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ABSTRACT

Pathogenic variants in the LRRK2 gene are one of the most commonly identifiable monogenic causes
of Parkinson’s disease (PD, PARK-LRRK2). This systematic MDSGene literature review comprehensively
summarizes published demographic, clinical, and genetic findings related to potentially pathogenic
LRRK2 variants (https://www.mdsgene.org/). Recent insights on LRRK2's kinase activity have been
incorporated for pathogenicity scoring.

Data on 7,885 individuals with 292 different variants were curated, including 3,296 patients with PD
carrying 205 different potentially disease-causing LRRK2 variants. The initial MDSGene review covered
only 724 patients carrying 23 different LRRK2 variants. Missingness of phenotypic data in the literature
was high, hampering the identification of detailed genotype-phenotype correlations. Notably, the
median age at onset in the patients with available information was 56 years, with approximately one-
third having PD onset <50 years. Tremor was the most frequently reported initial symptom and more
frequent than reported in other dominantly inherited forms of PD. Of the 205 potentially disease-
causing variants, 14 (6.8%) were classified as pathogenic, 8 (3.9%) as likely pathogenic, and the
remaining 183 (89.3%) as variants of uncertain significance (VUS). The pathogenic p.G2019S variant
was the most frequent pathogenic variant, followed by p.R1441G and p.R1441C, accounting for >80%
of patients, with Tunisia, Spain, and Italy contributing about half of patients.

This systematic review represents the largest database on PARK-LRRK2 to date and provides an
important resource to improve precision medicine. Given their high frequency, a better interpretation
of the pathogenicity of VUS is needed for selection and stratification of patients in clinical trials.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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Introduction

Parkinson’s disease (PD) is a relatively common, age-related, neurodegenerative disorder
characterized by motor (bradykinesia, resting tremor, rigidity, and postural instability) and non-
motor features (neuropsychiatric features, autonomic symptoms, sleep disorders, and sensory
dysfunction).! The age at onset for almost 25% of affected individuals is younger than 65 years,
and for 5-10%, younger than 50 years.? Causes of PD include genetic and environmental
factors as well as interactions thereof.?2 Monogenic causes, i.e., pathogenic variants in genes
such as LRRK2, SNCA, VPS35, PRKN, PINK1, and PARK?7, often play a role in patients with early-
onset disease.>* Further, risk variants and rare pathogenic variants (often with highly reduced
penetrance)® in the GBA1 gene are found in about 10% of PD patients.®’ Although monogenic
forms comprise a minority of all PD patients®®, they are important as affected individuals are
the most likely candidates for potential gene-specific, targeted treatments. These treatments
are currently being evaluated in trials?, including kinase inhibitors for PD linked to pathogenic
variants in the LRRK2 gene (PARK-LRRK2).°

Pathogenic variants in the LRRK2 gene are one of the most frequent causes of dominantly
inherited PD.1° LRRK2 (Leucine-Rich Repeat Kinase 2) encodes a multidomain protein kinase
that shows autophosphorylation.!! It plays an important role in different cellular processes,
such as cytoskeleton remodeling, vesicular trafficking, autophagy, and protein translation.!?
Increased LRRK2 kinase activity is thought to dysregulate these processes resulting in the
death of dopaminergic neurons in the substantia nigra.*® Until recently, only seven variants in
LRRK2 were considered clearly pathogenic.* 1% 1> These variants are mainly located in the
guanine triphosphatase (GTPase) Ras-of-complex (ROC) and the kinase domain, which
represent two functionally linked enzymatic domains.% 1® More recently, in-vivo and in-vitro
functional testing of LRRK2's kinase activity became available and revealed approximately 20
additional variants that lead to increased LRRK2 kinase activity and are thus plausible
contributors to the pathogenesis of PD.1® 7 Importantly, the increased LRRK2 kinase activity
represents a possible therapeutic target.” 18 In addition to these pathogenic kinase-activating,
gain-of-function variants in LRRK2, there are also loss-of-function variants, i.e., nonsense and
frameshift variants. However, these truncating variants in LRRK2 are found with similar
frequency in PD patients and controls, indicating that LRRK2 loss-of-function variants may not
alter the risk for PD.1% 20 Further, copy number variants (CNVs), especially larger deletions, are
extremely rarely found in LRRK2?1:22,

