It is made available under a [CC-BY-ND 4.0 International license](http://creativecommons.org/licenses/by-nd/4.0/) .

 $\mathbf{1}$

It is made available under a [CC-BY-ND 4.0 International license](http://creativecommons.org/licenses/by-nd/4.0/) .

- 26 The Netherlands
27 e-mail: m.medina
28
29 Keywords: Genet e-mail: m.medinagomez@erasmusmc.nl
28
29 Keywords: Genetic nurture, indirect gene
30 body mass index 29
30
31 29 Keywords: Genetic nurture, indirect genetic effects, polygenic risk score, children, growth,
30 body mass index
31
- 30 body mass index
-

preprint **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.12.10.24318796;](https://doi.org/10.1101/2024.12.10.24318796) this version posted December 11, 2024. The copyright holder for this

It is made available under a [CC-BY-ND 4.0 International license](http://creativecommons.org/licenses/by-nd/4.0/) .

Abstract (250 words max, one paragraph)
33 Parental genetic variants can indirectly influe
environment, a concept termed "genetic nurtu
35 estimated the direct genetic effects (DGE), vi
36 height, body mass index (BMI), 33 Parental genetic variants can indirectly influence the traits of their child through the
34 environment, a concept termed "genetic nurture", or indirect genetic effects (IGE). T
35 estimated the direct genetic effects (34 environment, a concept termed "genetic nurture", or indirect genetic effects (IGE). This study
35 estimated the direct genetic effects (DGE), via direct allelic transmission, and IGE shaping
36 height, body mass index (

35 estimated the direct genetic effects (DGE), via direct allelic transmission, and IGE shaping
36 height, body mass index (BMI), and bone mineral density (BMD) in a multi-ethnic Dutch
37 pediatric cohort, examining childr

36 height, body mass index (BMI), and bone mineral density (BMD) in a multi-ethnic Dutch
37 pediatric cohort, examining children with repeated measurements at ages six, nine, and
38 thirteen. We imputed missing parental al 37 pediatric cohort, examining children with repeated measurements at ages six, nine, and
38 thirteen. We imputed missing parental alleles from the phased haplotypes of 1,931,478
39 variants (MAF >1%), utilizing snipar (si 38 thirteen. We imputed missing parental alleles from the phased haplotypes of 1,931,478 variants (MAF >1%), utilizing snipar (single nucleotide imputation of parents). We constructed polygenic risk scores (PRSs) and joint 39 variants (MAF >1%), utilizing snipar (single nucleotide imputation of parents). We

40 constructed polygenic risk scores (PRSs) and jointly regressed the proband's trait or

41 own PRS, while controlling for the proban constructed polygenic risk scores (PRSs) and jointly regressed the proband's trait on their
word PRS, while controlling for the proband's maternal and paternal PRSs. A total of 4,488
probands, with genetic data, underwent

while controlling for the proband's maternal and paternal PRSs. A total of 4,488
probands, with genetic data, underwent at least one of the three specified measurements. We
found statistically significant DGE estimates for probands, with genetic data, underwent at least one of the three specified measurements. We
found statistically significant DGE estimates for the three traits across ages six, nine and
thirteen. For instance, 71-77% of the found statistically significant DGE estimates for the three traits across ages six, nine and
thirteen. For instance, 71-77% of the BMI variance explained by the BMI-PRS can be
attributed solely to the DGE. IGE estimates re thirteen. For instance, 71-77% of the BMI variance explained by the BMI-PRS can be
attributed solely to the DGE. IGE estimates reached significance only for BMI measur
ages nine (Beta: 0.05, 95%CI: 0.01-0.09) and thirteen attributed solely to the DGE. IGE estimates reached significance only for BMI measured at ages nine (Beta: 0.05, 95%CI: 0.01-0.09) and thirteen (Beta: 0.05, 95%CI: 0.01-0.09).
Maternal and paternal IGE were of a similar ma

ages nine (Beta: 0.05, 95%CI: 0.01-0.09) and thirteen (Beta: 0.05, 95%CI: 0.01-0.09).

Maternal and paternal IGE were of a similar magnitude in all our analyses. Our finding

indicate that genetic nurture has limited influ

- Maternal and paternal IGE were of a similar magnitude in all our analyses. Our findings
indicate that genetic nurture has limited influence on anthropometric traits during format
years. In addition, we do not observe diffe indicate that genetic nurture has limited influence on anthropometric traits during formative

years. In addition, we do not observe differences between the maternal and paternal indirect

contributions to these traits, op %49 years. In addition, we do not observe differences between the maternal and paternal indirect
contributions to these traits, opposite to the stronger maternal nurturing effect reported for
other traits.
52
53 50 contributions to these traits, opposite to the stronger maternal nurturing effect reported for
51 other traits.
52
-
-
-

51 other traits.
52
53
54
55 **Introductio** - -
53
54
55 54
55
 - 1
55
1 55 **Introduction** preprint **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.12.10.24318796;](https://doi.org/10.1101/2024.12.10.24318796) this version posted December 11, 2024. The copyright holder for this

It is made available under a [CC-BY-ND 4.0 International license](http://creativecommons.org/licenses/by-nd/4.0/) .

56

--
57
58
59
60 57 Heritability, in the context of genetics, refers to the proportion of phenotypic variance
58 determined by genetic factors [1]. Inherited DNA is passed from parent to offspring du
59 reproduction. Inheritance is governe determined by genetic factors [1]. Inherited DNA is passed from parent to offspring during
reproduction. Inheritance is governed by Mendel's laws of genetics, such that each parent
passes half of their autosomal DNA to the 59 reproduction. Inheritance is governed by Mendel's laws of genetics, such that each parent

50 passes half of their autosomal DNA to their offspring through meiosis. Consequently, pare

51 and offspring share a resemblan 60 passes half of their autosomal DNA to their offspring through meiosis. Consequently, parents
61 and offspring share a resemblance in heritable traits. Parents can also influence the traits of
62 their offspring through and offspring share a resemblance in heritable traits. Parents can also influence the traits of
their offspring through the shaping of their offspring's environment, a phenomenon often
referred to as nurture. If the offspr their offspring through the shaping of their offspring's environment, a phenomenon often
referred to as nurture. If the offspring's trait is influenced by the environment and is herita
then the genetic variants of the pare for the solution of the offspring's trait is influenced by the environment and is heritable,
then the genetic variants of the parents can indirectly influence the offspring's trait via the
parent's own trait and therefore then the genetic variants of the parents can indirectly influence the offspring's trait via the
parent's own trait and therefore the environment of the child [2]. Thus, the variants of the
parent can influence the trait of parent's own trait and therefore the environment of the child [2]. Thus, the variants of the
parent can influence the trait of their offspring through two causal paths: directly by allele
transmission and indirectly throug 66 parent can influence the trait of their offspring through two causal paths: directly by allele
67 transmission and indirectly through the environment. The latter phenomenon was coined
68 "genetic nurture". Kong et al a 67 transmission and indirectly through the environment. The latter phenomenon was coined
68 "genetic nurture". Kong et al and Bates et al first demonstrated this concept in a human
69 population by examining the genetic n ⁶⁸ "genetic nurture". Kong et al and Bates et al first demonstrated this concept in a human
69 population by examining the genetic nurture, also known as indirect genetic effects (IGI
67 educational attainment [3, 4]. K 69 population by examining the genetic nurture, also known as indirect genetic effects (IGE), for

