
Optimizing long-term prevention of cardiovascular disease with reinforcement learning 
 
Authors 
Yekai Zhou1,2,#, Ruibang Luo1,2,#,*, Joseph Edgar Blais3, Kathryn Tan4, David Lui4, Kai Hang Yiu4, 
Francisco Tsz Tsun Lai2,5,6,7, Eric Yuk Fai Wan2,3,6,7, CL Cheung2,5, Ian CK Wong2,5,7,8, Celine SL 
Chui2,7,9,10,* 
 
#Co-first authors 
*Corresponding authors 
 
1 Department of Computer Science, School of Computing and Data Science, University of Hong 
Kong, Hong Kong, China 
2 Advanced Data Analytics for Medical Science (ADAMS) Limited, Hong Kong, China 
3 Centre for Safe Medication Practice and Research, Department of Pharmacology and 
Pharmacy, The University of Hong Kong, Hong Kong Special Administrative Region, China 
4 Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The 
University of Hong Kong, Queen Mary Hospital, Hong Kong Special Administration Region, 
China 
5 Centre for Safe Medication Practice and Research, Department of Pharmacology and 
Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, 
China 
6 Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing 
Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China 
7 Laboratory of Data Discovery for Health (D24H), Hong Kong Science and Technology Park, 
Sha Tin, Hong Kong SAR, China 
8 Aston Pharmacy School, Aston University, Birmingham, UK 
9 School of Nursing, Li Ka Shing Faculty of Medicine, The University of Hong Kong SAR, Hong 
Kong, China 
10 School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong 
Kong SAR, China 
 
Corresponding Authors 
Prof. Ruibang Luo, Rm 301 Chow Yei Ching Building, The University of Hong Kong, Pokfulam 
Road, Pokfulam, Hong Kong Special Administration Region, China. Email: rbluo@cs.hku.hk 
Prof. Celine Sze Ling Chui, 5/F Academic Building, 3 Sassoon Road, Pokfulam, Hong Kong 
Special Administration Region, China. Email: cslchui@hku.hk 
 
 
 
 
 
 
 

mailto:rbluo@cs.hku.hk
mailto:cslchui@hku.hk


Abstract: The prevention of chronic disease is a long-term combat with continual fine-tuning to 
adapt to the course of disease. Without comprehensive insights, prescriptions may prioritize 
short-term gains but deviate from trajectories toward long-term survival. Here we introduce 
Duramax, a fully evidence-based framework to optimize the dynamic preventive strategy in the 
long-term. This framework synchronizes reinforcement learning with real-world data modeling, 
leveraging the diverse treatment trajectories in electronic health records (EHR). In our study, 
Duramax learned from millions of treatment decisions of lipid-modifying drugs, becoming 
specialized in cardiovascular disease (CVD) prevention. The extensive volume of implicit 
knowledge Duramax harnessed far exceeded that of individual clinicians, resulting in superior 
performance. Specifically, when clinicians' treatment decisions aligned with those suggested by 
Duramax, a reduction in CVD risk was observed. Moreover, post hoc analysis confirmed that 
Duramax’s decisions were transparent and reasonable. Our research showcases how tailored 
computational analysis on well-curated EHR can achieve high nuance in personalized disease 
prevention. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 
 
Early prevention is one of the most effective and cost-efficient approaches to reducing the 
global disease burden1. Effective prevention typically involves two steps: identifying patients 
who require preventive measures and individualizing follow-up preventive strategies for these 
patients2. With advancements in artificial intelligence (AI) for healthcare, numerous prognostic 
tools have been developed, offering higher accuracy and adaptability3. These tools have been 
extensively used to assist in identifying patients at elevated risk for early prevention4. However, 
there has been limited progress to assist the subsequent step, i.e., individualizing long-term 
dynamic preventive strategies. 
 
For example, as the leading cause of death globally1, cardiovascular disease (CVD) often relies 
on lipid-modifying drugs (LMDs)5 for primary prevention. While clinical guidelines6-8 recommend 
risk prediction models4,9-13 to identify patients needing lipid control, there is currently no tool to 
assist clinicians in tailoring preventive strategies to these patients. This lack of support leads to 
significant variability in prevention strategies14, where the accumulation of suboptimal treatment 
decisions can eventually deviate patient trajectories from long-term prevention of CVD15. 
 
Such a complex decision-making task holds promise from recent advancements in AI. 
Reinforcement learning (RL)16, a branch of AI, is able to learn and employ a strategy to make a 
sequence of decisions that maximize future reward17, analogous to clinician’s goal to adapt 
prescriptions to optimize patient survival18. As an emerging technique in recent years, RL has 
already shown strength in several healthcare scenarios19-21, particularly in short-term patient 
outcome optimization such as in inpatients22 and intensive care units23 settings.  
 
Here we present Duramax, a data-driven framework based on RL to optimize the long-term 
dynamic preventive strategy. We employed Duramax to provide personalized LMD treatments 
for the primary prevention of CVD. Leveraging a comprehensive and high-quality time-series 
dataset from Hong Kong over the past two decades, we conducted extensive analyses to 
investigate the real-world dynamics of lipid responses to different LMDs. Building upon a 
practical model that captures lipid dynamics, we developed Duramax in a way that emphasized 
its interpretability and ensured the safety of its recommendations in a separate post hoc 
analysis. By leveraging RL techniques and real-world data modeling, Duramax showcases its 
proficiency in tailoring its recommendations to suit specific local healthcare settings. Through 
this customization, Duramax offers optimal prescriptions that demonstrate lower expected CVD 
risk compared to clinician practice, as demonstrated by the validation results. 
 
Results 
 
Dataset preparation 
 
Our study leveraged the data source provided by the Hong Kong Hospital Authority (HA), the 
largest public healthcare provider responsible for capturing over 70% of all hospitalizations in 
Hong Kong for more than two decades24. The HA also provides outpatient services in primary, 



secondary, and tertiary settings. All medical records were linked with an anonymized unique 
patient identifier. We collected patient disease diagnoses, prescription records, clinical lab tests, 
and healthcare utilization data from the period spanning 2004 to 2019. From a pool of around 
one and a half million patients under primary prevention of CVD since 2024, we selected around 
one-third of patient trajectories with high completeness of lipid test and LMD prescription 
records. The inclusion and exclusion criteria are in Methods and Extended Data Fig. 1. 
Specifically, the development cohort comprised 62,870 patients from Hong Kong Island, 
encompassing a total of 3,637,962 treatment months. Within this cohort, we identified 214 
different types of lipid-modifying drugs and combinations, providing a rich selection pool for the 
RL agent to potentially choose from (Fig. 1a). Furthermore, the validation cohort consisted of 
454,361 patients from Kowloon and New Territories, covering a total of 29,758,939 treatment 
months (Fig. 1d). The patient demographics and clinical characteristics are in Extended Data 
Table 1. This curation, to the best of our knowledge, represents one of the largest and the most 
comprehensive data sources to investigate LMD effectiveness in the primary prevention of CVD.  
 
Modeling lipid dynamics 
 
Developing a reliable RL agent for LMD prescriptions requires a comprehensive understanding 
of the complex lipid dynamics associated with different LMD use in real-world clinical settings. 
To fill this gap, we present a systematic analysis conducted on our development cohort. There 
are two primary objectives: 1) identify patterns and factors driving changes in lipid profiles, 
leading to a rational framework to represent complex patient trajectories observed in clinical 
practice, and 2) assess the long-term real-world efficacy of different LMD types, providing 
evidence that can guide treatment decisions for clinicians and the RL agent alike. 
 
