], followed by imputation to the 1KG using minimac4 [24] with an in-house 156 

pipeline. The subset of variants with an r-squared > 0.95 and MAF > 1%, after imputation, 157 

comprised 2,921,550 SNPs.  158 

 159 

Parents of probands were genotyped in two rounds, using the GSA-MD v2.0 (n= 1,530 160 

(13%), only mothers), and GSA-MD v3.0 ((n= 10,213 (87%), both mothers and fathers) 161 

genotyping arrays. The QC of the first batch is described in detail in the previous section and 162 

supplementary figure 1 while the detailed QC of the second batch of GENR Parents is 163 

described in figure 2. For this second batch, Genome Studio 2.0 was employed to perform a 164 

technical QC of genotyped variants and clusters, followed by a strict PLINK 2 QC. 165 

Exclusions were applied to samples and variants with call rates below 97.5%, variants with 166 

an excess of heterozygosity (> 4 standard deviations from the mean), HWE deviation 167 

(P<1x10-5), or samples deemed to be sex mismatches and/or genetic duplicates. In addition, 168 

we detected and excluded potential sample swaps by a comparison of reported familiar 169 

relationships based on questionnaires across all Generation R samples (i.e., both children and 170 

parents) and KING reported relationships [25]. zCall was used on the previously uncalled 171 

genotypes aiming to improve the call rate of less-frequent to rare variants [22]. More 172 

stringent filtering of both samples and variants after zCall filtering was applied including 173 

missingness (>99%) and HWE (P<1x10-7).  Both sets of parents genotyped data were merged 174 

using PLINK 2, and variants not present in both array platforms or reporting different alleles 175 

were excluded. In total, the GENR Parents combined information of 660,868 variants present 176 

in 11,742 individuals. The combined GENR Parents dataset was phased using ShapeIT v2 177 

[26], followed by imputation to the 1KG reference panel using minimac4 [24] using our in-178 
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house pipeline. Imputation resulted in a subset of 3,000,903 SNPs with an r-squared > 0.95 179 

and MAF > 1%. Lastly, retrieved informed consents and family cross-checks based in the 180 

four genotyped batches described in the sections above resulted in extra exclusions, noted in 181 

an inclusion file share among Generation R researchers. The working genome-wide files for 182 

Generation R comprise GENR3 (5,700 participants), GENR4 (1,802 participants) and GENR 183 

Parents (11,676, parents).  184 

 185 

Construction of the combined Generation R dataset 186 

 187 

The subsets of imputed variant files described above (i.e., MAF > 1%.and r-squared > 0.95), 188 

that were present across all three files, were then merged. Palindromic variants (coded as A-T 189 

or G-C) with ambiguous effect allele frequencies (40-60%) were removed. Variants that 190 

exhibited batch effects, as determined by examining PCA plots and by conducting a GWAS 191 

using batch as the outcome, were subsequently removed. Overall, the merged set comprised 192 

1,931,478 variants and 19,178 samples after QC. This merged set of variants was then phased 193 

with SHAPEIT2 [26] with the duohmm function, -W 5 parameter (window size) and the 194 

1KGP reference panel (All population) as a genetic map [27]. The duohmm function utilizes 195 

pedigree information to improve phasing. 196 

 197 

Determination of the Genetic ancestry of the participants 198 

 199 

Individuals of European genetic ancestry were identified using genetic data from the 1KGP 200 

as a reference. Our dataset and the European set of the 1KGP (e.g., CEU, TSI, GBR, FIN, 201 

IBS) were harmonized to ensure overlapping variants and consistent allele coding. 202 

Palindromic variants and variants with MAF < 1% were removed. In the merged dataset, 203 
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variants were then pruned (�2>0.2 in a 50kb window). Principal component analysis (PCA) 204 

was conducted using PLINK. Using the first two principal components, the center of the 205 

1KGP European samples was calculated. The maximum Euclidean distance of the 1KGP 206 

