
 

 

Neuropsychiatric Symptoms and Blood Biomarkers for Detecting Mild Cognitive Impairment 

*The submission is a preprint. 

*The paper is under review at JAMA Network Open. 

 

Yi Jin Leow (PGDip)1, Zahinoor Ismail (MD, FRCPC)6,7, Seyed Ehsan Saffari (PhD)4, Gurveen Kaur 

Sandhu(PhD)1, Pricilia Tanoto (MSc)1, Faith Phemie Hui En Lee (BA)1, Smriti Ghildiyal (BA)1, 

Shan Yao Liew (BA)1, Gursimar Bhalla (BSc)1, Sim Xin Ying (BSc)1, Adnan Azam Mohammed 

(BEng)1, Ashwati Vipin(PhD)1, Chao Dang (MD, PhD)5, Nagaendran Kandiah (MD, FRCP)1,2,3,4 

1Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine, Nanyang 

Technological University, Singapore 
2Neuroscience and Mental Health Programme, Lee Kong Chian School of Medicine, Nanyang 

Technological University, Singapore 
3National Healthcare Group, Singapore 

4Duke-NUS Medical School, National University of Singapore, Singapore  
5The First Affiliated Hospital, Sun Yat-sen University, China 

6Hotchkiss Brain Institute, University of Calgary, Canada 
7University of Exeter Faculty of Health and Life Sciences and NIHR Exeter Biomedical Research 

Centre, Exeter UK 

 

Corresponding Author: Associate Professor Nagaendran Kandiah 

Address: Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Rd, 

Singapore 308232  

Tel: 65 65922653 

Email: nagaendran_kandiah@ntu.edu.sg 

 

Word count: 3466 words 

 

 



 

2 

 

 

 

Question: 

Do behavioral and blood-based biomarkers independently predict mild cognitive impairment (MCI) 

compared to cognitively normal (CN) individuals, and does their integration enhance predictive 

accuracy? 

Findings: 

In this cohort study of 678 participants, higher plasma GFAP and NfL levels, as well as elevated 

MBI-C-Mood and DASS-Depression scores, were significantly associated with MCI over CN status. 

A combined model integrating blood-based and behavioral markers demonstrated superior 

discriminatory power (AUC: 0.786) compared to models using behavioral (AUC: 0.593) or blood-

based (AUC: 0.697) biomarkers alone. 

Meaning: 

The integration of behavioral and blood-based biomarkers enhances the early detection of cognitive 

impairment, highlighting the roles of neuroinflammation and mood disturbances as key contributors to 

neurodegenerative processes. 
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Abstract 

Importance: Integrating behavioural assessments with blood-based biomarkers (BBM) could 

improve diagnostic accuracy for MCI linked to early-stage neurodegenerative disease (NDD). 

Objective: This study investigates the potential of combining neuropsychiatric symptoms (NPS) with 

BBM to enhance the differentiation between older adults with Mild Cognitive Impairment (MCI) and 

those with Normal Cognition (NC) in a multi-ethnic Southeast Asian cohort. 

Design, Setting, and Participants: This cross-sectional study analyzed baseline data from the 

Biomarkers and Cognition Study, Singapore(BIOCIS). Data from 678 participants (mean age = 59.16 

years, 39.50% males) with NC and MCI were included. 

Main Outcomes and Measures: Behavioral symptoms were assessed using the Mild Behavioral 

Impairment Checklist (MBI-C) and Depression, Anxiety, and Stress Scales (DASS). Blood samples 

were analyzed for amyloid-beta (Aβ40, Aβ42), phosphorylated Tau (p-tau181), neurofilament light 

(NfL) and glial fibrillary acidic protein (GFAP). Regression models adjusted for age, education, 

gender, cognitive status (CS) and APOE-ε4 status were used. Discriminative power was evaluated 

using the area under the curve (AUC) to assess the combined predictive accuracy of behavioral and 

biological markers for CS, i.e., MCI status over CN. 

Results: The study included MBI-C scores (total, interest, mood, control) and BBM levels (Aβ40, 

NfL, GFAP) were significantly higher in MCI group, compared to CN group. Elevated GFAP 

(OR:3.636, 95% CI:1.959, 6.751, p<0.001) and higher MBI-C-Mood scores (OR:2.614, 95% 

CI:1.538, 4.441, p<0.001) significantly increased the likelihood of MCI. The combined model, 

integrating NPS and BBM markers, showed strong discriminative ability for MCI (AUC = 0.786), 

with 64.7% sensitivity and 84.9% specificity at a threshold of 0.616, compared to NPS markers 

(AUC: 0.593) or BBM (AUC: 0.697) alone. 

Conclusions and Relevance: The combined use of BBM and NPS achieved optimal accuracy in 

distinguishing MCI from NC, with strong associations between GFAP, MBI-C Mood scores, and CS. 

