It is made available under a CC-BY-NC-ND 4.0 International license .

1 Comprehensive Genetic Profiling of Sensorineural Hearing Loss Using an

2 Integrative Diagnostic Approach

- 3 Sang-Yeon Lee^{1,2,3,8}, Seungbok Lee^{2,4,8}, Seongyeol Park^{5,8}, Sung Ho Jung¹, Yejin
- 4 Yun¹, Won Hoon Choi¹, Ju Hyuen Cha¹, Hongseok Yun², Sangmoon Lee⁵, Myung-
- 5 Whan Suh¹, Moo Kyun Park¹, Jae-Jin Song⁶, Byung Yoon Choi⁶, Jun Ho Lee¹, Young
- 6 Seok Ju^{5,7}, June-Young Koh^{5,*}, Jong-Hee Chae^{2,4,*}
- ⁷ ¹ Department of Otorhinolaryngology, Seoul National University College of Medicine,
- 8 Seoul National University Hospital, Seoul, South Korea
- ⁹ ² Department of Genomic Medicine, Seoul National University Hospital, Seoul, South
- 10 Korea
- ³ Sensory Organ Research Institute, Seoul National University Medical Research
- 12 Center
- ⁴ Department of Pediatrics, Seoul National University College of Medicine, Seoul
- 14 National University Children's Hospital, Seoul, South Korea
- ¹⁵ Inocras Inc., San Diego, California, United States
- ⁶ Department of Otorhinolaryngology, Seoul National University College of Medicine,
- 17 Seoul National University Bundang Hospital, Seongnam, South Korea
- ¹⁸ ⁷ Graduate School of Medical Science and Engineering, Korea Advanced Institute of
- 19 Science and Technology, Daejeon, South Korea
- ⁸ These authors contributed equally to this work.
- 21

22 * Corresponding author

- 23 June-Young Koh
- 24 Inocras, Inc., 6330 Nancy Ridge Drive Suite 106, San Diego, CA 92121, United
- 25 States

- 26 Tel: +1-858-665-2120
- 27 E-mail: jy.koh@inocras.com
- 28
- 29 Jong-Hee Chae
- 30 Division of Pediatric Neurology, Department of Pediatrics,
- 31 Pediatric Clinical Neuroscience Center, Seoul National University Children's Hospital,
- 32 Seoul National University College of Medicine
- 33 101 Daehakro Jongno-gu, Seoul, South Korea 03080
- 34 Tel : +82-2-2072-3622; Fax : +82-2-7433455
- 35 E-mail: <u>chaeped1@snu.ac.kr</u>
- 36
- 37 Total number of words
- 38 Abstract (188), Main Text (3,756)

It is made available under a CC-BY-NC-ND 4.0 International license .

39 Abstract

40	Despite the advent of Next-Generation Sequencing (NGS), genetic diagnosis of
41	genetic disorders remains challenging, with diagnostic rates plateauing at
42	approximately 50%. We investigated sensorineural hearing loss (SNHL), a prevalent
43	sensory disorder with substantial genetic heterogeneity, through a comprehensive
44	genomic analysis of a homogeneous disease cohort. Leveraging 394 families (750
45	individuals), we implemented a systematic multi-tiered genomic approach
46	encompassing single-gene analysis to whole-genome sequencing (WGS), integrated
47	with functional assays and bioinformatic analysis. Our methodological framework
48	revealed a cumulative diagnostic yield of 55.6% (219 families), with automated WGS
49	bioinformatics pipeline uncovering an additional 20 families harboring pathogenic
50	variants, predominantly structural variants. Notably, comparative genomic analysis
51	unveiled a higher frequency of single pathogenic alleles in recessive genes within
52	our SNHL cohort relative to control populations. Subsequent deep intronic region
53	interrogation identified three pathogenic variants on the opposite allele,
54	substantiating the diagnostic utility of comprehensive genomic profiling. Through this
55	approach, we delineated a genome-phenome landscape of SNHL, elucidating
56	molecular signatures and establishing genotype-phenotype correlations at the inner
57	ear functional level. This study underscores the transformative potential of WGS as a
58	robust molecular diagnostic modality, advancing precision medicine paradigms in
59	genetic disease research.
60	Keywords: Sensorineural hearing loss; Whole-genome sequencing; Stepwise

61 genomic approach; Genotype-phenotype correlations

It is made available under a CC-BY-NC-ND 4.0 International license .

62 Introduction

63	Hearing is the primary sense used for human communication and an
64	important component in the development of language and music. Thus, hearing
65	impairment, the most common sensory deficit in humans, is a major public health
66	problem, affecting approximately 466 million people worldwide (World Health
67	Organization, https://who.int/news-room/fact-sheets/detail/deafness-and-hearing-
68	loss). Sensorineural hearing loss (SNHL)-i.e., defective sound signaling in the
69	auditory sensory system—can be caused by multiple etiologies, including genetic
70	causes, congenital infections, trauma, ototoxic medications, and autoimmune
71	disorders ¹ . Since the 2010s, advances in high-throughput next-generation
72	sequencing (NGS) technologies have facilitated extensive elucidation of the genetic
73	backgrounds of SNHL, with a focus on monogenic forms of deafness. Notably,
74	mouse genetics studies have helped reveal the physiological basis of SNHL in
75	humans and the associated molecular functions ² .
76	Despite growing recognition of the significance of genetic diagnosis of
77	SNHL, it remains challenging to identify a genetic diagnosis in SNHL with substantial
78	genetic heterogeneity ^{3,4} . NGS is increasingly favored for genetic diagnosis due to its
79	capacity for simultaneous large-scale genetic loci screening, and methods like
80	targeted panel sequencing (TPS) and whole-exome sequencing (WES) were widely
81	used in real-world practice ⁵⁻⁷ . In the literature, targeted sequencing for SNHL has
82	achieved diagnostic yields of between 12.7% and 64.3% ⁸⁻¹¹ . However, even after
83	exome sequencing, approximately 50% of cases remain genetically elusive.
84	As the cost of sequencing dramatically declines ¹² , the clinical application of
85	whole-genome sequencing (WGS) becomes more feasible, which has a higher

86 capability to detect a more diverse spectrum of genomic variants that had not

It is made available under a CC-BY-NC-ND 4.0 International license .

