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Abstract 37 
The complex interplay between metal abundance, transport mechanisms, cell distribution, and 38 
tumor progression-related biological pathways (e.g., metabolism, collagen remodeling) remains 39 
poorly understood. Traditionally, genes and metals have been studied in isolation, limiting 40 
insights into their interactions. Recent advances in spatial transcriptomics and elemental 41 
profiling now enable comprehensive exploration of tissue-wide metal-gene interactions, though 42 
integration remains challenging. In this proof-of-concept study, we investigated metal-dependent 43 
signaling within the tumor microenvironment of a unique colorectal cancer (CRC) tumor. We 44 
implemented a spatial multimodal workflow which integrated elemental imaging, gene 45 
expression, cellular composition, and histopathological features to uncover metals-related 46 
pathways through spatially resolved differential expression analysis. Preliminary findings 47 
revealed significant associations, for instance: elevated iron correlated with mesenchymal 48 
phenotypes located at the tumor’s proliferative front, reflecting epithelial-to-mesenchymal 49 
transition pathways, and extracellular matrix remodeling. High concentrations of copper were 50 
predominantly localized in regions of active tumor growth and associated with the upregulation 51 
of immune response genes. This proof-of-concept workflow demonstrates the feasibility of 52 
integrating elemental imaging with spatial transcriptomics to identify metals-based gene 53 
correlates. Future application of this workflow to larger patient cohorts will pave the way for 54 
expansive comparisons across the metallome and transcriptome, ultimately identifying novel 55 
targets for tumor progression biomarkers and therapeutic interventions. 56 
 57 
 58 
 59 
 60 
 61 
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Background and Introduction 63 

Colorectal Cancer (CRC) represents a significant global health challenge, accounting for nearly 64 

10% of all cancer cases and ranking as the second-leading cause of cancer-related deaths 65 

worldwide 1. The rising incidence of CRC among younger demographics underscores an urgent 66 

need to advance screening, prognostic tools, and therapeutic approaches 2,3. Central to 67 

improving outcomes is a deeper understanding of the mechanisms underlying tumor 68 

progression and metastasis, which are responsible for approximately 90% of cancer mortalities 69 

and associated with sharply declining survival rates at advanced stages. 70 

 71 

Elements significantly influence cancer progression through roles in cell proliferation, invasion, 72 

motility, adhesion, and more 4–6. Metals such as copper (Cu), iron (Fe), and zinc (Zn) are vital 73 

for enzymatic reactions essential for mitochondrial respiration, DNA repair, senescence, and 74 

immune regulation 7–18. Metals also modulate signaling pathways through metalloallostery, 75 

influencing nutrient sensing and protein regulation. Elevated levels of Cu and Fe can also 76 

contribute to reactive oxygen species (ROS) production, which promotes angiogenesis and 77 

disrupts DNA repair, enhancing tumor invasion and metastasis 15,19,20. The interplay between 78 

various essential and non-essential elements is integral to tumor growth and metastasis, and 79 

research into these interactions and their biological function will provide insights into element-80 

dependent vulnerabilities, offering potential targets for novel therapeutic interventions. For 81 

instance, a recent Phase II trial with tetrathiomolybdate (TM), a Cu chelator, demonstrated 82 

promising results in improving progression-free and overall survival rates for breast cancer 83 

patients at high risk of metastasis 21–23. TPEN, another Cu chelator, selectively targets CRC 84 

cells due to their higher Cu accumulation 12,17. Despite advances in metal-based diagnostics and 85 

therapies, their clinical application faces significant challenges due to incomplete understanding 86 

of how metals are distributed within tumors and their specific roles in intra- and inter-cellular 87 

signaling within the tumor microenvironment (TME). The complexity of elemental distribution, 88 
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influenced by factors such as dietary intake  and unique cellular uptake and export mechanisms, 89 

results in a dynamic and heterogeneous metal landscape within tumors 24–26. This complexity is 90 

further exacerbated by the presence of metals in various cellular pools, ranging from tightly 91 

bound to more labile forms that interact with small molecules 27. 92 

 93 

A deeper understanding of metal distribution within tumors has been traditionally limited by bulk 94 

analysis methods, which overlook the nuanced spatial distribution of metals crucial for 95 

understanding their role in cancer pathogenesis. High-resolution elemental imaging (EI) such as 96 

Laser Ablation Inductively Coupled Plasma Time of Flight Mass Spectrometry (LA-ICP-TOF-97 

MS) offers a significant breakthrough by providing precise localization of metal accumulation. 98 

This technology enables detailed mapping of metal pools within the tumor landscape, revealing 99 

its potential influence on cancer progression and patient outcomes. It holds the potential to 100 

revolutionize cancer diagnosis and treatment by identifying unique multi-element signatures 101 

indicative of tumor states. 102 

 103 

Complementing this, recent technological advances in spatial transcriptomics (ST) enable high-104 

resolution 28, untargeted spatial expression profiling of almost all protein-coding genes, 105 

providing insights into the genetic factors governing metal transport and their toxicological 106 

implications  29. The conserved nature of metal transport proteins across species underscores 107 

the relevance of these genetic studies. ST overcomes the limitations of bulk analysis, which can 108 

obscure tissue-specific relationships, and of multiplexing assays, which are restricted to a 109 

limited number of protein candidates 30–38. By allowing for the profiling of the entire 110 

transcriptome at high spatial resolution, including at the single-cell level, ST can potentially be 111 

leveraged to pinpoint specific cellular interactions or markers of tumor progression.  112 

 113 
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The spatial location and abundance of essential elements within tissues reflect complex 114 

processes of availability, homeostasis, and biological necessity. For instance, the homeostasis 115 

of essential elements involves a myriad of proteins that sense, signal, chaperone, and control 116 

their movement 39,40. Thus, integrating spatial transcriptomics and elemental imaging 117 

technologies has the potential to reveal intricate metal-biomolecular interactions that may be 118 

missed by traditional reductionist approaches that would analyze each assay in isolation 41. Yet, 119 

the absence of dedicated software platforms specifically designed for such integrative tasks has 120 

been a significant obstacle, explaining, in part, why comprehensive pathway analysis for metals 121 

in cancer remains an unrealized goal to date 42–45.  122 

 123 

To address this gap, the Biomedical National Elemental Imaging Resource (BNEIR) developed 124 

TRACE (Tissue Region Analysis through Co-registration of Elemental Maps), co-registration 125 

software that facilitates the spatial integration of elemental imaging data with histopathology, 126 

immunohistochemistry/multiplex immunofluorescence, and spatial transcriptomics technologies 127 