These findings underscore neuroinflammation and mood disturbances as critical factors in early NDD, 

supporting the importance of dual-dimension screening strategies. Integrating NPS and BBM 

represents a novel and effective diagnostic approach for detection of MCI due to AD or other 

dementias. The integrated framework, leveraging both pathophysiological and neuropsychiatric 
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markers, facilitates earlier diagnosis, potentially improving clinical decision-making and enabling 

targeted disease-modifying therapies for individuals with neurodegenerative disorders.  

 

Introduction 

With the advancement of dementia treatments comes the responsibility to leverage 

biomarkers to identify cognitive impairment secondary to neurodegenerative disease (NDD) 

accurately at earlier stages. Plasma-derived and behavioural-biomarkers could play a crucial role for 

the early detection of NDD-related cognitive impairment, offering both accessibility and a holistic 

perspective on mechanistic and pathological changes, as well as observable symptoms, that occur 

during the onset of cognitive decline(CD). Current research demonstrates the value of blood-based 

biomarkers(BBM) in detection of NDD, enhancing traditional assessment tools such as 

neuropsychological assessments, positron emission tomography(PET) scans and neuroimaging. 

The integration of behavioral-biomarkers—especially those reflecting mood and personality 

changes—can add significant diagnostic precision for Alzheimer’s disease(AD) and related 

dementias. Neuropsychiatric symptoms(NPS) are non-cognitive, behavioral, or psychiatric symptoms 

that often accompany or precede CD1. A notable subset of NPS is Mild Behavioral Impairment(MBI), 

characterized by the later-life onset of persistent behavioral symptoms that represent change from 

baseline, which has emerged as a reliable predictor of CD and incident dementia2–4. The Mild 

Behavioral Impairment Checklist(MBI-C) was developed explicitly to measure MBI, and comprises 

five domains including decreased motivation, emotional dysregulation, impulse dyscontrol, social 

inappropriateness, and abnormal perception or thoughts5. Current research demonstrates that the MBI-

C effectively distinguishes NPS linked to to NDD from NPS related to psychiatric or stress-related 

etiologies, thereby enhancing dementia risk assessment6–8. Complementarily, the Depression, Anxiety, 

and Stress Scales(DASS) 9 provide a comprehensive evaluation of mood symptoms in dementia 

increasingly recognized as early indicators of CD10,11. Together, the MBI-C and DASS offer a holistic 

approach, capturing a broad spectrum of behavioural and psychological changes that correlates with 

cerebrospinal fluid(CSF)12, plasma biomarkers13,14, and cognitive impairment15,16. 

In parallel with behavioral assessments, BBM are transforming AD diagnosis by providing a 

minimally invasive and accessible alternative to traditional CSF and PET biomarkers17–21. Recent 

research shows that BBM achieve high accuracy in predicting clinical decline in individuals with mild 

cognitive impairment(MCI), highlighting their potential as early indicators22,23. A Swedish study 

confirmed that BBM targeting amyloid-beta and phosphorylated tau achieve diagnostic accuracy 

comparable to CSF and PET, with predictive values exceeding 90%, demonstrating their clinical 

utility in various care settings24. Compared to CSF biomarkers, BBM offer significant practical 
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advantages as they are highly scalable, less invasive and promote higher patient compliance. BBM are 

therefore more feasible for large-scale screening and triage in under-resourced settings, while 

facilitating the integration of anti-amyloid therapies into routine clinical practice25. 

Within the Amyloid, Tau, and Neurodegeneration(ATN) framework, amyloid-beta 42(Aβ42), 

amyloid-beta 40(Aβ40), and the Aβ42/Aβ40 ratio are key markers of amyloid plaque accumulation, a 

defining feature of AD pathology26,27. For tau pathology, phosphorylated Tau 181(p-tau181) serves as 

a marker for neurofibrillary tangles associated with AD progression 28–30. Additionally, Neurofilament 

light(NfL) provides insights into neuroaxonal damage, while Glial fibrillary acidic protein (GFAP) is 

associated with reactive astrogliosis and neuroinflammation31–33. Alongside these ATN biomarkers, 

genetic factors such Apolipoprotein E ε4(APOE4) genotype play a critical role in AD risk and 

biomarker expression. APOE4 is strongly linked to increased amyloid-beta accumulation and is one 

of the most significant genetic risk factors for late-onset AD. Notably, populations in Southeast Asia 

exhibit a lower prevalence of APOE4 compared to Western populations 34, potentially explaining 

differences in amyloid positivity, CD rates, and dementia types observed between these groups 35. 

Recently, the European Medicines Agency, stipulated that lecanemab could not be prescribed in 

APOE4 homozygotes, further supporting its importance 36. Together, these BBM and blood-based 

genetic factors provide a multifaceted view of neurodegeneration, offering deeper insights into CD 

and AD risk and progression. 

