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Abstract  51 

Mental and neurological conditions have been linked to structural brain variations. However, 52 

aside from dementia, the value of brain structural characteristics derived from brain scans for 53 

prediction is relatively low. One reason for this limitation is the clinical and biological 54 

heterogeneity inherent to such conditions.  Recent studies have implicated aberrations in the 55 

cerebellum – a relatively understudied brain region – in these clinical conditions. Here, we used 56 

machine learning to test the value of individual deviations from normative cerebellar 57 

development across the lifespan (based on trained data from >27k participants) for prediction 58 

of autism spectrum disorder (ASD) (n=317), bipolar disorder (BD) (n=238), schizophrenia (SZ) 59 

(n=195), mild cognitive impairment (MCI) (n=122), and Alzheimer's disease (AD) (n=116). 60 

We applied several atlases and derived median, variance, and percentages of extreme 61 

deviations within each region of interest. Our results show that lobular and voxel-wise 62 

cerebellar data can be used to discriminate healthy controls from ASD and SZ with moderate 63 

accuracy (the area under the receiver operating characteristic curves ranged from 0.56 to 0.64), 64 

The strongest contributions to these predictive models were from posterior regions of the 65 

cerebellum, which are more strongly linked to higher cognitive functions than to motor control. 66 
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Keywords: Cerebellum, Normative modelling, Magnetic Resonance Imaging, Mental 68 

Illnesses, & Neurological Diseases, Machine Learning 69 

 70 

 71 

 72 

 73 

 74 

 75 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 18, 2024. ; https://doi.org/10.1101/2024.12.10.24318590doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.10.24318590
http://creativecommons.org/licenses/by-nc-nd/4.0/


 4 

Introduction 76 

Clinical heterogeneity and complex pathobiological mechanisms impede the discovery of 77 

reliable biomarkers for many neurological and – especially – psychiatric disorders, thereby 78 

complicating precise clinical decision-making and treatments. Over the last two decades, there 79 

has been a trend in the development of neuroimaging-based tools and machine learning for 80 

prognosis and diagnosis of psychiatric disorders (1,2) and neurological illnesses (3). 81 

Neuroimaging-based prediction studies on autism spectrum disorder (ASD), bipolar disorder 82 

(BD), and schizophrenia (SZ) have reported a wide range of accuracies, underscoring the 83 

limitations associated with small samples, including poor generalization performance (4,5). Of 84 

note, prediction studies on dementias show greater promise for clinical usage in both 85 

Alzheimer’s disease (AD) (3) and mild cognitive impairment (MCI).  86 

Notably, the majority of these prediction studies (4–6) have focused on cerebral 87 

features, perhaps reflecting a “cortico-centric bias” in the literature (7). Nonetheless, 88 

disruptions in the cerebellum have been hypothesized to contribute to various clinical 89 

conditions, such as childhood psychiatric symptoms (8), AD (9), SZ (10), and ASD (11–13). 90 

Indeed, patient studies have shown that abnormalities in cerebellum can exert a significant 91 

influence on motor, cognitive, and emotional functions (14–16), yet, there is little exploration 92 

on the role of the cerebellum in predicting and classifying mental and neurological illnesses. 93 

Using a normative modelling approach, we recently demonstrated significant deviations from 94 

normal cerebellar developmental across the lifespan in ASD, MCI, AD, BD, and SZ (17). 95 

While these individual-level deviations revealed substantial cerebellar heterogeneity among 96 

individuals with the same disorder, the value of these cerebellar features with respect to 97 

classifying these disorders remain uncertain. 98 

In this study, we addressed this gap by performing a set of predictions of ASD, MCI, 99 

AD, BD, and SZ, using MRI-based cerebellar features and cross-validated machine learning 100 
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classifiers. We applied lobular and voxel-wise normative models (17) and aggregated the 101 

median, variance and percentage of extreme deviations across atlases (18,19). Finally, for 102 

models that were able to meaningfully differentiate between patients and health controls, we 103 

identified cerebellar regions that contributed the most to the prediction. 104 

 105 

Methods 106 

Sample 107 

The study consisted of healthy controls from the test set the cerebellar lifespan normative 108 

model (17) (n=26.985, 53% females), and the clinical samples (n=1.757, 30% females) (Figure 109 

1A and Supplementary Table 2). Individuals without diagnoses were matched to the clinical 110 

datasets of patients with AD, ASD, BD, MCI, and SZ (Table 1) using nearest neighbor 111 

matching based on exact matches of sex and scanning site with age as implemented in MatchIt 112 