(Figure 1) 41,46,47. This exploratory proof-of-concept study builds on TRACE-enabled integration 128 

to further characterize elemental and transcriptomic data from the primary tumor of a single 129 

colorectal cancer (CRC) case.  130 

 131 

Through a multimodal analysis, we aim to demonstrate the potential for uncovering valuable 132 

insights into the interplay between genetic and elemental landscapes in cancer pathology, 133 

paving the way for a more comprehensive understanding of CRC progression. The primary 134 

objectives of this study are twofold: firstly, to identify correlations between gene signatures and 135 

metal abundance within specific cellular architectures and cell types in CRC; secondly, to 136 

leverage these insights to develop a metals-based pathway analysis. We believe this initial 137 

investigation will facilitate a more comprehensive exploration of metal-related pathways in 138 

cancer across larger cohorts, enhancing our understanding of pathogenesis, metastasis, and 139 
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progression (Figure 1). Ultimately, this research seeks to clarify the role of metal 140 

bioaccumulation in tumor dynamics, potentially leading to the discovery of novel biomarkers and 141 

the development of more effective therapeutic strategies. 142 

 143 

 144 
Figure 1: Overview: Spatial Integration of Spatial Elemental Imaging and Spatial 145 
Transcriptomics can reveal genes associated with metal bioaccumulation within specific tissue 146 
architectures, shedding light on metals-related pathways and cellular changes associated with 147 
tumorigenesis; BNEIR: Biomedical National Elemental Imaging Resource; TRACE: Tissue 148 
Region Analysis through Co-registration of Elemental Maps 149 
 150 
 151 
 152 
Results 153 

Results Overview 154 

We conducted a comprehensive “metals-based pathway analysis” on a primary tumor section 155 

from a CRC patient, aiming to uncover associations between the abundance of various metals 156 

and gene pathways within distinct tissue architectures. The primary tumor, originating in the 157 
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patient’s cecum at pathologic T-stage 3 (indicating invasion through the muscularis propria), 158 

advanced to stage 2a lymph node involvement and metastasized to the liver. This section 159 

provides a concise overview as context for the subsequent findings: 160 

1. Spatial Transcriptomics (ST) Profiling: Utilized the 10x Genomics Visium spatial 161 

transcriptomic (ST) CytAssist assay to capture spatial variations in the expression of 162 

approximately 18,000 genes across 55-micron spots. This was complemented by high-163 

resolution 40X H&E-stained whole slide imaging (WSI; Leica Aperio GT450) on the 164 

same section. 165 

2. Spatial Elemental Imaging (EI): A serial section was analyzed to profile all elements 166 

and their isotopes at 5-micron resolution using laser ablation inductively coupled plasma 167 

time-of-flight mass spectrometry (LA-ICPTOF-MS). 168 

3. Spatial Data Integration: Achieved through TRACE (Tissue Region Analysis through 169 

Co-registration of Elemental Maps), which facilitated the spatial alignment of ST and EI 170 

data. 171 

4. Pathologist annotations: Annotated WSI identified regions inside, around, and away 172 

from the tumor, among other tissue architectures such as epithelium, serosa, and 173 

subcutaneous fat. 174 

5. Elemental Hotspot analysis: Identifies hotspot areas of high and low metal abundance 175 

using Getis Ord* statistics 48. 176 

6. Cell Typing: Integrated single cell RNASeq data from a serial section to characterize 177 

cell types within these hotspots. 178 

7. Differential Expression: Conducted a transcriptome-wide comparison of gene 179 

expression in areas with varying metal abundance. 180 

8. Pathway Analysis: Gene set enrichment analysis performed on statistically significant 181 

genes to elucidate the connections between metal abundance and various biological 182 

processes. Metal-gene correlations were also visualized across genes contained within 183 
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several select, relevant Cu homeostasis and tumor progression pathways for additional 184 

context, as an example of how spatial data integration can recapitulate and expand on 185 

known biological mechanisms and pathways. 186 

9. Factor/Interaction Analysis: Employed machine learning and clustering approaches to 187 

reveal distinct profiles of metals, genes, and cell types associated with different tissue 188 

histologies. 189 

 190 

Identifying tissue architectural and cellular components associated with high elemental 191 

abundance  192 

 193 
Figure 2: Metal distribution in tissue architectures: A) Pathologist annotation of tumor, 194 
tumor interface, and surrounding musculature and serosa, B) Boxplot demonstrating differences 195 
in Gi* hotspot statistics across various tissue architectures, C) Clustered heatmaps comparing 196 
average hotspot abundance (Gi*) by metal within select architectures and relative differences in 197 
hotspot abundance between architectures (positive z-score indicates higher metal abundance 198 
on architecture to left of inequality), D) Demonstration of metal abundance mapped across slide 199 
for Fe and Mn (red indicates hotspot, blue indicates coldspot), juxtaposed with cellular 200 
abundance (red indicates higher abundance), E) Dotplot demonstrating spearman correlation 201 
associations between cell type abundance and elemental distribution– larger red dots indicate 202 
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positive associations of greater magnitude, whereas blue dots indicate negative associations, 203 
with size indicating magnitude; “Inter” represents the tumor interface  204 
 205 
Our hotspot analysis revealed distinct elemental signatures associated with various histological 206 

structures (Figures 2A-C, S1, Tables S1-2). Notably, the tumor regions were enriched in Cu, 207 

Mg, Fe, and Mn. These differences were accentuated with respect to other tissue regions such 208 

as the muscularis propria. Conversely, K, Zn, were relatively depleted in the tumor compared to 209 

the muscularis propria. Zn concentrations were particularly high at the tumor interface. 210 

Additionally, the muscularis propria showed significant enrichments of metals such as Zn, K, Ca 211 

as compared to serosal tissue. 212 

 213 

Deconvolution of ST into cell-type proportions revealed significant associations between various 214 

metals and specific cell types (Figures 2D,E, S1, Table S3). For instance, Cu was positively 215 

associated with presence of mast cells, B naive cells, endothelial cells, macrophages, and 216 

plasma cells, indicating a broad involvement across immune and vascular functions. Fe was 217 

associated with a mesenchymal phenotype, plasma cells, and B memory cells. Mg exhibited 218 

positive associations with B cell precursors and proliferating B cells. Mn was positively linked to 219 

dendritic cells. Zn and K both showed negative correlations with epithelial cells and red blood 220 

cells. Ca exhibited negative correlation with monocytes. 221 

 222 
Metals-Based Pathway Analysis 223 
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 224 
Figure 3: Pathway Analysis Findings: A) Visual representation of ST data through Leiden 225 
clustering, revealing distinct regions, B) Cu and Zn Gi* hotspot statistics, C) Visualization of 226 
spatial distribution of IDO1 and DES gene expression demonstrating association with respective 227 
elements, D) Visualization of Interferon Gamma Response and Smooth Muscle Contraction 228 
through aggregating gene expression across pathway compared to a background distribution, 229 
again found to be associated with respective elements, E) Volcano plot mapping spearman 230 
correlation between 18074 genes and Gi* statistics for respective metals on x-axis and -log10(p-231 
values) on y-axis– p-value and correlation cutoffs were set at 0.05/18074; F) Pathways 232 
associated with respective elements (top includes most significant MsigDB Cancer Hallmarks 233 
for Cu abundance and bottom includes most significant Reactome pathways for Zn abundance) 234 
 235 
Our differential expression analysis uncovered a wide range of biological pathways associated 236 

with biomolecular accumulation, reflecting variations in cellular composition, immune responses, 237 

and tissue architecture (Tables S4-7). A demonstration of the spatial covariation between 238 

elements and specific genes can be found in Figures 3,S1. This analysis highlighted both 239 

shared and unique roles of different metals in key cellular processes, including but not limited to: 240 