Given the capacity to capture diverse aspects of neurodegeneration, BBM hold significant 

potential for elucidating the relationship between behavioral symptoms and the progression of NDD.  

The link between NPS and BBMs is still emerging, with research to date yielding mixed results. For 

instance, in a large population-based study, no difference in AD risk was observed between APOE4 

carriers and non-carriers among Americans without baseline depression37. For amyloid-related 

biomarkers, amyloid-beta has been more extensively studied in relation to behavioral symptoms, 

particularly depression38. A study in Vienna reported that higher baseline plasma Aβ42 levels 

predicted incident depression and conversion to AD over five years39.  Similarly, the Rotterdam Study 

reported cross-sectional links between high Aβ40 and depressive symptoms in prodromal dementia, 

but longitudinally associated lower Aβ40 and Aβ42 with increased depression risk in elderly 

individuals without dementia, indicating a complex role of Aβ peptides in the etiology of depression40. 

For tau biomarkers, elevated plasma p-tau181 has been associated with NPS such as appetite changes 

and disinhibition41. Regarding neurodegeneration biomarkers, NfL has shown promise as a marker for 

multiple NPS, including aberrant motor behavior, anxiety, sleep disturbances and euphoria42. GFAP, 

another marker of neurodegeneration, has been associated with depression43.  

Focusing on MBI, characterized by late-life emergent and persistent NPS, findings 

consistently link it to key BBM in the ATN framework. For amyloid-related biomarkers, global MBI 
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status and MBI affective dysregulation demonstrated associations with amyloid-beta44. In terms of tau 

pathology, recent findings by Ghahremani13 indicate MBI correlates with elevated plasma p-tau181 

levels and a nearly fourfold increased risk of dementia, with higher baseline and longitudinal 

increases in p-tau181 in individuals with MBI compared to those without MBI. Additionally, 

Gonzalez�Bautista14 linked MBI domains, such as impulse dyscontrol and emotional dysregulation, 

to p-tau181 and metabolic biomarkers, implicating tau alongside metabolic disruption in preclinical 

and prodromal AD. In neurodegeneration, findings from the Alzheimer’s Disease Neuroimaging 

Initiative(ADNI) cohort revealed that in preclinical and prodromal samples, MBI and its interaction 

with time predict NfL changes, indicating MBI as an early marker of accelerated neurodegeneration 

and CD45. Collectively, these studies illustrates MBI's value as an early marker of AD pathology and 

dementia risk. 

The growing research on BBM, MBI, and NPS at early stages of CD underscores their 

potential for early disease detection. When combined, these markers offer a multifaceted approach to 

early diagnosis, capturing both pathobiological and psychological dimensions of dementia onset. 

Despite this prospect, a comprehensive study systematically combining these markers for detecting 

cognitive impairment has, to our knowledge, not yet been conducted. 

This study evaluates the predictive utility of BBM and behavioral-biomarkers in 

distinguishing persons with MCI from those with normal cognition. By systematically analyzing 

MBI-C, DASS and BBM in a multi-ethnic Southeast Asian cohort, we assess the combined value of 

these measures for higher diagnostic accuracy for MCI linked to NDD and to explore underlying 

mechanisms of cognitive impairment.  

 

 

 

 

 

 

 

 

 

 



 

7 

 

 

 

Methods 

Participants 

Participants were drawn from the Biomarkers and Cognition Study, Singapore(BIOCIS), a 5-

year longitudinal study with annual assessments. Recruitment is community-based, targeting 

individuals aged 30 to 95 years in Singapore. To explore how pathology presents with or without 

minimal clinical symptoms, both cognitively impaired and unimpaired individuals are included. 

Participants were classified as Cognitively Normal(CN) or as having MCI based on Peterson’s46 

criteria and National Institute on Aging-Alzheimer’s Association(NIA-AA) guidelines47 after 

completion of a validated neuropsychological test battery. Further study design and methodological 

details are available in the BIOCIS protocol paper48. 

 

Blood based biomarkers  

Venepuncture was performed by a certified phlebotomist at baseline study visit. Blood 

samples were collected in EDTA vacutainers, left at room temperature for 30 minutes, then 

centrifuged at 2000 g for 10 minutes at 4°C. The resulting plasma was aliquoted and stored at –80°C. 

Genomic DNA was extracted from whole blood samples, collected into EDTA vacutainers(Becton 

Dickinson) using the QIAamp DNA Blood Maxi Kit(Qiagen). The concentration and purity of the 

DNA were assessed using a Nanodrop One spectrophotometer (Thermo Fisher Scientific, United 

Kingdom). DNA was analysed using either the StepOne plus or QuantStudio 7 Pro Real-Time 

Polymerase Chain Reaction analyser(Applied Biosystems) to determine the allelic variants of APOE. 