European samples was then calculated. All GENR samples whose maximum Euclidean 207 

distance fell beyond this radius were defined as non-European. 208 

 209 

Imputation of missing parental alleles 210 

 211 

DGE and IGE can only be estimated in complete trios. In duos, the missing/ungenotyped 212 

parental alleles have to be imputed. We utilized snipar (single nucleotide imputation of 213 

parents) to impute missing parental alleles in probands of European ancestry [5]. Briefly, 214 

snipar imputes ungenotyped parental alleles based on Mendelian laws of inheritance. Feasible 215 

nonlinear imputations of parental alleles can be grouped into three categories: (a) genotyped 216 

sibling pairs, (b) genotyped parent–offspring pairs, and (c) genotyped sibling pairs with one 217 

genotyped parent. By using phased genotype data, uncertainty at heterozygous positions can 218 

be resolved. Missing genotypes that cannot be inferred through family structure were imputed 219 

using the in-sample population allele frequencies. As a result, only parents of European 220 

ancestry were included in the imputation. Phased VCF files were converted to bgen files 221 

using QCtools. Identity by decent (IBD) segments shared between siblings were inferred 222 

using the implementation within snipar, which employs a Hidden Markov Model [5]. KING 223 

software [25] was used to obtain kinship coefficients and pedigree information. A kinship 224 

coefficient of 0.177 and above was used to define first degree relatives. KING identified 225 

10,229 parent offspring relations. Families consisted of 3,635 trios and 2,897 duos and 267 226 

proband-sibling pairs. Kinship files, as well as files denoting the age and sex of individuals 227 

were used to infer IBD segments and pedigree structure. Missing parental genotypes (Table 228 
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1) were imputed by snipar for 1,931,478 variants using phased haplotypes. After imputation 229 

and QC a total of 5,241 European and non-European probands had complete parental data 230 

available (Table 1). 231 

 232 

Polygenic risk scores 233 

To construct the PRS for each trait, variant effect estimates were obtained from GWAS 234 

summary statistic data for height [12], BMI [13], and estimated bone mineral density 235 

(eBMD) [14]. These GWAS were chosen due to their representation of the largest sample 236 

sizes available for each respective trait. To increase the variance explained by each PRS, 237 

LDpred2 [28] was used to construct genome-wide PRSs across autosomal chromosomes. 238 

LDpred2 uses a Bayesian approach that adjusts the effect estimates of GWAS summary 239 

statistics using linkage disequilibrium (LD) information to estimate a posterior mean effect 240 

size for each SNP, resulting in a more accurate PRS prediction. The LDpred automatic model 241 

was used, in which hyper-parameters are directly inferred from the data without the need for 242 

a validation set. Variants in the GWAS summary statistics were intersected with the 243 

1,931,478 imputed variants of our sample and the 1,444,196 “HapMap3+” variants [29]. 244 

Palindromic variants were removed. In sample LD matrices were generated from the imputed 245 

variants of the probands. Once variant weights had been computed using LDpred, snipar was 246 

used to generate the PRSs for the probands, mothers and fathers. The same set of variants was 247 

used to construct the proband and parental PRSs. To obtain estimates of direct and indirect 248 

genetic effects, we jointly regressed the proband’s trait on their own PRS, while controlling 249 

for the proband’s maternal and paternal PRS. IGE are quantified as the average of the 250 

maternal and paternal PRS effects within equation 1. 251 

 252 
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(Equation 1)                �������� �  ����������� 	  
�����	
�� 	 
�����	
�� 	  � 253 

         254 

Where, Y = proband phenotype, � = direct genetic effect, 
(���mother + ���father)/2 = 255 

indirect genetic effect. Linear regression models were constructed using R software and were 256 

adjusted by age, age2, sex, the interaction between age and sex, and principal components 1 257 

to 10. Principal components were constructed from the genetic data of the individuals being 258 

tested. Traits were standardized to have a mean of zero and a standard deviation of one. The 259 

PRS for eBMD and BMI was tested in the European subset of the sample, as the GWAS for 260 

these traits was derived from a European population and was poorly associated within our 261 

non-European sample. The height GWAS from which summary statistics were extracted was 262 

performed in a multiethnic population and as such, we used the complete GENR dataset to 263 

infer DGE and IGE.  A two-sided Z-test was used to calculate the difference in effects 264 

between the maternal and paternal PRSs, as well as, the difference in effects between 265 

different age measurements. The ratio of IGE and DGE can be determined using the 266 

following method: DGE/IGE+DGE. To determine the fraction of the phenotype variance 267 

which is explained by the DGE we square this ratio. 268 

 269 

Analysis in independent probands 270 

 271 

Closely related individuals can cause inflation in the estimates of the association of the PRS 272 

and the trait tested [30]. This phenomenon arises, in part, because individuals from the same 273 

family share genetic information but also more environmental factors than unrelated 274 

individuals. For instance, individuals in nuclear families often share the same household. If 275 

these shared factors are associated with the trait of interest, it can lead to confounding in PRS 276 

analyses [30]. While GWAS methods attempt to control for broad population stratification, 277 
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they may not adequately control for subtle stratification caused by family relationships [31]. 278 