(20). The clinical datasets were obtained from the ABIDE, ADNI, AIBL, DEMGEN, and TOP 113 

cohorts. Information about each cohort and studies can be found in the corresponding 114 

publications (Supplementary Table 1). If participants were scanned at several timepoints, only 115 

baseline scans were chosen for this study. Individuals who withdrew from the studies or lacked 116 

essential demographic information and T1-weighted MRI data were excluded from the 117 

analyses.  118 

 119 

Lobular-level processing  120 

The T1-weighted images were skull-stripped using the FreeSurfer 5.3 auto-recon pipeline (21) 121 

and reoriented to the standard FSL orientation using the fslreorient2std (22). Linear registration 122 

was performed using flirt (23), which employed linear interpolation (with six degrees of 123 

freedom) and the default 1 mm FSL template (version 6.0). The borders were cropped at 124 

coordinates [6:173, 2:214, 0:160] to minimize their size without removing brain tissue. Finally, 125 
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the voxel intensity values of all brain images were normalized to the range of [0,1], adjusting 126 

the intensity values of each voxel to a standardized scale. 127 

To segment the cerebellum, we utilized the ACAPULCO algorithm (24), part of 128 

ENIGMA Cerebellum Volumetric Pipeline, which is a cerebellum parcellation algorithm based 129 

on convolutional neural networks. This algorithm delivers fast and precise quantitative in-vivo 130 

regional assessment of the cerebellum. As part of the algorithm, the images were corrected for 131 

inhomogeneity by N4 correction method (25) and registered to the 1mm isotropic ICBM 2009c 132 

template in MNI space using the ANTs registration suite (26). The ACAPULCO algorithm is 133 

based on 15 expert manual delineations of an adult cohort (27). It achieves per-voxel labelling 134 

and employs post-processing of the parcellation to correct for mislabeling and for accurate 135 

segmentation. ACAPULCO segments the cerebellum into 28 cerebellar lobules and computes 136 

the volume (mm3) for each region. These regions include bilateral Lobules I–VI; Crus I and II; 137 

Lobules VIIB, VIIIA, VIIIB, and IX-X; Vermis VI, VII, VIII, IX, and X; and Corpus Medullare 138 

(CM). To ensure data quality, participants with extreme outliers (2.698 s.d. above or below the 139 

mean) (28) in more than two lobules based on automated quality control measures, were 140 

excluded. We set the threshold at two lobules because the differences between one and two 141 

lobules was not significant (see Supplementary Methods for detailed information for quality 142 

control). 143 

 144 

Voxel-level processing 145 

We used SUIT version 3.4 (Spatially Unbiased Infratentorial Toolbox) (29) to segment 146 

cerebellar grey and white matter voxel-based morphometry (VBM) maps. SUIT leverages the 147 

outputs from ACAPULCO, an MNI-aligned T1 image (29,30), and an average mask derived 148 

from a randomly selected group of 300 individuals without a diagnosis. After segmentation, 149 

the grey matter maps were normalized for standardized comparison and re-sliced to align them 150 
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with the MNI152 template. Additionally, the grey matter maps were modulated by the Jacobian 151 

to preserve the value of each voxel in proportion to its original volume. This Jacobian 152 

modulation ensured that the values of the original volume were proportionally maintained. 153 

 154 

Normative modelling  155 

We used a publicly available cerebellar normative model, estimated using >27 156 

participants (17) which is implemented in the PCNtoolkit package (version 0.24) (31,32). This 157 

normative model encompasses cerebellar volumes and voxel-wise intensity while including 158 

sex, age, and scanning-site as covariates (Figure 1B). 159 

To analyze the data, we employed Bayesian Linear Regression (BLR) with the 160 

likelihood warping method (33), incorporating the 'sinarcsinsh' transformation (34,35), to 161 

handle non-linear basis functions and non-Gaussian predictive distributions for large datasets 162 

(34). Scanning-site was accounted for as a fixed effect (36,37). The normative model provides 163 

point estimates and evaluation metrics such as explained variance, mean squared log-loss, skew, 164 

and kurtosis (35). These evaluation metrics were calculated in the test set, which did not include 165 

clinical cohorts. Extreme deviations were defined as |z| > 1.96, corresponding to the most 166 

extreme 5% of cases in both directions in the reference cohort. 167 

 168 

Feature engineering 169 

Voxel-wise normative models were utilized to map deviation profiles onto existing 170 

atlases (see Supplementary Methods). Three existing atlases were selected: 28 cerebellar 171 

anatomical regions, 10 regions of interest (ROI) from the multi-domain task battery (MDTB) 172 

