MedTech innovation identification: A rapid scoping review of patent research studies to inform horizon scanning methods ======================================================================================================================= * Sonia Garcia Gonzalez-Moral * Erin Pennock * Olushola Ewedairo * Elizabeth Green * James Elgey * Andrew Mkwashi ## Abstract **Objectives** This study investigates the role of and methods for patent analysis in advancing medical technology (MedTech) innovation, a sector characterized by diverse, non-pharmacological or non-immunological healthcare technologies and significant research investment. Patents are critical early indicators of innovation, supporting horizon scanning and weak signal detection. The study aimed to identify intellectual property sources, evaluate methods for patent retrieval and analysis, and outline objectives for using patent data to anticipate trends and inform healthcare strategies. It also offered a methodological framework to support stakeholders in adopting innovative MedTech solutions. **Methods** A rapid review (RR) was conducted using Cochrane Rapid Review Methods and PRISMA guidelines, with a pre-registered protocol on the Open Science Framework. Searches in Embase, IEEE Xplore, and Web of Science targeted records from 2020 onwards. Three independent reviewers screened studies using Rayyan. We included any study type, published since 2020 that provided sufficient data on patent sources, methods and tools applied to the study of MedTech. Our data extraction included bibliographic details, study characteristics, and methodological information. Risk of bias assessments were not undertaken. Narrative and tabular methods, supplemented by visual charts, were employed to synthesise findings. **Results** Our searches identified 1,741 studies, of which 124 were included after title, abstract, and full-text screening, with 54% being original research, 44% reviews, and the remainder being conference abstracts. Most studies (68%) relied solely on patent databases, while others searched the grey literature. Research objectives of the included studies were grouped into nine themes, with trend analysis (50%) and policy recommendations (20%) being the most common. The review analysed 199 patent databases, with 27% of studies using multiple sources. Time horizons for patent searches averaged 24.6 years, ranging from 1900 to 2019. Automated approaches, employed in 33% of studies, frequently utilised tools like Gephi for network visualization. Disease mapping, based on NICE classification, indicated that cancer (19%) and respiratory conditions (16%), particularly COVID-19, were key areas, while digital health dominated the "health and social care delivery" category. **Conclusions** The review highlights the value of patent data in trend analysis and its broader role in shaping policies and research strategies. While patents provide crucial insights into emerging technologies, inconsistent de-duplication practices across studies pose a risk of data inflation, accentuating the need for transparency and rigour. Finally, this review emphasized the importance of data transformation and visualization in detecting emerging trends with Python and R being the most commonly used programming languages for developing custom tools. ## Introduction Medical devices and invitro diagnostics, henceforth MedTech, are a heterogeneous group of healthcare technologies that are mainly characterised by the fact that they do not achieve their primary intended action by pharmacological, immunological or metabolic means.[1] Several definitions exist, with the UK Medical Device Regulation (2002)[2] and the International Medical Device Regulators Forum[1] definitions coinciding in many of the aspects that characterise a medical device. Medical technology is defined by continuous innovation, with an estimated 8% of overall investment in the sector directed towards research and development. Circa 16,000 patent applications were filed in the European Patent Office (EPO) in 2023 in the field of medical technology.[3] A thorough understanding of the MedTech innovation pathway from ideation to market is imperative for strategic decision-making in healthcare, the formulation of health policy, and the allocation of research and development funds. It can also play a vital role in anticipating regulatory challenges associated with emerging technologies, such as those triggered by the integration of software and artificial intelligence (AI) in MedTech. Additionally, this knowledge facilitates early awareness for MedTech guidance and guideline documents developers, health service providers, and other stakeholders involved in the advancement and implementation of innovative healthcare solutions. According to the World Intellectual property Office (WIPO) “a patent is an exclusive right granted for an invention”.[4] From the moment a patent is granted, a full disclosure of the invention to a patent office would have occurred and this information would have been made available to the public.[4] In the MedTech context, this includes medical devices and diagnostics, where clinical trials are required for some but not all. Often inventors will apply for patents before clinical trials are initiated to protect the intellectual property of the innovative technology in the trial. However, in the case of low-risk medical devices, where clinical trials are not always conducted, patents may be one of the few indications of a new innovative product before it is introduced to the market. Therefore, patents may be considered as one of the first signs of innovation and are often searched in horizon scanning studies alone or in combination with other sources of weak signal detection.[5] Examining patent data offers many advantages such as understanding a particular technology’s evolution, allowing us to assess an invention and anticipate future trends.[6] Patents also serve as useful indicators for gauging a firm’s level of innovation and can act as a proxy for identifying connections between innovators.[7][8] Detecting signs of innovation ahead of being available on the market is one of the main objectives of the Innovation Observatory, a national horizon scanning and research intelligence body funded by the National Institute for Health and Care Research and hosted by Newcastle University in the UK. This study has three primary aims: identifying sources of intellectual property, such as patent databases; exploring the various methods used for patent retrieval and analysis; and determining the key objectives for employing patent analyses in the context of MedTech innovation. The findings are intended to offer a methodological foundation for utilizing patent analysis in horizon scanning, particularly for technologies in their early stages of development. ## Methods A rapid review (RR) to scope the published literature on methods for patent landscape analysis was undertaken in line with the recommendations published by the Cochrane Rapid Review Methods working group.[9] We followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) extension for scoping reviews (ScRs) for the reporting of items relevant to this rapid review due to the lack of PRISMA reporting standards for RRs. This review did not quality appraise the included studies as it was considered out of scope for the objectives of this project. A pre-agreed protocol outlining the methods and objectives of this review was registered in Open Science Framework in June 2024[10] and is available for consultation here: [https://doi.org/10.31219/osf.io/jpruk](https://doi.org/10.31219/osf.io/jpruk) ## Inclusion criteria We followed the Cochrane guide for outlining the inclusion criteria of this methods RR. These followed the study type, data, methods and outcomes (SDMO) framework.[11] Studies eligible for inclusion needed to meet the following criteria: (1) any type of study or conference abstract that reported sufficient information on methods and sources in English language; (2) data related to the health technology were sufficiently reported; (3) methods and tools used for the analysis were mentioned and (4) heterogenous outcomes were considered for inclusion although not considered mandatory for the inclusion of studies in this review in line with the recommendation from Higgins et al.