To evaluate whether the presence of related participants of the Generation R Study led to 279 

inflated association effect sizes, we performed a sensitivity analysis in which children related 280 

up to the third degree (i.e., first cousins) were removed from the regression analysis. 281 

Kingship coefficients were derived from the analysis performed in KING. 282 

 283 

Re-imputation of observed parental genotypes 284 

 285 

To assess the quality of the imputation we proceeded to re-impute measured parental alleles 286 

and then compared the re-imputed alleles to the observed alleles. To perform the analysis, we 287 

started with complete trios families of European ancestry (n = 8055), of which 2,987 were 288 

probands. 5,470 were parents. Next, the allele information of one parent from 844 probands 289 

(30%) was randomly removed. Missing parents genotypes were imputed using snipar and 290 

then the correlations between imputed genotypes and measured genotypes were tested for 291 

each individual across 1,931,478 variants. The mean correlation across all individuals and 292 

variants was as our measure of the imputation accuracy. 293 

 294 

Results 295 

Description of the data acquisition 296 

Proband’s measurements were collected during three visits to the research center, roughly 297 

four years apart. Measurements of probands took place at the median age of 6.0 (IQR: 5.9-298 

6.2), 9.73 (IQR: 9.6-9.9), and 13.5 (IQR: 13.4-13.7). Of the 4,177 probands that had one of 299 

the three measurements and genotype data available, 2,587 (62%) had measurements across 300 

all three visits. Between 83-84% of the participants measured at each visit, were of European 301 
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ancestry. A full description of the participants taking part in each measurement wave can be 302 

found in Table 1. 303 

 304 

Data type N probands Missing data imputed 

Proband and both parents (European) 2,736 No 

Proband and one parent (European) 1,576 Yes 

Proband and sibling(s) but no parents (European) 57 Yes 

Proband and both parents (Non-European) 872 No 

Total 5,241  

 305 

Table 1 – Overview of the familial data types within the Generation R Study. 306 

 307 

 308 

 309 

 310 

Imputation of missing parental genotypes 311 

 312 

In total 1,690 missing parental genotypes of European ancestry were imputed using snipar 313 

(Table 2). The structure of the missing family data consisted of 1,319 missing father 314 

genotypes with the mother and proband genotypes available, 257 missing mother genotypes 315 

with the father and proband genotypes available, and 57 probands with no parental genotype 316 

data but with a sibling genotyped. To assess the quality of the imputation we re-imputed 317 

measured parental alleles and calculated the correlation between the re-imputed alleles and 318 

observed alleles. When assessing the quality of the imputation, the mean correlation between 319 
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the observed alleles and the re-imputed alleles was 0.82, indicating a small bias in the 320 

imputed data. 321 

 322 

Characteristic Measurement age 6 Measurement age 9 Measurement age 13 

Probands with family 

genetic data 

5241 5241 5241 

Attended assessment 

center 

4178 3831 3232 

Age (years) 6.01 (5.86-6.23) 9.73 (9.61-9.87) 13.54 (13.42-13.71) 

Female (%) 49.42 49.64 49.22 

European (%) 84.38 84.4 83.2 

BMI (sds) 0.17 (-0.34-0.75) 0.18 (-0.48-0.87) 0.14 (-0.56-0.90) 

NAs 1 74 6 

Height (sds) -0.18 (-0.84-0.47) -0.09 (-0.70-0.57) 0.06 (-0.63-0.74) 

NAs 1 74 6 

TBLH-BMD (g/cm2) 0.55 (0.52-0.58) 0.67 (0.64-0.72) 0.85 (0.78-0.92) 