 241 

Immune Response, Inflammation, and Complement Activation. We identified metals which co-242 

occurred with genes involved in key immune signaling pathways such as Interferon Gamma 243 

Response (Cu, p=1.09e-12; Mg, p=6.46e-18; Mn, p=5.92e-18) and Allograft Rejection (Mn, 244 

p=1.38e-29; Mg, p=2.23e-22). Additionally, these metals were involved in Complement 245 

Activation and IL-2/STAT5 Signaling (Fe, p=0.000175), indicating their significant roles in 246 

modulating immune responses within the TME. Cu was also prominently linked to IL-247 
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6/JAK/STAT3 Signaling (p=0.00505), a pathway known to be involved in inflammatory 248 

responses and immune regulation. Moreover, Mg was associated with pathways like PD-1 249 

Signaling (p=1.47e-06) and Phosphorylation of CD3 and TCR Zeta Chains (p=6.42e-05), further 250 

emphasizing the impact of these elements on immune cell activation and signaling.  251 

 252 

Epithelial-Mesenchymal Transition (EMT), Cell Motility, and Tissue Remodeling. Fe, along with 253 

K and Zn, was prominently associated with pathways involved in EMT and cell motility, 254 

highlighting their roles in processes like EMT (Fe, p=4.38e-21) and Cell-extracellular Matrix 255 

Interactions (Fe, p=9.41e-11; Zn, p=2.06e-07). These elements were also linked to Apical 256 

Junctions and RHO GTPase activation, both of which are crucial for cell adhesion, migration, 257 

and tissue remodeling (Fe, p=2.75e-05; Zn, p=1.17e-06). 258 

 259 

Myogenesis and Muscle Contraction. K and Zn were strongly associated with pathways related 260 

to myogenesis, muscle contraction, and ECM interactions, emphasizing their crucial roles in 261 

tumor progression. For example, myogenesis was significantly linked with K (p=5.48e-15). 262 

Similarly, Smooth Muscle Contraction was associated with K (p=2.36e-15) and Zn (p=1.69e-17). 263 

Zn was also found to play a significant role in Muscle Contraction (p=5.79e-18).  264 

 265 

Cell Signaling, Apoptosis, and DNA Repair. Pathways related to cell signaling, apoptosis, and 266 

DNA repair were notably enriched for elements such as Cu, Mg, Mn, and Fe. For instance, Cu 267 

showed significant enrichment in the G2-M Checkpoint (p=1.30e-07) pathways. These elements 268 

also demonstrated enrichment in apoptosis-related pathways (Mg, p=7.49e-03).  269 

 270 

Oxidative Stress, Cellular Repair, and Hormonal Regulation. Fe was prominently associated 271 

with pathways related to oxidative stress, cellular repair mechanisms, and hormonal responses. 272 

Fe’s involvement in the Hypoxia pathway (p=0.000881) and Angiogenesis (p=0.0104) highlights 273 
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its critical role in cellular adaptation to low oxygen levels, a hallmark of rapidly growing tumors. 274 

Additionally, Fe was strongly linked to KRAS Signaling Up (p=1.60e-16), reflecting its role in key 275 

oncogenic signaling pathways. These associations underscore the multifaceted importance of 276 

Fe in tumor growth, stress responses, and repair mechanisms within the TME. The depletion of 277 

pathways like and p53 Pathway (Ca, p=1.25e-08) may further indicate alterations in hormonal 278 

signaling and cellular stress responses within the TME. 279 

 280 

Metabolic Regulation and Signal Transduction. Metabolic pathways, including glycolysis and 281 

cholesterol homeostasis, were frequently enriched in Zn and Cu, highlighting their roles in tumor 282 

metabolic adaptations. Zn was significantly involved in Glycolysis (p=7.09e-07), while Cu 283 

showed enrichment in mTORC1 Signaling (p=5.05e-03), emphasizing their contributions to the 284 

metabolic flexibility required for tumor survival within the TME.  285 

 286 

Further Examination of Cu Homeostasis and Fe-Related EMT Pathways 287 

 288 

We further examined the relationship between specific genes and metal abundance within key 289 

pathways using PathVisio, overlaying correlations onto WikiPathway diagrams (Figures S2-3) 290 

49–54. For genes correlating with Cu abundance, significant associations were observed within 291 

Cu homeostasis pathways. In particular, metal ion solute carrier (SLC) transporters MT1E 292 

(ρ=0.40, p<0.001) and MT1G (ρ=0.40, p<0.001) were strongly correlated with Cu levels. 293 

Additionally, ATOX1 (ρ=0.15, p<0.001), a Cu chaperone delivering Cu+ to P-type ATPases 294 

such as ATP7A (ρ=0.31, p<0.001), exhibited notable correlations. Through its suppressive 295 

effects on SOD3, a key antioxidant gene, ATP7A may influence tumor progression 55–58. SOD3 296 

protects against oxidative stress and maintains cellular redox balance, and its downregulation 297 

has been associated with increased oxidative stress and induction of EMT, processes linked to 298 

tumor metastasis 59. Correspondingly, SOD3 (ρ=-0.36, p<0.001) showed the strongest negative 299 
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correlation with Cu abundance within this pathway, suggesting that elevated Cu levels may 300 

drive downregulation of this protective gene through upregulation of ATP7A, further promoting 301 

cancer aggressiveness. 302 

 303 

For Fe abundance, spatial correlations were identified with specific genes linked to EMT-related 304 

pathways. Among these, FN1 (ρ=0.34, p<0.001), which encodes fibronectin, a protein involved 305 

in promoting cell motility through collagen matrix remodeling and serving as a marker for 306 

cancer-associated fibroblasts 60,61, was most notable. Additional key correlations were observed 307 

with SPARC (ρ=0.36, p<0.001), which phosphorylates focal adhesion kinase (FAK) to stimulate 308 

tumor cell invasion 62, and MMP9 (ρ=0.32, p<0.001), a matrix metalloproteinase associated with 309 

extracellular matrix (ECM) degradation, lymph node metastasis, and poorer survival outcomes 310 

