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Abstract 32 

This dataset provides the first fully annotated, openly available MRI-based imaging 33 

dataset for investigations of tongue musculature, including multi-contrast and multi-34 

site MRI data from non-disease participants. The present dataset includes 47 35 

participants collated from three studies: BeLong (four participants; T2-weighted 36 

images), EATT4MND (19 participants; T2-weighted images), and BMC (24 37 

participants; T1-weighted images). We provide automatically generated and manually 38 

corrected segmentation of five key tongue muscles: the superior longitudinal, 39 

combined transverse/vertical, genioglossus, and inferior longitudinal muscles. Other 40 

phenotypic measures, including age, sex, weight, height, and tongue muscle volume, 41 

are also available for use. This dataset will benefit researchers across domains 42 

interested in the structure and function of the tongue in health and disease. For 43 

instance, researchers can use this data to train new machine learning models for 44 

tongue segmentation, which can be leveraged for segmentation and tracking of 45 

different tongue muscles engaged in speech formation in health and disease. 46 

Altogether, this dataset provides the means to the scientific community for 47 

investigation of the intricate tongue musculature and its role in physiological processes 48 

and speech production in health and disease. 49 

Keywords 50 
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Background and Summary 52 

The human tongue is involved in many physiological processes1,2 and speech 53 

production3. The tongue plays a crucial role in the manipulation and recognition of 54 

food1 (e.g., food texture4), tasting2 and thermosensation5,6, breathing7, and speech3,8. 55 

This diverse set of functionalities characterises the tongue as both a motor and a 56 

sensory organ2. Moreover, to subserve these processes, different tongue muscles 57 

may compress and/or elongate, but the overall tissue volume is constant, i.e., the 58 

tongue is a muscular hydrostat7. The tongue is also implicated in neurodegenerative 59 

diseases9,10, developmental speech pathologies11, and sleep disorders12, proving to 60 

be a potential marker for a wide range of diseases that implicate tongue function 61 

during speech, food processing, and breathing. For example, studies have found 62 

diffuse T1-weighted hyperintensity of the tongue musculature in Amyotrophic Lateral 63 

Sclerosis (ALS) patients13,14 and reduced tongue volume in ALS patients with bulbar 64 

palsy15. Despite the potential of the measures of the tongue (e.g., morphometry and 65 

volume) as a biomarker, there exists no comprehensive annotated and publicly 66 

available MRI dataset to help inform understanding of tongue anatomy in health and 67 

in disease. We therefore introduce this critical resource that will enable the 68 

identification of new biomarkers and interventions. 69 

The tongue is comprised of anatomically distinguishable and interconnected intrinsic 70 

and extrinsic muscles16,17. The intrinsic muscles of the tongue both originate and insert 71 

within the tongue itself. There are four pairs of these intrinsic muscles: the superior 72 

longitudinal, inferior longitudinal, transverse, and vertical muscles. In contrast, the 73 

extrinsic muscles originate from structures outside the tongue, including the 74 

genioglossus, hyoglossus, styloglossus, and palatoglossus muscles. Each of these 75 

muscles can move the tongue in a particular direction7, but coordinated contractions 76 

of multiple muscles work together to enable movements like protrusion, retraction, and 77 

elevation of the tongue, as well as changing its shape and position during activities 78 

such as chewing and swallowing18.  79 

Magnetic resonance imaging (MRI) is an important non-invasive technique that allows 80 

for the imaging and identification of the intricate tongue musculature19. Accordingly, in 81 

our recent study20, we compiled a detailed guideline for the identification and 82 

segmentation of the superior longitudinal, transverse/vertical combined, genioglossus 83 

and inferior longitudinal muscles of the tongue. Although detailed manual annotation 84 
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was performed using T2-weighted (T2w) images—mostly from patients with motor 85 

neuron disease (MND)—where the contrast differences were clear across these 86 

different muscles, we developed a semi-automated segmentation pipeline for tongue 87 

segmentation of participants across different studies and MRI contrasts (T1-weighted 88 