NAs 108 117 176 

 323 

Table 2 – Descriptive statistics of the individuals contributing data for this study at ages, six, 324 

nine and thirteen. 325 

 326 

Estimating direct and indirect genetic effects for childhood anthropometric traits 327 

 328 

The PRS for BMI was constructed using 195,154 genetic variants across the genome and 329 

explained between 7.7-14.0% of the BMI phenotypic variance (supplementary table 1) at 330 
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each measurement (European subset). We observed a correlation coefficient (ρ) of 0.55 331 

(95%CI: 0.53-0.57) between proband and mother PRS, a ρ of 0.57 (95%CI: 0.55-0.59) 332 

between proband and father PRS, and a ρ of 0.06 (95%CI: 0.02-0.10) between the parent’s 333 

PRSs. We obtained statistically significant DGE estimates for BMI across all ages (Figure 1a, 334 

supplementary table 1). DGE explained between 6.0-10.5% of the BMI phenotypic variance 335 

(supplementary table 1) at the different ages the assessment was performed. Conversely, IGE 336 

estimates on BMI reached statistical significance for the measurements at age 9 (Beta: 0.05, 337 

95%CI: 0.01-0.09) and at age 13 (Beta: 0.05, 95%CI: 0.01-0.09). The IGE estimate at age 6 338 

was borderline significant (Beta: 0.03, 95%CI: -0.01-0.07). The ratio of DGE/IGE+DGE 339 

ranged between 0.84-0.88 across the different ages. Between 71-77% of the total variance 340 

explained by the BMI PRS is due to the direct effects alone. There were no significant 341 

differences between maternal and paternal effects or between age groups at any of the ages 342 

tested. 343 
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Figure 1 – Forest plots depicting the direct, indirect and maternal minus paternal genetic 345 

effects for: a) Body mass index b) Height c) and Bone mineral density measured at different 346 

ages in participants of the Generation R Study. 347 

 348 

The height PRS was constructed using 210,390 genetic variants across the genome and 349 

explained between 16.2-19.2% of the phenotypic variance of height (supplementary table 1) 350 

at each measurement wave. The correlation between proband and mother PRSs was 0.60 351 

(95%CI: 0.59-0.61), proband and father PRSs, 0.62 (95%CI: 0.61-0.63) and between parent’s 352 

PRSs, 0.17 (95%CI: 0.16-0.18). We obtained statistically significant unbiased DGE estimates 353 

for height across all ages (Figure 1b, supplementary table 1). DGE explained between 14.4-354 

18.7% of height phenotypic variance (supplementary table 1). IGE Estimates of did not reach 355 

significance for any of the ages tested (p-value > 0.05). Direct effects explained between 94-356 

99% of the height variance explained by its correspondent PRS. There were no significant 357 

differences between maternal and paternal effects or between age groups at any of the ages 358 

tested. 359 

 360 

The PRS for BMD was constructed using 251,272 variants across the genome and explained 361 

between 3.3-4.5% of the total body less head BMD phenotypic variance (supplementary table 362 

1) at the different measurement waves (European subset). The correlation between proband 363 

and mother PRSs was 0.53 (95%CI: 0.51-0.55), proband and father PRSs were 0.56 (95%CI: 364 

0.54-0.58) and between parent’s PRSs was 0.04 (95%CI: -0.01;0.06). We obtained 365 

statistically significant unbiased DGE estimates for BMD across all age groups (Figure 1c, 366 

supplementary table 1). DGE explained between 2.5-3.9% of the BMD phenotypic variance 367 

(supplementary table 1). IGE estimates did not reach statistical significance for any of the 368 
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ages tested. There were no significant differences between maternal and paternal effects or 369 

between age groups at any of the ages tested. 370 

 371 

Sensitivity analysis 372 

 373 

To assess the extent to which our PRS coefficients were inflated due to relatedness within our 374 

sample population, we conducted a sensitivity analysis including only independent 375 

individuals (supplementary table 2). Overall, DGE and IGE coefficients remained consistent 376 

between both analyses indicating minimal bias due to relatedness in our analysis 377 