[11] ## Search strategy Our search strategy consisted of subject heading terms in combination with text words. A targeted search strategy was devised and run in Embase (Ovid) by an experienced information specialist and checked against the PRESS checklist.[12] This search was then translated and run in two more databases selected for their comprehensive coverage of technological and scientific topics: IEEE Xplore digital library and Web of Science. We searched in the title, abstract and keyword fields. Time limits were imposed to retrieve records published since 2020 to capture the most current tools and sources. No language limit or any other limits were used. Records were downloaded into Endnote 20 (Clarivate Analytics) for de-duplication. Full search strategies with results are porovided in Appendix A. ## Data collection De-duplicated results were screened at the title and abstract levels by three independent reviewers separately using Rayyan, a screening software for systematic reviews.[13] Rayyan has an in-built tool for prioritisation of relevant records based on reviewers ranking, this tool was not used in this instance due to the relatively small number of de-duplicated records and the reviewer capacity available for this project. Consultation between reviewers was practiced at this stage in multiple occasions, in case of doubt due to ambiguity of titles or lack of clear reporting in abstracts, records were included for full-text screening. In this stage the same reviewers proceeded independently to screen the full texts for inclusion. One-to-one consultation was exercised regularly throughout this process and disagreements were resolved by checking with a fourth reviewer. ## Data extraction A data extraction form was devised in line with the agreed objectives of this review as reported in the protocol.[10] Data was extracted by three independent reviewers and quality assessed by one for cleaning and standardising data ahead of analysis and synthesis. We extracted bibliographic details, study-related characteristics such as the type of technologies, health condition and objectives of the study, methods-related data including the sources searched, the geographical coverage of the sources, the time period searched and the use, if any, of automated methods and tools. ## Data synthesis We used narrative and tabulated methods for summarising and synthesizing data collected during our data extraction stage. As a result of using narrative methods, we were able to explore the data in more depth by providing context and uncovering underlying themes. By weaving together qualitative insights, narrative methods offered a more comprehensive understanding of our research findings. Whenever possible, charts have been used to visually present information relevant to the objectives of this study. ## Results Our searches identified a total of 1,741 records. After de-duplication, 1,505 remained. We sought the full text of 261 records of which only 124 were considered for inclusion in this review. Figure 1 presents a PRISMA flowchart with the retrieval and selection process for this review. ![Figure 1:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/12/10/2024.12.09.24318714/F1.medium.gif) [Figure 1:](http://medrxiv.org/content/early/2024/12/10/2024.12.09.24318714/F1) Figure 1: PRISMA flowchart for study selection ![Figure 2:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/12/10/2024.12.09.24318714/F2.medium.gif) [Figure 2:](http://medrxiv.org/content/early/2024/12/10/2024.12.09.24318714/F2) Figure 2: Reasons for conducting a patent research study by themes ## Study characteristics From the 124 studies included, 67 (54%) were original research papers, 55 (44%) corresponded to reviews, 2 were conference papers and 1 short presentation. The majority of sources considered patent databases only (85, 68%) with the rest of included studies using a combination of different sources. These studies were published in 94 different journals. Nature Biotechnology was the most frequent journal in our dataset (n=8 studies). In 2020, there were 21 papers published, followed by a rise to 33 publications in 2021. The number of papers remained high but plateaued with 31 publications in both 2022 and 2023. By 2024, 8 papers had been published at the time of the review (July 2024). A table outlining the characteristics of the included studies is presented in Appendix B. ## Research objectives of included studies The objectives of each paper were summarised and grouped into nine broad themes. The most common reason reported for the study of patents (62 studies, 50%) was to investigate trends within specific fields, followed by those aiming to provide recommendations for future research, policy, and strategy development (25 studies, 20%). Two other frequent objectives were: the study of specific patented technologies (13 studies, 10%) and the identification of emerging technologies (13 studies, 10%). Less frequent objectives included: the development of methodological frameworks for patent analysis (4 studies), analysis of global patent trends (3 studies), cross-sectoral applications of emerging technologies (1 study) and summary of recent research in specific fields (2 study). ## Sources of patent data Eighty-five studies used patents alone, whereas 39 studies used various sources which included grey literature, research papers and clinical trials. Two studies did not report which patent database had been used. Over 27% of papers described the use of more than one patent database, as such across the 124 papers, there were 199 databases listed. Figure 3 presents the distribution of the top ten named databases across all papers. ![Figure 3:](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/12/10/2024.12.09.24318714/F3.medium.gif) [Figure 3:](http://medrxiv.org/content/early/2024/12/10/2024.12.09.24318714/F3) Figure 3: Top ten patent databases used in the included studies USPTO: United States Patent and Trademark Office; WIPO: World Intellectual Property Office; EPO: European Patent Office ![Figure 4.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/12/10/2024.12.09.24318714/F4.medium.gif) [Figure 4.](http://medrxiv.org/content/early/2024/12/10/2024.12.09.24318714/F4) Figure 4. Reported tools used for automated or semi-automated approaches in this study. ![Figure 5.](http://medrxiv.org/https://www.medrxiv.org/content/medrxiv/early/2024/12/10/2024.12.09.24318714/F5.medium.gif) [Figure 5.](http://medrxiv.org/content/early/2024/12/10/2024.12.09.24318714/F5) Figure 5. Specific mentions of NICE disease (purple) and other (green) guidance topics as a percentage of 178 total NICE guidance topics referenced in the results of 94 papers that reported specific NICE topics in their results. ## Time Horizons of Patent Scans Of the 124 included papers 46 (37%) papers did not report the time period searched during patent analysis or gave incomplete timelines with only an end date leaving 78 papers with completed data on time horizons. The mean length of time horizon for patent searches was 24.6 years. Only 4 papers searched a time period of over 50 years with the broadest time period searched being from 1900 to 2019.[127] Around 19% of papers with a reported time horizon searched a period of between 3 months and ten years. Up to 15% of papers searched a 20 year period. It was common for authors to backdate searches to start of the year 2000, although rationale was not provided. ## Methods and Automated Approaches Used Of the 124 included papers 41 (32.8%) reported the use of automated or semi-automated approaches during patent analysis. Of these 41 papers, there were 62 explicit mentions of 43 unique tools that were used for patent analysis. Figure 3 presents all tools categorised into whether the tool was available as an in-built analysis module by the patent database searched (IN-BUILT), a custom patent analysis script (CUSTOM) or a commercially offered tool (COMMERCIAL). A full account of each tool used and their frequency across the 41 studies is available in Table 1. View this table: [Table 1.](http://medrxiv.org/content/early/2024/12/10/2024.12.09.24318714/T1) Table 1. Full account of all named tools used for automated or semi-automated approaches for patent analysis from 41 papers which reported their use. These tools were employed mainly in four different methods: data mining (understood as the statistical technique of processing raw data in a structured form), text mining (the part of data mining which involves processing of text from documents),[134] data transformation (the process of converting and cleaning raw data from one data source to meet the requirements of its new location)[135] and network visualisation (understood as the graphical representations of network devices, network metrics, and data flows).