The very large number of scientific publications related to PARK-LRRK2 (>3,000), makes it
overwhelming and challenging to follow the literature. Despite the large body of literature,
there remain many uncertainties, especially with respect to the phenotypic spectrum and the
interpretation of the many genetic variants. These knowledge gaps potentially hamper the
identification of PARK-LRRK2 patients who would be eligible for gene-specific clinical trials.
Here, we provide a systematic literature review using the protocol of the Movement Disorders
Society Genetic Mutation Database (MDSGene) (https://www.mdsgene.org/).?> With this
review, we update and considerably extend the MDSGene database to over 200 potentially
disease-causing LRRK2 variants reported in more than 3,000 PD patients. The numbers of
included variants and patients have increased approximately tenfold and fourfold,
respectively, compared to the initial review covering publications until 2017.4
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Materials and Methods
Literature search and Data Collection Process

For the literature search, we used the PubMed database (https://pubmed.ncbi.nlm.nih.gov/).
The search term followed the MDSGene’s format (Suppl. Table 1), and articles were screened
stepwise based on title, abstract, and full text.?* We included articles that reported at least
one individual with a LRRK2 variant that was considered potentially disease-related by the
authors. Further, we evaluated the literature cited in the included articles and used the Human
Gene Mutation Database (HGMD) professional (https://apps.ingenuity.com/ingsso/login)? to
identify additional eligible papers.

Demographic, genetic, and clinical information from all eligible papers were extracted using
the MDSGene protocol.* Evaluated variables are listed in Suppl. Table 2.

Inclusion and Exclusion Criteria for Patients and Genetic Variants

We only included patients with PD and a potentially pathogenic LRRK2 variant. Unaffected
mutation carriers, patients with atypical parkinsonian disorders (dementia with Lewy bodies
[DLB], multiple system atrophy [MSA], progressive supranuclear palsy [PSP], and corticobasal
degeneration/syndrome [CBD/CBS]), and patients with non-movement disorder conditions
were also extracted but excluded from being displayed on the MDSGene database and from
the analyses for PD-related genotype-phenotype correlations. Where authors and patient
details suggested duplicate reporting of the same individual, we combined information to
create a single entry. Patients who carried additional potentially PD-causing variants were also
excluded. Although LRRK2 is inherited in an autosomal dominant manner, patients with
heterozygous and homozygous variants were included as before* since previous literature
indicated that there is no dosage effect.?® We excluded LRRK2 variants that had a minor allele
frequency (MAF) of >1% in any ethnicity reported in the gnomAD Browser
(https://gnomad.broadinstitute.org/). Carriers of benign or likely benign LRRK2 variants were
also excluded.

Pathogenicity Scoring

All variants were mapped to GRCh37/hg19, and the nomenclature is based on the transcript
ENST00000298910 for LRRK2. For pathogenicity scoring, we followed the recommendations
of the American College of Medical Genetics and Genomics (ACMG).?’ For this, we used two
publicly available online tools, i.e., VarSome (https://varsome.com/) and Franklin
(https://franklin.genoox.com/). If there was a discrepancy between the two tools or the score
was not plausible, variants were manually scored according to the ACMG recommendations.?’
For this, we applied the CADD score?® as an in-silico measurement and data from the functional
testing for 100 LRRK2 variants.1® Variants categorized as “pathogenic”, “likely pathogenic”, or
“variant of uncertain significance” (VUS) were considered as potentially disease-causing
variants and included in the MDSGene database and the analyses.

Results
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Included Articles and Study Types

We identified 3,064 publications through the search strategy, carried out for the last time in
PubMed on January 10%", 2024, and supplemented with articles from HGMD professional
v2022.4. An overview of the literature search and the filtering process is shown in Figure 1. At
screening, 880 articles were considered eligible for data abstraction. However, 521 did not
contain relevant information (Figure 1). The full text of 359 papers was reviewed, but only 291
publications included patients who fulfilled the inclusion criteria (Figure 1).

The most frequently included study types were mutational screens (161/291, 55.3%), followed
by case reports or case series (46/291, 15.8%), association studies (35/291, 12.0%), family
studies (16/291, 5.5%), and a combination of different designs (33/291, 11.3%).