First, we analyzed the LDL-C dynamics over time (Fig. 2a). On average, patients on LMD 
treatment experienced an initial sharp reduction in LDL-C levels, with the median decreasing 
from 3.2 mmol/L to 2.2 mmol/L. Subsequently, a stable and gradual reduction rate was 
observed to help maintain consistently low LDL-C levels, resulting in a median LDL-C level of 2 
mmol/L after a 60-month follow-up period. Patients not currently taking LMD (no LMD or stop 
LMD) showed a gradual reduction in LDL-C levels over time, with the median LDL-C level 
decreasing from approximately 3 mmol/L at the first visit to 2.8 mmol/L after a 60-month follow-
up. This may be attributed to lifestyle modifications implemented during regular lipid testing. 
Consequently, we defined four distinct treatment categories between lipid tests: no LMD, initiate 
LMD, continue LMD, and stop LMD (details elaborated in Methods). The distribution of follow-up 
interval lengths also varied significantly among the four treatment categories (Fig. 2b). For 
patients who initiated LMD treatment, the next follow-up visit of lipid test had a median interval 
of 4 months. In contrast, patients not prescribed with LMD had a median follow-up interval of 12 
months. This suggests that clinicians prioritize monitoring for patients starting LMD to assess 
the effectiveness whilst those who were not prescribed LMD were likely considered to have a 
lower CVD risk and require less frequent monitoring. These observations further distinguished 
the four treatment categories, where the variability in follow-up times indicates distinct clinical 
practices. It also highlights the importance of aligning our proposed RL agent with the clinician 
and healthcare system practice regarding follow-up intervals in real-world settings. 



 
We further analyzed the effectiveness of commonly used first line and second line LMDs in 
reducing LDL-C levels in terms of different treatment categories. Besides, we examined the 
relative reduction separately for different ranges of baseline LDL-C levels, aligning with the 
clinical guideline thresholds. Detailed results can be found in Fig. 2c,d. It was confirmed that 
high-potency LMDs (e.g., rosuvastatin 10-20mg and atorvastatin 40mg) tend to yield a higher 
relative reduction compared to low-potency LMDs25. Interestingly, patients with higher baseline 
LDL-C levels generally experienced a higher reduction rate from LMD treatment, particularly 
when initiating therapy. Notably, even with low-potency LMDs (e.g., simvastatin 10-20mg), 
patients with elevated baseline LDL-C levels achieved significant reductions. For instance, 
patients with baseline LDL-C levels as high as 5 mmol/L who initiated treatment with a lowest 
potency LMD, simvastatin 10mg, can achieve an LDL-C level of approximately 2.8 mmol/L, 
which is considered acceptable for patients with modest baseline CVD risk. Conversely, patients 
with lower baseline LDL-C levels tended to have lower reduction rates from LMDs, particularly 
during drug continuation. For instance, in cases where patients had already received LMD 
treatment and achieved considerable LDL-C reduction, individuals with a higher baseline CVD 
risk may require further reductions. High-potency LMDs, particularly rosuvastatin 10mg, 
demonstrated effectiveness in these scenarios. 
 
In summary, we observed that the use of LMD exhibited two distinct phases in LDL-C reduction: 
drug initiation and continuation. This observation motivated us to distinguish four treatment 
categories which capture the complexity of different patient trajectories. These treatment 
categories exhibited unique follow-up times and patterns of LDL-C reduction, indicating that they 
are independent drivers of patients' lipid responses in addition to the efficacy of different LMDs. 
Apart from all the factors investigated, it was also important to treat patients' baseline CVD risk 
as a separate factor from LDL-C levels when personalizing real-world prescriptions. 
Consequently, for the rational design of a RL agent for LMD prescription, it becomes essential 
to address two key considerations: 1) informing the agent about the patient's prior LMD usage, 
and 2) enabling the agent to comprehend the patient's baseline CVD risk. 
 
Model design 
 
Long-term CVD prevention can be abstracted as a Markov decision process (MDP) 
framework17,18. The goal is to develop a digital prescription guideline (policy) that recommends 
LMDs (actions) based on individual risk profiles (states). The objective is to continuously 
reassess these risk profiles and adapt the recommendations over time (sequential decision-
making), aiming to minimize the long-term risk of CVD occurrence while avoiding too high a 
dose of LMDs to prevent dose-related adverse effects (rewards and penalties). We use RL to 
solve the formulated MDP. Starting from a random policy, The RL agent iteratives its policy by 
exploring if adjustments in the prescription strategies (action-state designations) can yield a 
better policy with higher expected rewards. The detailed settings of the MDP are illustrated in 
the Methods section. 
 



Ideally, the MDP should succinctly capture the dynamics of patient responses while preserving 
the interpretability in each of its components. To this end, we presented patient state in a risk-
based manner, where the contribution of each risk factor was explicitly quantized in the state 
number (Fig. 1b, details in Extended Data Fig. 2 and Methods). In such way, patient state 
served as a reliable indicator of CVD risk for both states with prior LMD usage and those without 
(Fig. 2e). Conversely, although patients on LMD generally had higher risk (Fig. 2g), these 
patients did not exhibit positive association between LDL-C and state compared to patients not 
on LMD (Fig. 2f). This observation further supported that drug continuation generally had lower 
LDL-C reduction rate (Fig. 2a), which motivated us to encapsulate the original risk-based patient 
state with the additional information of prior LMD usage (details in Methods). Such a design also 
distinguishes four treatment types (no LMD, initiate LMD, continue LMD, and stop LMD) in the 
action space that we previously confirmed essential. The resulting patient trajectory with 
sequences of successive states and actions is illustrated in Fig. 2h. 
 
The primary objective of CVD prevention is to promote effective prevention while minimizing 
unnecessary treatments. We translated this objective into the design of our reward function. 
Specifically, patients either receive a high penalty if they experience a CVD event within a year 
or receive a high reward if they remain event-free in the final state. Additionally, small penalties 
are imposed for each LMD taken (Fig. 1c). This design allows for comprehensive control over 
the ultimate outcome and internal side effects, without imposing excessive constraints, and 
eventually empowers the RL agent to explore the optimal solution paths to a full extent. More 
details about the reward function design can be found at Methods. 
 
We employed policy iteration23,26, an offline, model-based, and dynamic programming (DP) RL 
method. For healthcare settings, offline RL is required as it can be trained exclusively from 
historical data27, eliminating the need for real-time exploration of random prescriptions on 
patients required by online RL algorithms. Furthermore, in contrast to model-free techniques, 
model-based methods can offer the rationale behind prescriptions28, a feature highly valued by 
clinicians for ensuring safety22. Additionally, the guaranteed convergence to optimal solutions 
inherent in DP methods renders them particularly advantageous for high-risk applications like 
medicine. We trained the RL agent and named it Duramax and described with details about the 
setting and training of the RL algorithm in Methods. 
 
Interpretation of the RL policy 
 
We summarized the logic that Duramax (the RL agent) recommended patient treatments using 
data from the development cohort (Fig. 3). Duramax primarily recommended three types of 
actions for initiating LMD therapy: simvastatin 10 mg, simvastatin 20 mg, or no initiation of 
LMDs if the patient's risk is deemed modest by Duramax. For follow-up treatment decisions, 
Duramax suggested a wider range of options and higher intensity of LMDs based on patient 
state, including simvastatin 10-40 mg, atorvastatin 10-20 mg, and rosuvastatin 10 mg. Duramax 
also suggested to discontinue treatment if it feels safe about the patient's current risk profile. 
Interestingly, gemfibrozil 300-600mg was frequently suggested by Duramax. 
 