(19), and 17 ROI from resting-state connectivity (18,38). For each region of interest delineated 173 

by these atlases, we computed three key statistics: the median, variance and percentage of 174 

extreme deviations (Figure 1C). To quantify the extremes in deviation, we also calculated the 175 
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proportion of voxel-wise deviations that exceeded the established threshold of |z| > 1.96, 176 

denoting both extreme positive and negative deviations. This proportion was determined by 177 

dividing the count of such extreme deviations by the total voxel count within the corresponding 178 

region of interest. Variance has previously been used to examine the structural heterogeneity 179 

among patients in SZ (39,40). Unlike percentage of extreme deviation (|𝑧| > 1.96) that has been 180 

used in past normative studies (41–43), variance assesses the dispersion within the region, 181 

capturing the regionally heterogeneous spread within patients.  182 

 183 

Model training and evaluation 184 

Machine learning models employing logistic regression (LR) were used to build prediction 185 

models (Figure 1D). In addition, results from the random forest (RF) algorithm from the scikit-186 

learn library version 1.2.2 (44) and the eXtreme Gradient Boosting (XGBoost) library version 187 

1.7.3 (45) can be found in the Supplementary Figure 3. RF is a non-parametric supervised 188 

learning method that addresses over-fitting by combining decision trees into a single outcome, 189 

effectively balancing the bias-variance trade-off. XGBoost is an open source library to 190 

implement advanced gradient boosting algorithms (45). 191 

The features engineered from three atlases separately ran as inputs for the algorithm. 192 

We developed various machine learning models using deviations from the normative models 193 

and utilized their median, variance and percentage of extreme deviation onto the existing 194 

atlases as features. To evaluate the model's performance in held-out test data, we conducted a 195 

stratified five-fold cross-validation and used the area under the receiver operating characteristic 196 

curve (AUROC) as the primary performance metric. Additionally, we calculated precision, 197 

recall, sensitivity, specificity, balanced accuracy, and the area under the precision-recall curve.  198 

 199 

Permutation testing  200 
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We used permutation testing to assess whether the AUROCs achieved by our model was 201 

different from chance level performance. To achieve this, we shuffled the diagnosis labels 202 

randomly 1000 times, for each permutation calculating an AUROC. For significance testing, 203 

the original AUROC was compared to the distribution of permuted AUROC values. If the 204 

original AUROC falls within the extreme ends of the permutation distribution (p < 0.05), it is 205 

considered statistically significant. We applied an identical approach for the lobular volume 206 

features. The comparison between models utilized an approach similar to that outlined in 207 

Supplementary Figure 2-3, wherein the previously calculated shuffled AUROC values were 208 

used. We calculated the difference in true AUROC scores, as well as the AUROC differences 209 

from 1000 permuted datasets, between the two models. Subsequently, we compared the true 210 

score and the permuted scores to assess statistical significance.  211 

 212 

Feature importance ranking  213 

We assessed feature importance based on logistic regression coefficients to highlight their 214 

influence on the predictions. The coefficients from the model directly infer the relative 215 

importance of each feature, thus facilitating interpretation. The magnitude of the coefficient 216 

indicates the strength of the effect a feature has on the prediction, while the sign (positive or 217 

negative) indicates the direction of the effect. Figure 3 illustrates the summary plot of the 218 

standardized feature importance, emphasizing the key features that have the greatest influence 219 

(see Supplementary Figure 1 for all feature importance). 220 

 221 

Results 222 
 223 

We conducted a comprehensive analysis at the lobular and voxel-wise level employing 224 

a variety of models (Figure 1C). The voxel-wise model calculations included variance, median, 225 
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and percentage of deviations across 143k voxels, organized into 28 ROIs for the anatomical 226 

atlas, 10 ROIs for the task-based atlas, and 17 ROIs for the resting-state atlas.  227 