Pathogenicity Scoring

A total of 292 LRRK2 variants were identified on the DNA level corresponding to 291 variants
on the protein level since there were two changes (c.5385G>C and ¢.5385G>T) resulting in the
same amino acid substitution (p.L1795F). Of the 292 variants, 290 were scorable using
VarSome and Franklin. The remaining two variants and 176 of the 290 variants were manually
scored following the ACMG recommendations?’. There were considerable discrepancies in the
pathogenicity scoring between VarSome and Franklin (Figure 2). The manual scoring was closer
to Franklin (Figure 2). One reason for the discrepancies was an underestimation in VarSome,
which interpreted many VUS erroneously as “likely benign” since the criterion BP1 was applied
(“Missense variant in a gene for which primarily truncating variants are known to cause
disease”). This is not applicable to LRRK2, since loss of function of the protein is not a known
disease mechanism.® 20 |n fact, many missense variants in LRRK2 have instead been
demonstrated to be functionally relevant variants'®. Using BP1 resulted in scoring almost half
of the variants as likely benign by VarSome. Another discrepancy can be explained by an
underestimation of likely pathogenic variants, being classified as VUS, in Franklin since the
criterion PS3 was not applied (“Well-established in-vitro or in-vivo functional studies
supportive of a damaging effect on the gene or gene product.”), even though functional
evidence for these variants has become available!®. In the combined and finally considered
classification, the vast majority of the variants were classified as VUS (240/292, 82.2%; Figure
2). Alist of all LRRK2 variants can be found in Suppl. Table 3.

Included Patients and Variants

A total of 7,885 LRRK2 variant carriers were identified, and 3,296 PD patients with a potentially
pathogenic LRRK2 variant (41.8%) were included in MDSGene and the analyses, based on the
inclusion and exclusion criteria. Among the 7,885 individuals, 75.7% (n=5,969) of them had PD,
1.8% (n=138) had other diseases (see below), and 22.5% (n=1,778) were clinically unaffected.
The included 3,296 PD patients carried 205 different variants, of which 14 have been classified
as pathogenic (6.8%), 8 as likely pathogenic (3.9%), and 183 as VUS (89.3%; Figure 3).

Of the 205 included variants, missense variants (91.7%, n=188) were the most frequent variant
type, followed by intronic variants (2.4%, n=5), nonsense variants (2.0%, n=4), splice region
variants (2.0%, n=4), silent changes (1.0%, n=2), splice site variants (0.5%, n=1), and small
deletions (0.5%, n=1). Of note, all variants other than missense variants were classified as VUS.
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The most frequent variant among the included patients was the p.G2019S substitution,
classified as pathogenic, that was present in 2,426 patients (73.6%). Notably, among the
clinically unaffected individuals, 739 (41.6%) carried this missense variant, i.e., 739 of 3,165
(23.3%) p.G2019S carriers were unaffected (age at examination unknown for 640 of the
unaffected patients, 86.6%). The second most frequently reported variant among the included
patients was p.R1441G in 193 patients (5.9%). This variant was also reported in 90 unaffected
individuals, which means that 90 of the 283 (31.8%) reported carriers were unaffected (Suppl.
Table 4). Since unaffected variant carriers are not systematically reported and have not been
extracted from the beginning of the project*, no definite conclusion on the penetrance of these
variants can be drawn. Nevertheless, incomplete penetrance for p.G2019S and also for
p.R1441G plays a considerable role since a large proportion of individuals with these variants
had not developed manifest PD at the point of inclusion.

Excluded Patients and Variants

Notably, among the 7,885 individuals with LRRK2 variants, 0.3% (n=25) had an atypical
parkinsonian disorder, and 1.4% (n=113) had other diseases (such as immunological diseases,
cancer, dementia, or essential tremor). These were excluded from the analyses since the sole
causative role of the LRRK2 genotype in these non-PD phenotypes has not been established.