APOE genotypes were determined using SNPs rs429358 and rs7412(Life Technologies), as per 

manufacturer’s protocol, using a 96-well MicroAmp Fast(StepOne Plus)/Optical(Quanstudio) reaction 

plate(Life Technologies), with 10ng of DNA and either one of the 2 SNPs, in a 10ul TaqPath ProAmp 

master mix reaction(Applied Biosystems)49,50. Results were analysed using the Design and Analysis 

2.5.1 Real Time PCR system software(Applied Biosystems) and respective APOE genotype were 

rated independently by raters. Quanterix’s Single Molecule Array(Simoa) digital biomarker 

technology platform was used to quantify all plasma biomarkers(NfL, GFAP, Aβ40, Aβ42, p-

tau181)(Quanterix, Billerica, MA, USA). The Neurology 4-PlexE(NfL, GFAP, Aβ40, Aβ42) and p-

tau181 Advantage V2.1 kits were utilized for expression analysis on the HD-X Analyzer 

platform(Quanterix, Billerica, MA, USA) in accordance with manufacturer’s protocol51.  
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Behavioural profiles and Neuropsychiatric symptoms 

Self-reported questionnaires were administered including MBI-C and DASS. The MBI-C5 

evaluates MBI across five NPS domains: Mood/Anxiety, Apathy/Drive, Impulse Dyscontrol, Social 

Inappropriateness, and Abnormal Perception/Thought Content, with symptoms required to persist for 

at least six months and represent a change from longstanding baseline. The DASS9 assesses 

depression, anxiety, and stress over a one-week timeframe. 

 

Statistical Analyses 

Continuous variables were summarized using mean and standard deviation, while categorical 

variables were described using frequency and percentages. To address skewness, logarithmic 

transformations were applied to blood and behavioral data, with a constant of 1 added to continuous 

variables that included values below 1. Two independent sample t tests were employed to compare 

continuous variables between the CN and MCI groups. Categorical variables were compared between 

CN and MCI using Chi-square test.  

Logistic regression models were performed to investigate the association of baseline 

characteristics and cognitive diagnosis(MCI vs CN) while adjusting for age, years of education, 

gender and APOE status. The results were reported as odds ratio(OR), 95% confidence interval(CI), 

and p value. A dual-regression approach was implemented, consisting of two multivariable logistic 

regression models with cognitive status(MCI vs CN) as outcome. The first regression(Model 1), 

included behavioral parameters only as continuous variable predictors and the second(Model 2) 

included BBM only as continuous variables, both adjusted for demographic variables and APOE 

status. Within each model, a backward variable selection approach identified variables independently 

associated with cognitive diagnosis. Subsequently, the shortlisted variables from both models were 

included in a final multivariable logistic regression model(Combined Model), adjusted for 

demographic variables and APOE status. Further, overall discriminative power of the final model was 

assessed via area under the curve(AUC) analyses with model performance evaluated using Hosmer 

and Lemeshow lack-of-fit test. For all models, variance inflation factor statistics and independence of 

errors were utilized to confirm the absence of multi-collinearity among predictor variables.  

To further understand the association between behavioral parameters, cognitive diagnoses, 

and BBM, additional logistic regressions were implemented. Predictors were behavioural-biomarkers 

as continuous variables, adjusting for demographics, APOE status, and cognitive diagnosis (Model 4). 
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Outcomes were blood biomarker status(i.e., high vs low), based on dichotomization using a median 

split 52,53.   

All statistical analyses were conducted using IBM SPSS Statistics, Version 

29.0(Armonk,NY:IBM Corp.), with statistical significance set as p<0.05 unless otherwise specified. 

Results 

Demographics 

678 participants were recruited. The MCI group was older(p<.001) and had fewer years of 

education(p<0.001). For behavioral assessments, MBI-C-Total scores were higher in the MCI 

group(p=0.006), with significant differences in the interest (p=0.005), mood(p=0.005), and 

control(p=0.009) subdomains. Additionally, BBM analyses showed higher mean levels of Aβ40(p< 

0.001), NfL(p< 0.001), and GFAP(p< 0.001) in the MCI group compared to the CN. Table 1 

summarizes the BIOCIS demographic variables alongside behavioral and BBM data. 