63,64. By examining these specific gene correlations within their respective pathways, our 311 

analysis highlights the intricate interplay between metal abundance and gene activity in the 312 

tumor microenvironment. 313 

 314 

 315 

Spatial Clustering of Metals, Genes, Cell-Types 316 
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 317 
Figure 4: Spatial Multimodal Factor Analysis Results: A) Plotting of factor loadings from four 318 
of nine discovered spatial factors, B) Clustermap demonstrating factor loadings averaged 319 
across architecture, C) Relative differences in factor loadings between tissue architectures, 320 
hierarchically clustered, D) Composition of factors, top five features per data type (genes, cell 321 
types, metals); contributions of these features were normalized to sum to one within each data 322 
type 323 
 324 
The pathway associations identified in our analysis suggest significant roles for various metals 325 

in critical biological processes such as immune response, cell cycle regulation, and ECM 326 
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interactions. However, these associations raise important questions about how these processes 327 

are spatially organized within the tumor microenvironment. Spatial colocalization of metals and 328 

specific cellular activities is likely more pronounced in certain regions of the tissue, where 329 

distinct tissue architectures may drive localized biological effects. To explore these spatial 330 

patterns and their implications for tumor behavior, we conducted a spatial factor analysis to 331 

summarize these associations within distinct tissue architectures (Figure 4). 332 

 333 

The spatial factor analysis using MEFISTO yielded nine factors corresponding to a variety of 334 

biological pathways (see Figures S4-5, Tables S8-10) 65. Factor 1 was primarily concentrated 335 

within the tumor and was associated with the accumulation of Mn and Cu, alongside pathways 336 

related to mucin O-glycosylation, glycolysis and estrogen response 66–68. Factor 4 was linked to 337 

a mesenchymal phenotype and associated with Fe, showing strong connections to gene 338 

signatures tied to EMT. Factor 5 was predominantly localized at the tumor interface, associated 339 

with both epithelial and macrophage cells, and was enriched in pathways related to EMT and 340 

immune responses, including Dectin-2 and Defective GALNT12 causes CRCS1. Finally, Factor 341 

6 was connected to myogenesis, muscle contraction, and monocyte presence, with a 342 

concentration of Zn at the tumor interface and in the muscularis. 343 

 344 

How Much of the Spatial Elemental Distribution Can Be Explained by Transcriptomic, 345 

Cellular, and Pathway Activity Variation? 346 

 347 

We used a multivariable predictive modeling approach with the MISTy package to evaluate how 348 

well transcriptomic, cellular, and pathway activity variations explain the spatial distribution of 349 

elements within the tumor microenvironment 69. This approach employed spatially weighted 350 

random forest models to predict metal concentrations based on pathway activity scores, cell 351 

type abundances, and the spatial gene expression of selected genes at the same or 352 
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neighboring spots. Our analysis found that a substantial proportion of the variation in elemental 353 

distribution can be attributed to these spatial transcriptomic data types. For elements such as K, 354 

Cu, Mn, Mg, Ca, and Fe, the models achieved R² values exceeding 75%, indicating a high level 355 

of explainability (Figure S6, Table S11). 356 

 357 

Among the predictors, spatial gene expression markers were the most significant influences 358 

upon elemental variation. In contrast, pathway activity scores and cell type abundances were 359 

less predictive, potentially due to the information loss during data aggregation. Interestingly, 360 

when incorporating other elemental concentrations as predictors, the majority of the variation in 361 

elemental distribution was accounted for by these other elements and cell types, rather than 362 

gene expression alone. A comprehensive list of gene, cell type, and pathway interactions with 363 

metals is provided in Figure S6 and Table S11. 364 

 365 

Discussion 366 

Targeting metal-dependent signaling and chaperoning within and around tumors has emerged 367 

as a promising strategy for inhibiting tumor growth and spread 5,12,70. However, this approach is 368 

challenging due to the limited understanding of how metals accumulate within tumors. 369 

Developing a comprehensive map of the conditions and consequences of metal accumulation in 370 

tumors and their surrounding microenvironment is crucial for advancing next-generation cancer 371 

therapies. The differential bioaccumulation of endogenous metals, which may reflect variations 372 

in nutrient intake, storage, or disruptions in homeostasis, underscores the need for such a map. 373 

This metal map would provide valuable insights into the bidirectional molecular mechanisms 374 

governing metal accumulation, whether in excess or deficiency. By understanding how these 375 

metals contribute to tumor progression, we can better identify potential biomarkers and 376 

therapeutic targets, paving the way for more effective treatments. 377 

 378 
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In this study, we focused on spatially characterizing CRC tumorigenesis, as lifestyle factors 379 

such as dietary intake, which is one of many factors influencing metabolic activity and 380 

inflammation, can significantly impact tumor development, offering another promising 381 

therapeutic avenue in addition to chelation. The computational workflow that was developed and 382 

implemented is the first of its kind and has uniquely layered on spatial transcriptomics atop 383 

elemental imaging to facilitate a metals-based pathway analysis. Our workflow offers a 384 

preliminary understanding of dynamic interplay between metallic and molecular alterations 385 

within the TME.   386 

 387 

By integrating histology imaging and pathology annotation, we demonstrated metal 388 

bioaccumulation across various tumor microenvironment compartments, with Cu localizing 389 

intratumorally and Fe accumulating at the tumor’s proliferative front and within the stromal 390 

architecture. Cu, essential for mitochondrial energy metabolism in cancer cells, was primarily 391 

localized within the tumor, corroborating prior studies showing that Cu chelation can kill colon 392 

cancer cells by preventing redox cycling and thereby reducing the generation of reactive oxygen 393 

species. Fe, on the other hand, was found in the tumor stroma 71,72. This finding aligns with prior 394 

research suggesting that Fe accumulation in this region may result from residual Fe following 395 

intralesional hemorrhage. Larger tumors, with their fragile neovascular blood vessels, are prone 396 

to bleeding, which could contribute to this stromal Fe deposition, as demonstrated through 397 

supporting literature 73. Indeed, deposits of Fe were found to be associated with hypoxia-related 398 

genes. These findings were further supported by spatial integration of single-cell data with ST to 399 

derive cell-type proportion estimates, which established an epithelial association for Cu and a 400 

mesenchymal/stromal phenotype for Fe. The presence of Fe in regions tied to stromal/collagen 401 

remodeling aligns with the epithelial-to-mesenchymal transition, a key process in tumor 402 

progression. Additionally, Cu was not only found within tumor areas but also co-localized with 403 

endothelial cells, plasma cells, and macrophages. Pathway analysis recapitulated Cu’s dual 404 
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role: promoting CRC proliferation, as indicated by enrichment in Mitotic Cell Activity, and 405 

stimulating the antitumoral immune response through interferon signaling and immune 406 

recruitment via the surrounding vasculature and lymphatics, consistent with prior literature 74. 407 

Both Cu and Fe findings were reinforced by differential expression analyses and visualization of 408 

spatial metal-gene correlations overlaid on pathways governing Cu homeostasis, metabolic 409 

reprogramming, and Fe-related EMT processes. These pathways highlight where their shared 410 

contributions relate to aggressive tumor phenotypes. Future studies are needed to validate 411 

these associations and disentangle the roles of Cu and Fe within specific cell mixtures localized 412 

in distinct tissue architectures. Together, these findings provide a nuanced understanding of Cu 413 

and Fe’s roles in tumor progression, consistent with prior literature while demonstrating the 414 

potential for new insights spurred through spatial integration and pathway-level analyses. 415 

 416 

While Cu and Fe are key metals in cancer biology, other metals, such as Mn and Mg, also 417 

showed significant tumor concentrations and warrant further investigation for their distinct roles. 418 