[136] Of the 64 methods discussed in this subsection, network visualisation was by far the most popular, used in 50% of the methods described. The most popular tool for network visualisation was the freely available software Gephi, used in 7 separate studies. Table 2 presents a breakdown of these tools classified by their type and the number of studies that used them. ### NICE Disease Classification Mapping We used the National Institute for Health and Care Excellence (NICE) disease classification system[138] to map the 94 studies (75%) that reported specific disease indications or population groups. A total of 178 separate topic references throughout the 94 papers were extracted and mapped against the NICE classification. Despite some second level disease indications (e.g., COVID-19) that can be mapped to multiple NICE first level disease classifications, each mention of disease was only mapped one to avoid inflation of results. Overall, ‘Cancer’ was the most prevalent NICE topic with 19% of the 124 included studies reporting cancer patents as either the primary or secondary finding. Of the 16% of papers that reported ‘Respiratory conditions’, 60% of these were specific to ‘COVID-19’ or other coronaviruses. ‘Health and social care delivery’ was the most popular NICE topic discussed in the included studies with 67% of these pertaining to ‘Digital health’. ## Discussion In the MedTech context, the continuous search for signs of innovation is driving methods and tools development. This rapid scoping review has revealed an array of methodological approaches, tools and reasons why patents are being used to discover these signals. We used rapid review methods for the identification of these studies which usually involve a trade-off between sensitivity and specificity of the searches to allow processing search results in a rapid context. However, our high level of included studies indicates that precision of patent-related keywords may have positively contributed to increase the sensitivity of the search without increasing the recall. Our review identified just under 200 different sources for patent data retrieval and some studies used more than one source. While the majority of the studies used patent databases, other studies extended their searches into clinical trials and published literature. Several studies have superficially provided descriptions of de-duplication processes used to manage the large quantities of patent data obtained when more than one database was used. However, failing to apply thorough de-duplication methods could lead to over estimation of patent data and innovation clusters. If de-duplication is used, this step should be undertaken before patent analyses to eliminate inflated patent data and represent more realistically the strength and size of the weak signals. If de-duplication is not undertaken, the rationale for that should also be transparently reported. As a result of the abundance and easy accessibility of global patent data, patent data is mostly used in trend analysis, aligning with methods used for scanning emerging technologies and predicting innovations. [5,139] However, a less common but notable application is using patent analyses to guide future policy, research, and strategy, similar to the "bottom-up" approach of the European Commission’s Joint Research Centre for detecting weak signals.[140] This approach can also reveal research gaps, aiding in directing future funding and policies to address these gaps. Not surprisingly, cancer, respiratory conditions and infections were the top three topics addressed by the included studies. Considering that this scoping review limited the included studies to only those published between 2020 and 2023 it was expected that COVID or, more broadly, respiratory conditions appeared in our dataset quite prominently. However, the focus on cancer technologies may respond to the growing burden of cancer worldwide and its impact in underserved populations.[141] Likewise the emphasis on infection topics may respond to the antimicrobial resistance crisis that we are currently facing as well as the challenges posed by the growth of communicable diseases worldwide that continue to be the cause of substantial morbidity and mortality.[142] Our review identified a wide range of technologies for which patent analyses were undertaken (Table 1, Appendix B), however we could not establish a methodological link between analyses methods and technology types. This could be due to only including studies published between 2020-2023, a longer time limit would have yielded more historical data that could have allowed some trend analysis on patent studies by technology type. Notwithstanding, our results suggest the broad applicability of patent studies to any type of technology. The analysis showed that tools used for patent data analysis primarily focus on creating graphs and network visualizations, with examples including Gephi,[143] VOSViewer[144], and Themescape Map[145]. Data manipulation tools like Pandas (Python)[146] also played a key role. Since there is no established framework for analyzing patent data to guide horizon scanning methods, the review highlighted that data transformation and visualization are critical for detecting emerging trends. Additionally, Python and R were the most common programming languages used to develop custom tools. ## Conclusions Our findings highlight a broad range of methodological approaches and the importance of patent data in detecting emerging trends. Rapid scoping methods proved effective, supported by precise patent-related keywords that enhanced search sensitivity. The review uncovered nearly 200 different sources for patent data retrieval, with many studies employing multiple sources, although few addressed de-duplication of data—a critical step to prevent data inflation and ensure accurate analyses of innovation clusters. Beyond trend analysis, patent data also informs policy, research, and strategy, in line with the European Commission’s "bottom-up" horizon scanning approach. Our review highlighted a focus on cancer, respiratory conditions, and infections, reflecting global health challenges and recent pandemic impacts. The use of tools for data manipulation and visualization, including Gephi, VOSViewer, and programming languages like Python and R, demonstrated the centrality of robust data transformation and visualisation for horizon scanning. Moving forward, the Innovation Observatory will engage in establishing frameworks for patent data analysis which will feed into a broader framework for underpinning future MedTech innovation identification at patent or early stage. ## Supporting information Appendix B. Table of included studies [[supplements/318714_file02.pdf]](pending:yes) Appendix A. Search strategies [[supplements/318714_file03.pdf]](pending:yes) ## Data Availability All data produced in the present work are contained in the manuscript and supplementary materials. ## Funding statement This study/project is funded by the National Institute for Health and Care Research (NIHR) (NIHRIO/project reference HSRIC-2016-10009). A protocol was pre-registered in OSF in June 2024 and is available here: [https://osf.io/gps3f/](https://osf.io/gps3f/) * Received December 9, 2024. * Revision received December 9, 2024. * Accepted December 10, 2024. * © 2024, Posted by Cold Spring Harbor Laboratory This pre-print is available under a Creative Commons License (Attribution 4.0 International), CC BY 4.0, as described at [http://creativecommons.org/licenses/by/4.0/](http://creativecommons.org/licenses/by/4.0/) ## References 1. 1.International Medical Device Regulators Forum (IMDRF). Essential principles of safety and performance of medical devices and IVD devices. 2018. Available from: [https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-181031-grrp-essential-principles-n47.pdf](https://www.imdrf.org/sites/default/files/docs/imdrf/final/technical/imdrf-tech-181031-grrp-essential-principles-n47.pdf) 2. 