Among the 138 patients with a non-PD phenotype extracted during the systematic literature
review, 9 patients also carried a potentially disease-causing variant in another gene. Of the
remaining 129 patients, only 20 carried pathogenic or likely pathogenic variants, mostly
p.G2019S, 59 carried VUS, and 50 benign or likely benign variants. The phenotypic spectrum
of carriers with (likely) pathogenic variants was broad, including MSA (n=3)?° 30, PSP (n=3)31-33,
CBD (n=1)3*, dystonia (n=2)3> 3¢, Alzheimer’s disease (n=1)3’, amyotrophic lateral sclerosis
(n=2)%, restless legs syndrome (n=1)3°, schizophrenia (n=1)*, multiple sclerosis (n=3)*,
rheumatoid arthritis (n=1)*!, achalasia (n=1)*!, and breast cancer (n=1)*2. Often, these non-PD
phenotypes were found in relatives of PD patients with the same LRRK2 variant. Of note, some
of these phenotypes are frequent. Thus, it is also conceivable that there was a co-occur by
chance, and these patients show reduced penetrance of the LRRK2 variant in terms of PD.

Regarding the 25 patients with atypical parkinsonian disorders, 7 patients carried pathogenic
LRRK2 variants (see above), 11 carried VUS, and 7 had benign or likely benign LRRK2 variants.
Among the 18 carriers with potentially disease-causing LRRK2 variants were 8 MSA, 7 PSP, 2
CBD, and 1 DLB patient(s).

In addition to the rare, presumably monogenically acting variants, three additional coding
variants should be mentioned that may increase the risk of developing PD. These include two
variants (p.G2385R and p.R1628P) that have repeatedly been shown to act as risk factors for
PD in Asian populations.*3 44 4> The third variant, p.E334K, is frequently observed in the Finnish
population and showed increased LRRK2 kinase activity.'® These variants have not been
included in MDSGene, since their MAF is >1% in certain populations.

We further excluded 44 patients whose genetic cause could not be unequivocally assigned to
LRRK2 since they carried potentially pathogenic variants in at least one other PD gene. This
included 18 patients with an additional, potentially disease-causing variant in GBA1, and 13
patients with additional PRKN variants. Notably, one patient, who, to our knowledge, is the
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only case in the literature carrying a large deletion in LRRK2 (homozygous Exon 49deletion),
also carried a homozygous, pathogenic deletion of Exon 4 in PRKN.??

Demographic and Phenotypic Data

One of the biggest challenges for this systematic review was the missing phenotypic data in
the majority of publications. Missing data in up to 99.9% of the patients were observed for
some of the extracted variables (Figure 4). Even for the four cardinal clinical features of PD, the
range of missing data was from 25.3% for bradykinesia to 89.0% for postural instability (Figure
4A).

Among the 3,296 included patients, information on age was available for 762 patients (23.1%)
who had a median age of 67 (range 26-95, interquartile range: 58-75) years (the mean age
with standard deviation was 65.9+12.2 years). Information on sex was not provided for 1,847
patients (56.0%), among the remaining 1,449 patients, 758 (52.3%) were male. Patients were
most commonly European/White (32.8%), Arab (24.1%), or of mixed/other ethnicities (14.9%),
based on 1,647 patients with available information (50.0% missing data; Suppl. Figure 1A).
Most reported patients originated from Tunisia (26.3%), Spain (14.9%), Italy (6.4%), China
(5.9%), or the USA (5.3%) (Suppl. Figure 1B). Notably, among the Tunisian patients, almost all
(98.6%, 545/553) carried the p.G2019S variant (median AAO 58 years), while in Spain, about
half of the patients carried this variant (47.3%, 148/313, median AAO 62 years) and the other
half the p.R1441G variant (49.5%, 155/313, median AAO 56 years). For country-specific
distribution of variants, see
https://www.mdsgene.org/d/41/g/4?action=plot map&fc=0& mu=1& country=1. A positive
family history was reported for almost a third (31.1%) of the PD patients with LRRK2 variants,
it was negative for 21.5% and unknown or not reported for 47.4%.

Information on age at onset (AAO) was available for 1,005 included patients (30.5%). The
median age at onset (AAO) was 56 (range 20-95, interquartile range: 47-64) years (Figure 5A,
B). While the majority of the patients (67.4%; n=677) had a late onset (250 years),
approximately one-third (32.5%; n=327) had early-onset PD (EOPD), defined as an AAO after
21 and before 50 years of age.*® Notably, 9.3% (n=93) of included patients with information
even had an AAO <40 years. Although one patient was reported with an AAO of 10 years?’, it
was actually 25 years (personal communication of Dr Lanza). The median disease duration
among the included patients was 10 (range 0-42) years. When analyzing only carriers of VUS,
the median AAO was 52.5 (range 20-79) years, suggesting that at least a portion of the VUS
might also act as a driver of the disease since this AAO is younger than that reported for PD in
general.®® For the group of patients with (likely) pathogenic variants, the median AAO was 56
years (the same as for all included patients, probably due to the high proportion of VUS
carriers); the AAO range was 24-95 years. The median AAO of p.G2019S carriers was 57 (range
24-95) years (Figure 5B, Suppl. Table 5).