70 educational attainment [3, 4]. Kong et al showed that the non-transmitted alleles of the

71 parents had an effect on t 20 educational attainment [3, 4]. Kong et al showed that the non-transmitted alleles of the parents had an effect on the educational attainment of the proband that is 29.9% ($P = 1$.

22 10⁻¹⁴) of that of the transmitted parents had an effect on the educational attainment of the proband that is 29.9% ($P = 1.6 \times 10^{-14}$) of that of the transmitted polygenic score. We can estimate the direct genetic effects (DGE), i.e. the direct allelic tr 10^{-14}) of that of the transmitted polygenic score. We can estimate the direct genetic effects 10^{-14}) of that of the transmitted polygenic score. We can estimate the direct genetic effects

(DGE), i.e. the direct allelic transmission, and IGE by jointly regressing the proband's

phenotype with the polygenic risk (DGE), i.e. the direct allelic transmission, and IGE by jointly regressing the proband's

phenotype with the polygenic risk score (PRS) of the proband (i.e., child), the mother a

father. A PRS consists of the sum of risk phenotype with the polygenic risk score (PRS) of the proband (i.e., child), the mother and the father. A PRS consists of the sum of risk alleles associated with a particular trait, weighted by the effect sizes of those var The stather. A PRS consists of the sum of risk alleles associated with a particular trait, weighted by
the effect sizes of those variants as identified in genome-wide association studies (GWAS). In
the joint regression mod the effect sizes of those variants as identified in genome-wide association studies (GWAS). In the joint regression model, the DGE are estimated as the magnitude of the effect of the proband's PRS on the trait of interest, 77 the joint regression model, the DGE are estimated as the magnitude of the effect of the proband's PRS on the trait of interest, whereas, the IGE are estimated by taking the ave effect estimate of the mother's and father proband's PRS on the trait of interest, whereas, the IGE are estimated by taking the average effect estimate of the mother's and father's PRS within the model [5]. 79 effect estimate of the mother's and father's PRS within the model [5].

It is made available under a [CC-BY-ND 4.0 International license](http://creativecommons.org/licenses/by-nd/4.0/) .

Methods Study characteristics

imputation was carried out. GENR4 variants were surveyed in the 1KG panel, and these not

155 present or with different reported alleles, excluded. The remaining variants were phased usin

156 ShapeIT v2 [23], followed by 155 present or with different reported alleles, excluded. The remaining variants were phased using

156 ShapeIT v2 [23], followed by imputation to the 1KG using minimac4 [24] with an in-house

157 pipeline. The subset of v 156 ShapeIT v2 [23], followed by imputation to the 1KG using minimac4 [24] with an in-house

157 pipeline. The subset of variants with an r-squared > 0.95 and MAF > 1%, after imputation,

158 comprised 2,921,550 SNPs.

15 157 pipeline. The subset of variants with an r-squared > 0.95 and MAF $> 1\%$, after imputation,
158 comprised 2,921,550 SNPs.
159 Parents of probands were genotyped in two rounds, using the GSA-MD v2.0 (n= 1,530
161 (1 158 comprised 2,921,550 SNPs.
159
160 Parents of probands were ge
161 (13%), only mothers), and G
162 genotyping arrays. The QC o 160
161
162
163
164 160 Parents of probands were genotyped in two rounds, using the GSA-MD v2.0 (n= 1,530 (13%), only mothers), and GSA-MD v3.0 ((n= 10,213 (87%), both mothers and fathers) genotyping arrays. The QC of the first batch is desc 161 (13%), only mothers), and GSA-MD v3.0 ((n= 10,213 (87%), both mothers and fathers)
162 genotyping arrays. The QC of the first batch is described in detail in the previous section
163 supplementary figure 1 while the d 162 genotyping arrays. The QC of the first batch is described in detail in the previous section and
163 supplementary figure 1 while the detailed QC of the second batch of GENR Parents is
164 described in figure 2. For thi 163 supplementary figure 1 while the detailed QC of the second batch of GENR Parents is
164 described in figure 2. For this second batch, Genome Studio 2.0 was employed to perfor-
165 technical QC of genotyped variants an 164 described in figure 2. For this second batch, Genome Studio 2.0 was employed to perform a
165 technical QC of genotyped variants and clusters, followed by a strict PLINK 2 QC.
166 Exclusions were applied to samples an 165 technical QC of genotyped variants and clusters, followed by a strict PLINK 2 QC.

166 Exclusions were applied to samples and variants with call rates below 97.5%, varian

167 an excess of heterozygosity (> 4 standard 166 Exclusions were applied to samples and variants with call rates below 97.5%, variants with

167 an excess of heterozygosity (> 4 standard deviations from the mean), HWE deviation

168 (P<1x10⁻⁵), or samples deemed t 167 an excess of heterozygosity ($>$ 4 standard deviations from the mean), HWE deviation
168 ($P<1x10^{-5}$), or samples deemed to be sex mismatches and/or genetic duplicates. In adc
169 we detected and excluded potential $(P<1x10⁻⁵)$, or samples deemed to be sex mismatches and/or genetic duplicates. In addition, 168 (P<1x10⁻⁵), or samples deemed to be sex mismatches and/or genetic duplicates. In addition,
169 we detected and excluded potential sample swaps by a comparison of reported familiar
170 relationships based on question 169 we detected and excluded potential sample swaps by a comparison of reported familiar
170 relationships based on questionnaires across all Generation R samples (i.e., both childre
171 parents) and KING reported relatio 170 relationships based on questionnaires across all Generation R samples (i.e., both children and
171 parents) and KING reported relationships [25]. zCall was used on the previously uncalled
172 genotypes aiming to impro 171 parents) and KING reported relationships [25]. zCall was used on the previously uncalled
172 genotypes aiming to improve the call rate of less-frequent to rare variants [22]. More
173 stringent filtering of both sampl 172 genotypes aiming to improve the call rate of less-frequent to rare variants [22]. More
173 stringent filtering of both samples and variants after zCall filtering was applied includ
174 missingness (>99%) and HWE (P<1x 173 stringent filtering of both samples and variants after zCall filtering was applied including
174 missingness (>99%) and HWE (P<1x10⁻⁷). Both sets of parents genotyped data were mer
175 using PLINK 2, and variants no missingness (>99%) and HWE ($P<1x10^{-7}$). Both sets of parents genotyped data were merged 174 missingness (>99%) and HWE (P<1x10^{-/}). Both sets of parents genotyped data were merged
175 using PLINK 2, and variants not present in both array platforms or reporting different alleles
176 were excluded. In total, using PLINK 2, and variants not present in both array platforms or reporting different alleles
176 were excluded. In total, the GENR Parents combined information of 660,868 variants present
177 in 11,742 individuals. The c were excluded. In total, the GENR Parents combined information of 660,868 variants present