 

 

Table 1. Participant demographics, behavioural phenotype, and blood biomarker levels by cognitive 

diagnosis 

Variable 
Total Cohort 

(n=678) 

Cognitively Normal 

(n=334) 

Mild Cognitive 

Impairment 

(n=344) 

p-value* 

Demographics     

Age (year) † 59.16 ± 11.02 54.89 ± 10.24 63.31 ± 10.14 < 0.001 

Gender (male) � 267 (39.50%) 126 (38.00%) 141 (41.00%) 0.432 

Education (years) † 14.76 ± 3.69 15.77 ± 3.33 13.78 ± 3.76 < 0.001 

Presence of APOE ε4 � 119 (17.70%) 54 (16.20%) 65 (19.00%) 0.471 

Mild Behavioural Impairment-Checklist 

Total† 2.18 ± 5.22 1.63 ± 3.66 2.73 ± 6.36 0.006 

Interest† 0.42 ± 1.30 0.28 ± 0.86 0.56 ± 1.61 0.005 

Mood† 0.60 ± 1.56 0.43 ± 1.26 0.76 ± 1.79 0.005 

Control† 0.72 ± 1.64 0.55 ± 1.22 0.89 ± 1.95 0.009 

Social† 0.20 ± 0.63 0.19 ± 0.58 0.21 ± 0.68 0.616 

Beliefs† 0.24 ± 3.08 0.17 ± 2.19 0.30 ± 3.75 0.587 

Depression Anxiety Stress Scales 

Depression† 3.41 ± 4.63 2.92 ± 4.23 3.88 ± 4.94 0.007 
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Anxiety† 4.00 ± 4.19 3.78 ± 4.08 4.22 ± 4.30 0.174 

Stress† 6.31 ± 5.92 6.21 ± 5.74 6.40 ± 6.10 0.671 

Blood biomarker     

Aβ42 (pg/mL)† 5.22 ± 2.27 5.10 ± 1.91 5.34 ± 2.57 0.167 

Aβ40 (pg/mL)† 78.76 ± 24.81 74.68 ± 23.28 82.73 ± 25.63 < 0.001 

Aβ42/40 (ratio)† 0.0672 ± 0.0241 0.0687 ± 0.0201 0.0658 ± 0.0274 0.110 

p-tau181 (pg/mL)† 18.67 ± 10.13 18.15 ± 11.86 19.16 ± 8.08 0.194 

p-tau181/Aβ42 (ratio)† 4.23 ± 3.13 4.19 ± 3.54 4.26 ± 2.69 0.780 

NfL (pg/mL)† 14.45 ± 8.73 12.18 ± 6.96 16.66 ± 9.67 < 0.001 

GFAP (pg/mL)†  84.90 ± 44.38 71.41 ± 32.29 98.00 ± 50.26 < 0.001 

Note.  † = mean ± Standard Deviation, � = Frequency (percentages) 

* Comparing the two groups using two-independent sample t-test (or Mann-Whitney U test, depends 

on normality) for continuous variables or Chi-square (or Fisher’s exact test, where appropriate) for 

categorical variables 

Abbreviations: APOE = Apolipoprotein E, Aβ = Amyloid Peptides, p-tau181 = Phosphorylated Tau at 

position 181, GFAP = Glial fibrillary acidic protein, NfL =Neurofilament Light Chain 

 

Behavioral and BBM as Independent Predictors of MCI Over CN 

Table 2 summarizes the results of the multivariable logistic regression analyses, detailing 

significant behavioral and blood-based predictors of MCI over CN. In the behavioural model(Model 

1), for each 1-point increase in the MBI-C-Mood subdomain, the odds of having MCI over being CN 

increased by approximately 59%(OR:1.587,95%CI:1.127–2.236,p=0.008). Similarly, for each 1-point 

increase in the DASS Depression score, the odds of MCI over CN increased by 

25%(OR:1.250,95%CI:1.013–1.542,p=0.037). In contrast, higher DASS-Stress scores were inversely 

associated with cognitive impairment, with each 1-point increase in DASS-Stress reducing the odds of 

MCI by 20%(OR:0.800,95%CI:0.660–0.970,p=0.023). The AUC for behavioral-markers alone was 

0.593(95%CI:0.55–0.636). 

Among BBM(Model 2), elevated NfL and GFAP levels were strongly associated with the 

likelihood of being classified as MCI over CN. Each unit increase in NfL corresponded to a 110% 

increase in MCI likelihood over CN(OR:2.096,95% CI:1.365–3.217,p=0.001). GFAP showed an even 

stronger association, with each unit increase raising the odds of MCI over CN by approximately 

199%(OR:2.987,95%CI:1.913–4.664,p<0.001).  
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Table 2. Multivariable Logistic Regression Analysis of Key Behavioral and Blood Biomarkers as 

Predictors of Cognitive Diagnosis 

Variable Odds Ratio 95% CI p-value 

Model 1 - Behavioural Biomarker 

MBI-C-Mood 1.587 (1.127, 2.236) 0.008 

DASS-Depression 1.250 (1.013, 1.542) 0.037 

DASS-Stress 0.800 (0.660, 0.970) 0.023 

Model 2 - Blood Biomarker 

NfL 2.096 (1.365, 3.217) 0.001 

GFAP 2.987 (1.913, 4.664) <0.001 

Abbreviations: MBI-C = Mild Behavioural Impairment-Checklist, DASS = Depression Anxiety Stress 