One major advantage of model-based RL is the transparent decision-making process. We 
visualized the decision-making process and plotted the average decision threshold that 
influenced the agent's choices (Fig. 3a). Comparisons were made between the Duramax's 
decisions and those made by clinicians, considering population median and event rates. In 
summary, Duramax demonstrated higher specificity and a more comprehensive perspective on 
patient risk profiles compared to clinician decisions in prescribing LMDs. The clinician's 
treatment decision primarily relied on LDL-C levels, whereas Duramax considered ten risk 
factors, resulting in a grading relationship among them. This comprehensive evaluation allowed 
Duramax to exhibit better specificity for patients with different states, and CVD risk alike (Fig. 
3b). Consequently, the target patient group differed in clinician policy and the RL policy (Fig. 
3c). 
 
The RL agent suggested initiating treatment with lower-potency statins, such as simvastatin 10-
20 mg, aligning with our previous conclusion that even low-potency statins can have good 
treatment effect when initiated (Fig. 2c). For patients in the model development cohort being 
considered of whether initiating LMD therapy or not, only 4% of patients received prescription 
from clinicians, while Duramax suggested that 48% of them should initiate. However, the low 
proportion of actual statin takers might stem from patient concerns regarding side effects. 
Regarding LMD continuation, atorvastatin 10-20 mg was more frequently prescribed by 
Duramax (44%) compared to the clinician policy (13%), whereas simvastatin 10-20 mg was less 
commonly prescribed by Duramax (28% vs. 54%). Notably, fibrates were used more frequently 
for very high-risk patients as suggested by Duramax (10% vs. 5%), with a higher median risk 
state of 189 compared to 148 in the clinician policy. The RL agent's rationale behind these 
recommendations may be attributed to the multiple comorbidities present in high-risk patients 
and the limited room for further LDL reduction given their already low LDL-C levels. In this 
context, incorporating HDL-C may be a sensible approach. 
 
Model validation 
 
We conducted model validation using an independent large-scale time series dataset from the 
Kowloon and New Territories cohort, comprising half a million patients and spanning 30 million 
treatment months with 3 million intermediate states. The validation results, illustrated in Fig. 1d 
and further elaborated in Fig. 4, exhibited excellent performance of the model. Specifically, 
Duramax exhibits superior accuracy in prescribing specific LMDs and determining the optimal 
timing for initiating, switching, or stopping LMD therapy. 
 
To evaluate the model's performance, we first performed a gold standard check called off-policy 
evaluation using importance sampling (Fig. 4a, details in Methods). The estimated value of the 
RL policy (93) surpassed that of the clinician policy (68), where higher policy value is observed 
to be associated with reduced CVD risk (Extended Data Fig. 3). Additionally, two comparison 
policies, random drug policy (57) and no drug policy (10), had lower values than the clinician 
policy. Furthermore, we examined the prescription differences between the RL agent and 
clinicians. We observed that patients who received treatments suggested by the RL agent had 
the lowest CVD rate. We delved into the correctness of each specific action proposed by the RL 



agent (Fig. 4b). For each type of action, we discovered that when the clinician's action aligned 
with the RL agent's recommendation, it resulted in lower CVD risk compared to misalignment. 
Notably, the greater the alignment between the clinician and RL agent actions, the lower the 
CVD risk for the patient (Fig. 4e). The RL agent also accurately identified the optimal time for 
patients to discontinue LMD therapy (Fig. 4d) and initiate LMD therapy (Fig. 4f). This capability 
makes the RL agent highly suitable for preliminary screening of patient groups eligible for 
primary prevention. It was estimated that only 8% of patients not delaying LMD treatment 
according to the RL agent's estimation.  
 
Discussion 
 
Approximately 50 years ago, the Framingham Heart Study investigators developed multivariable 
CVD risk prediction equations to assist in personalizing CVD treatment planning13. Since then, 
there have been continuous efforts to advance risk prediction models4,9-12,29-31 and refine clinical 
guidelines6,7 for improved nuance. Our study made a significant contribution to the field by 
creating the first fully data-driven evidence-based guideline with high nuance to individualize 
long-term treatment for CVD prevention. Through comprehensive validation, our RL agent 
demonstrated superior efficacy in reducing CVD risk compared to clinician consensus. In 
leveraging Duramax, we address the uneven distribution of healthcare resources by tapping into 
the wealth of treatment experiences documented in EHR. Our aim is to bolster healthcare 
support, particularly in regions where resources are scarce. Duramax can be use by junior 
clinicians during follow-up visits. By harnessing the insights provided by Duramax, these 
clinicians can better understand patients' health trajectories and make informed decisions based 
on evidence-based suggestions generated by the system. Moreover, pharmacists and nurses 
can seamlessly integrate Duramax into their monitoring protocols. This integration allows them 
to track patients' progress more effectively and intervene promptly when necessary. We 
envision that even a modest reduction in CVD risk by partially considering the suggestions from 
the RL agent has the potential to save millions of lives annually around the world.  
 
While RL has been applied in various medical contexts32, our study significantly advances its 
utilization in long-term chronic disease prevention. This research contributes to the expanding 
body of knowledge on AI applications in preventive medicine and sheds light on the 
computational management of other chronic diseases, such as diabetes, hypertension, and 
obesity. Looking ahead, a promising future application lies in the development of personalized 
digital twins that optimize long-term health outcomes across multiple chronic disease domains. 
Extended from Duramax, the complex digital twin can monitor simultaneous the variations of 
key index tests e.g. glucose, blood pressure, BMI, as well as the lipid levels. The complex RL 
agent can monitor the health status and suggest preventive suggestions by incorporating a 
more multifaceted reward function design that penalizes the occurrence of multiple diseases 
and considering treatment options such as metformin and ACE inhibitors. This direction would 
contribute to the advancement of holistic management for chronic diseases but also warrant a 
more sophisticated curated EHR data that aligns enough clinical lab tests for monitoring. 
 



To simulate a realistic lipid dynamic model for hosting the RL agent, our study undertook one of 
the most extensive and comprehensive investigations to date, exploring the intricate relationship 
between lipid levels, drug interventions, and screening practices in real clinical settings. Unlike 
previous studies in this field that primarily focused on randomized controlled trials33-37 of single 
drugs in small populations with similar risk profile, our study examines lipid dynamics across 
various LMDs using a large-scale, long-term observational approach. By adopting this 
approach, we were able to uncover significant patterns in lipid metabolism and treatment 
response, which bridged the gap between controlled trials and real-world lipid management. 
This comprehensive analysis provided a practical model for understanding lipid dynamics under 
the influence of different LMD types in real-world scenarios. Importantly, it offers clinicians and 
researchers a valuable resource to comprehend the dynamics and expected treatment efficacy 
over time, enabling informed decision-making when formulating lipid management strategies. 
 