(T1w) and T2-weighted images). Here we provide a subset of that data, i.e., the data 89 

from non-disease controls, to aid future research into the structure and function of the 90 

tongue in health and disease.  91 

This is the first openly available fully annotated MRI-based imaging data for tongue 92 

segmentation. This dataset includes structural MRI data (T2w and/or T1w) from non-93 

disease controls, with accompanying template space and demographic information, 94 

from three studies/scanners. Moreover, we provide automatically generated and 95 

manually corrected tongue segmentation labels, to aid segmentation model training in 96 

prospective studies. Finally, we also distribute an atlas generated with manually 97 

corrected segmentations to provide a more accurate model of tongue muscle location 98 

and size. This dataset will benefit researchers across domains interested in the 99 

structure and function of the tongue in health and disease. This data could aid machine 100 

learning model training for tongue segmentation, which can be leveraged for 101 

segmentation and tracking of different tongue muscle engagement in speech 102 

formation using high-speed real-time MRI (e.g., CINE)21,22. Similarly, these data can 103 

be used to inform longitudinal studies of disease progression, in which physiological 104 

functions of the tongue are implicated, e.g., bulbar onset ALS23. In sum, this new 105 

imaging/segmentation dataset of the human tongue provides the means to the 106 

scientific community for investigation of the intricate tongue musculature and its role 107 

in physiological processes and speech production in health and disease. Since the 108 

tongue is typically included in standard MRI scans of the brain and head/neck, the 109 

annotated data and atlas we provide here can serve as a helpful resource for analyzing 110 

both existing and future MRI datasets. 111 

Methods 112 

Participants 113 

The present dataset includes information from 47 non-diseases “healthy” participants 114 

(20 females, 25-80 years old) collated from three studies: The Biomarkers of Long 115 

surviving MND (BeLong; 4 participants), Exploring Appetite Targets and Therapies for 116 
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Motor Neurone Disease (EATT4MND;19 participants), and the Brain and Mind Centre 117 

Motor Neuron Disease neuroimaging database (BMC; 24 participants). Table 1 shows 118 

basic demographic information across studies. 119 

Ethics 120 

All studies were approved by their relevant Human Research Ethics Committees. 121 

Specifically, BeLong was approved by the University of Queensland HREC 122 

(2021/HE000975), EATT4MND was approved by the University of Queensland HREC 123 

and Royal Brisbane and Women's Hospital (RBWH) HRECs (HREC/17/QRBW/616), 124 

and Uniting Care Health Human Research Ethics Committee (#1801), and the BMC 125 

dataset was approved by the University of Sydney HREC (2021/283). All participants 126 

provided written and informed consent. 127 

Table 1. Demographic information. 128 

Study Number of individuals 

(number of females) 

Age range (years) Weight/Height 

availability 

BELong 4 (2) 25-74 Available 

EATT4MND 19 (5) 26-73 Available 

BMC 24 (13) 37-80 Not available 

 129 

Image acquisition 130 

BeLong. Data from the BeLong study were collected between 2020-2023 and include 131 

4 non-neurodegenerative healthy control (HC) participants. Control participants were 132 

recruited as a convenience sample of family, friends and colleagues of patients 133 

enrolled via the Motor Neurone Disease clinics at the Wesley Hospital and the RBWH. 134 

Imaging was performed at the University of Queensland, Centre for Advanced Imaging 135 

using a 3T Siemens Prisma (PrismaFit, Siemens Healthineers, Erlangen, Germany) 136 

using a 64-channel head and neck coil.  137 

Participants were imaged using a 3D SPACE T2w sequence for spinal cord imaging 138 

covering the tongue with an isotropic resolution of 0.8mm3. This sequence shows high 139 

contrast of the tongue and surrounding tissue and was acquired with the following 140 
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parameters: TR=1500ms, TE=120ms, TA=4m:02s, FA=120°, matrix size=256x320, 141 

and number of slices=64.  142 

EATT4MND. Participant information from the EATT4MND study has been described 143 

elsewhere24. Briefly, 24 HCs were imaged at the Herston Imaging Research Facility, 144 

of which 19 participants are included in our data repository. Control participants were 145 

recruited as in the BeLong study. Data were collected using a 3T Siemens Prisma 146 