2.The Medical Device Regulations 2002. Available from: [https://www.legislation.gov.uk/uksi/2002/618/regulation/2/made](https://www.legislation.gov.uk/uksi/2002/618/regulation/2/made) 3. 3.MedTech Europe. The European Medical Technology in Figures: Innovation. 2024. Available from: [https://www.medtecheurope.org/datahub/innovation/](https://www.medtecheurope.org/datahub/innovation/) 4. 4.World Intellectual Property Office (WIPO). Frequently asked questions: Patents. Available from: [https://www.wipo.int/patents/en/faq_patents.html](https://www.wipo.int/patents/en/faq_patents.html) 5. 5. Garcia Gonzalez-Moral S, Beyer FR, Oyewole AO, Richmond C, Wainwright L, Craig D. Looking at the fringes of MedTech innovation: a mapping review of horizon scanning and foresight methods. BMJ Open 2023 Sep 14;13(9):e073730. doi: 10.1136/bmjopen-2023-073730 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYm1qb3BlbiI7czo1OiJyZXNpZCI7czoxMjoiMTMvOS9lMDczNzMwIjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMTIvMTAvMjAyNC4xMi4wOS4yNDMxODcxNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 6. 6.Linares IMP, De Paulo AF, Porto GS. Patent-based network analysis to understand technological innovation pathways and trends. Technol Soc 2019;59:101134. doi: 10.1016/j.techsoc.2019.04.010 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.techsoc.2019.04.010&link_type=DOI) 7. 7.Fernández-López S, Rodríguez-Gulías MJ, Dios-Vicente A, Rodeiro-Pazos D. Individual and joint effect of patenting and exporting on the university spin-offs’ survival. Technol Soc 2020;62:101326. doi: 10.1016/j.techsoc.2020.101326 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.techsoc.2020.101326&link_type=DOI) 8. 8.Andersson DE, Galaso P, Sáiz P. Patent collaboration networks in Sweden and Spain during the Second Industrial Revolution. Ind Innov Routledge; 2019;26(9):1075–1102. doi: 10.1080/13662716.2019.1577720 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1080/13662716.2019.1577720&link_type=DOI) 9. 9.Garritty C, Hamel C, Trivella M, Gartlehner G, Nussbaumer-Streit B, Devane D, Kamel C, Griebler U, King VJ. Updated recommendations for the Cochrane rapid review methods guidance for rapid reviews of effectiveness. BMJ 2024;384:e076335. doi: 10.1136/bmj-2023-076335 [FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiRlVMTCI7czoxMToiam91cm5hbENvZGUiO3M6MzoiYm1qIjtzOjU6InJlc2lkIjtzOjE5OiIzODQvZmViMDZfMi9lMDc2MzM1IjtzOjQ6ImF0b20iO3M6NTA6Ii9tZWRyeGl2L2Vhcmx5LzIwMjQvMTIvMTAvMjAyNC4xMi4wOS4yNDMxODcxNC5hdG9tIjt9czo4OiJmcmFnbWVudCI7czowOiIiO30=) 10. 10.Gonzalez-Moral SG, Pennock E, Ewedairo O, Mkwashi A. Healthcare technology innovation identification: A rapid scoping review of patent research to inform horizon scanning methods. 2024. doi: 10.31219/osf.io/jpruk [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.31219/osf.io/jpruk&link_type=DOI) 11. 11.Higgins JPT, Green S. Guide to the Contents of a Cochrane Protocol and Review. Cochrane Handbook for Systematic Reviews of Interventions 2008. p. 51–79. doi: 10.1002/9780470712184.ch4 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1002/9780470712184.ch4&link_type=DOI) 12. 12.McGowan J, Sampson M, Salzwedel DM, Cogo E, Foerster V, Lefebvre C. PRESS Peer Review of Electronic Search Strategies: 2015 Guideline Statement. J Clin Epidemiol 2016 Jul;75:40–46. doi: 10.1016/j.jclinepi.2016.01.021 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/j.jclinepi.2016.01.021&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=27005575&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 13. 13.Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev 2016;5:1–10. [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1186/s13643-016-0345-y&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=26729230&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 14. 14. Hachimi Alaoui C, Fatimi A. A 20-year patent review and innovation trends on hydrogel-based coatings used for medical device biofabrication. J Biomater Sci Polym Ed 2023;34(9):1255–1273. PMID:2020881253 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2020881253&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 15. 15.Borzova E, Cardeal G, Soperna S, Zhao J, Lepekhova A. The Patent Landscape Analysis of Skin Bioinks for 3D Bioprinting. Journal of Investigative Dermatology 2022;142(12):S281–S281. PMID:WOS:000897174500575 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00089717&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 16. 16.Tarasova E V, Luchnikova NA, Grishko V V, Ivshina IB. Actinomycetes as Producers of Biologically Active Terpenoids: Current Trends and Patents. Pharmaceuticals 2023;16(6). PMID:WOS:001015873300001 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00101587&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 17. 17.Asif M, Tiwana MI, Khan US, Qureshi WS, Iqbal J, Rashid N, Naseer N. Advancements, Trends and Future Prospects of Lower Limb Prosthesis. IEEE Access 2021;9:85956–85977. PMID:rayyan-16446321 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 18. 18.Cammarano A, Dello Iacono S, Meglio C, Nicolais L. Advances in Transdermal Drug Delivery Systems: A Bibliometric and Patent Analysis. Pharmaceutics 2023;15(12). PMID:WOS:001136143200001 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00113614&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 19. 19.Mitsumori Y, Kato H, Kato A, Kamijo K. An Analysis of COVID-19 Related IPRs : Should they be Promoted, Waived or Pooled? 2022 Portland International Conference on Management of Engineering and Technology (PICMET). 2022. p. 1–11. doi: 10.23919/PICMET53225.2022.9882853 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.23919/PICMET53225.2022.9882853&link_type=DOI) 20. 20.Ge J, Chen L, Nie X, Chen J. Analysis of patent development status of lipid nanoparticle delivery system for mRNA vaccines. Journal of Chinese Pharmaceutical Sciences 2023;32:112–121. PMID:rayyan-16446360 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 21. 21.Danylenko YA, Nepokupna TA. ANALYSIS OF SCINTILLATION MATERIALS FOR NUCLEAR MEDICINE ON THE BASIS OF PATENT ANALYTICS. Science and Innovation 2023;19(5):43–56. PMID:rayyan-16446365 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 22. 22.Oda T, Oda C. An analysis of the key drivers of the Japanese digital therapeutics patents: A cross-sectional study. Health Sci Rep 2023;6(6). PMID:WOS:000998481900001 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00099848&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 23. 23.Wei F, Zhou H, Gao G, Zheng Q. Analysis of trends in patent development for coronavirus detection, prevention, and treatment technologies in key countries. J Biosaf Biosecur 2022;4:23–32. PMID:rayyan-16446378 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 24. 24.Silva MB, Feitosa AO, Lima IGO, Bispo JRS, Santos ACM, Moreira MSA, Camara PEAS, Rosa LH, Oliveira VM, Duarte AWF, Queiroz AC. Antarctic organisms as a source of antimicrobial compounds: a patent review. An Acad Bras Cienc 2022;94:e20210840. PMID:rayyan-16446389 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 25. 25.Wu NJW, Aquilina M, Qian BZ, Loos R, Gonzalez-Garcia I, Santini CC, Dunn KE. The Application of Nanotechnology for Quantification of Circulating Tumour DNA in Liquid Biopsies: A Systematic Review. IEEE Rev Biomed Eng 2023;16:499–513. doi: 10.1109/RBME.2022.3159389 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1109/RBME.2022.3159389&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=35302938&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 26. 26.Ragno L, Borboni A, Vannetti F, Amici C, Cusano N. Application of Social Robots in Healthcare: Review on Characteristics, Requirements, Technical Solutions. Sensors 2023;23(15). PMID:rayyan-16446399 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 27. 27.Borge L, Wustmans M, Bröring S. Assessing Interdisciplinary Research Within an Emerging Technology Network: A Novel Approach Based on Patents in the Field of Bioplastics. IEEE Trans Eng Manag 2024;71:1452–1469. PMID:rayyan-16446421 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 28. 28.Sertkaya A, McGeeney JD, Sullivan C, Kolbe A, Beleche T, Murphy S, Berlind A, Jessup A. Assessing the state of antibacterial drug discovery through patent analysis. Int J Antimicrob Agents 2024;63. PMID:rayyan-16446425 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 29. 