Our research presents a practical approach to develop AI-based complex decision support 
systems using EHRs, which achieves both interpretability and accuracy in its design. In recent 
years, deep learning methods have gained prominence in healthcare AI applications38-40, being 
positioned as end-to-end solutions where the model takes in the original input and produces the 
output through a series of complex computations41. While this approach has shown comparable 
performance, it often lacks interpretability41. In medical applications, understanding the decision-
making process is as important as the outcome itself, particularly in scenarios without prior 
knowledge42. In contrast, we adopted a combination of classical approach to ensure the 
controllability of the intermediate steps. We employed a risk-based state representation and a 
model-based dynamic programming framework, enabling the development of transparent and 
interpretable AI solutions for sequential decision-making tasks. Furthermore, it turned out that 
the accurate representation of the patient's dynamic lipid environment further facilitated the 
exceling performance of our agent. Looking forward, we identify several promising avenues for 
future research. These include the collection and integration of informative yet unstructured 
features, such as genomic data, medical imaging, or clinical free-text notes. By incorporating 
these elements into our state definition, we anticipate a significant enhancement in the model's 
sensitivity and overall performance. In such scenarios, a separate deep learning component 
would be necessary to process and interpret these unstructured data sources41, while 
preserving the interpretability of the core decision-making process. 
 
Our study presents a fully evidence-based approach to clinical decision-making that can be 
integrated into routine patient care through multiple avenues. One primary application is the 
incorporation of our RL agent into clinical guidelines as a reference tool for clinicians, providing 
evidence-based recommendations to support decision-making processes. Looking ahead, we 
envision the potential for enhanced human-AI interaction within this framework43. In this 
scenario, the RL agent would offer an initial treatment recommendation, which the clinician 
could then review and comment on. The RL model would subsequently refine its 
recommendation based on clinician’s comments, creating a dynamic and responsive system. 
This interactive approach holds significant promise, particularly if coupled with a large corpus of 
clinical free-text notes as a training set. By utilizing advanced techniques in deep learning, such 
as sophisticated language models, there is potential to enhance the system's ability to interpret 



and respond to nuanced clinical feedback. Furthermore, our approach introduces a novel 
method for screening potential candidates for primary CVD prevention. Unlike traditional 
methods that rely on predefined thresholds6,7, our analysis is entirely based on long-term CVD 
prevention outcomes. This data-driven screening approach has the potential to identify at-risk 
individuals who might be overlooked by conventional criteria, thereby improving preventive care 
strategies. By providing these innovative tools and insights, our research aims to support 
clinicians in making more informed, personalized decisions while maintaining the critical role of 
human expertise in patient care. As these methods are refined and validated in clinical settings, 
they have the potential to significantly enhance the precision and effectiveness of CVD 
prevention and management strategies. 
 
The study would benefit from international validation. Although the model shows strong 
performance within our study population in Hong Kong, its applicability to diverse international 
settings remains to be established. However, the collection of data with enough granularity, 
dimensionality, and quantity for validation from different countries and healthcare systems would 
be highly challenging. If applied internationally, the model would likely require recalibration to 
account for differences in prescription patterns, healthcare delivery systems, and population 
characteristics across different regions. Before widespread adoption can be considered, 
prospective clinical trials are essential. 
 
Methods 
 
Study Design and Participants 
 
This study included patients who had utilized public healthcare services provided by the Hong 
Kong Hospital Authority (HA) since 2004. HA is the largest public healthcare provider in Hong 
Kong, offering government-subsidized primary, secondary, and tertiary care to all residents. It 
accounts for over 70% of all hospitalizations in Hong Kong24. Previous research has confirmed 
the reliability of the HA's data source which has been extensively used in multinational 
collaborative studies44, including research on CVD and CVD drug studies45, with a positive 
predictive value of 85% for myocardial infarction and 91% for stroke46.  
Two patient cohorts were identified based on their primary location of residence in Hong Kong: 
Hong Kong Island (Hong Kong West Cluster, HKWC) and Kowloon and New Territories. The 
Hong Kong Island (HKWC) cohort was utilized for model development, while the Kowloon and 
New Territories cohort served for model validation, ensuring there was no overlap between the 
development and validation groups. Specifically, the Hong Kong Island (Hong Kong West 
Cluster) cohort consisted of patients aged 18 or above who had undergone a lipid test at a 
hospital within the Hong Kong West Cluster between January 1, 2004, and December 31, 2019, 
as identified by the Hospital Authority. The Kowloon and New Territories cohort included 
patients aged 35 or above whose blood pressure was recorded in the Hospital Authority's 
database between January 1, 2005, and December 31, 2019. Patients who predominantly 
sought healthcare on Hong Kong Island and those without a lipid test record during the study 
period were excluded. The cohort entry date was defined as the date of their first lipid test in any 
inpatient or outpatient setting since 2004. Patients were censored at the earliest occurrence of 



the first recorded CVD diagnosis, registered death, or the study's end date (December 31, 
2019). Patients who experienced a CVD event before the first lipid test or who died on the same 
day as the test were excluded from the cohort. The primary outcome was the initial diagnosis of 
CVD, as defined by the International Classification of Diseases, Ninth Revision, Clinical 
Modification (ICD-9-CM) codes. The outcome was a composite measure encompassing 
coronary heart disease, ischemic or hemorrhagic stroke, peripheral artery disease, and 
congestive heart failure (see Supplementary Table 4). 
 
Patient trajectory selection and formalization 
 
To formalize patient trajectories, we defined states as the time steps of each lipid test and 
actions as the choice of LMD prescription between states. The trajectory consisted of repeated 
state-action pairs until reaching the cohort end date, with a final state indicating the occurrence 
of CVD within one year after the last state.  
 
State. We selected representative real-world patient trajectories by applying a filtration process. 
(1) We excluded patients with fewer than two lipid test records during the study period to ensure 
consecutive trajectories. (2) Considering clinical guidelines and common practice, we excluded 
trajectories with visit intervals of less than one month or more than two years to align with real-
world reliability. (3) Trajectories with incomplete lipid profiles (missing LDL-C, HDL-C, or 
triglyceride measurements) were excluded. Each patient state included a risk profile comprising 
90 features, such as disease history, laboratory test results, healthcare utilization, and 
medication count. Disease history encompassed any previous diseases recorded before the 
state, identified using ICD-9-CM codes (refer to Supplementary Table 5 for details). Laboratory 
test results were obtained on the same date as the state. Healthcare utilization was determined 
by the number of visits within one year prior to the state's date. Medication count referred to the 
number of different drugs with different British National Formulary (BNF) codes prescribed 
within one month prior to the state's date (refer to Supplementary Table 6 for different drugs 
identified). 
 
Action. Representing the actions, which involve the specific LMDs or combinations of LMDs 
taken by patients during each interval between two consecutive states, poses significant 
challenges. The task becomes even more demanding when attempting to identify a series of 
actions from a sequence of LMD records associated with lipid tests, as the prescribed 
medications and laboratory records often do not align perfectly. A typical scenario involves lipid 
tests occurring at the 0th, 3rd, 6th, and 18th months of a patient's trajectory, while a particular 
LMD is prescribed from the 3rd to the 9th month. In this case, the action for the first interval (0-3 
months) is clear, indicating no LMD was taken. The action for the second interval (3-6 months) 
is also evident, representing the specific LMD prescribed during that period. However, the third 
interval (6-18 months) presents ambiguity, as the prescription only covers (9 - 6) / (18 - 6) = 
25% of the interval. Determining whether to consider the third action as a continuation or 
discontinuation of the LMD becomes uncertain, and deciding whether to include trajectories with 
such ambiguous actions poses a challenging choice. The complexity further escalates when 
multiple types of LMDs need to be considered simultaneously. 