Scales, NfL =Neurofilament Light Chain, GFAP = Glial fibrillary acidic protein 

 

 

 

 

Combined Model of Predictive Value of Behavioral Scores and Blood Biomarker Levels for 

Cognitive Status 

 

In the behavioural and blood model(Combined Model), variables from Table 2(i.e.,variables 

from the Model 1 and 2 meeting statistical significance) were included along with demographics and 

APOE status as clinical confounders. Higher GFAP(OR:3.636,95%CI:1.959–6.751,p< 0.001) and 

MBI-C-Mood(OR:2.614,95%CI:1.538–4.441,p< 0.001) significantly increased the likelihood of MCI 

by 263.6% and 161.4% respectively.  The model AUC was 0.786(95%CI:0.744–0.827), surpassing 

separate models based on either behavioral-markers(AUC:0.593,95%CI:0.55–0.636) or 

BBM(AUC:0.697,95% CI:0.658–0.736).  At an optimal threshold of 0.616, the Combined model 

achieved 64.7% sensitivity and 84.9% specificity, demonstrating strong discriminatory ability in 

distinguishing between CN and MCI individuals(Figure 1). 
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Figure 1. Receiver Operating Characteristic (ROC) Curves Comparing Different Models for 

Distinguishing Between Cognitively Normal and Mild Cognitive Impairment Groups 

 

 

 

Behavioural and Cognitive Diagnoses in Association with Dichotomized BBM Levels 

For Model 4, with continuous behaviour scores as predictors and biomarker status as binary 

outcome, a higher MBI-C-Total score was significantly associated with odds of high Aβ42 

status(OR:1.437,95%CI:1.127–1.831,p=0.003). Specific MBI-C subdomains were significantly linked 

to likelihood of high Aβ42: MBI-C-Interest(OR:1.800,95%CI:1.139–2.845,p=0.012), MBI-C-Mood 

(OR:1.587,95% CI:1.068–2.359,p=0.022), and MBI-C-Control(OR:1.782,95%CI:1.242–

2.557,p=0.002). Higher DASS-Stress scores were significantly associated with likelihood of high 

Aβ40 levels (OR:1.252,95%CI:1.039–1.508,p=0.018). MBI-C-Total score was associated with 

likelihood of high p-tau181(OR:1.279,95%CI:1.001–1.634,p=0.049). Additionally, higher DASS-

Depression scores(OR:1.302,95%CI:1.061–1.598,p=0.012) and higher DASS-Stress scores 

(OR:1.238,95%CI:1.020–1.503,p=0.031) significantly increased the odds of high p-tau181. Lastly, 

higher DASS-Anxiety scores were marginally associated with probability of high GFAP 

levels(OR:1.260,95%CI:1.000–1.587,p=0.05). Table 3 presents a detailed summary of these results. 
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Table 3. Multivariate Logistic Regression Analysis of Behavioral-Biomarkers in Relation to Blood Biomarkers 

Variable Aβ42 Aβ40 Aβ42/40 p-tau181 p-tau181/Aβ42 Nf-L GFAP 

MBI-C Total 1.44 (1.13, 1.83)** 1.16 (0.92, 1.47) 1.15 (0.86, 1.53) 1.28 (1.001, 1.63)* 0.84 (0.66, 1.07) 0.83 (0.62, 1.12)† 1.08 (0.83, 1.39) 

MBI-C Interest 1.8 (1.14, 2.85)* 1.34 (0.87, 2.06) 1.21 (0.72, 2.02) 1.34 (0.86, 2.07) 0.78 (0.51, 1.20) 0.69 (0.40, 1.20) 1.16 (0.74, 1.83) 

MBI-C Mood 1.59 (1.07, 2.36)* 1.21 (0.82, 1.77) 1.43 (0.87, 2.34) 1.27 (0.85, 1.89) 0.82 (0.55, 1.20) 0.84 (0.52, 1.37) 1.32 (0.87, 1.99) 

MBI-C Control 1.78 (1.24, 2.56)** 1.34 (0.95, 1.88) 1.11 (0.74, 1.67) 1.37 (0.97, 1.94) 0.79 (0.56, 1.12) 0.84 (0.55, 1.28) 1.05 (0.73, 1.52) 

MBI-C Social 1.45 (0.68, 3.09) 1.37 (0.64, 2.90) 1.16 (0.46, 2.92) 1.45 (0.66, 3.16) 0.93 (0.44, 1.99) 0.87 (0.34, 2.25) 0.90 (0.40, 2.01) 

MBI-C Beliefs 0.68 (0.20, 2.26) 0.76 (0.22, 2.64) 3.01 (0.38, 23.6) 3.34 (0.91, 12.3) 1.26 (0.37, 4.35) 0.46 (0.08, 2.52) 0.97 (0.26, 3.67) 