previously been captured by exome sequencing or other targeted approches^{13,14}. 87 88 Recent studies have shown the clinical utility of WGS for the genetic diagnosis of 89 several disorders and effectively shortening their diagnostic odyssey, increasingly considered as a first-line genetic test¹⁵⁻¹⁹. However, WGS is not yet widely applied in 90 91 routine clinical settings for diagnosing patients with rare diseases, including SNHL, 92 due to several limitations, such as the difficulties of rapid bioinformatic analysis and 93 accurate clinical interpretation. Additionally, although whole genomes are sequenced, 94 the analysis is often limited to in silico gene panels or the coding regions of the genome²⁰. 95

96 In the present study, we comprehensively explored the genetic landscape of 97 394 prospective SNHL families. Using a stepwise approach from single target gene 98 analysis to WGS, we evaluated the additional diagnostic value of WGS. We 99 implemented an automated WGS bioinformatics pipeline, integrating *in-house* 100 algorithms with manual curation by both otologists and medical geneticists. This 101 approach allowed comprehensive analysis of all variant types, and improved the 102 diagnostic yield for previously undiagnosed patients. Further analysis of deep 103 intronic regions identified novel pathogenic variants. These findings refined the 104 genotype-phenotype landscape of SNHL, revealing the gene signatures based on 105 phenotypes and identifying genotype-phenotype correlations at the level of inner ear 106 molecular functions. Our results demonstrate the clinical utility of an integrated 107 molecular diagnostic approach, including WGS, in real-world SNHL practice, paving 108 the way toward precision medicine.

109

It is made available under a CC-BY-NC-ND 4.0 International license .

110 Results

111 A stepwise approach of genetic testing for patients with SNHL

112	We conducted stepwise approach of genetic testing, sanger sequencing,
113	TPS, WES, mitochondrial DNA (mtDNA) sequencing, multiplex ligation-dependent
114	probe amplification (MLPA), and WGS, to prospectively recruited SNHL cohort (n of
115	probands = 394; n of participants including probands and their family members = 750;
116	Supplementary Table 1), including non-syndrome hearing loss (ns-SNHL; $n = 341$,
117	86.5%), and syndromic hearing loss (s-SNHL; $n = 53$, 13.5%). Genetic testing was
118	structured into five sequential steps (Fig. 1 and Supplementary Fig. 1a). In Step 1,
119	we screened 22 variants from 10 classical deafness genes (GJB2, SLC26A4,
120	TMPRSS3, CDH23, OTOF, TMC1, ATP1A3, MPZL2, COCH, and 12S rRNA). Among
121	cohort, ns-SNHL patients ($n = 341$) were initially subjected to Step 1 and the ns-
122	SNHL patients who remained undiagnosed after Step 1 ($n = 295$), and s-SNHL
123	patients ($n = 53$) were then subjected to the next steps (Steps 2-1 and 2-2). In Step
124	2-1, 99 and 249 patients with SNHL were subjected to TPS (including 246 genes)
125	and WES, respectively. After that, undiagnosed patients with suggestive clinical
126	features, including symmetric mild-to-moderate SNHL $(n = 51)^{21}$, apparent branchio-
127	oto-renal/branchio-otic (BOR/BO) syndrome $(n = 2)^{22}$, radiological evidence of
128	enlarged vestibular aqueduct (EVA) ($n = 1$), and suspicious mitochondria disorders
129	(n = 11) were subjected to Step 2-2, including MLPA methods $(n = 54)$ or mtDNA
130	panel sequencing ($n = 11$). In Step 3-1, among patients who remained undiagnosed,
131	all s-SNHL patients and a representative subset of ns-SNHL patients were selected
132	for WGS using a well-thought-out sample size estimation with a stratified sampling
133	approach (Supplementary Fig. 1b). For the remaining undiagnosed patients ($n =$
134	100), deep intronic regions of SNHL-related genes were screened to identify

It is made available under a CC-BY-NC-ND 4.0 International license .

135	additional pathogenic variants in Step 3-2. After stepwise genetic testing, patients
136	with suspected pathogenic genetic causes underwent subsequent bioinformatic
137	analyses and curation. Multidisciplinary molecular board meetings, comprising both
138	clinicians and genome scientists, were then conducted to confirm genetic diagnosis.
139	

Incremental improvement in diagnostic yield through stepwise genetic testing for SNHL

142 Through comprehensive genetic testing, we incrementally improved the 143 diagnostic yield in the cohort, identifying disease-causing variants in 219 families 144 (55.6%; Fig. 2a). Following the stepwise approach, in Step 1, we identified causal 145 variants in 46 out of 341 patients (diagnostic yield for Step 1: 13,5%; cumulative yield: 146 11.7%). In Step 2-1, causal variants were found in 124 out of 348 patients 147 (diagnostic yield for Step 2-1: 35.6%; cumulative yield: 43.1%), while Step 2-2 148 revealed causal variants in 26 out of 65 patients (diagnostic yield for Step 2-2: 40%; 149 cumulative yield: 49.7%). WGS was performed on 120 patients, identifying causal 150 variants in additional 23 probands (20 in Step 3-1 and 3 in Step 3-2; diagnostic yield 151 for Step 3: 19.2%; cumulative yield: 55.6%). Details of individual patients, including 152 the performed tests, diagnostic outcomes, and identified variants, are summarized in 153 Supplementary Table 2. 154 Multivariate analysis revealed that the rate of genetic diagnosis was higher 155 among patients with early identification of SNHL (adjusted odds ratio [OR], 1.32; 95% 156 confidence interval [CI], 1.11–1.57) and those with a family history (adjusted OR, 157 1.55; 95% CI, 1.31–1.82; Fig. 2b and Supplementary Table 3). Similarly, patients 158 with syndromic features were more likely to have identified genetic variants (adjusted