(Siemens Healthcare, Erlangen, Germany). T2-weighted (T2w) scans were obtained 147 

from a 3D SPACE 1mm3 isotropic sequence with the following parameters: TR = 148 

5000ms, TE = 386ms, TI = 1800ms, TA = 5m:52s, matrix size =256x256 and number 149 

of slices=17624. 150 

BMC. Whole-brain imaging was performed using a 3T MRI scanner (GE MR750, 151 

DV29; 32-channel Nova head coil) at the Brain and Mind Centre (BMC), The University 152 

of Sydney, Australia. Imaging data from 25 HCs were collected, 24 participants are 153 

included in our repository. Healthy control participants were recruited via study 154 

advertisement flyers and word-of-mouth. All healthy participants were screened for 155 

medical history. Written consent was provided by all participants prior to 156 

commencement of any research activities. Coronal T1-weighted images were 157 

acquired using an 1mm3 isotropic MPRAGE sequence (parameters: TE = 2.3ms, TR 158 

= 6.2ms; TI = 500ms, FA = 12°; matrix size = 256x256; number of slices = 204, TA = 159 

5m 31s).  160 

Semi-automated tongue segmentation 161 

Stage 1 – Active learning. To generate annotated data for segmentation model 162 

training, we initially manually annotated the BeLong dataset T2w images from healthy 163 

controls and MND patients. Specifically, three tongue volumes from three scans were 164 

manually annotated by XZ (Medical Principal House Officer with three years medical 165 

experience). These initially labelled data have been used in conjunction with MONAI 166 

Label25 within the Slicer application26 available on Neurodesk27 to interactively 167 

annotate the BeLong study data and iteratively train a model for T2w MRI tongue 168 

muscle segmentation. MONAI Label is based on active learning, which is a strategy 169 

that starts off by training a segmentation model on limited annotated data, which is 170 

then used for selecting a new sample from a pool of unlabelled data that may be 171 

labelled to improve model’s performance in the next iteration of model training. In this 172 
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context, sample selection is based on the model’s uncertainty28. Using this framework, 173 

we trained a DynUNet model to segment five key tongue muscles: genioglossus, 174 

transverse and vertical muscles combined, superior longitudinal, and inferior 175 

longitudinal (Figure 1a), using default data augmentation strategies, including random 176 

flip and intensity scaling. In this iterative process, XZ, FLR (six years medical imaging 177 

experience), and TBS (ten years medical imaging experience) corrected and labelled 178 

9 additional scans with assistance from XY. 179 

 180 

Figure 1. Tongue segmentation method. a: Atlas generated with Joint Label Fusion showing 181 
the labelled muscles and overlaid on the BeLong dataset template using T2w data. b: The 182 
segmentation pipeline: we gathered unlabelled data from each study and applied one of the 183 
three semi- or automatic segmentation methods to obtain rough segmentations. We then 184 
selected the best outputs by visual inspection, and either manually corrected the labels and/or 185 
added these data to our training for further segmentation model retraining. We then repeated 186 
this procedure until all data were labelled.  187 

Stage 2 – Segmentation model training and inference on new datasets. After 188 

annotating and training on data from 12 individuals interactively and iteratively using 189 

MONAI Label, we used our own training implementation where data augmentation 190 

strategies were adjusted, and a new model was trained and used to predict tongue 191 

muscle segmentation on new unlabelled data. These initial predictions were further 192 

refined with manual correction (by FLR and TBS) and were leveraged with different 193 

approaches to speed up data annotation, including Joint Label Fusion (JLF)29 and test-194 

time adaptation (TTA)30,31. We performed a few iterations of model training and 195 

prediction on unlabelled data whenever we had more refined segmentations available. 196 
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This involved manually inspecting segmentations generated across all strategies and 197 

selecting the ones to be added to the training set in the next model training iteration 198 