Neither Mg nor Mn was associated with an epithelial phenotype, suggesting their involvement 419 

with other tumor-infiltrating cells. Previous research has linked increased cellular Mg to DNA 420 

and protein synthesis, as well as tissue growth, which aligns with our observation of Mg’s 421 

localization within the tumor and its association with the G2M cell cycle pathway 75. Like Cu, Mg 422 

was also highly enriched for genes associated with inflammatory signaling via the 423 

Interferon/cytokine signaling pathway, among others. In contrast, Mn localized within the tumor 424 

likely due to its role in the antitumor immune response 76. Prior studies have suggested Mn’s 425 

role in promoting dendritic cells, which is consistent with our findings showing the strongest 426 

correlation of Mn with dendritic cell presence within the tumor. 427 

 428 

Zn was found colocalized at the tumor interface and has been shown in prior studies to alter 429 

cytoskeletal integrity, motility, and invasiveness of colon cancer cells, suggesting a potential role 430 
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in chemoprevention. This cytoskeletal activity is consistent with pathway activation related to 431 

myogenesis and muscle contraction, though not much is known about its precise mechanisms 432 

within tumors. 433 

 434 

The presence of K and Ca at the tumor interface may reflect long-term accumulation in the 435 

colon’s muscularis propria, which consists of older, longer-lasting cells. This buildup is likely due 436 

to extended exposure to these elements. As a validation, we also found Ca ions within the same 437 

regions. Previous studies have shown that Ca affects intestinal smooth muscle contraction, 438 

partly by influencing its permeability—consistent with our findings of Ca within these 439 

architectures 77. Additionally, both Ca and K were related to Ca²⁺-activated K⁺ channels, 440 

supporting this effect and validating our approach. 441 

 442 

These associations underscore the unique potential enabled by integrating these advanced 443 

technologies. It’s important to highlight that a significant proportion of elemental distribution 444 

within tumors has been confirmed to have biomolecular underpinnings that govern not only 445 

metal deposition, redistribution, and chaperoning but also the downstream consequences of 446 

metal presence, such as inflammation. Developing mechanistic associations between these 447 

findings and tumor biology will take time, but the progress is promising.  448 

 449 

The advantage of pathway analysis through whole transcriptomic profiling lies in the broad 450 

scope and range of pathways that can be explored, offering real potential for biomarker and 451 

intervention discovery. However, it is crucial to emphasize that while some findings in this 452 

manuscript are confirmatory, they are largely exploratory and require validation and expansion 453 

to a larger, unbiased cohort. Some of the pathways identified in this analysis reflect normal 454 

colonic function rather than tumorigenesis. We have been careful to limit the set of considered 455 

elements to avoid overstating conclusions. Future work will delve deeper into cell-type 456 
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associations using complementary imaging techniques and will also investigate alterations that 457 

exceed those attributable solely to tissue architectural changes. Key indicators of tumor 458 

progression and metastasis can only be fully understood when employing these technologies on 459 

a larger scale / expanded cohort. CRC progression and tumorigenesis are heavily influenced by 460 

various factors, including tumor sidedness, genetic and lifestyle factors, invasiveness, grade, 461 

sex, and other confounders and modifiers including deficiencies in mismatch repair was the 462 

case with this patient which can reflect a T-cell exhausted phenotype. Addressing these 463 

complexities will be essential in advancing our understanding and treatment of CRC. 464 

 465 

Furthermore, tissue sections were separated by 5 microns, which assumes smooth tissue 466 

changes and may lead to potential imprecisions in co-registration, thereby impacting the 467 

findings. Profiling device noise also introduces additional challenges with regards to precision. 468 

Tissue was analyzed with paraffin intact which can lead to random signal attenuation due to 469 

build-up of paraffin within the LA-ICPTOF-MS capture tube if the capture tube is too small. We 470 

did not deparaffinize because it has the potential to shift elemental distribution and reduce 471 

abundance. There are also biological buffers employed at various parts of tissue preparation 472 

that could influence findings– we were careful to remove elements that could have been 473 

influenced by preparation or overly represent individual variation. In the future, increasing the 474 

size of the capture tube should significantly reduce impact of paraffin at the cost of resolution 475 

(i.e., from 1-micron to 5-10 micron resolution). In our integrative analyses, metal abundance was 476 

aggregated at a 50-micron resolution, which we felt was reasonable. Single-cell analysis was 477 

not possible at this time due to the 5-micron separation between EI and ST sections and the 478 

laser-destructive nature of this process– future work in this area may enhance the resolution of 479 

these findings and better appreciate tissue changes between adjacent sections 78. It should also 480 

be noted that due to the ionization of particles, LA-ICPTOF-MS was not developed to 481 

characterize valence states. However, further understanding of speciation components that 482 
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catalyze biomolecular interactions may be accomplished by pairing this technique with others, 483 

such as X-ray absorption near-edge structure (XANES) 79,80. Analyzing smaller tissue regions at 484 

higher resolution may help deduce specific species, though performing these analyses at scale 485 

remains challenging. 486 

 487 

This approach serves as a proof-of-concept workflow, demonstrating how the spatial integration 488 

of metals and gene analysis can soon be used to effectively capture the biological processes 489 

governing tumor metastasis, recurrence, and survival. This study paves the way for 490 

comprehensive exploration of spatial elemental data and gene expression in colorectal cancer 491 

and other tumor types, offering opportunities to advance therapeutic development, understand 492 

the biological and prognostic significance of elemental shifts, and investigate the impact of 493 

dietary intake on metal redistribution in early onset and progression of CRC. 494 

 495 

Methods: 496 

Cohort Curation and Data Collection: 497 

In our study, we focused on a specific patient, selected randomly from a cohort of 45 specimens 498 

recently profiled using Visium Spatial Transcriptomics (ST). The selected patient, a 55-60 year-499 

old female, had a left colon microsatellite stable (MSS) tumor (intact MLH1, MSH2, MSH6, and 500 

PMS2 expression assessed through immunohistochemistry) that metastasized to the liver. The 501 

tissue sections were processed using the Sakura Tissue-Tek Prisma Stainer for hematoxylin 502 

and eosin staining. For ST profiling, 5 μm tissue segments were sectioned and dissected from 503 

formalin fixed paraffin embedded tissue blocks, placed within a 11mm by 11mm capture region. 504 

A separate unstained 10 μm serial section was cut for elemental imaging. Finally, a subsequent 505 

5 μm section was left intact without macrodissection and was stained with H&E. The slides were 506 

scanned at 40X magnification (approximately 0.25 micron per pixel) using the Aperio-GT450 507 
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scanner (Leica, Wetzlar, Germany). The resulting hematoxylin and eosin-stained images were 508 

stored in SVS format with eight-bit color channels. 509 

 510 

Elemental Imaging:  511 

For the elemental profiling of the colorectal cancer tissue section, we used Laser Ablation 512 