OR, 1.44; 95% CI, 1.17–1.70). In contrast, a lower rate of genetic diagnosis was

160	observed in patients with adult-onset SNHL (adjusted OR, 0.50; 95% CI, 0.35–0.68),
161	asymmetric hearing loss (adjusted OR, 0.38; 95% CI, 0.18–0.64), and interaural
162	asymmetry (adjusted OR, 0.43; 95% CI, 0.23–0.68). Additionally, in the context of
163	WGS, several features were associated with a higher likelihood of achieving a
164	genetic diagnosis (Fig. 2c and Supplementary Table 4). The multivariate analyses
165	suggested that genetic diagnosis was significantly related to the presence of
166	syndromic features (adjusted OR, 2.51; 95% CI, 1.15–5.04) and early identification
167	through a failed newborn hearing screening (NHS) (adjusted OR, 2.35; 95% CI,
168	1.13–4.97). In addition, the diagnostic yield significantly varied depending on the
169	WGS approach. Trio-based WGS had a higher likelihood of identifying causal
170	variants (adjusted OR, 3.71; 95% CI, 1.67–9.68), whereas singleton WGS was less
171	effective (adjusted OR, 0.32; 95% CI, 0.12–0.71).
172	Further, we conducted the correlation analysis between the frequencies of
173	causative variants among our cohort and population allele frequencies of the variants
174	from public databases, such as the gnomAD ²³ and KOVA ²⁴ (Korean Variant Archive:
175	Korean population database; Fig. 2d). We observed the strongest association with
176	East Asians compared to other ethnicity groups within gnomAD, and a notably higher
177	association with KOVA, suggesting that patient ethnicity should be considered in
178	variant discovery. We discovered three outlier variants (SLC12A3 p.Thr180Lys,
179	ESRRB p.Arg382Cys, and GJB2 p.Val37lle) when comparing the variant frequencies
180	with allele frequencies in KOVA (Fig. 2e). These variants have higher frequencies in
181	the Korean population than in diagnosed patients, suggesting either their low
182	penetrance features or the potential for functional pathogenicity despite its
183	particularly higher allele frequencies ²⁵ .
184	In conclusion, from Step 1 to Step 3-2, we identified the genetic causes of

185	SNHL in 219 out of 394 probands (55.6%), with 23 diagnoses made through WGS.
186	Among the identified variants, deep intronic variants ($n = 3$) and structural variants
187	(SVs) ($n = 11$) were predominantly detected through WGS, and 13 variants of
188	uncertain significance (VUS) required functional assays to validate their
189	pathogenicity (Fig. 2f).
190	
191	Comprehensive characterization of causative variants in SNHL
192	Using the genetic findings obtained through comprehensive stepwise
193	genetic tests, we illustrated a mutational landscape of SNHL. Collectively, 63 genes
194	were identified as disease-causing within 219 genetically diagnosed families (Fig. 3a
195	and Supplementary Fig. 2a). GJB2 was the most frequently affected gene (10.5%,
196	23/219), followed by five genes (SLC26A4, STRC, USH2A, CDH23, and MPZL2)
197	that were found in at least ten unrelated families (collectively >40% of all diagnosed
198	cases). Conversely, 29 SNHL-associated genes were detected from only one family
199	(collectively 13.2%; 29/219; Supplementary Fig. 2a), suggesting that many more
200	rare genes can cause SNHL. The inheritance patterns of the 63 genes included
201	autosomal recessive (26/63 genes; affecting 132 families; found double hits,
202	including homozygote and compound heterozygote variants), autosomal dominant
203	(33/63 genes; affecting 73 families; found single hit), X-linked (4/63 genes; affecting
204	6 families), and mitochondrial (3/63 genes; affecting 8 families) (Fig. 3a). Within our
205	cohort, three identified genes—TECTA, COL4A3, and WFS1—exhibited both
206	autosomal recessive and autosomal dominant inheritance traits. Moreover, one
207	patient exhibited dual genetic etiologies, inherited from their parents, harboring
208	compound heterozygous variants (c.299del:p.His100LeufsTer12 and
209	c.235del:p.Leu79CysfsTer3) in GJB2 and a heterozygous variant

It is made available under a CC-BY-NC-ND 4.0 International license .

210 (c.113G>A;p.Gly38Asp) in COCH.

211	Fig. 3b and Supplementary Fig. 2b display the mutational landscapes of
212	the 352 causative variants, including the variant type. Among the 352 identified
213	variants, we found missense variants (157, 44.6%), nonsense variants (51, 14.5%),
214	frameshift variants (63, 17.9%), and inframe variants (10, 2.8%) within the exome
215	region. Additionally, splicing variants (27, 7.7%), SVs (36, 10.2%), and mitochondrial
216	variants (8, 2.3%) were identified. Interestingly, we observed differences in the
217	distribution of variant types across genes. In particular, consistent with previous
218	reports, SVs accounted for (20/30, 66.7%) of the total variants in the STRC gene.
219	Among the 352 causative variants (190 when the same variants were
220	collapsed), 83 variants were novel (Fig. 3c). All of the 352 variants were either
221	pathogenic (P) or likely pathogenic (LP) according to the American College of
222	Medical Genetics and Genomics (ACMG) and Association for Molecular Pathology
223	(AMP) guidelines (Supplementary Table 5) ²⁶ . A variety of functional studies—
224	ranging from molecular modeling to minigene splicing assay—were performed to test
225	16 highly suggestive variants (Supplementary Table 6), leading to the
226	reclassification of 13 variants from "uncertain significance" to "likely pathogenic". An
227	analysis of the variant type distribution among the 83 novel variants revealed that
228	SVs, detected mostly through WGS, accounted for a much larger proportion (12.0%)
229	compared to previously reported variants (2.8%) (Fig. 3d). In addition, we observed
230	an increasing trend in the proportion of patients with novel variants as the steps
231	progressed from Step 1 to Step 3-2 (Fig. 3e).
232	Novel SVs identified from WGS include exonic deletions on SPATA5 and
233	CLCNKA-CLCNKB (Figs. 3f and 3g). In one patient (SNUH 799), WGS identified a

small SV (c.2227-3015_2354+1415del) exclusively involving exon 15 of SPATA5 (Fig.

It is made available under a CC-BY-NC-ND 4.0 International license .

235	3f), along with an <i>in trans</i> short frameshift deletion in exon 16 (c.2679_2680del).
236	Notably, consistent with a previous case report ²⁷ , this patient exhibited systemic
237	clinical manifestations, including bilateral moderately severe SNHL, intractable
238	epilepsy with diffuse brain atrophy, and global developmental delay (Supplementary
239	Fig. 3a). Next, we investigated the molecular consequences of the small SV (c.2227-
240	3015_2354+1415del) on SPATA5-dependent bioenergetics using Seahorse assays
241	(Supplementary Fig. 3b). The oxygen consumption rate (OCR) showed reduced
242	respiratory function in patient fibroblasts, with significant decreases observed in
243	basal respiration ($P < 0.001$), maximal respiration ($P < 0.001$), and ATP production (P
244	< 0.001) compared to control mother fibroblasts (Supplementary Fig. 3c). These
245	findings suggest that the small deletion in SPATA5 (c.2227-3015_2354+1415del)
246	contributes to impaired mitochondrial function leading to SNHL.