DASS Depression 1.09 (0.90, 1.32) 1.22 (<1, 1.48) 1.18 (0.94, 1.50) 1.30 (1.06, 1.60)* 0.97 (0.80, 1.18) 0.83 (0.65, 1.06) 1.09 (0.88, 1.35) 

DASS Anxiety 1.17 (0.95, 1.44) 1.23 (<1, 1.52) 0.98 (0.76, 1.25) 1.13 (0.91, 1.41) 0.95 (0.77, 1.17) 0.93 (0.72, 1.20) 1.26 (<1, 1.59) 

DASS Stress 1.20 (1.004, 1.45)* 1.25 (1.04, 1.51)* 1.01 (0.81, 1.26) 1.24 (1.02, 1.50)* 0.98 (0.81, 1.18) 1.07 (0.86, 1.34) 1.04 (0.85, 1.27) 

Abbreviations: MBI-C = Mild Behavioural Impairment-Checklist, DASS = Depression Anxiety Stress Scales, p-tau181 = Phosphorylated Tau at position 181, 

NfL =Neurofilament Light Chain Aβ = Amyloid Peptides, GFAP = Glial fibrillary acidic protein  

† Odds ratio (95% CI), * p<0.05, ** p<0.005, significant p values are bolded.
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Discussion 

Integration of Biomarkers for Early Detection of Cognitive Impairment 

The results demonstrate that integrating blood-based and behavioral measures enhances 

prediction of MCI status compared to using either measure alone. Specifically, models that combine 

both BBM and behavioral data demonstrate the highest accuracy in identifying MCI status, with BBM 

alone outperforming behavioral measures when used in isolation. These findings present three key 

insights: behavioral measures contribute to cognitive status prediction and correlate with BBM, BBM 

alone serve as robust predictors of MCI, and the combined model provides superior predictive power 

over individual approaches. 

Behavioural-biomarkers as Indicators of MCI status 

Higher scores on the MBI-C-Total and subdomains—specifically Interest, Mood, and 

Control—were linked to increased likelihood of MCI. The robust association between mood 

disturbances and cognitive impairment is particularly compelling, as mood symptoms often precede 

CD and reflect underlying disruptions in neural circuits involved in emotional regulation54,55. 

Interestingly, lower DASS Stress scores were inversely associated with cognitive impairment, 

possibly because moderate stress enhances attention and memory, consistent with the Yerkes-Dodson 

law56. Collectively, these findings underscore that behavioral and mood-related symptoms may not 

only serve as early predictors but also actively contribute to the acceleration of CD. This assertion is 

well-supported by prior research on the prodromal stages of AD, which suggests early NPS play a 

significant role in modulating the disease’s trajectory57–59. 

Behavioural-Biomarkers as Early Indicators of Neurodegeneration 

Higher MBI-C scores were significantly associated with elevated Aβ42 levels, particularly 

within the subdomains of Interest, Mood, and Control, supporting the role of early behavioral 

disturbances as clinical indicators of amyloid-related pathology12,44,60,61. Moreover, higher DASS-

Stress scores were strongly associated with elevated Aβ40 levels, reinforcing evidence of an 

association between stress and amyloid pathology62,63. The inconsistent findings for Aβ42 and the 

Aβ42/Aβ40 ratio in our study and throughout literature highlight variability likely attributable to 

differences in study cohorts and methodological heterogeneity, underscoring the complexity of 

utilizing amyloid biomarkers for prediction of CD. 

Furthermore, elevated MBI-C Total scores, DASS-Depression and DASS-Stress scores were 

significantly linked to higher p-tau181 levels, aligning with emerging evidence that behavioral 
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symptoms may correlate with tau pathology12–14,64,65. This relationship illustrates the potential 

interplay between stress, depression, and tau-related neurodegeneration, which is critical for 

understanding the broader neuropathological mechanisms underlying CD. Finally, the marginal 

association between elevated GFAP levels and DASS-Anxiety scores suggests a tentative link 

between anxiety and neuroinflammatory processes, potentially reflecting glial activation in response 

to chronic psychological distress. 

Plasma Biomarkers and MCI status  

Our results demonstrate the potential of BBM to distinguish MCI from CN participants, 

reinforcing their value in early detection of AD and related cognitive disorders. 

Amyloid Pathology and Early Detection 

Although the Aβ42/40 ratio did not significantly differ between the CN and MCI groups, the 

elevated Aβ40 levels in MCI participants suggest early amyloid dysregulation. Aβ40, which is 

increasingly implicated in amyloid plaque formation and neurotoxicity, may serve as an early 

biomarker of amyloid pathology despite historically receiving less attention than Aβ4266. This pattern 

aligns with recent research indicating that Aβ40 elevations may precede Aβ42 changes67, supporting 

its potential as an early biomarker of amyloid-related pathology. 