(Figure 1b).  199 

Joint Label Fusion: JLF29 is a multi-atlas segmentation method that allows for 200 

combining a representative set of manually labelled datasets (or atlases) through data 201 

warping and weighted voting (label fusion). In detail, the technique involves non-202 

linearly registering the atlases to the input image, then assigning a segmentation label 203 

to each voxel based on intensity similarities. Here, we used the 12 manually labelled 204 

data from Stage 1, which included both HC and patients' data. We used the ANTs 205 

implementation of JLF32,33.The JLF atlas was used to estimate segmentation in 206 

unlabelled data through image registration or as a proxy (suboptimal segmentation) 207 

for segmentation model adaptation. 208 

Test-time adaptation: TTA refers to a strategy for improving deep learning model 209 

generalisability to new data that follows a different distribution than the original training 210 

data30,31. For example, a model pre-trained on T2w MRI data from the BeLong study 211 

performs poorly on data from different collection sites (EATT and Sydney) or of 212 

different contrast weightings (i.e. T1w). Here, we used TTA to adapt our previously 213 

pre-trained model using a model adapter (a smaller convolutional neural network 214 

prepended to the segmentation model), aiming to improve the predicted 215 

segmentations for T1w data and data from different studies. Note that only the 216 

parameters of the model adapter were trained while the segmentation model’s 217 

parameters were fixed to retain the segmentation knowledge learned from the BeLong 218 

dataset. Specifically, to guide model adaptation in a supervised fashion, we leverage 219 

a proxy (or suboptimal) segmentation that consists of the JLF atlas registered to each 220 

individual’s space. We performed instance-wise adaptation, i.e., the model adapter’s 221 

parameters were adapted (or trained) for each individual separately.  222 

Stage 3 – Final manual correction. Each of these approaches were used to grow 223 

the pool of annotated and manually corrected data for a new iteration of segmentation 224 

model training. We iteratively “bootstrapped” the best segmentation out of the three 225 

methodologies (using a pre-trained model, TTA, and JLF) to manually correct the 226 

segmentation if required (Figure 1b). The new labelled data were then used to train a 227 

new segmentation model for the following iteration. We repeated this process until all 228 
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data (HC and patient data) were segmented accurately, i.e., following segmentation 229 

landmarks according to our established method20. Our approach was intentionally 230 

multi-modal, as it was necessary to leverage the strengths of each method, given the 231 

variety of data (patient and control, different scanners, different MR contrasts). Finally, 232 

for the final release of HC data, FLR and TBS inspected, manually corrected, and 233 

smoothed all segmentations using a 1mm gaussian smoothing kernel across all labels 234 

independently.  235 

Data records 236 

This dataset is deposited in the Open Science Framework (OSF), a free and open 237 

platform to support open research. The data can be accessed through this link: 238 

https://osf.io/wt9fc/. The files are organized per study, as shown in Figure 2. 239 
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 240 

Figure 2. Summary of the dataset. The dataset is structured into distinct studies. For each 241 
study we provide either T1w or T2w images with corresponding segmentations, and a study 242 
template that can be used for new imaging data registration. We also provide an atlas 243 
generated with Joint Label Fusion and demographic information. 244 

Imaging data: Under each study directory are folders for cropped T1w or T2w data. 245 

Within those folders, anatomical images are found in the images folder and 246 

corresponding segmentations are found in the labels folder. Note that this data has 247 

been registered to study templates generated as described below. Finally, to protect 248 

the identity of the participants, we constrained the field of view of the anatomical data 249 

to the mouth by cropping out data from elsewhere. The same transformation was 250 

applied to the labels. 251 
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Also under each study directory is a folder for a template that can be used for 252 

registration of new imaging data, if required. These templates were generated using 253 

data from both HC and patients using antsMultivariateTemplateConstruction2.sh from 254 