247

248 Advanced WGS approach revealed additional deep intronic variants

249 We sought to analyze the variant status of undiagnosed SNHL patients, 250 even after the automated WGS pipeline (Step 3-1 in Fig.1) had been performed. 251 Specifically, we examined the frequency of carriers for autosomal recessive SNHL-252 related genes (Supplementary Fig. 4a) in these undiagnosed patients and 253 compared it to the carrier status in control cohorts (HC1: patients with hepatocellular 254 carcinoma, n = 553, HC2: patients with breast cancer, n = 571; Fig. 4a). Throughout 255 the analysis, we focused on identifying candidate pathogenic variants in accordance 256 with ACMG guidelines (P/LP variants) and rare variants (minor allele frequency; MAF 257 < 1%) predicted to have a high impact. These included transcript ablation, splice 258 variants, start lost, stop gained/lost, frameshift variants, transcript amplification, 259 feature elongation/truncation, and exon-disrupting SVs or transposable elements

It is made available under a CC-BY-NC-ND 4.0 International license .

(TEs). Subsequently, for SNHL patients with a pathogenic variant on a single allele after Step 3-1, we concentrated on identifying additional pathogenic variants on the opposite allele in Step 3-2. Specifically, *in silico* splicing variant predictions were performed using SpliceAl²⁸ on intronic variants (MAF < 1%) identified in SNHL carriers. This approach aimed to detect potential splice-affecting variants that may have been overlooked in previous analyses.

266 The analysis revealed that the carrier rate for pathogenic variants in SNHL-267 related genes was significantly higher in the undiagnosed SNHL patient group 268 compared to the two control cohorts (Fig. 4b). Additionally, an evaluation of the MAF 269 of the identified candidate pathogenic variants showed that variants found in the 270 undiagnosed SNHL group were rarer than those in the control group (Fig. 4c). 271 Subsequent screening for deep intronic variants in undiagnosed SNHL patients 272 identified three *in trans* variants with SpliceAI prediction scores greater than 0.2. 273 These included deep intronic variants in USH2A (c.7120+1475A>G, c.14134-274 3169A>G, and c.4628-26037A>G), each found in different patients (SNUH 485, 275 SNUH 503, and SNUH 513, respectively; Fig. 4d and Supplementary Fig. 4b-c). To 276 evaluate their pathogenicity, minigene assays were designed with specific splice 277 donor (SD) and splice acceptor (SA) sites. The assays revealed that these variants 278 induce aberrant splicing that leads to the inclusion of pseudoexons of varying sizes: 279 267 bp for c.7120+1475A>G, 50 bp for c.14134-3169A>G, and 96 bp for c.4628-280 26037A>G (Fig. 4e-f). The resulting aberrant transcripts are predicted to contain 281 premature stop codons, leading to truncated, non-functional usherin protein (Fig. 4g). 282 Combined with first hits of the coding variant in this USH2A gene (c.10712C>T, 283 c.14835del, and coding deletion, respectively), these alleles of USH2A were 284 inactivated in these patients.

It is made available under a CC-BY-NC-ND 4.0 International license .

285

286 Genotype-phenotype correlations through molecular function-based gene

287 clustering

288 Based on the genetic diagnoses identified through comprehensive genetic 289 analysis, we investigate the relationship between the affected genes and clinical 290 manifestations. We found that causal genes of SNHL were closely linked to specific 291 clinical manifestations, with 22 genes contributing to clinical manifestations in \geq 3 292 families (**Supplementary Fig. 5a**). The genotype-phenotype map revealed a list of 293 SNHL genes that represent the major attributes of SNHL phenotypes, with over 50% 294 of affected patients harboring variants in the same gene (Supplementary Fig. 5b). 295 Although variants within the same causative gene can manifest allelic and clinical heterogeneity^{29,30}, information about signature genes associated with distinct clinical 296 297 phenotypes may aid in conducting in-depth genetic analyses within the highly 298 heterogenous genetic landscape of SNHL.

299 Based on these genotype-phenotype correlation, we further analyzed the 300 phenotypic heterogeneity of SNHL according to causal genes considering the 301 functions of the genes in the inner ear. The 63 SNHL-related genes were classified 302 into eight categories based on inner ear molecular functions (Fig. 5a and **Supplementary Fig. 5c**)³¹: (1) hair bundle development and function; (2) synaptic 303 304 transmission: (3) hair cell adhesion and maintenance; (4) cochlear ion homeostasis; 305 (5) transmembrane and extracellular matrix; (6) oxidative stress, autoinflammation, 306 and mitochondrial defect; and (7) transcriptional regulation. To evaluate the 307 relationships between genes across categories, we compared gene expression 308 patterns using publicly available transcriptome data from human inner ear organoids 309 and human cochlear and vestibular organs³². Comparative analysis of gene

It is made available under a CC-BY-NC-ND 4.0 International license .

expression patterns through perturbation testing revealed trends (P = 0.07) in

311 expression across gene categories (**Fig. 5b**).

312 Interestingly, post-hoc analysis revealed that four phenotypic attributes 313 (syndromic features, mixed hearing loss, and hearing loss onset) were significantly 314 associated with pathogenic variants in the categories (Figs. 5c-d and 315 Supplementary Table 7). Causal genes more prevalent among patients with 316 syndromic features (i.e., EYA1, SIX1, and MT-TL1) were significantly enriched in 317 categories 6 and 7. These findings were in line with the cell type specificities of the 318 genes, since genes in categories 6 and 7 are more broadly expressed in multiple 319 organs and cell types (Supplementary Fig. 6a). Genes associated with mixed type 320 manifestation (i.e., POU3F4, EYA1, and SIX1) were more prevalent in category 7 321 compared to in category 1 (P = 0.001). We speculate that the genes associated with 322 transcriptional regulation may affect the development of the second branchial arch of 323 the middle ear, and the third window of the inner ear, accounting for conductive 324 components of hearing loss. Furthermore, genes associated with early identification 325 of hearing loss onset were more predominant in category 4 compared to in category 326 3 (P=0.001). It is likely that major genes in category 4 (i.e., GJB2 and SLC26A4) or 327 their encoded proteins play a critical role during the embryonic stage of inner ear 328 development, whereas major genes in category 3 (i.e., MPZL2 and KCNQ4) or their 329 encoded proteins act primarily in postnatal period. Collectively, these data support 330 the development of a comprehensive genotype-phenotype map of SNHL, and shed 331 light on insights of previously undefined genotype-phenotype correlations.