The data extraction covered 14 motor and seven non-motor symptoms (Suppl. Table 2). Motor
symptoms were present in all included patients (per inclusion criterion), while at least one
non-motor symptom was present in 9.4%, absent in 0.8%, and information was missing for
89.7% of the included patients. The most frequently reported motor symptom was
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bradykinesia, which was indicated as present in 74.4% of the patients and absent in 0.3%
(according to the authors, who nevertheless established a diagnosis of PD). This was followed
by rigidity (present in 21.0%, absent in 0.3%) and resting tremor (present in 12.4%, absent in
2.3%). Postural instability was the least reported of the four cardinal clinical features and was
reported to be present in only 7.8% of the patients (Figure 4A). Among the non-cardinal motor
symptoms, dyskinesia (present in 6.5%; absent in 3.1%; median disease duration in patients
with dyskinesias: 14 years), motor fluctuations (present in 4.4%; absent in 2.1%; median
disease duration in patients with motor fluctuations: 14 years), and dystonia (present in 2.1%;
absent in 3.4%) were still relatively frequently reported, but the others were only reported to
be present in less than 1% of the included patients with missing data in up to 99.9%, so that
no meaningful conclusions can be drawn (Figure 4B). Among the non-motor symptoms,
cognitive decline was the most frequently reported, present in 3.6% of the patients (median
disease duration 11 years), followed by depression (present in 3.5%, median disease duration
11 years) (Suppl. Table 6). There were no clear differences regarding the frequency of motor
and non-motor features in relation to the interpretation of the variant, i.e. (likely) pathogenic
(85% of this group were carriers of p.G2019S) vs. VUS (Suppl. Table 7-8, Suppl. Figure 2).

Initial signs and symptoms were reported for 14.9% of the patients only. The most common
initial symptom was tremor, which was present in 7.9% of all included patients and in 52.7%
of the patients for whom information was available (Figure 5C). This was followed by
bradykinesia (in 5.6% of all included patients; in 37.5% of the patients for whom information
was available) and rigidity (in 2.4% of all included patients; in 15.9% of the patients for whom
information was available). No clear differences were observed between carriers of variants
considered (likely) pathogenic and VUS, except that resting tremor in carriers of VUS could be
more frequent than in carriers of (likely) pathogenic variants (Suppl. Table 9, Suppl. Figure 3).
Further subgroup analyses, for instance, for individual variants, were not meaningful due to
the small number of carriers and high degree of missing data.

When comparing features of PARK-LRRK2 to other dominantly inherited forms of PD, i.e.,
PARK-SNCA or PARK-VPS35, it was noticeable that for all analyzed clinical features, SNCA and
VPS35 variant carriers had a higher proportion of symptoms reported as present than LRRK2
variant carriers (www.mdsgene.org). In terms of initial presentation, the only difference found
between PARK-LRRK2, PARK-SNCA, and PARK-VPS35 was that the most common sign and
symptom in both PARK-SNCA (31.2%) and PARK-VPS35 patients (15.9%) was bradykinesia,
while in LRRK2 variant carriers, it was tremor (in 52.7% of the patients for whom information
was available). Apart from tremor as an initial symptom in PARK-LRRK2, the identification of
other clinical clues to the possible presence of PARK-LRRK2 was hampered by the high
proportion of missing information in the published literature and needs to be an area of
ongoing and future work.

For 26.5% of the patients (n=873, missing information in 73.5%), information was available on
whether levodopa treatment was administered (yes for n=850). No information on the
treatment response was provided for about half of them (51.5%). For those patients with
information (n=412), almost all (95.6%) had a good/excellent response to levodopa (Figure
5D), with no apparent difference between carriers of (likely) pathogenic variants and VUS
(Suppl. Table 10, Suppl. Figure 4). Information on other therapies, such as pump therapy or


https://doi.org/10.1101/2024.12.10.24318787
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.12.10.24318787; this version posted December 10, 2024. The copyright holder for this
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in
perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

surgical treatment, including deep brain stimulation (DBS), was rarely available*® and not
systematically analyzed. Reports by other investigators®® >, including pooled analyses®% >3,
indicate a beneficial effect of DBS in PARK-LRRK?2.