Permutation testing revealed significant predictions for ASD and SZ (AUROC values 228 

ranging from 0.56 to 0.64), using various models based on deviations from the cerebellar 229 

normative model (Figure 2). Prediction performance for MCI, AD and BD were not above 230 

chance levels. For SZ, the most predictive models were those centered around median and 231 

variance measures summarized within ROIs for the voxel-wise models. In contrast, for ASD, 232 

models based on the lobular volumes and voxel-wise variance within ROIs were found to be 233 

the most predictive. No notable differences between models based on different parcellations 234 

were found (Supplementary Figure 2). Furthermore, AUROC scores from RF predictions 235 

showed similar patterns of the logistic regression, underscoring the consistency of these 236 

techniques (Supplementary Figure 3). 237 

Figure 3 presents the feature importance weights in a logistic regression model used to 238 

analyze SZ and ASD. In SZ, significant negative deviation percentages were found in the 239 

vermis IX and Left IV regions. In task-based functional areas, regions associated with verbal 240 

fluency, word comprehension and mental arithmetic (region 9) and autobiographical recall, 241 

visual letter recognition, interference resolution (region 10) were notable. From the resting-242 

state atlas, limbic A (region 10) and somatomotor A (region 3) emerged as important. For 243 

median in SZ, the anatomical regions Right I-III and vermis VIII were highlighted. Using task-244 

based atlases, the top predictive regions were functionality linked to divided attention (region 245 

5) and right-hand movement (region 2). Predictive models using an atlas based on resting-state 246 

atlas highlighted Visual B (region 2) and limbic A (region 10).  247 

In ASD, predictive models based on variance (summarized within ROIs) revealed the 248 

most significant contributions from posterior cerebellar regions of Left VIIB and Left Crus II 249 

while models based on lobular volumes features point to Right VI and Left Crus II. Using the 250 
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task-based functional atlas, the most predictive regions were functionally linked to narrative, 251 

emotion, language processing (region 7) and right-hand movement, motor planning, divided 252 

attention (region 2). Complementary insights and detailed rankings of feature importance are 253 

available in Supplementary Tables 3-7.  254 

 255 

Discussion 256 

This study aimed to test the predictive power of deviations from normal cerebellar 257 

anatomy with respect to classifying mental and neurological disorders and yielded two main 258 

findings. First, we demonstrated that cerebellar features offer moderate power for prediction 259 

for ASD and SZ but did not reliably distinguish healthy controls from patients with BD, MCI 260 

or AD. Second, feature importance analyses showed that posterior regions of the cerebellum, 261 

known for its contributions in cognitive processes (15) were the most important predictors of 262 

ASD and SZ.  263 

Our study reveals that features derived from lobular and voxel-wise normative model 264 

possess moderate predictive capabilities in ASD and SZ. This is in line with our previous study 265 

which reported small to medium case-control differences in normative cerebellar anatomy for 266 

both ASD and SZ (17). However, it is worth mentioning that the current analysis considering 267 

cerebellar features only yielded a moderate level of prediction accuracy. Including other key 268 

brain regions and employing a multimodal approach that integrates different types of brain 269 

imaging data may improve the prediction (46,47). 270 

Feature importance analysis for the prediction of SZ highlighted contributions from 271 

both motor (48,49) and cognitive regions (15). The limbic vermis, specifically Vermis IX, a 272 

region with reported reductions in individuals with SZ (50–52), displayed the highest feature 273 

importance in percentage of extreme negative deviations when using the anatomical atlas. This 274 

may be interpreted in the context of limbic vermis's role in emotional processing, facial 275 
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expression recognition (53,54), and mentalizing, which is integral to understanding others' 276 

mental states, also known as theory of mind (55,56). The involvement of the limbic vermis in 277 

these processes is supported by evidence showing connections from this cerebellar region to 278 

both cortical and subcortical limbic areas (57). A small study showed smaller inferior posterior 279 

lobe in children and adolescents with childhood-onset SZ compared to healthy controls (51), 280 

yet, contrasting findings indicate abnormalities may also exist in the anterior lobe (58). A recent 281 

study examining a series of 17 individuals with SZ or undifferentiated psychosis (59) showed 282 

posterior vermis-predominant cerebellar hypoplasia.  283 

As functional topography does not consistently adhere to anatomical boundaries in the 284 

cerebellum, we also examined task-based and resting state atlases. In general, there were both 285 

slight discrepancies and shared areas when identifying the features of highest importance 286 

across models based on different atlases. Indeed, no one atlas consistently emerged as better 287 

than any other. However, we believe that moving between atlases significantly aids in 288 

functional interpretation of our findings. For instance, when using the percentage of extreme 289 

negative deviations (summarized within ROIs) to predict SZ, cerebellar regions functionally 290 

linked to verbal fluency, word comprehension and mental arithmetic (region 9) and limbic A 291 