29.Canete R, Peralta E. Assistive Technology to Improve Collaboration in Children with ASD: State-of-the-Art and Future Challenges in the Smart Products Sector. Sensors 2022;22(21). PMID:rayyan-16446434 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 30. 30.Liu XX, Chen CY, Li L, Guo MM, He YF, Meng H, Dong YM, Xiao PG, Yi F. Bibliometric Study of Adaptogens in Dermatology: Pharmacophylogeny, Phytochemistry, and Pharmacological Mechanisms. Drug Des Devel Ther 2023;17:341–361. PMID:rayyan-16446453 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 31. 31.Yuan YJ, Fu QH, Zhang YQ, Xu DH, Wu YQ, Qiu QF, Zhou WY. CAR-based cell therapy: evaluation with bibliometrics and patent analysis. Hum Vaccin Immunother 2021;17(11):4374–4382. PMID:WOS:000668007600001 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00066800&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 32. 32.Speziali MG. Cellulose technologies applied to biomedical purposes from the patentometric point of view. Cellulose 2020;27(17):10095–10117. PMID:rayyan-16446483 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 33. 33.Tiwari AK, Jaspal D, Deshmukh S, Mulay P. Cheminformatics: A Patentometric Analysis. French-Ukrainian Journal of Chemistry 2022;10(1):13–29. PMID:rayyan-16446490 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 34. 34.Chuah LH, Loo HL, Goh CF, Fu JY, Ng SF. Chitosan-based drug delivery systems for skin atopic dermatitis: recent advancements and patent trends. Drug Deliv Transl Res 2023;13:1436–1455. PMID:rayyan-16446493 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 35. 35.Altuntas S, Erdogan Z, Dereli T. A clustering-based approach for the evaluation of candidate emerging technologies. Scientometrics 2020;124(2):1157–1177. PMID:WOS:000537676800005 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00053767&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 36. 36.Lee S, Hwang J, Cho ES. Comparing technology convergence of artificial intelligence on the industrial sectors: two-way approaches on network analysis and clustering analysis. Scientometrics 2022;127(1):407–452. PMID:rayyan-16446516 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 37. 37.Fluit R, Prinsen EC, Wang S, Kooij H van der. A Comparison of Control Strategies in Commercial and Research Knee Prostheses. IEEE Trans Biomed Eng 2020;67(1):277–290. doi: 10.1109/TBME.2019.2912466 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1109/TBME.2019.2912466&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=31021749&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 38. 38.Melo RLF, Neto FS, Dari DN, Fernandes BCC, Freire TM, Fechine PBA, Soares JM, dos Santos JCS. A comprehensive review on enzyme-based biosensors: Advanced analysis and emerging applications in nanomaterial-enzyme linkage. Int J Biol Macromol 2024; PMID:rayyan-16446531 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 39. 39.Sanchez-Campos N, Bernaldez-Sarabia J, Licea-Navarro AF. Conotoxin Patenting Trends in Academia and Industry. Mar Drugs 2022 Aug 19;20(8):531. doi: 10.3390/md20080531 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3390/md20080531&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=36005534&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 40. 40.Ailia MJ, Thakur N, Abdul-Ghafar J, Jung CK, Yim K, Chong Y. Current Trend of Artificial Intelligence Patents in Digital Pathology: A Systematic Evaluation of the Patent Landscape. Cancers (Basel) 2022;14. PMID:rayyan-16446572 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 41. 41.Chen Y, Xiong SH, Li F, Kong XJ, Ouyang DF, Zheng Y, Yu H, Hu YJ. Delivery of therapeutic small interfering RNA: The current patent-based landscape. Mol Ther Nucleic Acids 2022;29:150–161. PMID:2019095273 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2019095273&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 42. 42.Bhatnagar P, Law JX, Ng SF. Delivery systems for platelet derived growth factors in wound healing: A review of recent developments and global patent landscape. J Drug Deliv Sci Technol 2022;71(no pagination). PMID:2017528215 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2017528215&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 43. 43.Valadas LAR, Filho RDO, Lotif MAL, Junior FJG, Junior EAA, Bandeira MAM, Squassi A. Development and innovation on dental products in argentina: A technological prospecting based on patents. Recent Pat Biotechnol 2021;15(1):3–11. PMID:2007385715 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2007385715&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 44. 44.Xu CM, Zhu DB. The Development of Marine Drugs: A Research Based on Patent Analysis. J Coast Res 2020;271–276. PMID:rayyan-16446614 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 45. 45.Imran M, Fatima W, Alzahrani AK, Suhail N, Alshammari MK, Alghitran AA, Alshammari FN, Ghoneim MM, Alshehri S, Shakeel F. Development of Therapeutic and Prophylactic Zinc Compositions for Use against COVID-19: A Glimpse of the Trends, Inventions, and Patents. Nutrients 2022;14. PMID:rayyan-16446618 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 46. 46.Chang SH. The development trend and academic patent technology network of laser and optical technologies. International Journal of Innovation Science 2022;14(2):302–315. PMID:WOS:000708411000001 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00070841&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 47. 47.Xin Y, Man W, Yi Z. The development trend of artificial intelligence in medical: A patentometric analysis. Artificial Intelligence in the Life Sciences 2021;1. PMID:rayyan-16446627 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 48. 48.Singh M, Jassal R, Khetarpal P. Diagnostic and therapeutic approaches for endometriosis: a patent landscape. Arch Gynecol Obstet 2024;309:831–842. PMID:rayyan-16446630 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 49. 49.Litvinova O, Klager E, Tzvetkov NT, Kimberger O, Kletecka-Pulker M, Willschke H, Atanasov AG. Digital Pills with Ingestible Sensors: Patent Landscape Analysis. Pharmaceuticals 2022;15. PMID:rayyan-16446634 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 50. 50.Imran M, Khan SA, Alshammari MK, Alreshidi MA, Alreshidi AA, Alghonaim RS, Alanazi FA, Alshehri S, Ghoneim MM, Shakeel F. Discovery, Development, Inventions, and Patent Trends on Mobocertinib Succinate: The First-in-Class Oral Treatment for NSCLC with EGFR Exon 20 Insertions. Biomedicines 2021;9(12). PMID:WOS:000736172600001 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00073617&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 51. 51.Jeon D, Ahn JM, Kim J, Lee C. A doc2vec and local outlier factor approach to measuring the novelty of patents. Technol Forecast Soc Change 2022;174. PMID:WOS:000719370700014 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00071937&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 52. 52.Sharma R, Singla RK. Drug Discovery, Diagnostic, and therapeutic trends on Mpox: A patent landscape. Curr Res Biotechnol 2024;7. PMID:rayyan-16446664 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 53. 53.Mohajel N, Arashkia A. Ebola as a case study for the patent landscape of medical countermeasures for emerging infectious diseases. Nat Biotechnol 2021;39:799–807. PMID:rayyan-16446666 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 54. 54.Picanco-Castro V, Goncalves Pereira C, Swiech K, Ribeiro Malmegrim KC, Tadeu Covas D, Silveira Porto G. Emerging CAR T cell therapies: clinical landscape and patent technological routes. Hum Vaccin Immunother 2020;16:1424–1433. PMID:rayyan-16446679 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 55. 55.Zhou WY, Chen D. Emerging Patent Landscape for Gene Therapy as a Potential Cure for COVID-19. Math Probl Eng 2021;2021. PMID:rayyan-16446681 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 56. 56.Picanco-Castro V, Pereira CG, Covas DT, Porto GS, Athanassiadou A, Figueiredo ML. Emerging patent landscape for non-viral vectors used for gene therapy. Nat Biotechnol 2020;38:151–157. PMID:rayyan-16446682 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 57. 57.Wadhwa R, Yu J, Parikh A. eP277: Exploring the landscape of genetics patents in the United States from 2005 to 2020. Genetics in Medicine 2022;24:S174–S175. PMID:rayyan-16446696 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 58. 