177 in 11,742 individuals. The combined GENR Parents dataset was phased using ShapeIT v2

178 [26], followed by imputation to the 177 in 11,742 individuals. The combined GENR Parents dataset was phased using ShapeIT v2 [26], followed by imputation to the 1KG reference panel using minimac4 [24] using our in $\frac{1}{2}$ [26], followed by imputation to t 178 [26], followed by imputation to the 1KG reference panel using minimac4 [24] using our in-

9

229 1) were imputed by snipar for 1,931,478 variants using phased haplotypes. After imputation
230 and QC a total of 5,241 European and non-European probands had complete parental data
231 available (Table 1).
232
233 Poly 230 and QC a total of 5,241 European and non-European probands had complete parental data
231 available (Table 1).
232 Polygenic risk scores
234 To construct the PRS for each trait, variant effect estimates were obtained f 231 available (Table 1).
232
233 Polygenic risk score
234 To construct the PR.
235 summary statistic da

233
234
235
236
236 233 Polygenic risk scores
234 To construct the PRS
235 summary statistic data
236 (eBMD) [14]. These C
237 sizes available for eac

234 To construct the PRS for each trait, variant effect estimates were obtained from GWAS

235 summary statistic data for height [12], BMI [13], and estimated bone mineral density

236 (eBMD) [14]. These GWAS were chosen d 235 summary statistic data for height [12], BMI [13], and estimated bone mineral density

236 (eBMD) [14]. These GWAS were chosen due to their representation of the largest sar

237 sizes available for each respective trai (eBMD) [14]. These GWAS were chosen due to their representation of the largest sample

237 sizes available for each respective trait. To increase the variance explained by each PRS,

238 LDpred2 [28] was used to construct

237 sizes available for each respective trait. To increase the variance explained by each PRS,
238 LDpred2 [28] was used to construct genome-wide PRSs across autosomal chromosomes.
239 LDpred2 uses a Bayesian approach that LDpred2 [28] was used to construct genome-wide PRSs across autosomal chromosomes.

LDpred2 uses a Bayesian approach that adjusts the effect estimates of GWAS summary

statistics using linkage disequilibrium (LD) informatio 239 LDpred2 uses a Bayesian approach that adjusts the effect estimates of GWAS summary
240 statistics using linkage disequilibrium (LD) information to estimate a posterior mean efference
241 size for each SNP, resulting in

240 statistics using linkage disequilibrium (LD) information to estimate a posterior mean effect
241 size for each SNP, resulting in a more accurate PRS prediction. The LDpred automatic mod
242 was used, in which hyper-par

size for each SNP, resulting in a more accurate PRS prediction. The LDpred automatic model

242 was used, in which hyper-parameters are directly inferred from the data without the need for

243 a validation set. Variants i was used, in which hyper-parameters are directly inferred from the data without the need for

a validation set. Variants in the GWAS summary statistics were intersected with the

1,931,478 imputed variants of our sample an 243 a validation set. Variants in the GWAS summary statistics were intersected with the
244 1,931,478 imputed variants of our sample and the 1,444,196 "HapMap3+" variants [
245 Palindromic variants were removed. In sample 244 1,931,478 imputed variants of our sample and the 1,444,196 "HapMap3+" variants [29].
245 Palindromic variants were removed. In sample LD matrices were generated from the imp
246 variants of the probands. Once variant w

Palindromic variants were removed. In sample LD matrices were generated from the imputed

246 variants of the probands. Once variant weights had been computed using LDpred, snipar was

247 used to generate the PRSs for the variants of the probands. Once variant weights had been computed using LDpred, snipar was
247 used to generate the PRSs for the probands, mothers and fathers. The same set of variants was
248 used to construct the proband

used to generate the PRSs for the probands, mothers and fathers. The same set of variants was

used to construct the proband and parental PRSs. To obtain estimates of direct and indirect

genetic effects, we jointly regres 248 used to construct the proband and parental PRSs. To obtain estimates of direct and indirect
249 genetic effects, we jointly regressed the proband's trait on their own PRS, while controlling
250 for the proband's matern

249 genetic effects, we jointly regressed the proband's trait on their own PRS, while controlling
250 for the proband's maternal and paternal PRS. IGE are quantified as the average of the
251 maternal and paternal PRS effe 250 for the proband's maternal and paternal PRS. IGE are quantified as the average of the
251 maternal and paternal PRS effects within equation 1.
252

251 maternal and paternal PRS effects within equation 1.
252

11

It is made available under a [CC-BY-ND 4.0 International license](http://creativecommons.org/licenses/by-nd/4.0/) .

253 (Equation 1)
$$
Y_{proband} = \delta PRS_{proband} + \beta PRS_{mother} + \beta PRS_{father} + \epsilon
$$

253 (Equation 1) Y_1

254

255 Where, $Y =$ proband pl

256 indirect genetic effect. I

257 adjusted by age, age², se 255
256
257
258 255 Where, $Y =$ proband phenotype, δ = direct genetic effect, β
256 indirect genetic effect. Linear regression models were constru
257 adjusted by age, age², sex, the interaction between age and se
258 to 10. Prin Where, $Y =$ proband phenotype, δ = direct genetic effect, $\beta(PRS_{mother} + PRS_{father})/2$ = indirect genetic effect. Linear regression models were constructed using R software and were
adjusted by age, age², sex, the interaction between age and sex, and principal components 1
to 10. Principal components were co adjusted by age, age², sex, the interaction between age and sex, and principal components 1 adjusted by age, age², sex, the interaction between age and sex, and principal components 1
to 10. Principal components were constructed from the genetic data of the individuals being
tested. Traits were standardized to to 10. Principal components were constructed from the genetic data of the individuals being
tested. Traits were standardized to have a mean of zero and a standard deviation of one. The
PRS for eBMD and BMI was tested in th tested. Traits were standardized to have a mean of zero and a standard deviation of one. The