(supplementary table 2). 378 

 379 

Discussion 380 

 381 

We examined genetic nurture effects that may shape childhood anthropometric traits across 382 

ages six, nine and thirteen in a multi-ethnic Dutch cohort study. We imputed missing parental 383 

genotypes based on Mendelian inheritance. Polygenic risk scores (PRSs) were constructed for 384 

mothers, fathers and probands, for three childhood anthropometric traits: height, BMI and 385 

BMD (total body less head), using hundreds of thousands of genetic variants. We obtained 386 

statistically significant estimates of direct genetic effects (DGE) for all traits. We also 387 

observed significant estimates of indirect genetic effects (IGE) for BMI but not height or 388 

BMD. In general, we observed modest estimates of genetic nurture effects of anthropometric 389 

traits throughout developmental ages, with no significant differences in IGE for any traits 390 

between different age ranges in children. Additionally, no differences were observed in the 391 

contribution of maternal and paternal genetic nurture effects. These results indicate that the 392 
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genetic effects of anthropometric traits in children predominantly occur via genetic 393 

transmission, although some genetic nurture effects are present for BMI. 394 

Our study is not the first to examine the effects of genetic nurture on child BMI trajectories. 395 

Tubbs et al. examined the influence of maternal genetic nurture on child BMI trajectories in 396 

approximately 2,900 children and found that its effect increased with age, becoming stronger 397 

throughout development [32]. Notably, Tubbs et al. focused solely on maternal genetic 398 

nurture, without accounting for potential paternal influences. This finding contrasts with 399 

studies on twins, which suggest that the impact of the shared environment, including genetic 400 

nurture, diminishes over childhood and adolescence [33]. Further complicating the picture, a 401 

GWAS of BMI at different ages found that distinct genetic factors influence BMI during 402 

infancy (2 weeks to 18 months) compared to later childhood (18 months to 13 years) [34]. 403 

Similarly, a study based on pooled twin data reported that genetic correlations for BMI 404 

decrease with age, indicating that new genetic factors emerge at different stages of childhood 405 

growth [35]. In the Generation R study, a polygenic risk score (PRS) for adult BMI explained 406 

varying amounts of BMI variance across age groups, with the highest variance at age 13, 407 

suggesting that different genetic variants influence BMI across childhood, or that adult BMI 408 

variants have weaker effects at younger ages. Additionally, a study tracking BMI PRSs from 409 

childhood to adulthood found that differences in weight between individuals in the highest 410 

and lowest deciles of the PRS were evident early in childhood and grew to 12 kilograms by 411 

age 18 [36]. Together, these findings highlight the dynamic role of genetic factors, with 412 

varying influences across different developmental stages. 413 

 414 

In a prior study that assessed genetic nurturing effects in 21,637 adult probands from an 415 

Icelandic cohort study, a DGE/IGE+DGE ratio of 0.94 for height was reported [3] aligning 416 

with the estimated ratios from our study. Despite the large sample size of the Icelandic study, 417 
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the authors did not find a significant IGE for BMI [3]. In contrast, we report a significant IGE 418 

for BMI. As the Icelandic study was carried out on adults, it is plausible that the influence of 419 

the IGE on BMI is more accentuated during childhood. This aligns with the logic that parents 420 

have more control over their child's environment during childhood, but less control over their 421 

environment in adulthood. Still, we observed no significant disparities in IGE on BMI across 422 

the developmental ages of our examined cohort, suggesting that a potential divergence of IGE 423 

may occur later in adolescence or adulthood. Another study of roughly 56,500 adult probands 424 

from the UK biobank, Generation Scotland and the Swedish Twin registry produced a 425 

DGE/IGE+DGE ratio of 0.910 (s.e. = 0.009) for height, and 0.962 (s.e. = 0.017) for BMI 426 

[37]. Again, the IGE values for height in this study are similar to those obtained from the 427 

Generation R Study, while the IGE values for BMI in this study are lower. However, the 428 

Generation R Study displays larger standard errors for BMI IGE and the BMI GWAS 429 

summary statistics used in our study were different. No prior studies have investigated the 430 