58.Robinson AÁ, Islam N, Sengoku S, Miyazaki K. Examining the Role of Actors in an Emerging Technological System: The Case of POC Devices. 2023. PMID:rayyan-16446718ISBN:2159-5100 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 59. 59.Jeon E, Yoon N, Sohn SY. Exploring new digital therapeutics technologies for psychiatric disorders using BERTopic and PatentSBERTa. Technol Forecast Soc Change 2023;186. PMID:WOS:000981768200014 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00098176&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 60. 60.Gadiya Y, Shetty S, Hofmann-Apitius M, Gribbon P, Zaliani A. Exploring SureChEMBL from a drug discovery perspective. Sci Data 2024;11(1). PMID:rayyan-16446730 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 61. 61.Wang YH. Exploring Technology-Driven Technology Roadmaps (TRM) for Wearable Biosensors in Healthcare. Irbm 2024;45. PMID:rayyan-16446735 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 62. 62.Singh P, Dhankhar J, Kapoor RK, Kumar D, Bhatia S, Al-Harrasi A, Sharma A. Ficus benghalensis-A comprehensive review on pharmacological research, nanotechnological applications, and patents. J Appl Pharm Sci 2023;13:59–82. PMID:rayyan-16446763 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 63. 63.Culmone C, Yikilmaz FS, Trauzettel F, Breedveld P. Follow-The-Leader Mechanisms in Medical Devices: A Review on Scientific and Patent Literature. IEEE Rev Biomed Eng 2023;16:439–455. PMID:rayyan-16446769 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 64. 64.Zagoya-López J, Zúñiga-Avilés LA, Vilchis-González AH, Avila-Vilchis JC. Foot/Ankle Prostheses Design Approach Based on Scientometric and Patentometric Analyses. Applied Sciences-Basel 2021;11(12). PMID:rayyan-16446772 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 65. 65.Lyu L, Feng Y, Chen X, Hu Y. The global chimeric antigen receptor T (CAR-T) cell therapy patent landscape. Nat Biotechnol 2020;38:1387–1394. PMID:rayyan-16446802 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 66. 66.Frisio DG, Ventura V. Global Innovation Trends for Plant-Based Vaccines Production: A Patent Analysis. Plants-Basel 2021;10(12). PMID:rayyan-16446806 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 67. 67.Liu K, Gu Z, Islam MS, Scherngell T, Kong X, Zhao J, Chen X, Hu Y. Global landscape of patents related to human coronaviruses. Int J Biol Sci 2021;17:1588–1599. PMID:rayyan-16446807 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 68. 68.Li M, Ren J, Si X, Sun Z, Wang P, Zhang X, Liu K, Wei B. The global mRNA vaccine patent landscape. Hum Vaccin Immunother 2022;18. PMID:rayyan-16446808 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 69. 69.Liu K, Yang J, Deng J, Fan X, Hu Y. Global Patent Landscape of Benign Prostatic Hyperplasia Drugs. Urology 2022;166:209–215. PMID:rayyan-16446811 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 70. 70.Cai Y, Zhang X, Zhang K, Liang J, Wang P, Cong J, Xu X, li M, Liu K, Wei B. The global patent landscape of emerging infectious disease monkeypox. BMC Infect Dis 2024;24. PMID:rayyan-16446813 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 71. 71.Li Q, Xu J, Sun Q, Zhang Z, Hu Y, Yao H. The global patent landscape of HER2-targeted biologics. Nat Biotechnol 2023;41:756–764. PMID:rayyan-16446814 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 72. 72.Lyu M, Chen J, Peng Y, Han F, Gong L, Guo J, Tian L, Gao Y. The global patent landscape of mRNA for diagnosis and therapy. Nat Biotechnol 2023;41:1193–1199. PMID:rayyan-16446815 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 73. 73.Liu K, Zuo H, Li G, Yu H, Hu Y. Global research on artemisinin and its derivatives: Perspectives from patents. Pharmacol Res 2020;159. PMID:rayyan-16446818 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 74. 74.Maresova P, Krejcar O, Barakovic S, Husic JB, Lameski P, Zdravevski E, Chorbev I, Trajkovik V. Health–Related ICT Solutions of Smart Environments for Elderly–Systematic Review. IEEE Access 2020;8:54574–54600. doi: 10.1109/ACCESS.2020.2981315 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1109/ACCESS.2020.2981315&link_type=DOI) 75. 75.Zhou W, Wang X. Human gene therapy: A patent analysis. Gene 2021;803. PMID:rayyan-16446858 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 76. 76.Machuca-Martinez F, Amado RC, Gutierrez O. *Coronaviruses*: A patent dataset report for research and development (R&D) analysis. Data Brief 2020;30. PMID:rayyan-16446863 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 77. 77.Shin HJ, Lee S. Identifying Areas of Technology Commercialization in the Biomedical Sector: An Integrated Analysis of Patents and Publications. 2022 Portland International Conference on Management of Engineering and Technology (PICMET) 2022. p. 1–8. doi: 10.23919/PICMET53225.2022.9882635 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.23919/PICMET53225.2022.9882635&link_type=DOI) 78. 78. Raghu Kiran CVS, Gopinath C. Idiom of gastroretentive drug delivery systems: Comprehensive view on innovation technologies, patents and clinical trails. NeuroQuantology 2023;21:1237–1253. PMID:rayyan-16446908 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 79. 79.Imran M, Asdaq SMB, Khan SA, Meenakshi DU, Alamri AS, Alsanie WF, Alhomrani M, Mohzari Y, Alrashed A, Almotairi M, Alkhaldi EH, Alorabi AK, Alshrari AS, Tauseef M, Abida, Alaqel SI, Alam O, Bakht Md A. Innovations and patent trends in the development of USFDA approved protein Kinase inhibitors in the last two decades. Pharmaceuticals 2021;14. PMID:rayyan-16446951 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 80. 80.Aboy M, Liddell K, Liddicoat J, Crespo C, Jordan M. Mapping the European patent landscape for medical uses of known products. Nat Biotechnol 2021;39:1336–1343. PMID:rayyan-16447047 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 81. 81.Aboy M, Price WN, Raker S. Mapping the patent landscape of medical machine learning. Nat Biotechnol 2023;41(4):461–468. PMID:2022654779 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2022654779&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 82. 82.Burgio V, Bei JNR, Reinoso MR, Civera M, Ruiz OG, Surace C, Pugno NM. Mechanical Stapling Devices for Soft Tissue Repair: A Review of Commercially Available Linear, Linear Cutting, and Circular Staplers. Applied Sciences-Basel 2024;14(6). PMID:rayyan-16447067 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 83. 83.Queiroz AAFLN, Mendes IAC, de Godoy S, Velez Lapao L, Dias S. mHealth Strategies Related to HIV Postexposure Prophylaxis Knowledge and Access: Systematic Literature Review, Technology Prospecting of Patent Databases, and Systematic Search on App Stores. JMIR Mhealth Uhealth 2021;9:e23912. PMID:rayyan-16447079 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 84. 84.Lohita S, Rakshith HT, Rebello AP. Myocardial Infarction: Background, Recent Advances, and Interventions Supported by Clinical Trial and Patent Landscape. Int J Pharm Sci Rev Res 2023;83:142–157. PMID:rayyan-16447109 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 85. 85.Zhang HL, Li YX, Zhou AF, Li Y. New Frontier in Antiviral Drugs for Disorders of the Respiratory System. Recent Advances in Anti-Infective Drug Discovery 2022;17:2–12. PMID:rayyan-16447130 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 86. 86.Mancilla-de-la-Cruz J, Rodriguez-Salvador M, Ruiz-Cantu L. The Next Pharmaceutical Path: Determining Technology Evolution in Drug Delivery Products Fabricated with Additive Manufacturing. Foresight and Sti Governance 2020;14(3):55–70. PMID:rayyan-16447140 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 87. 87.Riondato M, Rigamonti D, Martini P, Cittanti C, Boschi A, Urso L, Uccelli L. Oldie but Goodie: Is Technetium-99m Still a Treasure Trove of Innovation for Medicine? A Patents Analysis (2000-2022). J Med Chem 2023;66:4532–4547. PMID:rayyan-16447157 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 88. 88.Colonia BSO, Pereira GVD, Soccol CR. Omega-3 microbial oils from marine thraustochytrids as a sustainable and technological solution: A review and patent landscape. Trends Food Sci Technol 2020;99:244–256. PMID:rayyan-16447159 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 89. 