To prioritize representative and high-confidence trajectories, we implemented an empirical 
strategy consisting of the following steps: 
Calculating LMD Coverage. We calculated the coverage of LMDs for each interval between 
two consecutive lipid tests. For instance, if a patient had a total prescription of simvastatin 10mg 
covering half of a six-month interval, the coverage for simvastatin 10mg would be 50%. We 
performed this calculation for multiple types of LMDs recorded in the database, considering 
each interval within the patient trajectory. 
Excluding Ambiguous Trajectories. To ensure the quality of included trajectories, we 
considered any trajectory that had intervals with LMD coverage ranging from 1% to 50% as 
ambiguous in terms of drug continuation and discontinuation. Consequently, we excluded the 
entire trajectory if any intervals fell within this coverage range. If an interval had multiple LMDs 
prescribed with coverage above 50%, it was considered a combination of LMDs. Thus, we only 
considered trajectories that were unambiguous in terms of no drug, drug initiation, continuation, 
and discontinuation throughout their entire trajectory. 
Handling False Combination of LMDs. Consecutive intervals might exhibit false combinations 
of LMDs, e.g., representing early transitions between drugs where the prior prescription was 
long enough to cover the next interval by more than half. To mitigate these artifacts, we 
examined the prescriptions in the last interval of each patient trajectory, which are generally 
more stable as they approach the end. The set of prescriptions in the last interval was 
considered the final set of actions. We removed patient trajectories that had prescriptions not 
matching the defined set of actions. 
By following this approach, we were able to define patient actions in terms of LMD types, 
ensuring representative and reliable trajectories.  
 
Risk-based state representation 
 
In order to incorporate the overall CVD risk level into each state, we aimed to quantify the 
contribution of individual features within the states. To achieve this, we performed survival 
analysis on the development cohort, considering the start time of their last state until the 
observation of CVD occurrence. Initially, we conducted a robust feature selection process to 
identify significant features associated with CVD occurrence30. For statistical reliability and 
clinical relevance, we selected features without missing values (e.g., clinical laboratory tests) 
and an event rate above 1% (e.g., disease and medication history). The Cox proportional 
hazards model (CPH)47 with least absolute shrinkage and selection operator (LASSO) 
regularization48 was employed to identify statistically significant features (p value < 0.05). The 
CPH model is widely used for survival analysis, and its regression coefficients can be 
interpreted as hazard ratios, facilitating better decision-making by clinicians. LASSO is a robust 
feature selection method that chooses a representative and independent set of features, 
ensuring reliability for downstream manual prioritization. The final set of features was also 
determined based on current clinical evidence to ensure comprehensiveness and relevance to 
CVD prognosis. Subsequently, we applied CPH with ridge regularization on the final feature set 
to quantify the contribution of each identified feature to CVD occurrence. Ridge regularization, a 
widely used stabilizer of regression coefficients, provided reliable estimates of hazard ratios for 
the risk variables. The contribution of each feature was represented as the natural logarithm of 



the hazard ratio. The calculation details for the state number are provided in Extended Data Fig. 
2. The feature selection results are presented in Supplementary Tables 1-3. To assess the 
overall risk, we calculated a prognostic index (PI) for each patient by summing the contributions 
of individual features. The PI allowed us to unify the overall risk of different patients on the same 
scale. Next, we sorted the PIs of patients in the development cohort and divided them 
proportionally into clusters, with each cluster corresponding to a state number. Consequently, 
the state number now incorporates information about CVD risk, and its increase reflects an 
increasing CVD risk in an interpretable and transparent manner. It is important to note that the 
specific number of clusters (i.e., states) was determined through manual prioritization based on 
qualitative evaluation of the RL policy decision boundary during model development. We added 
200 to the state number to indicate states after the initiation of LMDs (ranging from 200 to 399), 
distinguishing them from states without prior LMD usage (ranging from 0 to 199). This state 
representation, which accurately captures the patient's overall CVD risk, enables the RL agent 
to make more informed decisions. Furthermore, an added advantage of this state representation 
is that actions considered within the same state number pool share a similar baseline CVD risk, 
which helps mitigate selection bias. Selection bias, a significant concern in retrospective 
studies, occurs when higher-risk patients are more likely to be prescribed high-intensity LMDs 
and may still experience a higher risk of CVD compared to low-risk patients using low-intensity 
LMDs. This approach also facilitated a direct comparison of the safety line for LDL-C. For 
example, by accounting for the coefficients of 0.43 for diabetes and 0.18 for LDL-C per unit 
increase, we can determine that patients with diabetes and an LDL-C level of 3 mmol/L have an 
approximate CVD risk similar to patients without diabetes but with an LDL-C level of 5 mmol/L.  
 
Formalization of the computational model 
 
We formulated the patient trajectory and treatment decision-making process as a Markov 
decision process (MDP)17. The MDP was defined by the tuple [S,	A,	T,	R,	γ], where: 
• S is a finite set of states representing the risk states of patients during their healthcare visits for 
lipid tests (as described in the previous section). 
• A is the finite set of available actions representing the chosen LMD and LMD combinations (as 
described in the previous section). 
• T(s'	|	s,	a) is the transition matrix, which determines the probability of transitioning from state s 
at time t to state s' at time t+1 given action a. We estimated the transition matrix by counting the 
observed transitions in the development cohort and converting the counts to a stochastic matrix. 
To enhance safety, we limited the set of actions to frequently observed choices made by 
clinicians, excluding transitions with fewer than twenty occurrences. This approach ensures that 
the RL policy will learn from treatment options with high safety23. 
• R(s',	s,	a) is the immediate reward received for a transition. Transitions to desirable states yield 
positive rewards, while reaching undesirable states incurs penalties. In our model, if s'	is the 
final state and the patient experiences no CVD occurrence within one year, a high positive 
reward is given; conversely, a high negative reward is assigned if CVD occurs23. For patient 
actions involving LMD, a small penalty is applied to account for potential side effects21. The 
specific penalty values were determined through manual prioritization based on qualitative 
evaluation of the RL policy decision boundary during model development. 
• γ is the discount factor, which accounts for the decreasing importance of future rewards 
compared to immediate rewards. The common practice of γ in healthcare applications typically 



ranges between 0.9 to 0.9919,20,22,23. We chose a γ value of 0.99, indicating that we assign 
nearly equal importance to late and early occurrences of rewards19,23. 
After defining and calculating the components of MDP, we employed policy iteration23,26, an 
offline model-based dynamic programming algorithm in RL. This algorithm learns a state-action 
value function Qπ, which quantifies the expected long-term reward of choosing an action in a 
given state, and a policy π that selects the action with the highest reward according to Qπ17. 
 
The policy iteration process began with a random policy and iteratively evaluated and improved 
it until convergence to an optimal solution49. 
1. Policy evaluation on the expected reward of policy 𝑉!(𝑠): 

𝑉!(𝑠) = 7 𝑇(𝑠"|𝑠, 𝑎)[𝑅(𝑠", 𝑠, 𝑎) + 𝛾𝑉!(𝑠′)]
#!∈%

 

2. Policy improvement on the state-action value function 𝑄!: 
𝑄!(𝑠, 𝑎) = 7 𝑇(𝑠"|𝑠, 𝑎)[𝑅(𝑠", 𝑠, 𝑎) + 𝛾𝑉!(𝑠′)]

#!∈%

 

𝜋(𝑠) = argmax
&∈'

𝑄!(𝑠) 

Until reaching the convergence of 𝜋(𝑠).  
 