It is made available under a CC-BY-NC-ND 4.0 International license .

332 Discussion

333 Unlike previous cohort studies limited by the heterogeneous nature of phenotypes^{33,34}, our present findings provide a robust estimate of diagnostic rates 334 335 through a stepwise genetic testing approach from single-gene analysis to WGS, 336 integrated with functional assays and bioinformatic analysis, in a relatively large 337 cohort of patients with a single phenotype of SNHL. Herein, we demonstrated an 338 additional diagnostic yield of 19.2% (23/120) through the systematic application of 339 WGS in previously undiagnosed SNHL patients who had undergone exome 340 sequencing and targeted assays. Specifically, even among undiagnosed SNHL 341 patients following an automated WGS pipeline (Step 3-1), we observed that the 342 frequency of genome-wide single pathogenic allele in known recessive deafness 343 genes was higher than in control cohorts. Based on these findings, we hypothesized 344 that this elevated frequency of single pathogenic alleles (43%) is less likely to be 345 incidental carrier variants and instead suggests the presence of a second, 346 undetected hit in the opposite allele. Consequently, through SpliceAI-based deep 347 intronic variants analysis (Step 3-2), we identified 3 meaningful deep intronic variants 348 among 100 patients, including three USH2A deep intronic variants confirmed to be 349 causative. These findings suggest the potential for further diagnosis of undiagnosed 350 cases through additional molecular diagnostic approaches, such as multi-omics and 351 methylation sequencing analyses, thereby accelerating the diagnostic process. 352 Supporting this, Lunke et al. have shown the potential of the integration of multi-omic 353 approaches into genomic testing, leading to additional diagnoses and changed critical care management³⁵. 354

We identified the genetic causes of SNHL in 55.6% of our cohort families, with WGS and SpliceAI-based deep intronic variants analysis increasing the overall

It is made available under a CC-BY-NC-ND 4.0 International license .

357 diagnostic yield by more than 5%. The improved diagnostic yield through WGS and 358 in-depth analysis has been made possible by screening regions that are challenging 359 to detect with conventional methods, primarily including deep intronic variants, small 360 SVs, copy-neutral inversions, and complex genomic rearrangements. Among the 23 361 families with additional diagnoses identified through WGS and in-depth analysis, 16 362 cases (69.6%) could be diagnosed through reanalysis of targeted sequencing data 363 and exome-based CNV algorithms. However, 7 (30.4%) of these cases required 364 genome sequencing for a definitive diagnosis. Our study further provides clinical 365 guidelines for selecting SNHL patients who are most likely to benefit from WGS. 366 WGS proved more effective for genetic completion in SNHL patients with early-onset 367 or syndromic features, regardless of audiological characteristics (e.g., severity and 368 configuration), with trio-based WGS providing higher diagnostic yield. 369 Genetic diagnosis of SNHL is helpful not only for understanding clinical 370 manifestations but also for planning treatment options. Genetic information could 371 serve as a guide to clinical phenotypes and their natural course, highlighting the 372 importance of WGS in identifying additional genetic causes in undiagnosed patients. 373 In detail, early identification of genetic causes may be necessary for detecting preclinical symptoms (e.g., ns-SNHL mimics)³⁰, and for providing reproductive 374 375 counseling, including guidance on next-baby planning and options for preimplantation genetic testing, even in cases of nonsyndromic hearing loss³⁶. 376 377 Although targeted agents based on genotype are not yet commonly established in 378 many human genetic disorders, there have been significant advances in personalized targeted therapy in recent years, including in the field of genetic 379 hearing loss³⁷⁻⁴¹. For example, three presently identified genomic variants in the 380 381 deep intronic region of USH2A are targetable by splice-switching antisense

It is made available under a CC-BY-NC-ND 4.0 International license .

382 oligonucleotide therapy (ASOs), offering an opportunity to slow down or even halt 383 disease progression in these patients. According to a framework for individualized splice-switching ASO therapy⁴², the USH2A deep intronic variants that induce 384 385 pseudoexon inclusion without disrupting cryptic splicing sites were highly amenable 386 to ASO splice modulation. Furthermore, in theory, a subset of SVs—such as the 387 EYA1 paracentric inversion (SNUH 734) and EYA1 complex genomic 388 rearrangements (SNUH 536) linked to haploinsufficiency detected in WGS—can be 389 corrected using CRISPR-based editing approaches, including Cas9 nuclease with paired gRNAs, CRISPR activation, and prime editing strategy⁴³⁻⁴⁵. The present study 390 391 provides good examples of the potential of inner ear precision medicine for SNHL 392 treatment, with broadened therapeutic targets identified through WGS and in-depth 393 analysis.

394 Our comprehensive genomic investigation further refined the genotype-395 phenotype landscape of SNHL, revealing gene signatures based on phenotypes. 396 The distribution of phenotype-based signature genes identified in this study largely 397 aligns with findings from exome-based SNHL cohort studies. While this genetic 398 information could support genetic diagnosis and provide a rationale for in-depth 399 analysis in the clinical setting, further studies with larger cohorts are essential to 400 establish more specific phenotype-genotype correlations that account for variant 401 effects (e.g., allelic hierarchy). Furthermore, we found that genotype-phenotype 402 correlations were also present at the level of the molecular pathways of the genes in 403 the inner ear. The inner ear molecular functions within distinct subcategories of 404 genetic hearing loss were found to correlate with the single-cell expression patterns 405 of identified deafness genes. This new framework of genetic hearing loss suggests 406 that genes within each functional class exhibit not only distinct inner ear molecular

407	functions but also relatively homogeneous spatial expression patterns in the cochlea.
408	Unlike traditional genotype-phenotype correlations, which are often limited by
409	specific ethnicities, genotypes, or phenotypes, the classification based on inner ear

- 410 molecular pathways expands beyond the current understanding of SNHL and
- 411 provides insights for predicting phenotypes associated with newly identified deafness
- 412 genes.
- 413 Collectively, our results provide evidence for the clinical utility of the
- 414 integrated diagnostic approaches, including WGS, in real-world SNHL practice to
- 415 fully recognize the genomic architectures and associated phenotypic attributes,
- 416 paving the way toward precision medicine to come.
- 417

It is made available under a CC-BY-NC-ND 4.0 International license .