Discussion

This systematic literature review provides a comprehensive and up-to-date review of
demographic, clinical, and genetic findings from the published literature on PARK-LRRK2. It is
based on curated data from 3,296 patients with 205 different potentially disease-causing
variants in LRRK2. This represents, by far, the largest database on PARK-LRRK2 to date. A
comprehensive overview of LRRK2 variants and interpretation is of high relevance to clinicians
in establishing a possible diagnosis of PARK-LRRK2. This becomes increasingly actionable in
light of the identification of several LRRK2 kinase inhibitors (MLi-2 (Merck), DNL-201, DNL-
151/BIIB122 (Genentech/Denali), and PF-360 (Pfizer)), including first clinical trials for DNL-201
and DNL-151/BIIB122.5* The frequent discrepancies between variant interpretation using two
automated online tools (i.e., Franklin and Varsome) highlight the value of an expert panel-
guided variant interpretation for clinicians and genetic counselors.

Such a comprehensive review can help to identify clinical features to differentiate PARK-LRRK2
from idiopathic PD and other monogenic forms, at least on a group level, since the
heterogeneity of the disease, for instance, the AAO ranging widely from 20-95 years, hampers
the applicability at the individual level. Notably, the median AAO for PARK-LRRK2 in this review
was 56 years, which is lower than the median AAO of 60-75 years reported for PD patients in
general*, consistent with the notion that monogenic causes for PD typically have earlier
AAO.>> Notably, around one-third of patients had EOPD with onset below age 50 years, thus
adding nuance to a prevailing view that LRRK2 variants cause late-onset PD>*>’. Compared to
other genes linked to autosomal dominantly inherited PD, PARK-LRRK2 has a later median AAO
vs. PARK-SNCA (46 vyears) but a similar AAO to PARK-VPS35 (52 vyears) patients
(www.mdsgene.org). Genetic forms linked to autosomal recessive PD (PARK7, PINK1, PRKN)
show even earlier median AAO (27, 31, 32 years; www.mdsgene.org).

In this systematic MDSGene review, we included, for the first time, patients with group-level
data, i.e., publications in which groups of patients were reported with demographic and clinical
data provided in aggregate (as means or percentages for the group but not as individual data).
These patients account for 59.2% of the included patients. The disadvantage of the group level
data is that they do not contain detailed individual clinical data and thus largely contribute to
the high amount of missing data.

Therefore, the major challenge for this systematic literature review was the proportion of
missing clinical data. Missingness of demographic and clinical features, such as AAO
(information missing in ~70% of patients) and ethnicity (missing in 50%), is an alarming
observation. Likewise, the four cardinal motor features were unreported for 25.3% - 89.0% of
patients, and information for other motor and non-motor signs and symptoms was even more
frequently missing (ranging from 78.6% to 99.9%). This could be linked to the assumption that
the authors of the papers with missing data implied the presence of certain symptoms (e.g.,
the cardinal features) or the absence of symptoms that are only rarely observed, or did not
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pay attention to a feature (absence of an examination).? Despite these caveats, the reported
prevalences of motor response complications and cognitive impairment in PARK-LRRK2
appeared lower in comparison to idiopathic PD. Dyskinesias and motor fluctuations were
presentin 6.5% and 4.4% of PARK-LRRK2 patients, respectively (with a median disease duration
of 14 years), which were quite low compared with the widely quoted estimate of ~10% of
levodopa-treated PD patients per year developing motor response complications®> 8 39,
Similarly, although cognitive decline was the most frequently reported non-motor symptom in
this systematic review, it was reportedly present in only 3.6% of patients (median disease
duration 11 years), which was considerably lower than most published studies of idiopathic PD
(for example, a recent review estimated that ~20% of PD patients have cognitive impairment
at the time of diagnosis, although their overall older age [mean 71.317.5 years, vs. 65.9+12.2
years in our study) is likely to have contributed to the higher rate of cognitive impairment.®®
These observations are in line with studies comparing PARK-LRRK2 vs. idiopathic PD that,
importantly, have adjusted for multiple potential confounders, including age, disease duration,
and levodopa-equivalent dosages.>® 162