Inductively Coupled Plasma Time-of-Flight Mass Spectrometry (LA-ICPTOF-MS) 81. This 513 

method represents a significant advancement in spatially resolved elemental imaging, offering 514 

both enhanced resolution and analytical speed. In this process, a pulsed laser is used to ablate 515 

minute portions of the tissue sample. The ablated material, now in particulate form, is then 516 

carried via a helium gas stream into the mass spectrometer. The key feature of LA-ICPTOF-MS 517 

is its use of Time-of-Flight (TOF) technology, enabling rapid and comprehensive elemental 518 

detection across the entire periodic table. Operating at high frequencies (500-1000 Hz), the LA-519 

ICPTOF-MS system at the Biomedical National Elemental Imaging Resource (BNEIR) allows for 520 

detailed mapping of elemental distribution with ultra-high resolution, down to 1 µm. This 521 

capability is crucial for accurately capturing the complex elemental landscape within the tissue, 522 

providing insights into the spatial relationships and concentrations of various elements. By 523 

utilizing LA-ICPTOF-MS, we were able to conduct an untargeted yet thorough profiling of the 524 

tissue section, yielding detailed data on its elemental composition. 525 

 526 

Spatial Transcriptomic Profiling and Spot-Level Cell-Type Deconvolution:  527 

We utilized the 10X Genomics Visium CytAssist spatial transcriptomics (ST) assay for in-depth 528 

profiling of a tissue section 82. The preparation of FFPE tissue sections involved several steps: 529 

firstly, placing the sections on standard histology slides, coverslipping in glycerol + xylene 530 

medium, followed by deparaffinization, rehydration, and H&E staining using a Sakura Tissue-531 

Tek Prisma Stainer (Sakura Finetek USA, Inc. 1750 West 214th Street, Torrance, CA 90501). 532 

Subsequently, whole slide images were captured at 40x resolution on Aperio GT450 scanners 533 
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(see Cohort Curation and Data Collection). The slides were then decoverslipped in xylene over 534 

1-3 days to detach the coverslips. The subsequent steps, including destaining, probe 535 

hybridization, ligation, eosin staining, transfer to Visium slides via CytAssist, and library 536 

preparation, adhered to the manufacturer's protocol (CG000485). After initial preparation, the 537 

tissue underwent eosin staining and imaging, aligning with the original high-resolution pathology 538 

slides. Tissue permeabilization followed to release mRNA molecules, which bound to target 539 

probes on the slide via their poly(A) tails. The binding process was succeeded by ligation, 540 

extension, and amplification of these probes. Sequencing was performed using an Illumina 541 

sequencer (NovaSeq 6000), enabling high-resolution gene expression mapping. The 542 

Spaceranger software was employed for precise alignment of the CytAssist sections with the 543 

corresponding 40X H&E stains, ensuring accurate co-registration and quality control. 544 

Pathologists annotated the tumor’s interior, periphery/interface, and surrounding architectures 545 

using the QuPath tool, permitting delineation of transcriptomic profiles in various tissue regions. 546 

Label propagation was used to refine unassigned annotations. To further characterize the tissue 547 

architecture, Visium data underwent dimensionality reduction via UMAP projection, which 548 

served as a precursor to graph-based Leiden clustering 83,84. Subsequent refinement of cluster 549 

assignments was conducted through label propagation based on the spatial coordinates, 550 

specifically targeting areas with high entropy to enhance spatial consistency of the cluster 551 

labels. Finally, the delineated clusters were superimposed onto the whole slide images, with 552 

labels assigned in accordance with the tissue architecture as judged by a pathologist. 553 

 554 

To understand the cellular composition within the CRC tissue, we combined spatial 555 

transcriptomics with single-cell RNA-Seq data collected from a serial section. We utilized the 556 

Chromium Flex assay for single-cell profiling of disaggregated FFPE tissue sections from 557 

specific capture areas, employing the same transcriptomic probe set as the Visium assay. This 558 

approach revealed diverse cell types within the tissue, following the manufacturer's 559 
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Demonstrated Protocol (CG000606). The generated data, processed using CellRanger v7.1.0, 560 

provided quality control metrics and cells-by-genes expression matrices for downstream 561 

analysis. For label transfer, cell types from a public single-cell RNA sequencing (scRNA-seq) 562 

dataset 85, specifically categorized cells from the Colon, were used. Cell types were grouped 563 

into broader categories. Dendritic Cells encompassed cDC1, cDC2, Lymphoid DC, and pDC 564 

cells. Epithelial Cells, which in this context are representative of tumor cells, also leveraged 565 

signatures defining Goblet cells, Colonocytes, and Enterocytes, and so forth. Endothelial Cells 566 

were grouped to cover a range of arterial, venous, and lymphatic subtypes. Macrophages were 567 

categorized based on LYVE1+ and MMP9+ subtypes, while Mast Cells included both Mast cells 568 

and CLC+ Mast cells. Mesenchymal Cells, representing the tumor and normal fibrous stroma, 569 

included stromal cells, myofibroblasts, and pericytes. T Cells aggregated across CD4, CD8, and 570 

NK lineages. Plasma Cells included IgA and IgG subtypes. Additionally, Neuronal Cells, 571 

Monocytes, Neutrophils, Megakaryocytes, B Cell Precursors (including Immature B, Pro-B, Pre-572 

B, and CLP cells), B Memory Cells, Proliferating B Cells and B Naive Cells, and Red Blood 573 

Cells were each treated as distinct categories. These cell type labels were transferred to our in-574 

house CRC scRNA-seq dataset collected from a serial tissue section using SCVI (Single-Cell 575 

Variational Inference) framework 86,87, which leverages a denoising variational autoencoder 576 

(VAE) trained to infer cell types. We employed the Cell2Location package for spot-level 577 

deconvolution, using the scRNA-seq data as a reference to estimate cell-type 578 

proportions/abundances in each spot 88. This regression-based approach enabled us to spatially 579 

map the distribution of cell types within the CRC tissue section, yielding aggregate spot wise 580 

cellular abundances.  581 

 582 

Quality Control and Co-Registration via TRACE: 583 

Recently, our team developed TRACE, a software tool under the Biomedical National Elemental 584 

Imaging Resource, specifically designed to co-register highly multiplexed elemental assays with 585 
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tissue slides 41,46,47. TRACE enables comprehensive spatial multimodal tissue analysis by 586 

integrating spatial elemental and transcriptomic data. In this colorectal cancer study, TRACE 587 

was instrumental in co-registering multi-channel elemental images with whole slide images 588 

(WSI). Initially, TRACE’s preprocessing workflow aggregated elemental abundance across 589 

channels and user defined thresholding through interactive segmentation of background regions 590 

to accurately detect tissue in the elemental maps. Refinement of tissue detection involved 591 