PRS for eBMD and BMI was tested in the European subset of the sample, as the GWAS for

these traits was derived from a European 260 PRS for eBMD and BMI was tested in the European subset of the sample, as the GWAS for
261 these traits was derived from a European population and was poorly associated within our
262 non-European sample. The height GWA 261 these traits was derived from a European population and was poorly associated within our
262 non-European sample. The height GWAS from which summary statistics were extracted w
263 performed in a multiethnic population 262 non-European sample. The height GWAS from which summary statistics were extracted was
263 performed in a multiethnic population and as such, we used the complete GENR dataset to
264 infer DGE and IGE. A two-sided Z-tes 263 performed in a multiethnic population and as such, we used the complete GENR dataset to infer DGE and IGE. A two-sided Z-test was used to calculate the difference in effects between the maternal and paternal PRSs, as w 264 infer DGE and IGE. A two-sided Z-test was used to calculate the difference in effects
265 between the maternal and paternal PRSs, as well as, the difference in effects between
266 different age measurements. The ratio 265 between the maternal and paternal PRSs, as well as, the difference in effects between
266 different age measurements. The ratio of IGE and DGE can be determined using the
267 following method: DGE/IGE+DGE. To determine 266 different age measurements. The ratio of IGE and DGE can be determined using the
267 following method: DGE/IGE+DGE. To determine the fraction of the phenotype varia
268 which is explained by the DGE we square this rati 267 following method: DGE/IGE+DGE. To determine the fraction of the phenotype variance
268 which is explained by the DGE we square this ratio.
269 Analysis in independent probands
271 Clarake which is distincted as a green which is explained by the DGE we square this ratio.
269
270 Analysis in independent probands
271 Closely related individuals can cause inflation in the
272 and the trait tested [20]. This phase manner arises in 270
271
272
273
274 270 Analysis in independent probands
271 Closely related individuals can cau
273 and the trait tested [30]. This phen
274 family share genetic information b 272
273
274
275
276 272 Closely related individuals can cause inflation in the estimates of the association of the PRS
273 and the trait tested [30]. This phenomenon arises, in part, because individuals from the same
274 family share genetic 273 and the trait tested [30]. This phenomenon arises, in part, because individuals from the same

274 family share genetic information but also more environmental factors than unrelated

275 individuals. For instance, ind 274 family share genetic information but also more environmental factors than unrelated
275 individuals. For instance, individuals in nuclear families often share the same house
276 these shared factors are associated with 275 individuals. For instance, individuals in nuclear families often share the same household. If
276 these shared factors are associated with the trait of interest, it can lead to confounding in PR
277 analyses [30]. Whil 276 these shared factors are associated with the trait of interest, it can lead to confounding in PRS
277 analyses [30]. While GWAS methods attempt to control for broad population stratification,
277 analyses [30]. While G 277 analyses [30]. While GWAS methods attempt to control for broad population stratification,

preprint **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.12.10.24318796;](https://doi.org/10.1101/2024.12.10.24318796) this version posted December 11, 2024. The copyright holder for this

It is made available under a [CC-BY-ND 4.0 International license](http://creativecommons.org/licenses/by-nd/4.0/) .

305

306
307
308
309 306 Table 1 – Overview of the familial data types within the Generation R Study.
307
308
310
211 – Imputation of missing negatel senatures.

308
309
310
311
312 309
310
311
312
312 310
311
312
313

311
312
313
314
315 311 Imputation of missing parental genotypes
312 In total 1,690 missing parental genotypes
314 (Table 2). The structure of the missing fan
315 genotypes with the mother and proband genetypes are 313
313
314
315
316

313 In total 1,690 missing parental genotypes of European ancestry were imputed using snipar (Table 2). The structure of the missing family data consisted of 1,319 missing father genotypes with the mother and proband genot

- 314 (Table 2). The structure of the missing family data consisted of 1,319 missing father
315 genotypes with the mother and proband genotypes available, 257 missing mother ger
316 with the father and proband genotypes avai genotypes with the mother and proband genotypes available, 257 missing mother genotypes
with the father and proband genotypes available, and 57 probands with no parental genotype
data but with a sibling genotyped. To asses 316 with the father and proband genotypes available, and 57 probands with no parental genotype
317 data but with a sibling genotyped. To assess the quality of the imputation we re-imputed
318 measured parental alleles and 317 data but with a sibling genotyped. To assess the quality of the imputation we re-imputed
318 measured parental alleles and calculated the correlation between the re-imputed alleles are
319 observed alleles. When assess 318 measured parental alleles and calculated the correlation between the re-imputed alleles and
319 observed alleles. When assessing the quality of the imputation, the mean correlation betwee
319
- 319 observed alleles. When assessing the quality of the imputation, the mean correlation between
14

It is made available under a [CC-BY-ND 4.0 International license](http://creativecommons.org/licenses/by-nd/4.0/) .

323

Table 2 – Descriptive statistics of the individuals contributing data for this study at ages, six,
325 inne and thirteen.
326 Estimating direct and indirect genetic effects for childhood anthropometric traits
328 The PPS f

324
325
325
326
327 325 nine and thirteen.
326
327 Estimating direct a
328
329 The PRS for BMI ---
327
328
329
330

327 Estimating direct and indirect genetic effects for childhood anthropometric traits
328 The PRS for BMI was constructed using 195,154 genetic variants across the gene
330 explained between 7.7-14.0% of the BMI phenotypi 329
330 329 The PRS for BMI was constructed using 195,154 genetic variants across the genome and
330 explained between 7.7-14.0% of the BMI phenotypic variance (supplementary table 1) at

330 explained between 7.7-14.0% of the BMI phenotypic variance (supplementary table 1) at

It is made available under a [CC-BY-ND 4.0 International license](http://creativecommons.org/licenses/by-nd/4.0/) .