Model validation 
 
We evaluated the policy value of the trained RL agent using a large independent validation time 
series dataset. To provide a comprehensive comparison, we introduced and evaluated two 
additional policies: the "no drug" policy, where the RL agent always chose not to prescribe any 
LMD, and the "random drug" policy, where the RL agent randomly selected an action from the 
available pool of actions. These policies served as baselines for comparison, allowing us to 
assess the performance of the RL agent against alternative decision-making strategies23. 
Calculation of policy value of clinicians’ policy. We utilized our validation cohort C	=	[Ji,	
i=1,2,…,n]. Each trajectory Ji	=	[(si,t,	ai,t,	ri,t),	t=1,2,…,τi] represented a sequence of transitions (si,t,	
ai,t,	ri,t,	si,t+1) from step t to step t+1, where τ denotes the trajectory length. Within each 
trajectory, si,t represented the current state, ai,t denoted the action taken, and ri,t represented the 
immediate reward. The policy value of the clinicians’ policy is: 

𝑉!" =
1
𝑛
77γ()*

+#

(,*

𝑟-,(

/

-,0

 

Off-policy evaluation using importance sampling. In order to ensure reliable estimates of the 
new policy's performance before its deployment in real-world clinical settings, we engaged in 
off-policy evaluation (OPE)17. This process aimed to evaluate the RL policy's performance using 
patient trajectories generated by the clinicians' policy, as observed in the validation dataset. 
Formally, within the context of OPE, we defined π0 as the behavior policy (the clinicians' policy) 
and π1 as the RL policy. To account for the discrepancy between these two policies and 
estimate their policy value, we employed importance sampling17,22. Importance sampling is a 
widely recognized method in RL policy estimation, allowing us to correct for the differences 
between π0 and π1 and obtain accurate estimates of their respective policy values. 
For trajectory i at time step t, the importance ratio is calculated as: 

𝜌-,( = 𝜋*(𝑎*,(/𝑠*,()/𝜋0(𝑎*,(/𝑠*,() 



The weight of the trajectory is: 
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And the estimated value of the RL policy is: 
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The same procedure was applied to the no drug policy and the random drug policy to estimate 
their policy value. 
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Fig. 1 | Overview of the study. Initially, a time series dataset of approximately 3.6 million treatment months was prepared for model 
development, encompassing an action space of 214 different types of lipid-modifying drugs (LMDs) and LMD combinations. Feature 
selection identified 10 key risk factors with quantified hazard ratios (HR) on cardiovascular disease (CVD) occurrence, which were 
integrated to represent patient states in a risk-based manner. The reward function penalizes unnecessary LMD treatments and final 
CVD occurrences, facilitating unconstrained exploration of optimal solution paths. Patient states, actions, and rewards were 
organized into transition matrix and fed into the reinforcement learning (RL) agent. Policy iteration, an offline model-based RL 
algorithm based on dynamic programming (DP), was chosen for its interpretability, stability, and guaranteed convergence to optimal 
solutions, making it particularly advantageous for high-risk applications like medicine. The RL agent was then validated using an 
independent cohort comprising approximately 30 million treatment months from 0.4 million patients. Validation results indicated that 
the RL agent exhibited superior performance compared to clinicians, with lower CVD risk observed as clinicians' actions aligned 
more closely with the RL agent's suggested actions. 
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Fig. 2 | Analysis of lipid dynamics shaped RL environment design. Patients' prior LMD usage had impact on future treatment 
effect on LDL-C reduction. As a result, the RL environment design distinguished four treatment categories: no LMD, stop LMD, 
continue LMD, and initiation of LMD. (a) The estimation of the LDL-C dynamics on three distinct scenarios: 1) patients who did not 
receive any LMD treatment (no LMD), 2) patients who initiated and continued LMD treatment (on LMD), and 3) patients who 
discontinued LMD treatment (stop LMD). Specifically, we selected patient trajectories that consistently followed the same actions 
during consecutive LDL-C tests over a period of up to 60 months. We calculated the population median of LDL-C levels for each 
quarter of observation time. The shaded area represents the standard error of the mean. (b) Distribution of treatment period duration 
across different treatment categories. The central line and the value indicate the median. The bottom and top edges of the box 
indicate the 25th and 75th percentiles, respectively. The whiskers extend to 1.5 times the interquartile range. (c-d) Median relative 
reduction of LDL-C based on different original LDL-C ranges, the most common 9 LMD types, and different treatment categories. 
Thicker shades of blue indicate a higher reduction rate, while thicker shades of orange indicate a higher increase rate. LDL-C levels 
were classified into six groups as indicated on the x-axis. "NA" indicates not applicable due to the absence of data points in that 
category. (e-g) Mean one-year CVD risk, mean LDL-C, and number of states across different risk states and different treatment 
categories. (h) Schematic illustration of the RL environment design. State numbers range from 0 to 199, representing risk states 
calculated for patients who had not taken LMDs before. After LMD initiation, state numbers are the original risk states plus 200, 
differentiating risk states influenced by prior LMD usage. Follow-up times were determined based on RL-suggested actions, using 
the median treatment period duration specific to each treatment category in (B). SIMV 10 = simvastatin 10mg. SIMV 20 = 
simvastatin 20mg. SIMV 40 = simvastatin 40mg. ATOR 10 = atorvastatin 10mg. ATOR 20 = atorvastatin 20mg. ATOR 40 = 
atorvastatin 40mg. ROSU 10 = rosuvastatin 10mg. ROSU 20 = rosuvastatin 20mg. EZET 10 = ezetimibe 10mg. 
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Fig. 3 | The RL agent policy demonstrated a comprehensive perspective on risk profile in specifying LMDs for patients 
compared to the clinician policy. (a) The population median values for continuous risk factors and event rates for dichotomized 
risk factors, (b) the distribution of state number in violin plots, and (c) the proportion of the target patients for whom the RL agent 
and clinician made different prescription choices. The treatments on the y-axis are sorted based on the median of the risk clusters in 
the RL agent policy. The medians in the violin plots are indicated by grey dots. LDL-C = low-density lipoprotein cholesterol. HDL-C = 
high-density lipoprotein cholesterol. DM = diabetes mellitus. AE = Accident and emergency visits within the last one year. Total Rx = 
concurrent medication records the number of drugs prescribed within one month. CKD = chronic kidney disease. AF = atrial 
fibrillation. HTN = hypertension. GEMF 300 = gemfibrozil 300mg. GEMF 600 = gemfibrozil 600mg. GEMF 300 and GEMF 600 were 
prescribed twice a day.  
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Fig. 4 | Model validation. The RL agent demonstrated superior accuracy in prescribing specific lipid-modifying drugs (LMDs) and 
determining the optimal time to initiate LMDs or stop LMDs. (a) The RL agent's policy value exceeded the clinician's policy as 
estimated by importance sampling. The clinician policy value was represented by the 95% upper bound, while the RL policy, random 
LMD policy, and no LMD policy were represented by the 95% lower bound, using bootstrapping with 1,000 resampling. (b) Patients 
whose last state matched the action suggested by the RL agent exhibited lower CVD risk. Actions with a minimum of 50 matched 
cases were selected for comparison to ensure statistical reliability. The error bars represent the 95% confidence interval. (c-f) The 
more actions the clinician aligned with the RL suggestion, the lower the CVD risk is. Specifically, higher CVD risk was observed in 
patients with higher early cessation, delayed initiation, and overall divergence. Only 8% of patients did not delay LMD treatment 
according to the RL agent’s estimation. The darkened lines in (d-e) represent smoothed results derived from the original 
consecutive bars. The unit in the x axis is the number of actions.  
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Extended Data Fig. 1 | Selection of high quality and high confidence patient state-action trajectories. *With mostly frequently 
visited healthcare utilization at Hong Kong Island; Hong Kong West Cluster is a part of Hong Kong Island. **We consider a complete 
LMD treatment as the total duration of the prescription by one LMD to cover as least half of the interval of one LDL-C test. ***We 
consider final state prescription to be reliable representation of real clinician prescription. Prescription records in the middle may 
represent the change of treatment plans which are unstable and may represent false combinations of LMD, which should be 
restricted. CVD = cardiovascular disease. LDL-C = low-density lipoprotein cholesterol. LMD = lipid-modifying drug. 
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Extended Data Fig. 2 | Risk-based state representation. CVD = cardiovascular disease. LASSO = least absolute shrinkage and 
selection operator. CPH = Cox proportional hazards model. LDL = low-density lipoprotein cholesterol. HDL = high-density lipoprotein 
cholesterol. DM = diabetes mellitus. AE = Accident and emergency visits within the last one year. Total Rx = concurrent medication 
records the number of drugs prescribed within one month. CKD = chronic kidney disease. AF = atrial fibrillation. HTN = 
hypertension. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6. PI-state mapping