89.Ma J, Pan YH, Su CY. Organization-oriented technology opportunities analysis based on predicting patent networks: a case of Alzheimer’s disease. Scientometrics 2022;127(9):5497–5517. PMID:rayyan-16447170 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 90. 90.Litvinova O, Eitenberger M, Bilir A, Yeung AWK, Parvanov ED, MohanaSundaram A, Horbanczuk JO, Atanasov AG, Willschke H. Patent analysis of digital sensors for continuous glucose monitoring. Front Public Health 2023;11:1205903. PMID:rayyan-16447190 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 91. 91.Klongthong W, Muangsin V, Gowanit C, Muangsin N. A Patent Analysis to Identify Emergent Topics and Convergence Fields: A Case Study of Chitosan. Sustainability 2021;13(16). PMID:rayyan-16447200 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 92. 92.Hani U, Chen JW, Holland C, McGirt MJ, Kim PK, Chewning S, Bohl MA. Patent bibliometrics in spinal deformity: the first bibliometric analysis of spinal deformity’s technological literature. Spine Deform 2024;12:25–33. PMID:rayyan-16447206 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 93. 93.Devarapalli P, Kumari P, Soni S, Mishra V, Yadav S. Patent intelligence of RNA viruses: Implications for combating emerging and re-emerging RNA virus based infectious diseases. Int J Biol Macromol 2022;219:1208–1215. PMID:rayyan-16447219 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 94. 94.Hernandez-Melchor D, Lopez-Bayghen E, Padilla-Viveros A. The patent landscape in the field of stem cell therapy: closing the gap between research and clinic. F1000Res 2022;11:997. PMID:rayyan-16447231 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 95. 95.Greenberg A, Cohen A, Grewal M. Patent landscape of brain-machine interface technology. Nat Biotechnol 2021;39:1194–1199. PMID:rayyan-16447234 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 96. 96.Cho YD, Kim WJ, Ryoo HM, Ku Y. Patent landscape report on dental implants: A technical analysis. Clin Implant Dent Relat Res 2021;23:857–863. PMID:rayyan-16447247 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 97. 97.Litvinova O, Bilir A, Parvanov ED, Niebauer J, Kletecka-Pulker M, Kimberger O, Atanasov AG, Willschke H. Patent landscape review of non-invasive medical sensors for continuous monitoring of blood pressure and their validation in critical care practice. Front Med (Lausanne) 2023;10. PMID:rayyan-16447249 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 98. 98.Francis N, Ong A, Suhaimi H, Abas PE. Patent Landscape Review on Ankle Sprain Prevention Method: Technology Updates. Inventions 2023;8(2). PMID:rayyan-16447250 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 99. 99.Juiz PJ, Ferreira LT, Pires EA, Villarreal CF. Patent Mining on the Use of Antioxidant Phytochemicals in the Technological Development for the Prevention and Treatment of Periodontitis. Antioxidants 2024;13(5). PMID:rayyan-16447259 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 100.100.Chartoumpekis D V, Fu CY, Ziros PG, Sykiotis GP. Patent Review (2017-2020) of the Keap1/Nrf2 Pathway Using PatSeer Pro: Focus on Autoimmune Diseases. Antioxidants 2020;9(11). PMID:rayyan-16447267 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 101.101.Parihar K, Telang M, Ovhal A. A patent review on strategies for biological control of mosquito vector. World J Microbiol Biotechnol 2020;36:187. PMID:rayyan-16447270 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 102.102.Xiong YH, Xu XN, Zheng B. Patented technologies for schistosomiasis control and prevention filed by Chinese applicants. Infect Dis Poverty 2021;10. PMID:rayyan-16447287 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 103.103.Russo Serafini M, Medeiros Savi F, Ren J, Bas O, O’Rourke N, Maher C, Hutmacher DW. The Patenting and Technological Trends in Hernia Mesh Implants. Tissue Eng Part B Rev 2021;27:48–73. PMID:rayyan-16447288 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 104.104.Mendes CRA, Pappen E, Baeta AMC, Domingues WB, Dellagostin EN, Campos VF, Timmers L, Goettert MI, Henriques JAP. Patentometric analysis of the technological development of biotechnology for health in higher education institutions in Rio Grande do Sul. An Acad Bras Cienc 2024;96(1). PMID:rayyan-16447299 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 105.105.Gkika DA, Vordos N, Maragakis M, Tilkeridis KE, Magafas L, Mitropoulos AC, Kyzas GZ. Patents of nanomaterials related with cancer treatment applications. Journal of Nanoparticle Research 2020;22. PMID:rayyan-16447302 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 106.106.Gadiya Y, Gribbon P, Hofmann-Apitius M, Zaliani A. Pharmaceutical patent landscaping: A novel approach to understand patents from the drug discovery perspective. Artificial Intelligence in the Life Sciences 2023;3. PMID:rayyan-16447328 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 107.107.Patel S, Patel MS, Patel AD, Shah UH, Patel MM, Solanki ND, Patel MJ. Probiotic Formulations: A Patent Landscaping Using the Text Mining Approach. Curr Microbiol 2022;79. PMID:rayyan-16447355 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 108.108.Shivakumar P, Gupta MS, Jayakumar R, Gowda D V. Prospection of chitosan and its derivatives in wound healing: Proof of patent analysis (2010-2020). Int J Biol Macromol 2021;184:701–712. PMID:rayyan-16447368 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 109.109.Kurakula M, N NR. Prospection of recent chitosan biomedical trends: Evidence from patent analysis (2009-2020). Int J Biol Macromol 2020;1924–1938. PMID:rayyan-16447369 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 110.110.Islam MM, Naveen NR, Anitha P, Goudanavar PS, Koteswara Rao GSN, Fattepur S, Rahman MM, Shiroorkar PN, Habeebuddin M, Meravanige G, Telsang M, Nagaraja S, Asdaq SMB, Anwer MK. The Race to Replace PDE5i: Recent Advances and Interventions to Treat or Manage Erectile Dysfunction: Evidence from Patent Landscape (2016-2021). J Clin Med 2022;11. PMID:rayyan-16447379 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 111.111.Durmusoglu A, Unutmaz Durmusoglu ZD. Remembering Medical Ventilators and Masks in the Days of COVID-19: Patenting in the Last Decade in Respiratory Technologies. IEEE Trans Eng Manag 2022; PMID:rayyan-16447408 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 112.112.Zhang T, Chen J, Lu Y, Xu D, Yang X, Ouyang Z. The Research Activities and Development Trends of Antineoplastics Targeting PD-1/PD-L1 Based on Scientometrics and Patentometrics. 2022. PMID:rayyan-16447411ISBN:2769-5654 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 113.113.DasNandy A, Virge R, Hegde H V, Chattopadhyay D. A review of patent literature on the regulation of glucose metabolism by six phytocompounds in the management of diabetes mellitus and its complications. J Integr Med 2023;21:226–235. PMID:rayyan-16447478 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 114.114.Yeh TF, Lin C, Sung HC. A review of technological developments in lipid nanoparticle application for mRNA vaccination. Hum Vaccin Immunother 2023;19. PMID:rayyan-16447482 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 115.115.Wang Q, Zhu Q, Li N. A Scientometric Analysis and Visualization of Scientific Research and Technology Innovation in Needle-free Insulin Injection From 1974 to 2022. Clin Ther 2023;45:881– 888. PMID:rayyan-16447503 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 116.116.Jiang J, Sun J, Huang Z, Bi Z, Yu G, Yang J, Wang Y. The state of the art and future trends of root canal files from the perspective of patent analysis: a study design. Biomed Eng Online 2022;21. PMID:rayyan-16447550 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 117.117.Kong X, Zuo H, Huang HD, Zhang Q, Chen J, He C, Hu Y. STING as an emerging therapeutic target for drug discovery: Perspectives from the global patent landscape. J Adv Res 2023;44:119–133. PMID:rayyan-16447554 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 118.118.Hazis NUA, Aneja N, Rajabalaya R, David SR. Systematic patent review of nanoparticles in drug delivery and cancer therapy in the last decade. Recent Adv Drug Deliv Formul 2021;15:59–74. PMID:rayyan-16447592 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 119.119.Verma R. A Technical Analysis of MIOT in Sensitive Aspect. 