Tau 

In contrast, p-tau181 did not differ significantly between cognitive groups nor predict MCI 

status. Although tau pathology is central to AD, plasma p-tau181 may have lower sensitivity to early 

cognitive impairment compared to markers of amyloid dysregulation or neuroinflammation68. This 

corresponds with recent findings that p-tau181 becomes more relevant in later AD stages as tau 

pathology accumulates in the medial temporal cortex and spreads to other cortical regions69,70.  

Neurodegeneration 

NfL emerged as a robust marker of neurodegeneration, strongly associated with MCI status. 

Its high sensitivity to axonal damage makes it valuable for detecting preclinical neurodegeneration 

and tracking the MCI-to-AD transition71–73. This study supports NfL’s role as a core biomarker for 

monitoring disease progression and evaluating neuroprotective therapies74. 
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Neuroinflammation 

The significant elevation of GFAP levels in MCI participants reinforces its role as a 

biomarker of neuroinflammation, specifically astrocytic activation75. Our results suggest that 

neuroinflammation, a key driver of AD pathology, may precede or exacerbate AD-related changes, 

contributing to CD via oxidative stress, cytokine release, and neuronal damage76,77. Detecting 

neuroinflammation through GFAP may enable early intervention strategies aimed at modulating these 

pathways before significant neuronal loss occurs. 

Enhanced Predictive Power through Integrated Models  

Our results show that integrating BBMs with behavioral assessments provides a 

comprehensive view of early pathological changes in CD, offering insights beyond traditional 

cognition-based models. The combined model demonstrated notably superior discriminative power 

(MCI vs. CN) compared to models using behavioral or BBM alone, emphasizing the value of 

capturing both pathobiological changes and NPS. Notably, GFAP and MBI-C Mood emerged as the 

most robust predictors of MCI, supporting addressing both neuroinflammatory processes and mood-

related symptoms in early detection strategies. 

 

The Role of Neuroinflammation and Behavioral Changes 

The prominent role of GFAP in our findings emphasizes neuroinflammation as a key process 

in early pathogenesis of AD and other dementias. Elevated GFAP levels, reflecting astrocytic 

activation, are increasingly recognized not only as markers of neurodegeneration but as contributors 

to disease progression via cytokine release and reactive gliosis, actively drive neuroinflammatory 

responses that exacerbate neuronal injury and accelerate CD78,79. Consequently, GFAP emerges as a 

critical biomarker for early detection, particularly in individuals with subtle cognitive changes at high 

risk for progression. 

The significant predictive value of MBI-C-Mood scores emphasizes the role of mood 

disturbances as early indicators of neurodegeneration. Rather than psychological consequences of 

cognitive impairment, mood disturbances may reflect underlying neuropathological changes80–82. The 

association between elevated mood scores, p-tau181, and GFAP links emotional dysregulation to 

biological markers of neurodegeneration, particularly in the prefrontal cortex and hippocampus—

regions vulnerable to early AD pathology83. These findings affirm the interplay between mood 

disturbances and the biological processes driving CD. 
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Limitations 

As with most studies, there are limitations.  The exclusion of participants with severe 

psychiatric diseases may limit the generalizability of our findings, as this group could provide crucial 

insights into early cognitive changes. Importantly, severity of psychiatric symptoms is often used as a 

proxy for psychiatric disorders, potentially overlooking neurodegeneration underlying some NPS. The 

cross-sectional design further restricts our ability to infer causality or track changes over time.  The 

relatively small sample size also limits statistical power and generalizability to larger populations. 

Future longitudinal studies, such as those planned within the expanded BIOCIS cohort, will be 

essential to validate these associations, elucidate temporal relationships between NPS, BBM and CD. 

Finally, translating these findings into clinical practice will require research focused on validating 

biomarker mechanisms, assessing predictive value for disease progression, and ensuring the 

scalability, cost-effectiveness, and accessibility of biomarker assays for real-world implementation. 

Conclusion 

This study accentuates the value of integrating biological markers with behavioural-

biomarkers to deepen our understanding of early neurodegeneration and CD. Elevated GFAP and 

MBI-C Mood scores emerged as robust indicators of cognitive impairment, spotlighting the vital roles 

of neuroinflammation and mood disturbances. This integrative approach holds significant potential to 

enhance early detection of cognitive impairment, refine intervention strategies for at-risk populations, 

and improve outcomes through timely intervention. 

The combination of self-reported MBI assessments with BBM provides enhanced diagnostic 

utility, enabling a more nuanced understanding of NDD progression. As precision medicine gains 

prominence, such integrative models can inform clinical decision-making and enable targeted disease-

modifying therapies for individuals with neurodegenerative disorders. By establishing a framework 

that incorporates NPS, MBI, and BBM into diagnostic protocols, this research supports targeted 

therapeutic interventions and has the potential to transform dementia diagnosis, monitoring, and care. 
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