State number comprehends 
the overall patient CVD risk

1. Materials

62,870 patients in the development cohort
90 features to be analyzed
Collect patient last states

Conduct survival analysis for outcome of CVD

2. Feature selection

P value < 0.05 in CPH with LASSO
No missing data in states
High event rate (>=1%)

Strong clinical evidence to CVD

3. 10 features representing patient CVD risk
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5. Quantization of 62,870 PI 
into 200 consecutive states

Individual PI



 
Extended Data Fig. 3 | Model calibration check indicated the association between high-return actions and reduced CVD 
risk. (left) Bin plot showed the distribution of average return of patient actions within each trajectory comparing patients with 
observed 1-year CVD occurrence (tagged CVD) and those without (tagged No CVD) in the development cohort. (right) The 
relationship between the return of each action and patient 1-year CVD risk at the end of the trajectory in the development cohort. 
Return of actions were sorted into 100 bins, and the mean observed mortality was computed in each bin. The light color shaded 
blue area represents the standard error of the mean. Return of action was estimated using the fitted state action value function Qπ, 
as illustrated in Methods. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Extended Data Table 1 | Description of datasets 

 
Development cohort 
(Hong Kong Island) 

Validation cohort 
(Kowloon and New Territories) 

Number of patients [n] 62,870 (100%) 454,361 (100%) 

CVD occurrence [n (%)] 7,862 (12.5%) 68,427 (15.1%) 

Number of state [median (IQR)] 4 (2-8) 6 (2-9) 

Treatment duration, months [median (IQR)] 43 (17-90) 58 (23-103) 

Age, years [median (IQR)] 64 (55-73) 65 (57-74) 

Female sex [n (%)] 34,097 (54.2%) 244,336 (53.8%) 

Disease history [n (%)]     

    Diabetes 18,546 (29.5%) 171,639 (37.8%) 

    Hypertension 35,665 (56.7%) 323,094 (71.1%) 

    Chronis kidney disease 8,625 (13.7%) 59,699 (13.1%) 

    Atrial fibrillation 1,856 (3.0%) 12,755 (2.8%) 

    Liver disease 2,978 (4.7%) 29,133 (6.4%) 

    Dyslipidemia 21,864 (34.8%) 215,156 (47.4%) 

    Severe mental illness 6,998 (11.1%) 52,565 (11.6%) 

    Cancer 5,919 (9.4%) 32,585 (7.2%) 

    Muscle pain, myopathy or rhabdomyolysis 15,819 (25.2%) 156,465 (34.4%) 

Lipid profile, mmol/L [median (IQR)]     

    Total cholesterol 4.5 (3.9-5.1) 4.6 (3.9-5.3) 

    HDL cholesterol 1.3 (1.1-1.6) 1.3 (1.1-1.6) 

    LDL cholesterol 2.5 (2.0-3.1) 2.5 (2.0-3.2) 

    Triglycerides 1.2 (0.9-1.6) 1.2 (0.9-1.7) 

Healthcare utilization     

    Accident and emergency [n (%)] 12,629 (20.1%) 119,278 (26.3%) 

    Inpatient [n (%)] 15,371 (24.5%) 97,806 (21.5%) 

    Specialist outpatient [n (%)] 42,327 (67.3%) 176,824 (38.9%) 

    General outpatient [n (%)] 36,244 (57.7%) 353,788 (77.9%) 

    Concurrent medication [median (IQR)] 1 (0-5) 3 (0-5) 

CVD = cardiovascular disease. IQR = interquartile range. Accident and emergency, inpatient, and outpatient indicated 
whether patient received the corresponding healthcare utilization at least once within one year. Concurrent medication 
records the number of non-lipid modifying drugs prescribed within one month. LDL = low-density lipoprotein. HDL = high-
density lipoprotein. 

 
 
 
 
 
 
 
 
 



Supplementary Table 1 | Summary of 90 variables in the development cohort 
Category (number) Covariates 

Disease history (41) 

injury and poisoning, chronic obstructive pulmonary disease, arrhythmia and conduction disorders, 
Huntington's disease, Down's syndrome, cardioversion, liver disease, dialysis, hypothyroidism, 
history of dyslipidemia, renal disease, defibrillator insertion, heart transplantation, cardiomyopathy, 
rheumatoid arthritis, severe mental illness, diabetes, oxygen therapy/ventilator/intubation, systemic 
lupus erythematosus, erectile dysfunction, hypertension, cancer, Creutzfeldt-Jakob disease, 
revascularization, obesity, smoker, nephrotic syndrome, pacemaker implantation, dementia, major 
organ bleeding, muscle pain, myopathy or rhabdomyolysis, cardiac wall/valve/shunt 
replacement/repairment, memory loss, mild cognitive impairment, thyroid disease, alcohol user, 
chronic kidney disease, atrial fibrillation, Parkinson's disease, asthma, migraine 

Demographics (2) age, sex 
Healthcare and medication 
count (5) accident and emergency, inpatient, specialist outpatient, general outpatient, concurrent medication 