(region 10) exhibited the highest feature importance. And when examining vermis IX in the 292 

task-based atlas, it highlights the region of saccades, visual working memory and visual letter 293 

recognition (19). Past studies literatures exhibit strong resting-state connectivity between 294 

lobules I-VI and vermis VIIB-IX of the cerebellum and the visual network (60), and 295 

oculomotor abnormalities are observed in SZ (61). For median, Right I-III showed the highest 296 

feature importance in the anatomical regions followed by vermis VIII. On the other hand, a 297 

study investigating functional connectivity reported hypoactivation in the vermis III, VI, VII, 298 

and VIII, along with a negative correlation between the vermis and time processing abilities in 299 
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individuals with SZ (62). Moreover, divided attention (region 5) in task-based and Visual B 300 

(region 2) and limbic A (region 10) in resting state are highlighted for features in median.  301 

Like SZ (63), ASD is a complex neurodevelopmental condition (12) involving a range 302 

of clinical characteristics, including repetitive behaviors, restricted interests, and difficulties in 303 

social interaction and communication (64). The substantial heterogeneity in clinical 304 

characteristics and severity, ranging from the highest functioning form of autism to those 305 

requiring substantial support in their everyday life, makes it challenging to demarcate a 306 

common neurobiological underpinning (65). Previous studies did not provide conclusive 307 

associations between cerebellar volume and ASD (66). Perhaps related to this, in this study, 308 

ASD was significantly associated with variance, i.e. the spread of the deviations within a region. 309 

Analyses of feature importance in significant ASD model highlighted Left VIIB and Left Crus 310 

II as well as the narrative, emotion and language processing region 7 in the task-based atlas. In 311 

addition to median and extreme deviations, variability within cerebellar sub-regions, especially 312 

those connected to higher cognitive areas, could thus be a relevant imaging-based marker of 313 

ASD. Left VIIB of the anatomical atlas and the region 7 of the task-based atlas overlaps in 314 

ASD. These regions of Crus I-II and lobules VIIB are densely connected to the prefrontal and 315 

parietal cortices for higher level processes through cerebello-thalamo-cortico-pontine 316 

cerebellar circuits (67).  317 

Previous studies have consistently reported good classification of dementia based on 318 

imaging data (AUROC ranging from 0.904 to 0.920) (3). Thus, our lack of any significant 319 

predictive models for this condition was somewhat surprising (but note that effects of MCI and 320 

AD were also relatively small in our previous study (17)). While one must be careful in 321 

interpreting null-findings, this lack of any significant effects in a moderately large sample of 322 

baseline AD patients nonetheless suggests that the cerebellum is relatively spared (68,69). On 323 

the other hand,  in both typical aging and AD, grey matter loss in the cerebellum's Crus I-II and 324 
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lobule VI is observed, with typical aging showing a bilateral decline and AD in the right 325 

hemisphere (70). The cerebellum remains under-studied, and we need to explore how aging 326 

and AD pathology contribute to cerebellar atrophy. 327 

There are limitations to consider in our study. First, harmonizing behavioral, cognitive, 328 

genetic, phenotypic, lifestyle, symptomatology, and medical history data across various 329 

datasets poses significant challenges, especially when aiming for a large sample size essential 330 

for assessing generalizability. We assembled a group of participants for whom we had access 331 

to essential information such as diagnosis, sex, age, scanning site, and brain imaging data. 332 

General limitations in machine learning such as sample size (71) should be taken into 333 

consideration when interpreting the current findings.  Next, accurately classifying complex 334 

clinical conditions is challenging due to the intrinsic heterogeneity of these conditions, which 335 

manifests as a wide array of symptoms and genetic variations. Some individuals may exhibit 336 

resilience due to genetic or lifestyle factors, which can complicate accurate predictions (72). 337 

Further, the existence of sub-groups within heterogeneous conditions, such as ASD, 338 

complicates the interpretation of performance metrics of prediction models. 339 

Neurodevelopmental changes raise concerns about the appropriateness of applying adult 340 

template space and atlases to younger children and adolescents (73). The cerebellum's distinct 341 

position within the skull and its intricate folding pattern also present challenges in obtaining 342 

precise MRI data. Finally, an AUROC value in the range of 0.7 to 0.8 can be deemed acceptable 343 

for certain clinical applications (74), indicating fair discrimination which includes the range of 344 

our model. However, for many clinical scenarios, this may not suffice, as values from 0.8 to 345 