In this work, a total of 292 LRRK2 variants were documented in patients with different diseases,
and 205 were included and classified as pathogenic, likely pathogenic, or VUS according to the
ACMG criteria in patients with PD. Looking at the pathogenicity classifications, another
challenge became obvious. As can be seen in Figure 2, the distribution of pathogenicity
classifications using a commonly applied tool, i.e., Varsome was quite different from the
manually curated one. Varsome often favored the classification of VUS as “likely benign,” which
would mean that the patient/variant is not included in MDSGene and not considered for
clinical trials. The observed discrepancies underline the need for careful checking of outputs
from automated scoring systems by experts in the field®3. In the manual pathogenicity scoring,
all rare variants with a high CADD score were classified as VUS because it cannot be entirely
ruled out that they do not affect the development of the disease. However, manual
pathogenicity scoring according to ACMG is also challenging, as the criteria for interpretation
are subjective and lead to classification inconsistencies.®* Importantly, the pathogenicity score
is only an estimate and based on current knowledge, which may change over time as new
insights become available. For example, variants currently classified as VUS may at some point
be considered (likely) pathogenic if they are found to segregate in additional families and/or
are demonstrated to have relevant functional/biological effects (e.g., elevated LRRK2 kinase
activity). Currently, functional evidence is factored into pathogenicity scoring for a few variants
only, since for most variants, little research has been done. One notable example is the novel
p.F1700L variant in LRRK2 with functional support of pathogenicity.}” Therefore, research
studies that examine the impact of different LRRK2 variants on kinase activity on a large scale?®,
are highly important to the field and are currently being generated.®®

Correct variant interpretation has great relevance for the application of possible therapies,
such as kinase inhibitors for PARK-LRRK2, because only patients who carry a kinase-activating
LRRK2 variant (and perhaps also sporadic PD patients who have biomarker evidence of
elevated LRRK2 kinase activity) will likely respond to kinase inhibitors. Ultimately,
understanding the functional impact of specific variants, which, given LRRK2’s wide-ranging
physiological roles, may extend beyond the effects on kinase activity, is of great importance
for the development of novel therapies.®® ¢’
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Notably, an increasing number of publications suggest that LRRK2 has a broader role beyond
its link to classical PD. This includes its potential, albeit probably rare3®, involvement in the
pathogenesis of atypical parkinsonian disorders, as underlined by only <20 reported patients
with potentially pathogenic variants in LRRK2, including MSAZ2° 30.68,69 'pgp21,31-33,68,70 'cgp31,
34 and DLB?! patients. Of note, most of these patients carry only VUS (11/18). The possible
role of LRRK2 variants in atypical parkinsonian disorders accords with early observations of a
broad pathological spectrum in the brains of patients with LRRK2 variants, involving
aggregation of alpha-synuclein and tau proteins.”*’® Importantly, long-term follow-up of
patients initially diagnosed with PD may reveal additional patients with atypical parkinsonian
disorders based on the subsequent clinical course or autopsy results, as illustrated by a patient
reported as PD’%4, but later found to have MSA-P7>. A further link between LRRK2 and atypical
parkinsonian disorders comes from a recently published genome-wide association study
(GWAS) involving 1,001 White European-ancestry patients, which suggested a role of common
LRRK2 variation in the survival of PSP patients.’® Other phenotypes that have been associated
with LRRK2 variants in the literature include essential tremor, where a common variant might
act as a risk factor in Asia’’. Interestingly, LRRK2 also has a role outside neurological disorders
and has repeatedly been linked to inflammatory diseases.’® Notably, LRRK2 shows its highest
expression in blood and lung, the former also explaining why the functional testing of LRRK2's
kinase activity’® is possible in certain blood cells. A significantly higher incidence of
inflammatory diseases like multiple sclerosis and rheumatoid arthritis has been reported*! and
LRRK?2 postulated to be a link between gut inflammation and PD%”- &, Several studies have also
shown that LRRK2 is functionally involved in infections with Mycobacterium tuberculosis®': 2
and Mycobacterium leprae®® 84, The observation of several somatic loss-of-function variants in
LRRK2 in breast cancer cells*> and germline variants in malignant mesothelioma®® are also
interesting. Notably, patients with non-PD phenotypes often carried VUS or even benign
variants, making their disease-causing role, in the sense of a monogenic disease, less clear and
warrants further investigation.