Family disease history (2) diabetes, cardiovascular disease 

Laboratory tests (40) 

albumin, alkaline phosphatase, alanine aminotransferase, aspartate aminotransferase, basophil, 
bicarbonate, bilirubin, calcium, creatine kinase, creatinine, c-reactive protein, diastolic blood 
pressure, estimated glomerular filtration rate, eosinophil, erythrocyte sedimentation rate, fasting 
glucose, hemoglobin, glycated hemoglobin, international normalized ratio, lymphocyte, monocyte, 
neutrophil, blood pH, platelet, partial pressure of oxygen, potassium, prothrombin time, red blood 
cell, systolic blood pressure, sodium, free thyroxine, troponin I, troponin T, thyroid stimulating 
hormone, white blood cell, total cholesterol, high-density lipoprotein cholesterol, low-density 
lipoprotein cholesterol, triglycerides, body mass index 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 2| Results of feature selection using LASSO 
Variables P value HR (95% CI) Log(HR) (95% CI) 
inpatient 0.309 1.002 (0.998, 1.006) 0.002 (-0.002, 0.006) 
specialist outpatient 0.000 1.022 (1.018, 1.026) 0.022 (0.018, 0.026) 
general outpatient 0.995 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
concurrent medication 0.000 1.077 (1.071, 1.082) 0.074 (0.069, 0.079) 
injury and poisoning 0.998 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
chronic obstructive pulmonary disease 0.999 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
arrhythmia and conduction disorders 0.996 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
liver disease 0.997 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
dialysis 0.000 1.642 (1.452, 1.857) 0.496 (0.373, 0.619) 
renal disease 0.995 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
rheumatoid arthritis 0.995 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
severe mental illness 0.996 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
oxygen therapy/ventilator/intubation 1.000 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
systemic lupus erythematosus 0.998 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
cancer 0.995 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
obesity 0.997 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
smoker 0.999 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
dementia 0.995 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
muscle pain, myopathy or rhabdomyolysis 0.995 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
thyroid disease 0.998 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
atrial fibrillation 0.995 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
asthma 0.997 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
low-density lipoprotein cholesterol 0.000 1.057 (1.035, 1.079) 0.055 (0.035, 0.076) 
accident and emergency 0.127 1.011 (0.997, 1.026) 0.011 (-0.003, 0.026) 
age 0.000 1.023 (1.022, 1.024) 0.023 (0.021, 0.024) 
female 0.000 0.768 (0.742, 0.794) -0.264 (-0.299, -0.230) 
chronic kidney disease 0.000 1.105 (1.054, 1.158) 0.100 (0.052, 0.147) 
diabetes 0.000 1.190 (1.137, 1.244) 0.174 (0.129, 0.219) 
hypertension 0.000 1.096 (1.055, 1.138) 0.091 (0.054, 0.129) 
family history of diabetes 0.000 1.506 (1.425, 1.592) 0.410 (0.354, 0.465) 
high-density lipoprotein cholesterol 0.000 0.762 (0.730, 0.796) -0.271 (-0.315, -0.228) 
triglycerides 0.995 1.000 (1.000, 1.000) 0.000 (0.000, 0.000) 
Other 58 did not pass initial QC for LASSO because of either: 1) low event rate (<1%); 2) low data completeness. LASSO = least 
absolute shrinkage and selection operator. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 3 | Cox regression result on the 10 selected features 
covariate p value HR (95% CI) log(HR) (95% CI) 
age 0.000 1.023 (1.021, 1.024) 0.022 (0.021, 0.024) 
female 0.000 0.671 (0.650, 0.694) -0.399 (-0.432, -0.366) 
high-density lipoprotein cholesterol 0.000 0.677 (0.649, 0.707) -0.390 (-0.433, -0.347) 
low-density lipoprotein cholesterol 0.000 1.191 (1.169, 1.214) 0.175 (0.156, 0.194) 
accident and emergency 0.000 1.056 (1.046, 1.066) 0.054 (0.045, 0.064) 
concurrent medication 0.000 1.094 (1.089, 1.098) 0.089 (0.085, 0.094) 
chronic kidney disease 0.000 1.273 (1.221, 1.328) 0.242 (0.200, 0.284) 
atrial fibrillation 0.000 1.169 (1.090, 1.253) 0.156 (0.087, 0.226) 
hypertension 0.000 1.240 (1.197, 1.284) 0.215 (0.179, 0.250) 
diabetes 0.000 1.537 (1.483, 1.593) 0.430 (0.394, 0.466) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 4 | Definition of cardiovascular disease 
Diagnosis ICD-9-CM 
Peripheral artery disease 440, 443.9 
Coronary heart disease 410-414, 429.2, V45.81 

Stroke 430-432, 433.01, 433.11, 433.21, 433.31, 433.81, 433.91, 
434-436, 437.0, 437.1 

Congestive heart failure 428 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 5 | Definition of disease and symptoms 
Disease/Symptoms ICD-9-CM 
Atrial fibrillation  427.3 

Renal disease  

403.01, 403.11, 403.91, 404.02, 404.03, 404.12, 404.13, 404.92, 
404.93, 580, 582, 583.0-583.7, 585-587, 588.0, 589, 590, 593.0-
593.2, 593.6, 593.8, 593.9, 599.7, 753.0-753.4, 966.1, V42.0, 
V45.1, V56 

Chronic kidney disease 585 
Dialysis  585.9, V56.0, V56.8, 39.95 
Diabetes  250 
Down’s syndrome  758.0 
Hypertension  401-405 
Arrhythmia and conduction disorders  426, 427 
Cardiomyopathy  425 
Angina  413 
Coronary artery bypass graft 414.04, V45.81 
Myocardial infarction 410 
Dyslipidemia  272 
Thyroid disease  240-244 
Liver disease  570-573 
Migraine  346 
Nephrotic syndrome  581 
Rheumatoid arthritis  446.5, 710.0-710.4, 714.0-714.3, 725 
Several mental illnesses  290-319 
Systemic lupus erythematosus  710.0 
Obesity  278 
Dementia  290, 291, 292.82, 294, 331 
Chronic obstructive pulmonary disease 490-492, 494, 496 
Asthma  493 

Alcohol use 265.2, 291, 303, 305.0, 357.5, 425.5, 535.3, 571.0- 571.3, 
980, V11.3 

Smoker  305.1, V15.82, V15.83, 649.0 
Cancer  140-209, 230-239 
Pacemaker implantation  37.7, 37.8 
Defibrillator insertion  37.94-37.98 
Cardioversion  99.61 
Cardiac wall/valve/shunt replacement/repairment 39.0-39.2 
Echocardiography  37.28 
Heart transplantation  37.51 
Oxygen therapy/ventilator/intubation 00.49, 93.90, 96.01-96.05, 96.7 
Erectile dysfunction 607.84 
Major organ bleeding  578.0, 578.1 
Muscle pain, myopathy, or rhabdomyolysis 728.8, 729.9, 791.3, 781.99 
Injury and poisoning  800-989 
Parkinson’s disease  332 
Huntington’s disease  333.4 
Mild cognitive impairment  331.83 
Memory loss  780.93 
Creutzfeldt-Jakob disease  046.1 
Hypothyroidism 243-244 

 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Table 6 | Definition of drugs 
Drug class  BNF chapter 
Corticosteroids  1.5.2, 1.7.2, 3.2, 6.3, 8.2.2,10.1.2, 11.4.1, 13.4 
H2-receptor antagonists 1.3.1 
Proton-pump inhibitors 1.3.5 
Anti-arrhythmic drugs  2.3.2 
Psychotropic drugs  4.1, 4.2, 4.3, 4.4 
Antihypertensive drugs 2.2, 2.4, 2.5.1, 2.5.2, 2.5.4, 2.5.5, 2.6.2 
Anticoagulants 2.8.1, 2.8.2 
Antiplatelet drugs  2.9 
Antidiabetic drugs  6.1.1.1, 6.1.1.2, 6.1.2.1, 6.1.2.2, 6.1.2.3 
Lipid-modifying drugs 2.12 
Nicotine replacement therapy 4.10.2 
Oestrogen 6.4.1 
Testosterone 6.4.2 
Non-steroidal anti-inflammatory drugs 10.1.1 
Thyroid hormones 6.2.1 
Antithyroid drugs 6.2.2 

 
 
 