IGE or DGE of BMD in either pediatric or adult populations, precluding a direct comparison 431 

with our research. While IGE for BMD did not reach statistical significance, we did observe 432 

increasing effect estimates with age. Correlations between parental scores for height, and to a 433 

lesser extend BMI, were inflated, indicating bias, possibly driven by assortative mating or 434 

population stratification, which are also captured by IGE [39, 40]. Assortative mating refers 435 

to the phenomenon in which individuals are more likely to mate with those who share a 436 

similar trait than is expected under random mating, and is a well-documented phenomenon of 437 

the genetics of height [5, 39, 40]. Previous studies have shown that much of the IGE on 438 

height is attributable to assortative mating, whereas, for BMI, assortative mating has been 439 

shown to have a negligible effect [37, 40]. BMD on the other hand displayed no evidence of 440 

assortative mating in our study, in accordance with previous estimations [39]. We did not 441 

observe any statistically significant difference between maternal and paternal IGE on the 442 
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outcome traits across the age groups tested. We are underpowered to draw reliable 443 

conclusions regarding parental differences in genetic nurturing effects. Yet, our results do not 444 

support the hypothesis that mothers have a stronger nurturing effect on children’s 445 

anthropometric traits during their formative years, or the hypothesis that IGE for 446 

anthropometric phenotypes are mainly driven by interactions between the mother and fetus in 447 

the womb for the PRS that we studied. However, the nurturing effects of the mother may still 448 

influence the child via alternative environmental pathways.  449 

The use of PRS derived from GWAS, which are inherently influenced by indirect genetic 450 

effects, can have clinical significance, especially when using PRS for disease screening [41, 451 

42]. Screening children using a PRS comprised of DGE would offer a more accurate 452 

classification of children suffering from a possible Mendelian disease, or accumulation of 453 

common risk alleles, than using a PRS consisting of both DGE and IGE [43]. Further, one 454 

potentially promising use of PRS is for personalized medicine, in which individuals with a 455 

high genetic risk of obesity would be prescribed medication for earlier prevention and 456 

treatment, whereas individuals with a low genetic risk of obesity would be prescribed 457 

lifestyle interventions [36]. In such a scenario, it is of importance to construct a PRS without 458 

IGE to distinguish those with a high genetic burden of disease from those with a high 459 

environmental burden. Additionally, IGE can lead to biases within Mendelian randomization, 460 

a type of causal association analysis, leading to spurious associations [44]. IGE can also have 461 

impacts on many downstream analyses of GWAS, including annotation, heritability estimates 462 

and genetic correlations [5]. 463 

 464 

Our study presents several limitations. The limited sample size of our cohort warrants 465 

replication of our results in additional (larger) cohorts to improve power and generalizability 466 

of the effect estimates. Although our study encompassed multiple ethnicities, we could not 467 
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conduct multi-ethnic analyses for BMI and BMD due to the absence of sufficiently large 468 

multi-ethnic GWAS summary statistics available. Additionally, current BMD GWAS have a 469 

limited sample size affecting power, therefore we constructed a BMD PRS derived from an 470 

eBMD GWAS. Despite also being a measure of bone mineralization, this measurement is 471 

only moderately correlated with the BMD obtained from dual-energy x-ray absorptiometry, 472 

which was measured in our cohort [14]. Lastly, our estimates of IGE may be inflated due to 473 

assortative mating, particularly for height. Here, we estimated DGE and IGE using PRSs 474 

derived from GWAS of unrelated individuals [12-14]. Therefore, the IGE could reflect 475 

biases, such as population stratification and assortative mating, present within the original 476 

GWAS. An improved approach would be to use variant effect estimates derived from family-477 

based GWAS design, in which parental genotypes are controlled for when testing the 478 

association between proband genotypes and traits, which do not suffer from these biases [2, 479 

15, 45]. However, such family-based GWAS designs would require large samples of 480 

genotyped nuclear families, currently not available. 481 

 482 

In conclusion, we observed moderate estimates of genetic nurturing effects on height, BMI 483 

and BMD throughout developmental ages, with no significant differences in indirect genetic 484 

effects for any of the traits across different ages in children. Additionally, no differences were 485 

observed in the contribution of maternal and paternal genetic nurturing effects, providing no 486 

indication of non-genetic transmission of the mother’s anthropometric traits on the child’s in 487 

pregnancy. These results do not support the hypothesis that mothers have a stronger nurturing 488 

effect on children during their formative years, or the hypothesis that IGE for anthropometric 489 

phenotypes are mainly driven by interactions between the mother and fetus in the womb. 490 

 491 
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