418 Methods

419 Study cohort

420	In this study, we utilized a prospective research design and focused on
421	participants attending the Hereditary Hearing Loss Clinic within the
422	Otorhinolaryngology division of the Center for Rare Diseases, Seoul National
423	University Hospital, Korea, between March 2021 and February 2023 (Fig. 1).
424	Patients were not included if they were referred from other centers with confirmed
425	genetic diagnoses or diagnosed as conductive hearing loss. In total, our SNHL
426	cohort comprised 394 unrelated families and 750 individuals including probands,
427	who exhibited hearing loss with sensorineural components, and their family
428	members. The demographic data and clinical phenotypes were retrieved from the
429	electronic medical records. The onset of hearing loss was classified into three
430	distinct categories ⁴⁶ : early identification (i.e., congenital or prelingual deafness
431	identified through failed newborn hearing screening test), delay identification (i.e.,
432	pediatric-onset deafness occurring by age 18 that does not meet the criteria for early
433	identification, regardless of newborn hearing screening confirmation), and adult
434	identification (i.e., documented adult-onset hearing loss). The syndromic features of
435	the patients in the cohort were evaluated during their first outpatient clinic visit based
436	on their medical histories and/or features in their clinical manifestations. The
437	presence of associated medical conditions (e.g., syndromic hearing loss) was
438	determined using the Tenth Revision of the International Statistical Classification of
439	Diseases and Related Health Problems (ICD-10) codes. All procedures were
440	approved by the Institutional Review Board of Seoul National University Hospital (no.
441	IRB-H-0905-041-281 and IRB-H-2202-045-1298).

442

It is made available under a CC-BY-NC-ND 4.0 International license .

443 Audiological evaluation

444 Depending on the participant's age, the hearing thresholds for six different 445 octaves (0.25, 0.5, 1, 2, 4, and 8 kHz) were evaluated using pure-tone audiometry 446 (PTA)⁴⁷. For patients under 3 years of age or having neurodevelopmental delay, 447 auditory brainstem response threshold (ABRT) and auditory steady-state response 448 (ASSR) were used to gauge the thresholds at four-octave frequencies (0.5, 1, 2, and 449 4 kHz). The conductive components were evaluated using comprehensive tests, 450 including tympanic membrane examination, tympanometry (probe tones of 226 and 451 1000 Hz), and/or bone conduction ABRT, particularly in younger subjects. Auditory 452 profiles were retrieved—such as asymmetry, severity, configuration, and progression. 453 The mean hearing threshold was determined using an average of the thresholds at 454 0.5, 1, 2, and 4 kHz, and the degree of hearing loss was categorized as mild-to-455 moderate (21-40 dB or \leq 20 dB with high-frequency hearing loss), moderate-to-456 severe (41-70 dB, and severe-to-profound (\geq 71 dB) ⁴⁷. Audiogram configurations 457 were categorized into one of five subtypes: down-sloping (i.e., consistent downward 458 trend observed across 250, 500, 1000, 2000, and 4000 Hz frequencies, with an 459 average threshold at 250 and 500 Hz \leq 40 dB), ski-sloping (i.e., thresholds at 250 Hz 460 are \leq 25 dB, with a decrease of \geq 40 dB between 250–1 kHz or 500–2 kHz, or a 461 decrease of \geq 70 dB across 250–4 or 8 kHz), cookie-bite (i.e., U-shaped), up-sloping (i.e., rising), and flat (i.e., audiograms that does not fit down-sloping, ski-slope, 462 cookie-bite, or up-sloping configurations)⁴⁸. Asymmetric hearing loss was defined as 463 464 severe-to-profound hearing loss in the poorer ear, with an average hearing threshold 465 >30 dB HL and <55 dB HL in the better ear. The presence of interaural asymmetry (a 466 difference in average between the poorer ear and the better ear of 15 to less than 30 467 dB, and a difference in average between the poorer ear and the better ear of 30 or

It is made available under a CC-BY-NC-ND 4.0 International license .

468	more than 30 dB) was also assessed ⁴⁹ . To analyze hearing loss progression, serial
469	audiograms were used to retrieve the hearing threshold at all frequencies. Hearing
470	loss progression was assessed in cases with two or more audiograms documented
471	during the follow-up period, with at least a one-year interval between documentation.
472	Cases with only one audiogram or follow-up duration of less than 1-year were
473	classified as not available (i.e., N/A). Profound SNHL with thresholds ≥90 dB at 500
474	Hz was classified as not determined (i.e., N/D). Hearing loss progression in this
475	study was categorized as substantial (≥10 dB deterioration at three or more
476	frequencies), mild (≥5 dB deterioration at three or more frequencies or ≥10 dB
477	deterioration at one or two frequencies), and none (if neither substantial nor mild
478	criteria were met).
479	
480	Real-time polymerase chain reaction and GJB2 sequencing
481	Genomic DNA was extracted from peripheral blood samples utilizing the
482	Chemagic 360 instrument (Perkin Elmer, Baesweiler, Germany). Real-time
483	polymerase chain reaction (PCR) was performed using the U-TOP™ HL Genotyping
484	Kit Ver1 and Ver2, along with a CFX96 Real-Time PCR Detection System (Bio-Rad,
485	Hercules, CA, USA) ^{50,51} . This process was used to examine 22 pathogenic variants
486	across 10 deafness genes. The data collected from this procedure were analyzed
487	using Bio-Rad CFX manager v1.6 software. Variants were identified through the
488	fluorescence signals from the detection probes, which corresponded to the melting

- 490 manual. We additionally conducted sequencing of the GJB2 single gene, following a
- 491 previously described method⁵².

492

It is made available under a CC-BY-NC-ND 4.0 International license .