ANTs32. Parameters were: 3 iterations using an affine template, 8 iterations using a 255 

refined SyN template at 0.25 gradient step, and 6 more iterations using refined SyN 256 

template at 0.15 gradient step.  257 

JLF atlas: We provide a JLF atlas generated with manually corrected segmentation 258 

from the BMC study, which can be found under the Atlas folder. The JLF atlas can be 259 

used to estimate segmentation in new unlabelled data through image registration, for 260 

example, using ANTs32 or the manual registration tool from ITK-SNAP34. Note that the 261 

provided atlas was generated with the final segmentations from the BMC study, i.e., it 262 

is not the same as the one described in the “Semi-automated tongue segmentation” 263 

section. The provided atlas was generated as described previously and with minimal 264 

manual correction of small mis-segmentations. 265 

Demographic information: This dataset also includes demographic information (age, 266 

weight, height, and sex) and is available under the Demographics folder. 267 

Technical validation 268 

The quality of anatomical data has been evaluated by estimating signal-to-noise ratio 269 

(SNR) and contrast-to-noise ratio (CNR). SNR was calculated by first defining a noise 270 

region outside the brain and skull and dividing the mean intensity within the whole 271 

tongue musculature by the standard deviation of the noise region. CNR was calculated 272 

by subtracting the mean intensity value of the first tissue class (Transverse/Vertical) 273 

by the second tissue class (Superior Longitudinal), then dividing the result by the 274 

standard deviation of the noise region. All data processing was conducted using 275 

Nibabel35 in Python.  Both measures are available in the demographic information 276 

spreadsheet. We performed a 3x1 ANOVA to test differences in SNR and CNR 277 

(independently) across datasets. A highly significant difference in the SNR was 278 

observed across datasets, F (2, 43) = 8.979, p < 0.001. Two-sample t-test revealed a 279 

significant difference in SNR between the EATT and Sydney datasets, with EATT 280 

showing higher SNR (64.36 vs. 23.08, p < 0.01). As for CNR, a near-significant 281 

difference across datasets was observed, F (2, 43) = 2.904, p = 0.0656, indicating a 282 

potential variation in contrast-to-noise ratio between datasets (mean CNR BeLong: 283 
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0.82, Sydney: 1.80, EATT: 4.23). We followed these with pairwise t-tests, which 284 

revealed a non-significant trend towards higher CNR in the EATT dataset compared 285 

to Sydney (p = 0.054). No follow up tests were conducted for BeLong due to sample 286 

size (three with successful calculation).  287 

We also performed ANOVAs to evaluate differences in age and muscle volumes 288 

across the three datasets. We found a significant difference in age of participants 289 

across dataset, F (2, 43) = 3.449, p < 0.05. The post-hoc pairwise t-tests (with 290 

Bonferroni adjustment) revealed no significant differences between the specific 291 

datasets, though the small sample size and high variability in BeLong is likely driving 292 

this result. Finally, we did not find significant differences in muscle volume across 293 

datasets (Figure 3a). With aggregated data from all datasets (Figure 3b), we 294 

determined the correlation (Pearson’s r) between pairs of muscle’s volumes (Figure 295 

3c), revealing different muscle volumes are generally well correlated with the 296 

exception of the genioglossus being less correlated with inferior longitudinal and 297 

transverse/vertical muscles. 298 
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 299 

Figure 3. Muscle volume distribution and correlation. a, Distributions of tongue muscles’ 300 

volumes across datasets. b, Distributions of tongue muscles’ volumes across all aggregated 301 

data. c, Pair-wise correlation among inferior longitudinal, genioglossus, superior longitudinal, 302 

and transverse/vertical muscles volumes using all data.  303 

Code availability 304 

All accompanying Python, R, and Bash source code is available on GitHub 305 

(https://github.com/thomshaw92/TongueSegMND). 306 
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