0.9 are generally regarded as appropriate (75). Future research efforts should aim to address 346 

these limitations and further enhance our understanding of predictive models. 347 

 348 

Conclusion 349 
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This study tested the value of cerebellar-derived features for predictions of five mental and 350 

neurological conditions. The analysis revealed moderate prediction performance for ASD and 351 

SZ, with strongest contributions from posterior cerebellar regions.  352 

 353 

Data availability 354 

In this study, we used brain imaging from ABIDE, ADNI, AIBL, DEMGEN, and TOP. The 355 

cerebellar normative models from this work are available on via PCNportal (76): 356 

https://pcnportal.dccn.nl/.  357 

 358 

Code availability 359 

All code used in this work is available at FreeSurfer (https://surfer.nmr.mgh.harvard.edu), FSL 360 

(https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FslInstallation), ACAPULCO 361 

(https://gitlab.com/shuohan/acapulco), and SUIT (https://github.com/jdiedrichsen/suit). Code 362 

for normative model is available as open-source python package, Predictive Clinical 363 

Neuroscience (PCN) toolkit (https://github.com/amarquand/PCNtoolkit). Further code is 364 

forked to or published on https://github.com/MHM-lab.  365 

 366 

Ethics of the study 367 

These are analyses of publicly and privately available data. Description of informed consent 368 

and other ethical procedures is extensively described in each study, referenced in the 369 

manuscript. The data were stored and analyzed using University of Oslo’s secure platform, 370 

Services for sensitive data (TSD), in compliance with Norwegian privacy regulations.  371 
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Table 1. Matched sample description and demographics   642 

  N (Participants N (Scanners) Age (Mean, S.D.) Sex (%F: %M) 

Matched 

HC 
Alzheimer’s Disease 116 13 71.72(7.12) 55:45 

 ASD 317 25 15.96(7.45) 17:83 

 Bipolar Disorder 238 3 33.06(10.50) 55:45 

 
Mild Cognitive 

Impairment 
122 3 65.62(9.91) 42:58 

 Schizophrenia 195 3 30.13 (8.15) 41:59 

Clinical Alzheimer’s Disease 116 13 73.11(7.60) 55:45 

 ASD 317 25 12.35(4.42) 17:83 

 Bipolar Disorder 238 3 31.61(11.40) 55:45 

 
Mild Cognitive 

Impairment 
122 3 67.25(9.27) 42:58 

 Schizophrenia 195 3 28.29 (9.45) 41:59 
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Figure Captions 662 

 663 
Figure 1. Overview of Predicting Mental and Neurological Illnesses. (A) The study 664 
incorporated five clinical datasets. (B) Individuals without a diagnosis were divided into 665 
training and testing sets to evaluate the cerebellar normative models, which were prepared in 666 
both lobular and voxel-wise features. (C) The analysis utilized six distinct types of features, 667 
median, variance, and percentage of extreme positive and negative deviation, alongside lobular 668 
volume. (D) Logistic regression algorithm was employed to determine the likelihood of a 669 
clinical diagnosis in an individual. 670 
 671 
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 672 
Figure 2. Cerebellar features moderately predict ASD and SZ. (A) Information from the 673 
anatomical atlas (28 regions), task-based (10 regions) or resting-state (17 regions) are compiled 674 
into features that were used as predictors by the logistic regression model to make predictions. 675 
The area under the receiver operating characters curve (AUROC) serves as an important 676 
measure in evaluating the performance of a binary classifier, representing a trade-off between 677 
the classifier’s sensitivity (true positive rate) and specificity (true negative rate). The reliability 678 
and robustness of the AUROC were assessed by computing it over 1,000 permutations, which 679 
aids in determining whether the classifier's performance is statistically significant or due to 680 
random chance. (B-D) The values that survived multiple comparison are shown.  681 
 682 
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Figure 3. Different regions show distinct importance across atlases in ASD and SZ. The 684 
feature importance (FI) values derived from logistic regression reveal the contribution of each 685 
specific cerebellar region to predictive modelling, relative to average prediction outcomes. FI 686 
values accentuate distinct cerebellar regions with unique predictive capabilities as identified in 687 
lobules, anatomical, task-based, and resting-state atlases through voxel-wise analysis. Features 688 
that remained significant after adjustments for multiple comparisons of AUROC are shown.  689 
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