- 347 ages in participants of the Generation R Study.
348 The height PRS was constructed using 210,390
350 explained between 16.2-19.2% of the phenotyp
351 at each measurement wave. The correlation bet
-
- Figure 1 Forest plots depicting the direct, indirect and maternal minus paternal genetic

346 effects for: a) Body mass index b) Height c) and Bone mineral density measured at differ

347 ages in participants of the Gene
- effects for: a) Body mass index b) Height c) and Bone mineral density measured at different
347 ages in participants of the Generation R Study.
348 The height PRS was constructed using 210,390 genetic variants across the g 349
350
351
352
352 349 The height PRS was constructed using 210,390 genetic variants across the genome and
350 explained between 16.2-19.2% of the phenotypic variance of height (supplementary tab
351 at each measurement wave. The correlation
-
- explained between 16.2-19.2% of the phenotypic variance of height (supplementary table 1)
at each measurement wave. The correlation between proband and mother PRSs was 0.60
(95%CI: 0.59-0.61), proband and father PRSs, 0.62
-
-

at each measurement wave. The correlation between proband and mother PRSs was 0.60

(95%CI: 0.59-0.61), proband and father PRSs, 0.62 (95%CI: 0.61-0.63) and between pare

PRSs, 0.17 (95%CI: 0.16-0.18). We obtained statisti 352 (95%CI: 0.59-0.61), proband and father PRSs, 0.62 (95%CI: 0.61-0.63) and between parent's
353 PRSs, 0.17 (95%CI: 0.16-0.18). We obtained statistically significant unbiased DGE estimates
354 for height across all ages PRSs, 0.17 (95%CI: 0.16-0.18). We obtained statistically significant unbiased DGE estimates

for height across all ages (Figure 1b, supplementary table 1). DGE explained between 14.4-

18.7% of height phenotypic variance (18.7% of height phenotypic variance (supplementary table 1). IGE Estimates of did not reach
significance for any of the ages tested (p-value > 0.05). Direct effects explained between 94-
99% of the height variance explaine

354 for height across all ages (Figure 1b, supplementary table 1). DGE explained between 14.4-
18.7% of height phenotypic variance (supplementary table 1). IGE Estimates of did not read
significance for any of the ages tes

-
- 356 significance for any of the ages tested (p-value > 0.05). Direct effects explained between 94-
357 99% of the height variance explained by its correspondent PRS. There were no significant
358 differences between mat
-

99% of the height variance explained by its correspondent PRS. There were no significant
358 differences between maternal and paternal effects or between age groups at any of the ages
359 tested.
360 The PRS for BMD was co differences between maternal and paternal effects or between age groups at any of the ages
tested.
360
The PRS for BMD was constructed using 251,272 variants across the genome and explained
362
between 3.3-4.5% of the tota 359 tested.
360
361 The PR
362 betwee
363 1) at th 361
362
363
364
365 361 The PRS for BMD was constructed using 251,272 variants across the genome and explained
362 between 3.3-4.5% of the total body less head BMD phenotypic variance (supplementary table
363 1) at the different measurement w 362 between 3.3-4.5% of the total body less head BMD phenotypic variance (supplementary table
363 1) at the different measurement waves (European subset). The correlation between proband
364 and mother PRSs was 0.53 (95%CI 1) at the different measurement waves (European subset). The correlation between proband
364 and mother PRSs was 0.53 (95%CI: 0.51-0.55), proband and father PRSs were 0.56 (95%CI
365 0.54-0.58) and between parent's PRSs wa and mother PRSs was 0.53 (95%CI: 0.51-0.55), proband and father PRSs were 0.56 (95%CI: 0.54-0.58) and between parent's PRSs was 0.04 (95%CI: -0.01;0.06). We obtained statistically significant unbiased DGE estimates for BMD 0.54-0.58) and between parent's PRSs was 0.04 (95%CI: -0.01;0.06). We obtained
statistically significant unbiased DGE estimates for BMD across all age groups (Fig
supplementary table 1). DGE explained between 2.5-3.9% of t 366 statistically significant unbiased DGE estimates for BMD across all age groups (Figure 1c, supplementary table 1). DGE explained between 2.5-3.9% of the BMD phenotypic variance (supplementary table 1). IGE estimates di 367 supplementary table 1). DGE explained between 2.5-3.9% of the BMD phenotypic variance
368 (supplementary table 1). IGE estimates did not reach statistical significance for any of the
368 368 (supplementary table 1). IGE estimates did not reach statistical significance for any of the

ages tested. There were no significant differences between maternal and paternal effects or
370 between age groups at any of the ages tested.
371 Sensitivity analysis
373 Sensitivity analysis

- 370 between age groups at any of the ages tested.
371
372 Sensitivity analysis
373
374 To assess the extent to which our PRS coeffice
-

-
- 372
373
374
375
375
-
- 372 Sensitivity analysis
373
374 To assess the extent
375 sample population,
376 individuals (suppler 374
375
376
377
378 374 To assess the extent to which our PRS coefficients were inflated due to relatedness within our sample population, we conducted a sensitivity analysis including only independent individuals (supplementary table 2). Over 375 sample population, we conducted a sensitivity analysis including only independent

individuals (supplementary table 2). Overall, DGE and IGE coefficients remained c

between both analyses indicating minimal bias due to 376 individuals (supplementary table 2). Overall, DGE and IGE coefficients remained consistent
between both analyses indicating minimal bias due to relatedness in our analysis
(supplementary table 2).
379
Discussion
284
- 377 between both analyses indicating minimal bias due to relatedness in our analysis
378 (supplementary table 2).
379 **Discussion**
381 We apprinted constitution offects that may share abilithed orthonometric to
-
-

378 (supplementary table 2).
379
380 **Discussion**
381 We examined genetic nu:
382 accessive pipe and thirton 380
381
382
383 380 **Discussion**
381
382 We examine
383 ages six, nir
384 genotypes b 382
383
384
385 382 We examined genetic nurture effects that may shape childhood anthropometric traits across
383 ages six, nine and thirteen in a multi-ethnic Dutch cohort study. We imputed missing parent.
384 genotypes based on Mendelia ages six, nine and thirteen in a multi-ethnic Dutch cohort study. We imputed missing parental
384 genotypes based on Mendelian inheritance. Polygenic risk scores (PRSs) were constructed for
385 mothers, fathers and proband genotypes based on Mendelian inheritance. Polygenic risk scores (PRSs) were constructed for
mothers, fathers and probands, for three childhood anthropometric traits: height, BMI and
BMD (total body less head), using hundre 385 mothers, fathers and probands, for three childhood anthropometric traits: height, BMI and
386 BMD (total body less head), using hundreds of thousands of genetic variants. We obtained
387 statistically significant estim 386 BMD (total body less head), using hundreds of thousands of genetic variants. We obtained
387 statistically significant estimates of direct genetic effects (DGE) for all traits. We also
388 observed significant estimate statistically significant estimates of direct genetic effects (DGE) for all traits. We also
388 observed significant estimates of indirect genetic effects (IGE) for BMI but not height
399 BMD. In general, we observed modes 388 observed significant estimates of indirect genetic effects (IGE) for BMI but not height or
389 BMD. In general, we observed modest estimates of genetic nurture effects of anthropome
390 traits throughout developmental 389 BMD. In general, we observed modest estimates of genetic nurture effects of anthropometric traits throughout developmental ages, with no significant differences in IGE for any traits between different age ranges in chi 390 traits throughout developmental ages, with no significant differences in IGE for any traits
391 between different age ranges in children. Additionally, no differences were observed in the
392 contribution of maternal a 391 between different age ranges in children. Additionally, no differences were observed in the
392 contribution of maternal and paternal genetic nurture effects. These results indicate that the
392 392 contribution of maternal and paternal genetic nurture effects. These results indicate that the