493 Targeted panel sequencing and whole-exome sequencing

494	We utilized TPS or WES to sequence the exonic regions of SNHL-related
495	genes. The target regions were captured using a SureSelect DNA targeted
496	sequencing panel for TPS, and a SureSelectXT Human All Exon V5 for WES (Agilent
497	Technologies, Santa Clara, CA, USA). A library was prepared following the
498	manufacturer's instructions, and was paired-end sequenced using a NovaSeq 6000
499	sequencing system (Illumina, San Diego, CA, USA).
500	Sequence reads were aligned to the human reference genome (GRCh38)
501	and processed according to the Genome Analysis Toolkit (GATK) best-practice
502	pipeline for calling single nucleotide variants (SNVs) and short insertions/deletions
503	(indels) ⁵³ . The ANNOVAR program was used for variant annotation, such as the
504	RefSeq gene set and Genome Aggregation Database (gnomAD) ^{23,54} . Rare non-silent
505	variants were selected as candidates, including nonsynonymous SNVs, coding
506	indels, and splicing variants. We also used the Korean Reference Genome Database
507	(KRGDB) and KOVA databases for further filtration of ethnic-specific variants ^{24,55} .
508	Additionally, the ClinVar and HGMD databases were screened to check whether
509	candidate variants had been previously identified in other patients ^{56,57} .
510	We classified candidate variants according to the ACMG-AMP guidelines
511	using the InterVar program ^{26,58} , and manually curated the classifications following the
512	modified guidelines for SNHL ⁵⁹ .
513	
514	Multiplex ligation-dependent probe amplification and mitochondria panel

515 sequencing

516 For individuals displaying non-syndromic, symmetric, mild-to-moderate 517 SNHL, we evaluated copy number variations (CNVs) using the SALSA MLPA

518 Probemix P461-B1 STRC-CATSPER2-OTOA (MRC-Hollan	d, Amsterdam,
---	---------------

		04					
519	Netherlands) ²	'. Additionally,	for patients	s showing ev	vidence of	EVA on terr	poral bone

- 520 CT and/or internal acoustic canal MRI and clinical features of BOR/BO syndrome,
- 521 we performed *SLC26A4* and *EYA1* MLPA tests, respectively, using the SALSA MLPA
- 522 Probemix P280-B4 SLC26A4 and the SALSA MLPA Probemix P153-B2 EYA1 (MRC-
- 523 Holland). We analyzed the amplification products using an ABI PRISM 3130 Genetic
- 524 Analyzer (Applied Biosystems, Foster City, CA, USA) and interpreted the results
- ⁵²⁵ using Gene Marker 1.91 software (SoftGenetics, State College, PA, USA).
- 526 For mitochondria panel sequencing, DNA was extracted from peripheral
- 527 blood samples using the Chemagic 360 instrument (Perkin Elmer, Baesweiler,
- 528 Germany). The complete human mitochondrial genome was amplified in two
- overlapping fragments: fragment I (spanning 9,289 bp), and fragment II (spanning
- 530 7,626 bp). Fragment 1 was amplified using the primer pair hmtF1 569 (5'-
- 531 AACCAAACCCCAAAGACACC-3') and hmtR1 9819 (5'-
- 532 GCCAATAATGACGTGAAGTCC-3'), and fragment II was amplified using the primer
- pair htmF2 9611 (5'-TCCCACTCCTAAACACATCC-3') and hmtR2 626 (5'-
- 534 TTTATGGGGTGATGTGAGCC-3')⁶⁰. PCR reactions were conducted using the
- following cycling parameters: initial denaturation at 94 °C for 2 min; 10 cycles of
- ⁵³⁶ 94 °C for 15 s, 65 °C for 30 s, and 68 °C for 5 min; 25 cycles of 94 °C for 15 s, 65 °C
- 537 for 30 s, and 68 °C for 5 min; and a final extension at 68 °C for 7 min. Subsequently,
- a library was generated using the Nextera DNA Flex Library Prep Kit (Illumina)
- 539 following the manufacturer's instructions. Paired-end sequencing was performed with
- the generation of 150-bp reads on the MiSeq platform (Illumina). Bioinformatic
- 541 processes, including alignment and annotation, were performed using NextGene
- 542 Version 2.4.0.1 (Softgenetics).

It is made available under a CC-BY-NC-ND 4.0 International license .

543

544	Selection of the target population for whole-genome sequencing
545	All patients with s-SNHL ($n = 21$) who remained undiagnosed after exome
546	sequencing and other techniques underwent WGS. Conversely, in patients with ns-
547	SNHL ($n = 177$) who remained undiagnosed, we determined the sample
548	representativeness for WGS. First, we estimated the sample size with a 7% margin
549	of error and a 95% CI. Second, we employed a probability sampling method,
550	specifically stratified sampling, considering a significant heterogeneity of SNHL
551	patients with respect to audiological characteristics. Relevant covariates, including
552	SNHL onset, severity, and asymmetry phenotypes, were used as criteria for
553	stratification. Thus, for the 177 undiagnosed ns-SNHL patients, a representative
554	validation was conducted, and WGS was ultimately performed on 99 families,
555	exceeding the required sample size of 94, which corresponds to a 7% margin of
556	error and a 95% CI. A representative sample was then obtained by randomly
557	sampling within each stratum. Chi-square tests were conducted to assess
558	differences across these strata. Overall, our methodology combines a well-thought-
559	out sample size estimation with a stratified sampling approach and proper statistical
560	validation, making it a robust approach for selecting a representative sample for
561	WGS in undiagnosed ns-SNHL patients.
562	
563	Library construction and automated analytic pipeline for whole-genome
564	sequencing

To obtain genomic DNA, peripheral blood samples were collected from
probands with or without their parents. The entire process of genome sequencing,
analysis, and interpretation was performed using the RareVision[™] system (Inocras,

It is made available under a CC-BY-NC-ND 4.0 International license .