2023. PMID:rayyan-16447600 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 120.120.Barragán-Ocaña A, Oliver-Espinoza R, Longar-Blanco MD, Gómez-Viquez H. Technological development and patent analysis: the case of biopharmacy in the world and in Latin America. Tapuya-Latin American Science Technology and Society 2022;5(1). PMID:rayyan-16447612 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 121.121.Hwang J, Kim KH, Hwang JG, Jun S, Yu J, Lee C. Technological Opportunity Analysis: Assistive Technology for Blind and Visually Impaired People. Sustainability 2020;12(20). PMID:WOS:000583070200001 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00058307&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 122.122.Liu J, Wei JQ, Liu YQ. Technology Forecasting based on Topic Analysis and Social Network Analysis: A Case Study Focusing on Gene Editing Patents. J Sci Ind Res (India) 2021;80(5):428–437. PMID:rayyan-16447640 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 123.123.Wadhwa RR, McElderry BM, Yu J, Kapadia SR, Gillinov AM, Svensson LG, Desai MY. Temporal Trends in the United States Patent Landscape: Innovation in Cardiology Across Industry and Academia. Cardiol Res 2023;14:334–341. PMID:rayyan-16447665 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 124.124.Erzurumlu SS, Pachamanova D. Topic modeling and technology forecasting for assessing the commercial viability of healthcare innovations. Technol Forecast Soc Change 2020;156. PMID:rayyan-16447682 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 125.125.Pasek JE. Trends in bioengineering patents granted 2000-2019. Biomed Sci Instrum 2021;57:61–73. PMID:rayyan-16447705 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 126.126.Chowdhury AR, Gargate G. The trends in CRISPR research: A patent and literature study with a focus on India. World Patent Information 2021;65. PMID:rayyan-16447707 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 127.127.Almeida FLC, Jim MP, Trav BM, Forte MBS. Trends in lipase immobilization: Bibliometric review and patent analysis (vol 110, pg 37, 2021). Process Biochemistry 2021;110:303–321. PMID:WOS:000729989500002 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=WOS:00072998&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 128.128.Bacigalupo ML, Pignataro MF, Scopel CT, Kondratyuk S, Mellouk O, Chaves GC. Unveiling patenting strategies of therapeutics and vaccines: evergreening in the context of COVID-19 pandemic. Front Med (Lausanne) 2023;10(no pagination). PMID:2027215422 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=2027215422&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 129.129.Chen TA, Tsai SC, Hu KK. Using Big Data Analytics on Health Industry Development: The Empirical Intellectual Property Analysis from Stem Cell Therapy. 2021. PMID:rayyan-16447758 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 130.130.Liu K, Zhang X, Hu Y, Chen W, Kong X, Yao P, Cong J, Zuo H, Wang J, Li X, Wei B. What, Where, When and How of COVID-19 Patents Landscape: A Bibliometrics Review. Front Med (Lausanne) 2022;9. PMID:rayyan-16447781 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 131.131.Rincon-Lopez J, Almanza-Arjona YC, Riascos AP, Rojas-Aguirre Y. When cyclodextrins met data science: unveiling their pharmaceutical applications through network science and text-mining. Pharmaceutics 2021;13. PMID:rayyan-16447783 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 132.132.Kim WJ, Cho YD, Ku Y, Ryoo HM. The worldwide patent landscape of dental implant technology. Biomater Res 2022;26. PMID:rayyan-16447788 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 133.133.Azman AA, Leow ATC, Noor NDM, Noor SAM, Latip W, Ali MSM. Worldwide trend discovery of structural and functional relationship of metallo-beta-lactamase for structure-based drug design: A bibliometric evaluation and patent analysis. Int J Biol Macromol 2024; PMID:rayyan-16447790 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16447&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 134.134.Difference Between Data Mining and Text Mining. 2023. Available from: [https://www.geeksforgeeks.org/difference-between-data-mining-and-text-mining/](https://www.geeksforgeeks.org/difference-between-data-mining-and-text-mining/) [accessed Nov 25, 2024] 135.135.Data transformation. Startburst. Available from: [https://www.starburst.io/data-glossary/data-transformation/](https://www.starburst.io/data-glossary/data-transformation/) [accessed Nov 25, 2024] 136.136.Petryschuk S. What is Network Visualization? Auvik. 2024. Available from: [https://www.auvik.com/franklyit/blog/what-is-network-visualization/](https://www.auvik.com/franklyit/blog/what-is-network-visualization/) [accessed Nov 25, 2024] 137.137.Abdi S, Kitsara I, Hawley MS, de Witte LP. Emerging technologies and their potential for generating new assistive technologies. Assist Technol 2021;33:17–26. PMID:rayyan-16446685 [PubMed](http://medrxiv.org/lookup/external-ref?access_num=rayyan-16446&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 138.138.The National Institute for Health and Care Excellence. NICE Guidance: Browse guidance by topic. Available from: [https://www.nice.org.uk/guidance/conditions-and-diseases](https://www.nice.org.uk/guidance/conditions-and-diseases) [accessed Nov 25, 2024] 139.139.Hines P, Hiu Yu L, Guy RH, Brand A, Papaluca-Amati M. Scanning the horizon: a systematic literature review of methodologies. BMJ Open 2019 May 27;9(5):e026764. doi: 10.1136/bmjopen-2018-026764 [Abstract/FREE Full Text](http://medrxiv.org/lookup/ijlink/YTozOntzOjQ6InBhdGgiO3M6MTQ6Ii9sb29rdXAvaWpsaW5rIjtzOjU6InF1ZXJ5IjthOjQ6e3M6ODoibGlua1R5cGUiO3M6NDoiQUJTVCI7czoxMToiam91cm5hbENvZGUiO3M6NzoiYm1qb3BlbiI7czo1OiJyZXNpZCI7czoxMToiOS81L2UwMjY3NjQiO3M6NDoiYXRvbSI7czo1MDoiL21lZHJ4aXYvZWFybHkvMjAyNC8xMi8xMC8yMDI0LjEyLjA5LjI0MzE4NzE0LmF0b20iO31zOjg6ImZyYWdtZW50IjtzOjA6IiI7fQ==) 140.140.Vignali V, Hines PA, Cruz AG, Ziętek B, Herold R. Health horizons: Future trends and technologies from the European Medicines Agency’s horizon scanning collaborations. Front Med (Lausanne) 2022 Dec 8;9. doi: 10.3389/fmed.2022.1064003 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.3389/fmed.2022.1064003&link_type=DOI) 141.141.World Health Organisation. Global cancer burden growing, amidst mounting need for services. 2024. Available from: [https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services](https://www.who.int/news/item/01-02-2024-global-cancer-burden-growing--amidst-mounting-need-for-services) [accessed Nov 25, 2024] 142.142.Naghavi M, Mestrovic T, Gray A, Gershberg Hayoon A, Swetschinski LR, Robles Aguilar G, Davis Weaver N, Ikuta KS, Chung E, Wool EE, Han C, Araki DT, Albertson SB, Bender R, Bertolacci G, Browne AJ, Cooper BS, Cunningham MW, Dolecek C, Doxey M, Dunachie SJ, Ghoba S, Haines-Woodhouse G, Hay SI, Hsu RL, Iregbu KC, Kyu HH, Ledesma JR, Ma J, Moore CE, Mosser JF, Mougin V, Naghavi P, Novotney A, Rosenthal VD, Sartorius B, Stergachis A, Troeger C, Vongpradith A, Walters MK, Wunrow HY, Murray CJ. Global burden associated with 85 pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Infect Dis 2024 Aug;24(8):868–895. doi: 10.1016/S1473-3099(24)00158-0 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1016/S1473-3099(24)00158-0&link_type=DOI) [PubMed](http://medrxiv.org/lookup/external-ref?access_num=38640940&link_type=MED&atom=%2Fmedrxiv%2Fearly%2F2024%2F12%2F10%2F2024.12.09.24318714.atom) 143.143.Bastian M, Heymann S, Jacomy M. Gephi: An Open Source Software for Exploring and Manipulating Networks. Proceedings of the International AAAI Conference on Web and Social Media 2009 Mar 19;3(1):361–362. doi: 10.1609/icwsm.v3i1.13937 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1609/icwsm.v3i1.13937&link_type=DOI) 144.144.van Eck NJ, Waltman L. VOS: A New Method for Visualizing Similarities Between Objects. 2007. p. 299–306. doi: 10.1007/978-3-540-70981-7_34 [CrossRef](http://medrxiv.org/lookup/external-ref?access_num=10.1007/978-3-540-70981-7_34&link_type=DOI) 145.145.Clarivate (TM). Derwent Innovation: Explanation on ThemeScape. 2022. Available from: [https://support.clarivate.com/Patents/s/article/Derwent-Innovation-Explanation-on-ThemeScape?language=en_US](https://support.clarivate.com/Patents/s/article/Derwent-Innovation-Explanation-on-ThemeScape?language=en_US) [accessed Nov 25, 2024] 146.146.Pandas. About pandas. 2024. Available from: [https://pandas.pydata.org/about/](https://pandas.pydata.org/about/) [accessed Nov 25, 2024]