393 genetic effects of anthropometric traits in children predominantly occur via genetic
394 transmission, although some genetic nurture effects are present for BMI.
395 Our study is not the first to examine the effects of transmission, although some genetic nurture effects are present for BMI.
395 Our study is not the first to examine the effects of genetic nurture on child
396 Tubbs et al. examined the influence of maternal genetic nurture 395 Our study is not the first to examine the effects of genetic nurture on child BMI trajectories.
396 Tubbs et al. examined the influence of maternal genetic nurture on child BMI trajectories in
397 approximately 2,900 c 396 Tubbs et al. examined the influence of maternal genetic nurture on child BMI trajectories in
397 approximately 2,900 children and found that its effect increased with age, becoming stronger
398 throughout development [397 approximately 2,900 children and found that its effect increased with age, becoming stronger
398 throughout development [32]. Notably, Tubbs et al. focused solely on maternal genetic
399 nurture, without accounting for 398 throughout development [32]. Notably, Tubbs et al. focused solely on maternal genetic
399 nurture, without accounting for potential paternal influences. This finding contrasts with
300 studies on twins, which suggest t 399 nurture, without accounting for potential paternal influences. This finding contrasts with
300 studies on twins, which suggest that the impact of the shared environment, including gen
301 nurture, diminishes over child studies on twins, which suggest that the impact of the shared environment, including genetic

401 nurture, diminishes over childhood and adolescence [33]. Further complicating the picture, a

402 GWAS of BMI at different a nurture, diminishes over childhood and adolescence [33]. Further complicating the picture, a

402 GWAS of BMI at different ages found that distinct genetic factors influence BMI during

403 infancy (2 weeks to 18 months) c 402 GWAS of BMI at different ages found that distinct genetic factors influence BMI during
403 infancy (2 weeks to 18 months) compared to later childhood (18 months to 13 years) [34]
404 Similarly, a study based on pooled infancy (2 weeks to 18 months) compared to later childhood (18 months to 13 years) [34].

404 Similarly, a study based on pooled twin data reported that genetic correlations for BMI

405 decrease with age, indicating that Similarly, a study based on pooled twin data reported that genetic correlations for BMI
decrease with age, indicating that new genetic factors emerge at different stages of child
growth [35]. In the Generation R study, a p decrease with age, indicating that new genetic factors emerge at different stages of childhood

growth [35]. In the Generation R study, a polygenic risk score (PRS) for adult BMI explained

varying amounts of BMI variance growth [35]. In the Generation R study, a polygenic risk score (PRS) for adult BMI explained

407 varying amounts of BMI variance across age groups, with the highest variance at age 13,

408 suggesting that different genet varying amounts of BMI variance across age groups, with the highest variance at age 13,
408 suggesting that different genetic variants influence BMI across childhood, or that adult BI
409 variants have weaker effects at yo suggesting that different genetic variants influence BMI across childhood, or that adult BMI
variants have weaker effects at younger ages. Additionally, a study tracking BMI PRSs from
childhood to adulthood found that diff variants have weaker effects at younger ages. Additionally, a study tracking BMI PRSs from
childhood to adulthood found that differences in weight between individuals in the highest
and lowest deciles of the PRS were evide childhood to adulthood found that differences in weight between individuals in the highest
and lowest deciles of the PRS were evident early in childhood and grew to 12 kilograms by
age 18 [36]. Together, these findings hig and lowest deciles of the PRS were evident early in childhood and grew to 12 kilograms by

412 age 18 [36]. Together, these findings highlight the dynamic role of genetic factors, with

413 varying influences across differ age 18 [36]. Together, these findings highlight the dynamic role of genetic factors, with

varying influences across different developmental stages.

414

In a prior study that assessed genetic nurturing effects in 21,637 %413 varying influences across different developmental stages.
414 In a prior study that assessed genetic nurturing effects in 2
416 Icelandic cohort study, a DGE/IGE+DGE ratio of 0.94 for
417 with the estimated ratios fro 415
416
417

In a prior study that assessed genetic nurturing effects in 21,637 adult probands from an
Icelandic cohort study, a DGE/IGE+DGE ratio of 0.94 for height was reported [3] aligni
with the estimated ratios from our study. Des 416 Icelandic cohort study, a DGE/IGE+DGE ratio of 0.94 for height was reported [3] aligning
417 with the estimated ratios from our study. Despite the large sample size of the Icelandic stud
417

417 with the estimated ratios from our study. Despite the large sample size of the Icelandic study,
20
20

It is made available under a [CC-BY-ND 4.0 International license](http://creativecommons.org/licenses/by-nd/4.0/) .

outcome traits across the age groups tested. We are underpowered to draw reliable

conclusions regarding parental differences in genetic nurturing effects. Yet, our res

support the hypothesis that mothers have a stronger conclusions regarding parental differences in genetic nurturing effects. Yet, our results do not
support the hypothesis that mothers have a stronger nurturing effect on children's
anthropometric traits during their formati support the hypothesis that mothers have a stronger nurturing effect on children's
anthropometric traits during their formative years, or the hypothesis that IGE for
anthropometric phenotypes are mainly driven by interacti anthropometric traits during their formative years, or the hypothesis that IGE for
anthropometric phenotypes are mainly driven by interactions between the mother
the womb for the PRS that we studied. However, the nurturing anthropometric phenotypes are mainly driven by interactions between the mother and fetus in

448 the womb for the PRS that we studied. However, the nurturing effects of the mother may still

influence the child via alterna the womb for the PRS that we studied. However, the nurturing effects of the mother may still
influence the child via alternative environmental pathways.
The use of PRS derived from GWAS, which are inherently influenced by influence the child via alternative environmental pathways.