Gaussian filtering for reduction of outliers, which can impact tissue detection, and morphological 592 

operations (binary opening/closing) to further refined these images, focusing on removing noise 593 

and defining contiguous regions for analysis (Figure S7A).  594 

 595 

A key challenge in preprocessing was addressing directional stripe artifacts in elemental 596 

imaging. To tackle this, we employed anisotropic diffusion filtering to reveal sharp edge patterns 597 

in the tissue followed by the probabilistic Hough transform which is a line fitting and detection for 598 

isolating detected strips 89,90. Line detection was followed by morphological transformations to 599 

remove the artifacts (Figure S7B-F). This meticulous process ensured elemental maps were 600 

free of distortions that could impact the analysis. We also encountered metal washout at tissue 601 

edges, particularly for elements like iron, and implemented a targeted erosion technique to 602 

address this issue. This strategy selectively eroded the edges of the tissue mask, effectively 603 

minimizing edge-related distortions and ensuring a more accurate representation of elemental 604 

distribution within the core tissue areas (Figure S7G).  605 

 606 

For co-registration, a landmark-based approach with Homography matrix transformation aligned 607 

the elemental maps with the ST-associated WSI. Selecting 30 manual fiducials that marked 608 

structural similarities between the elemental maps and WSI enabled us to precisely overlay the 609 

elemental map onto the WSI. Recall that ST, single cell data and pathologist annotations had 610 

been mapped to these same H&E WSI, providing a common reference frame for integration with 611 
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the elemental maps. TRACE exports a SpatialData file containing elemental abundance and 612 

tissue region annotations supplied and integrated using QuPath 91,92. Using the Nearest 613 

Neighbors algorithm (capturing adjacent pixels within radius of Visium spot), we assigned pixel 614 

coordinates from the elemental maps to the nearest Visium spots. Elemental pixel values were 615 

aggregated within spot, combining elemental and transcriptomic data onto a unified frame using 616 

SpatialData (interoperable with Anndata and Muon) data formats for in-depth analysis 93.  617 

 618 

Hotspot Analysis: 619 

We represented the spatial distribution of elemental metal concentrations within tissue sections 620 

by identifying areas of concentrated metal abundance. This was achieved by calculating 621 

hotspots using the Getis-Ord Gi* statistic 48, implemented through the pySAL package 94. The 622 

Getis-Ord Gi* statistic, a spatial statistic, evaluates the metal concentration in each pixel or spot 623 

in relation to its neighbors (taken to be spots within approximately 80 micron), producing spot-624 

level z-scores and p-values. These scores helped us discern statistically significant areas where 625 

metal concentrations were either unusually high (hot spots) or low (cold spots) compared to the 626 

expected local average. Our approach involved permutation testing and normality assumptions 627 

to ensure the robustness of identified hotspots. Throughout the remainder of the manuscript, we 628 

used Gi* z-scores to represent elemental hotspotting, serving as the primary variable to reflect 629 

elemental abundance. 630 

 631 

Association of Hotspots with Tissue Histology and Cell-Type Abundances: 632 

Linear regression models were used to associate the hotspot Gi* z-scores representing 633 

elemental abundance (dependent variable) with specific tissue architectures (four regions– 634 

cancer, serosa, interface, muscularis) represented as categorical fixed effects.  Post-hoc 635 

pairwise comparisons between tissue architectures (e.g., tumor vs. interface) were conducted 636 

using estimated marginal means (R v4.1, emmeans package), which calculated mean Gi* 637 
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statistics (hotspot concentrations) for each tissue type/architecture 95. The mean statistics and 638 

their relative differences estimated through the linear modeling were hierarchically clustered to 639 

reveal similarities between elements in their distribution. Similarly, spatially-integrated cell-type 640 

proportions were associated with varying metal concentrations represented using Gi* statistics 641 

using spearman correlations. The spearman correlation matrix between metals and cell-types 642 

were hierarchically clustered to reveal metals with similar cell-type associations. Differences 643 

were visualized with boxplots, dotplots and clustered heatmaps with dendrograms.  644 

 645 

Differential Expression and Pathway Analysis: 646 

Spearman correlations were employed to compare spatial gene expression with elemental 647 

abundance, linking Gi* z-scores representing transformed elemental abundance as our 648 

elemental features with spatial transcriptomics across the entire transcriptome for each metal. 649 

Results were visualized using volcano plots 96. After Bonferroni adjustment to account for 650 

multiple comparisons (alpha significance level of 0.05/18074 for 18074 genes tested), we 651 

selected the 150 top differentially expressed genes for each element, ranked by their adjusted 652 

p-values (all 150 genes surpassed the Bonferroni adjustment for all metals). Separate sets of 653 

150 genes were selected based on whether correlations were positive, negative or based on the 654 

magnitude of the correlation. For each metal, pathway analyses using the Enrichr package were 655 

conducted across various pathway databases (including MsigDB Cancer Hallmarks 2020, 656 

Reactome 2022) for genes associated with positive and negative elemental concentration 657 

changes, and separately for genes regardless of whether their test statistics were positive or 658 

negative 97. Using PathVisio, metal gene correlations for Cu and Fe were also visualized atop 659 

genes involved in Copper Homeostasis and Epithelial-to-Mesenchymal related pathways, 660 

downloaded from WikiPathways 49–54. 661 

 662 
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Integrating Spatial Multimodal Analysis to Profile Elemental, Genetic, and Cellular Co-663 

Localization and Their Interactions  664 

MEFISTO is a computational approach for analyzing multi-modal spatial biological data, 665 

unraveling latent factors that capture spatial variations linked to genes, metals, and cell types 65. 666 

It leverages tensor factorization alongside spatial and hierarchical Gaussian Processes to 667 

handle spatial autocorrelation, uncovering profiles that include gene expressions, elemental 668 

concentrations, and cell-type distributions. To refine the model, we limited factors to at most 20 669 

factors, employed spike-and-slab priors for sparsity, and set Gaussian likelihoods for each data 670 

type with pseudo-log transformation for elemental abundances and cell type abundances, and 671 

Gi* z-scores for EI. For efficient training, we used a fast convergence mode leveraging sparse 672 

Gaussian processes, discarded low-impact factors, and harnessed GPU acceleration. Post-673 

training, we examined the factors associated with specific tissue architectures using linear 674 

modeling on the spot-level factor loadings, similar to the above, and conducted a pathway 675 

analysis (Enrichr; MsigDB Cancer Hallmarks 2020, Reactome 2022) based on factor associated 676 

genes with an FDR adjusted p-value less than 0.05.  677 

 678 

Unlike MEFISTO, which focuses on unraveling latent factors in multi-modal data, MISTy 679 

analyzes the spatial interactions among different features like genes, elements, and cell types. 680 

MISTy employs a multivariable model to determine how features including pathway activities, 681 

genes, and cell types relate to elemental abundance, using a spatially weighted approach 69. 682 