Our study had some limitations, including, the unavailability of relevant clinical phenotype
information in many cases. For instance, the presence or absence of sleep disorder was
reported in only 3.9% of cases, making it challenging to conclude whether rapid eye movement
sleep behavior disorder (RBD) - increasingly recognized to be a predictor of poorer prognosis
in PD® - is less common in PARK-LRRK2 compared to idiopathic PD, as suggested by some
authors®® 87, Data on impulsive-compulsive behaviors, which are also of clinical relevance,
similarly have rarely been reported and, thus, not been collected as part of MDSGene efforts.
They need to be described more systematically and will be included in the future. Importantly,
they will need to be contextualized with regards to patients’ treatment regimes, since
dopamine agonist therapy is a primary risk factor for the occurrence of these behaviors.
Further, the present MDSGene review can only deal with information at the time of reporting.
The lack of confirmation of PD diagnosis by autopsy results and long-term clinical course that
are highly relevant®® 8% is a limitation of this literature-based study. Therefore, dedicated
studies are needed to evaluate the role of pathogenic LRRK2 variants in the development of
atypical parkinsonian features. Finally, modifiers of disease penetrance and AAO are areas of
major interest but were beyond the scope of this review; for these issues, readers are referred
to published works that have examined the effects of other genetic (including polygenic)®® %2,
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ethno-geographic®?, and environmental factors®3, and the interactions thereof%. We also did
not assess the possible protective effect of LRRK2 p.G2019S among GBA1 variant carriers®9’,
which is an intriguing observation that opens up new questions and avenues for research.

In conclusion, we performed a systematic literature review, analyzed the data, and present
insights from the largest database on PARK-LRRK2 to date. This review can be used to identify
pathogenic variants and elucidate their demographic and phenotypic spectrum. Different filter
options are available on the MDSGene website (https://www.mdsgene.org/), which also
provides published information on in-vivo and in-vitro measurements of LRRK2 kinase activity.
This database provides an important resource, especially in light of the emerging molecular-
based therapies. However, the missing data, especially detailed clinical information, in the
publications and the current limitations in variant interpretation, i.e., the high number of VUS,
are important challenges that must be addressed to enable optimal selection and stratification
of patients in ongoing and future clinical trials. Thus, this review contributes to improving
precision medicine in PARK-LRRK2 patients.
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Figure 1: Flowchart of the literature search. The number of included and excluded articles at
the different steps is indicated.
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* The p.L1795F variant is encoded by two different substitutions on the cDNA level (c.5385G>C and c.5385G>T) and was scored separately
for each base change.

Figure 2: Results of the pathogenicity scoring. Comparison of the ACMG-based pathogenicity
scoring of all LRRK2 variants from VarSome, Franklin, manual ACMG pathogenicity scoring, and
the final pathogenicity scoring. * The scoring was done on the cDNA level. Therefore, the two
variants encoding p.L1795F were counted separately.
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Figure 3: Potentially pathogenic variants in LRRK2. Schematic representation of the LRRK2
gene (A) and protein (B) with the localization of the included variants. The position of the

variants is indicated by arrows, and the predicted pathogenicity is provided by color (red,
pathogenic; black, likely pathogenic; blue, VUS; grey, risk variant).
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Figure 4: Signs and symptoms in the included patients at last examination. A) Cardinal clinical
signs and symptoms in the included PARK-LRRK2 patients. B) Overview of all reported signs
and symptoms in the included patients.
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Figure 5: Other clinical features in the included patients. A) The age at onset (AAO)
distribution is shown in 10-year bands on the x-axis. The number of patients is displayed on
the y-axis. The graph shows the distribution for all included PD patients (blue), for the patients
with VUS only (grey), and for patients with (likely) pathogenic variants (red). B) Box plots for
the AAO in the three groups, depicting medians and interquartile ranges. Outlier points are
also displayed and are defined as data points that lie outside 1.5 times the interquartile range
(IQR) from the lower or upper quartile boundary. C) Initial signs and symptoms in the included
patients. D) Levodopa response quantifications in the included PD patients. The x-axis shows
the six divisions of the levodopa response quantifications and the y-axis the number of
patients.
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