450 The use of PRS derived from GWAS, which are inherently

451 effects, can have clinical significance, especially when using

452 42]. Screening children using The use of PRS derived from GWAS, which are inherently influenced by indirect genetic
defects, can have clinical significance, especially when using PRS for disease screening [4
42]. Screening children using a PRS comprise effects, can have clinical significance, especially when using PRS for disease screening [41, 452 42]. Screening children using a PRS comprised of DGE would offer a more accurate classification of children suffering from a 42]. Screening children using a PRS comprised of DGE would offer a more accurate
classification of children suffering from a possible Mendelian disease, or accumulatic
common risk alleles, than using a PRS consisting of bo classification of children suffering from a possible Mendelian disease, or accumulation of

454 common risk alleles, than using a PRS consisting of both DGE and IGE [43]. Further, one

455 potentially promising use of PRS common risk alleles, than using a PRS consisting of both DGE and IGE [43]. Further, one

potentially promising use of PRS is for personalized medicine, in which individuals with a

high genetic risk of obesity would be pre potentially promising use of PRS is for personalized medicine, in which individuals with a
high genetic risk of obesity would be prescribed medication for earlier prevention and
treatment, whereas individuals with a low ge high genetic risk of obesity would be prescribed medication for earlier prevention and
treatment, whereas individuals with a low genetic risk of obesity would be prescribed
lifestyle interventions [36]. In such a scenario, treatment, whereas individuals with a low genetic risk of obesity would be prescribed

458 lifestyle interventions [36]. In such a scenario, it is of importance to construct a PRS v

459 IGE to distinguish those with a hig lifestyle interventions [36]. In such a scenario, it is of importance to construct a PRS without
IGE to distinguish those with a high genetic burden of disease from those with a high
environmental burden. Additionally, IGE 169 IGE to distinguish those with a high genetic burden of disease from those with a high

160 environmental burden. Additionally, IGE can lead to biases within Mendelian random

161 a type of causal association analysis, environmental burden. Additionally, IGE can lead to biases within Mendelian randomization,

a type of causal association analysis, leading to spurious associations [44]. IGE can also have

impacts on many downstream analys 461 a type of causal association analysis, leading to spurious associations [44]. IGE can also have
462 impacts on many downstream analyses of GWAS, including annotation, heritability estimates
463 and genetic correlations impacts on many downstream analyses of GWAS, including annotation, heritability estimates
and genetic correlations [5].
464
Our study presents several limitations. The limited sample size of our cohort warrants
466 replica and genetic correlations [5].
464
Quartized A65 Our study presents several linearly
466 replication of our results in a
467 of the effect estimates. Altho

465
466
467 2465 Our study presents several limitations. The limited sample size of our cohort warrants

466 replication of our results in additional (larger) cohorts to improve power and generaliz

467 of the effect estimates. Althou

466 replication of our results in additional (larger) cohorts to improve power and generalizability
467 of the effect estimates. Although our study encompassed multiple ethnicities, we could not
22. 467 of the effect estimates. Although our study encompassed multiple ethnicities, we could not

It is made available under a [CC-BY-ND 4.0 International license](http://creativecommons.org/licenses/by-nd/4.0/) .

effects for any of the traits across different ages in children. Additionally, no differences were

observed in the contribution of maternal and paternal genetic nurturing effects, providing no

indication of non-genetic t observed in the contribution of maternal and paternal genetic nurturing effects, providing no

487 indication of non-genetic transmission of the mother's anthropometric traits on the child's in

488 pregnancy. These result indication of non-genetic transmission of the mother's anthropometric traits on the child's in

488 pregnancy. These results do not support the hypothesis that mothers have a stronger nurturing

489 effect on children duri pregnancy. These results do not support the hypothesis that mothers have a stronger nurturing
daspected on children during their formative years, or the hypothesis that IGE for anthropometric
phenotypes are mainly driven b

effect on children during their formative years, or the hypothesis that IGE for anthropometric

490 phenotypes are mainly driven by interactions between the mother and fetus in the womb.

491 References

490 phenotypes are mainly driven by interactions between the mother and fetus in the womb.
491 References

492
1 References

It is made available under a [CC-BY-ND 4.0 International license](http://creativecommons.org/licenses/by-nd/4.0/) .

585 Behaviour, 2018. 2(12): p. 948-954.

-
- 617 Genome-wide association study (GWAS), linkage disequilibrium (LD), polygenic risk score

618 (PRS), body mass index (BMI), Bone mineral density (BMD), Direct genetic effects (DGE),

520 Indirect genetic effects (IGE).
 (PRS), body mass index (BMI), Bone mineral density (BMD), Direct genetic effects (DGE),

Indirect genetic effects (IGE).

620

621 Declarations

622 Not applicable.
- 619 Indirect genetic effects (IGE).
620
621 Declarations
622 Not applicable.
623
-
- ---
621
622
623
624
-
-
-
- 621 Declarations
622 Not applicable
623 Ethics approves
625 The Generation 622 Not applicable.
623
624 Ethics approval
625 The Generation
626 committees and 624
625
626
627 Ethics approval and consent to participate
625 The Generation R Study was approved by
626 committees and all participants provided w
627 Consent for publication The Generation R Study was approved by their respective institutional ethics review

committees and all participants provided written informed consent.

627

Consent for publication

Not applicable.
- 626 committees and all participants provided written informed consent.
627 Consent for publication
629 Not applicable.
630
-
- 628 Consent for publication
629 Not applicable.
630
631 Data and code availabili
632 Height and BMI summa
- 628
629
630
631
-
-
-
- 629 Not applicable.
630
631 Data and code a
632 Height and BMI
633 (https://portals.b 631
632
633
634
-
- 631 Data and code availability
632 Height and BMI summary
633 (https://portals.broadinstitu
634 es). Estimated bone minera
635 consortium website (http:// Height and BMI summary statistics can be obtained from GIANT consortium website

(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_d

es). Estimated bone mineral density summary statistic d 633 (https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_fil
634 es). Estimated bone mineral density summary statistic data can be obtained via the GEFOS
635 consortium website (http://ww es). Estimated bone mineral density summary statistic data can be obtained via the GEFOS
635 consortium website (http://www.gefos.org/). All data generated or analyzed during this stud
636 are included in this published ar consortium website (http://www.gefos.org/). All data generated or analyzed during this study
are included in this published article and its supplementary information files.
637
Competing interests
Not applicable.
- 636 are included in this published article and its supplementary information files.
637 Competing interests
639 Not applicable.
640
-
- 638
639
640
641 638 Competing interests
639 Not applicable.
640
641 Funding
- 639 Not applicable.
640
641 Funding
-
- 641
|
| 641 Funding

This project has received funding from the European Union's Horizon 2020 research and

innovation program under the MARIE SKŁODOWSKA-CURIE grant agreement no.