Specifically, it assesses the predictiveness of these factors on elemental abundance, employing 683 

a squared exponential decay kernel to account for spatial proximity. Pathway activity was 684 

estimated using the Progeny database through the Decoupler package 98,99. Spatially-informed 685 

random forest models were fit to predict elemental abundance from the spatial transcriptomic 686 

data types. The ability of the ST datatypes to explain elemental variation throughout the slide 687 

was estimated through the calculation of an element-specific R² gain score. MISTy broke this 688 
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score down by each of the ST datatypes (scRNASeq/cell proportions, ST, pathway activity), 689 

representing their relative contributions. Contributions from other elements were included in the 690 

model (other than the one being estimated)– a new R² gain score was estimated which 691 

demonstrated the relative contributions of ST data versus the mixture/associations with other 692 

elements. Predictive elements, genes, pathways and cell-types were provided using feature 693 

importance scores via the impurity-based Gini index. 694 

 695 

Post-Hoc Exclusion of Elements and Isotopes 696 

All detectable elements underwent spatial multimodal analysis. However, certain elements and 697 

select isotopes were removed post-hoc to ensure the reliability and biological relevance of the 698 

findings. Specifically, elements such as Na, Cd, Cr, V, As, Mo, Gd, Ru, Pt, Al, Ag, Se, Pb, Ba, 699 

Ni, Sb, Co, and Tl were excluded, despite their detection across the slide. These elements were 700 

removed to account for potential influences from tissue preparation processes, biological 701 

buffers, or individual variation, which could disproportionately impact their representation. 702 

Additionally, some of these elements, while detected, were not previously hypothesized to exist 703 

at significant levels in the colon. Although their presence here is informative and warrants future 704 

exploration, we chose to exclude them to avoid overstating conclusions or misinterpreting 705 

findings in the current study. This selective approach ensures the remaining set of elements 706 

aligns with the study’s focus on tumor-related elemental interactions and provides a foundation 707 

for more targeted analyses in future work. 708 

  709 
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Supplementary Materials 934 
 935 
Supplementary Figures 936 
 937 

 938 
Figure S1: Additional Metals-Based Pathway Findings Based on Spatial Transcriptomics 939 
Correlation with Fe and Mn Distribution: A) Fe and Mn Gi* hotspot statistics, B) Visualization 940 
of spatial distribution of Fe-related (FN1, LOX, VCAN) and Mn-related (CCL5, CXCL9, IRF8) 941 
gene expression demonstrating association with respective elements, C) Visualization of 942 
Extracellular Matrix Organization and Allograft Rejection (reflects anti-cancer immune response) 943 
through aggregating gene expression across pathway compared to a background distribution, 944 
again found to be associated with respective elements, D) Volcano plot mapping spearman 945 
correlation between 18074 genes and Gi* statistics for respective metals on x-axis and -log10(p-946 
values) on y-axis– p-value and correlation cutoffs were set at 0.05/18074; E) Pathways 947 
associated with respective elements (Reactome pathways) 948 
 949 
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 950 
Figure S2: Visualization of Cu Differential Expression Results Overlaid on Cu 951 
Homeostasis Pathway Diagram: Color of each gene reflects positive (red) and negative (blue) 952 
correlations with Cu distribution; correlations with magnitude exceeding 0.3 are denoted using 953 
dark red/blue 954 
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 955 
Figure S3: Visualization of Fe Differential Expression Results Overlaid on Epithelial-to-956 
Mesenchymal Pathway Diagram: Color of each gene reflects positive (red) and negative 957 
(blue) correlations with Cu distribution; correlations with magnitude exceeding 0.3 are denoted 958 
using dark red/blue 959 
 960 
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 961 
Figure S4: Further Factor Analysis Associations, broken down by: A) Tissue architecture 962 
(average loading), B) Gene expression (factor coefficients), C) cell type (factor coefficients), D) 963 
element (factor coefficients) 964 
 965 

 966 
Figure S5: Association of Spatial Factors with Biological Pathways from Reactome (Dark 967 
Red) and MsigDB Cancer Hallmarks (Salmon) 968 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.09.24318747doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.09.24318747


 969 
Figure S6: Elemental Distribution and Variance Explained via MISTy: A) Ability to predict 970 
various elements by ST data types alone via R², B) Breakdown of R² by data type, C) 971 
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Breakdown of R² by data type when including other elements, D-F) Spatially informative 972 
features, specific to each element, broken down by D) Pathway, E) Cell type, F) Gene 973 
 974 

 975 
Figure S7: Preprocessing Workflow: A) Elemental maps are co-registered to ST-associated 976 
H&E WSI via TRACE, B) Vertical strip artifacts in Fe are C) confounding hotspot analysis and 977 
they are removed through D) anisotropic diffusion filtering, followed by E) hough transform for 978 
line detection. F) Elemental image after removing strip artifact. G) Removal of edge 979 
bleeding/washout artifact through binary erosion, aggregation of elemental abundance to ST 980 
spot level, and derivation of Gi* hotspot statistics 981 
 982 
Supplementary Tables 983 
 984 
Table S1: Association of elemental abundance with architecture (one versus rest), includes 985 
average G* spot-level statistics by architecture and marginal mean calculated through 986 
regression modeling along with statistical significance (see TableS1.xlsx) 987 
 988 
Table S2: Association of elemental abundance with pairwise relative differences between 989 
architectures, includes marginal mean comparisons calculated through regression modeling 990 
along with statistical significance (see TableS2.xlsx) 991 
 992 
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Table S3: Association of elemental abundance with cell-type, includes spearman correlations 993 
and p-values (see TableS3.xlsx) 994 
 995 
Table S4: Differential expression analysis results, includes spearman correlation, p-values and 996 
Bonferroni-adjusted p-values by Element (see TableS4.xlsx) 997 
 998 
Table S5: Pathway analysis findings (Reactome, Hallmarks)  for top 150 genes tied to higher 999 
elemental abundance, ranked by z-statistic (see TableS5.xlsx) 1000 
 1001 
Table S6: Pathway analysis findings (Reactome, Hallmarks) for top 150 genes tied to lower 1002 
elemental abundance, ranked by z-statistic (see TableS6.xlsx) 1003 
 1004 
Table S7: Pathway analysis findings (Reactome, Hallmarks) for top 150 genes tied to higher 1005 
and lower elemental abundance, ranked by magnitude of z-statistic (see TableS7.xlsx) 1006 
 1007 
Table S8: Composition of spatial factors, MEFISTO factor analysis weights by top 10 genes, 1008 
cell-types and elements (see TableS8.xlsx) 1009 
 1010 
Table S9: Association of spatial factors with architecture (one versus rest), includes averaged 1011 
factor loadings by architecture and marginal mean calculated through regression modeling 1012 
along with statistical significance (see TableS9.xlsx) 1013 
 1014 
Table S10: Association of spatial factors with pairwise relative differences between 1015 
architectures, includes marginal mean comparisons calculated through regression modeling 1016 
along with statistical significance (see TableS10.xlsx) 1017 
 1018 
Table S11: MISTy performance statistics and feature importances, includes metal abundance 1019 
prediction performance broken down by data type (cell type information, spatial transcriptomics, 1020 
pathways, metals/intra-view) with and without inclusion of other metals in model and Gini-index 1021 
of features by data type (see TableS11.xlsx) 1022 
 1023 
 1024 
 1025 
 1026 
 1027 
 1028 
 1029 
 1030 
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