860898. The general design of the Generation R Study is made p innovation program under the MARIE SKŁODOWSKA-CURIE grant agreement no.

860898. The general design of the Generation R Study is made possible by financial s

from Erasmus MC, Erasmus University Rotterdam, the Netherlands

- 860898. The general design of the Generation R Study is made possible by financial support
645 from Erasmus MC, Erasmus University Rotterdam, the Netherlands Organization for Health
646 Research and Development and the Min
-
- Research and Development and the Ministry of Health, Welfare and Sport. This project
received funding from the European Research Council (ERC) under the European Union
Horizon 2020 research and innovation programme attribu
- form Erasmus MC, Erasmus University Rotterdam, the Netherlands Organization for Health
Research and Development and the Ministry of Health, Welfare and Sport. This project
received funding from the European Research Counci 647 received funding from the European Research Council (ERC) under the European Union's
648 Horizon 2020 research and innovation programme attributed to JBP (IRISK, grant agreeme
649 No. 863981). This project received fun For Horizon 2020 research and innovation programme attributed to JBP (IRISK, grant agreement

649 No. 863981). This project received funding from the European Union's Horizon 2020

650 research and innovation program (8747
-

No. 863981). This project received funding from the European Union's Horizon 2020
650 research and innovation program (874739, LongITools).
651 Authors' contributions
653 S.Ghatan, C.Medina-Gomez, and F.Rivadeneira designe research and innovation program (874739, LongITools).
651 Authors' contributions
653 S.Ghatan, C.Medina-Gomez, and F.Rivadeneira designe
654 analysis. S.Ghatan, F.Rivadeneira, and C.Medina-Gomez
655 acatributed to the inte 652
653
654
655
655 652 Authors' contributions
653 S.Ghatan, C.Medina-C
654 analysis. S.Ghatan, F.F
655 contributed to the inter
656 read and approved the

653 S.Ghatan, C.Medina-Gomez, and F.Rivadeneira designed the study. S.Ghatan performed the analysis. S.Ghatan, F.Rivadeneira, and C.Medina-Gomez drafted the manuscript. All authors contributed to the interpretation of data analysis. S.Ghatan, F.Rivadeneira, and C.Medina-Gomez drafted the manuscript. All authors
contributed to the interpretation of data and critical revision of the manuscript. All authors
read and approved the final version o

658
659
660
661

contributed to the interpretation of data and critical revision of the manuscript. All authors

read and approved the final version of the manuscript.

657

Acknowledgments

We express our gratitude to the study participan read and approved the final version of the manuscript.
657
658 Acknowledgments
659 We express our gratitude to the study participants, who
660 possible, and to the numerous colleagues who contribu 658 Acknowledgments
659 We express our gra
660 possible, and to the
661 characterization of
662 gratefully acknowle

We express our gratitude to the study participants, whose participation made this work

possible, and to the numerous colleagues who contributed to the collection, phenotypic

characterization of clinical samples, as well 660 possible, and to the numerous colleagues who contributed to the collection, phenotypic
661 characterization of clinical samples, as well as genotyping and analysis of GWAS data.
662 gratefully acknowledge the contribut characterization of clinical samples, as well as genotyping and analysis of GWAS data. We

gratefully acknowledge the contribution of children and parents, general practitioners,

hospitals, midwives and pharmacies in Rott

expectively acknowledge the contribution of children and parents, general practitioners,
663 hospitals, midwives and pharmacies in Rotterdam. The Generation R Study is conducted
664 Erasmus MC, University Medical Center Ro

hospitals, midwives and pharmacies in Rotterdam. The Generation R Study is conducted by

Erasmus MC, University Medical Center Rotterdam in close collaboration with the School of

Law and Faculty of Social Sciences of the Erasmus MC, University Medical Center Rotterdam in close collaboration with the School of
665 Law and Faculty of Social Sciences of the Erasmus University Rotterdam, the Municipal
666 Health Service Rotterdam area, Rotterd

-
- East Law and Faculty of Social Sciences of the Erasmus University Rotterdam, the Municipal
Frealth Service Rotterdam area, Rotterdam, the Rotterdam Homecare Foundation, Rotterd
Frealth Service Rotterdam area, Rotterdam, th 666 Health Service Rotterdam area, Rotterdam, the Rotterdam Homecare Foundation, Rotterdam

It is made available under a [CC-BY-ND 4.0 International license](http://creativecommons.org/licenses/by-nd/4.0/) .

-
- and the Stichting Trombosedienst & Artsenlaboratorium Rijnmond (STAR-MDC),
668 Rotterdam. The study protocol was approved by the Medical Ethical Committee of
669 Erasmus Medical Centre, Rotterdam. Written informed consent
-
- 670 participants. The generation and management of GWAS genotype data for the Generation R
671 Study was done at the Human Genomics Facility, HuGe-F, housed within the Laboratory for
672 Population Genomics of the Departme
- Rotterdam. The study protocol was approved by the Medical Ethical Committee of the
669 Erasmus Medical Centre, Rotterdam. Written informed consent was obtained for all
670 participants. The generation and management of GWA Erasmus Medical Centre, Rotterdam. Written informed consent was obtained for all

participants. The generation and management of GWAS genotype data for the Gener

Study was done at the Human Genomics Facility, HuGe-F, hous
- 672 Population Genomics of the Department of Internal Medicine at Erasmus MC. Genetic
673 Laboratory of the Department of Internal Medicine, Erasmus MC, The Netherlands. We
674 thank Pascal Arp, Karol Estrada, Mila Jhamai,
- 671 Study was done at the Human Genomics Facility, HuGe-F, housed within the Laboratory for
672 Population Genomics of the Department of Internal Medicine at Erasmus MC. Genetic
673 Laboratory of the Department of Internal Laboratory of the Department of Internal Medicine, Erasmus MC, The Netherlands. We
thank Pascal Arp, Karol Estrada, Mila Jhamai, Manoushka Ganesh, Gaby van Dijk, Mari
Verkerk, Lizbeth Herrera, Marjolein Peters, and Dr. Lin 674 thank Pascal Arp, Karol Estrada, Mila Jhamai, Manoushka Ganesh, Gaby van Dijk, Marijn
675 Verkerk, Lizbeth Herrera, Marjolein Peters, and Dr. Linda Broer for their help in creating,
676 managing and QC the GWAS databas
- 675 Verkerk, Lizbeth Herrera, Marjolein Peters, and Dr. Linda Broer for their help in creating,
managing and QC the GWAS database.
The Section of the GWAS database.
- 676 managing and QC the GWAS database.