568	San Diego, CA, USA). Genomic DNA was extracted from blood samples using the
569	Allprep DNA/RNA kits (Qiagen, Venlo, Netherlands). DNA libraries were prepared
570	using TruSeq DNA PCR-Free Library Prep Kits (Illumina) and sequenced on the
571	Illumina NovaSeq6000 platform with an average depth of coverage of 30x. The
572	obtained genome sequences were aligned to the human reference genome
573	(GRCh38) using the BWA-MEM algorithm. PCR duplicates were removed using
574	SAMBLASTER ⁶¹ . The initial mutation calling for base substitutions and short indels
575	was performed using HaplotypeCaller and Strelka2, respectively ⁶² . SVs were
576	identified using Delly. Variants were filtered, and their Mendelian inheritance patterns
577	were assessed. De novo mutations were detected, and their potential impacts were
578	predicted. The pathogenicity prediction was further enhanced by using in-house-
579	developed software that automatically integrates updated databases. The final
580	evaluation of variant pathogenicity was determined by medical geneticists,
581	considering the patient's phenotype and familial history.
582	
583	In vitro splicing analysis using minigene assay
584	Fragments carrying the USH2A intron 37 reduced to 916 bp containing
585	c.7120+1475A or c.7120+1475A>G, and intron 64 reduced to 845 bp containing
586	c.14135-3169A or c.14135-3169A>G, were amplified and cloned into the pSPL3
587	vector, between the exon splice donor (SD) and splice acceptor (SA), using the
588	EcoRI and NdeI restriction sites. Human epithelial kidney 293T (HEK293T) cells
589	were seeded in a six-well culture plate and incubated at $37 \square$ °C in a 5% CO ₂
590	atmosphere in Dulbecco's modified Eagle's medium (LM001-05; Welgene,
591	Gyeongsan, Korea) containing 10% fetal bovine serum (12483-020; Gibco, Carlsbad,

592 CA, USA), 100 units/mL penicillin/streptomycin (LS015-01; Welgene), and 2 mM L-

It is made available under a CC-BY-NC-ND 4.0 International license .

593	glutamine ((LS002-01; Weld	gene). On the	next day, the	cells were	transfected with 2

- ⁵⁹⁴ μg pSPL3 plasmid using Lipofectamine 3000 reagent (L3000001; Invitrogen,
- 595 Carlsbad, CA, USA), according to the manufacturer's guidelines. After 24 hours, the
- 596 cells were harvested, and the total RNA was extracted using TRIzol Reagent
- 597 (15596026; Invitrogen) and chloroform. From 1 µg RNA, cDNA was prepared by
- reverse transcription using the Accupower RT-preMix (K-2041; Bioneer, Daejeon,
- 599 Korea). Splicing analysis was performed by PCR amplification with Taq DNA
- Polymerase (E-2011-1; Bioneer) using the following vector-specific primers: SD6
- 601 (5 -TCTGAGTCACCTGGACAACC-3) and SA2 (5 -
- 602 ATCTCAGTGGTATTTGTGAGC-3].

603

604 Fibroblast cell culture

A skin biopsy was obtained from a donor under local anesthesia and preserved in Phosphate Buffered Saline (PBS). The biopsy was divided into 9-12 distinct segments and seeded into a 12-well plate containing DMEM supplemented with 20% FBS. Once the segments reached confluence, fibroblasts were harvested for further expansion.

610

611 Oxygen consumption rate

612 Cellular OCR was measured in real-time using the Seahorse XF96 613 Extracellular Flux Analyzer (Seahorse Bioscience, North Billerica, MA, USA) per the 614 manufacturer's protocol. Cells (8.0×10^{3} fibroblasts) were seeded in 100 µL of 615 growth medium in Seahorse 96-well microplates and incubated at 37 °C with 5% 616 CO2 for 24 hours. Prior to the assay, cells were washed with assay running media 617 (unbuffered DMEM supplemented with 25 mM glucose, 1 mM glutamine, and 1 mM

It is made available under a CC-BY-NC-ND 4.0 International license .

618	sodium pyruvate) and equilibrated in a non-CO2 incubator overnight. Calibration of
619	the assay plate was performed overnight in a non-CO2 incubator. Once calibrated,
620	the cell plate replaced the assay plate, and OCR was measured simultaneously. The
621	assay protocol involved sequential injection of four compounds to modulate
622	mitochondrial function and determine parameters such as basal respiration, maximal
623	respiration, and ATP production: oligomycin (1 μ M), an ATP synthase inhibitor for
624	maximal glycolytic metabolism; carbonyl cyanide p-(trifluoromethoxy)
625	phenylhydrazone (FCCP) (1 μ M), an ETC and OXPHOS uncoupler for peak oxygen
626	consumption and oxidative metabolism; rotenone and antimycin A (both at 1 $\mu\text{M}),$
627	inhibitors of ETC complexes I and III respectively, for non-mitochondrial respiration
628	assessment. The Seahorse analyzer recorded OCR values throughout the assay to
629	monitor cellular metabolic activity in real-time.
630	

631 Statistical analyses

632 We used the Pearson chi-square test to identify variables that could 633 potentially differentiate between the genetically diagnosed and undiagnosed groups. 634 Following the computation of the OR and 95% CI for each value, we conducted a 635 logistic regression analysis, considering only the variables with *P* values of <0.05. 636 This approach facilitated the derivation of the adjusted OR. We also classified the 63 637 SNHL-associated genes that were identified during this study based on the 638 molecular mechanisms of inner-ear function. To verify the variance between groups 639 according to clinical phenotypes, we used the Pearson chi-square test. Finally, we 640 used Fisher's exact test based on the false discovery rate (FDR) to identify 641 statistically significant groups characterized by an adjusted P value of <0.05. In this 642 study, we define variables exhibiting P values of <0.05 as statistically significant.

It is made available under a CC-BY-NC-ND 4.0 International license .

- 643 Statistical analyses and visualizations were conducted using R Version 4.2.2, and
- 644 the corresponding code can be accessed at <u>https://github.com/SNUH-</u>
- 645 <u>hEARgeneLab/WGS analysis</u>.
- 646
- 647 Data availability:
- The data generated in this study are available in the Source Data file, which
- 649 is provided with this paper.

650

It is made available under a CC-BY-NC-ND 4.0 International license .

651 References

- 652 Lieu, J. E. C., Kenna, M., Anne, S. & Davidson, L. Hearing Loss in Children: A 1 653 Review. JAMA 324, 2195-2205 (2020). 654 https://doi.org/10.1001/jama.2020.17647 655 Bowl, M. R. et al. A large scale hearing loss screen reveals an extensive 2 656 unexplored genetic landscape for auditory dysfunction. Nature 657 communications 8, 886 (2017). 658 3 Pinero, J. et al. The DisGeNET knowledge platform for disease genomics: 659 2019 update. Nucleic Acids 48. D845-D855 Res (2020).660 https://doi.org/10.1093/nar/gkz1021 661 4 Martin, A. R. et al. PanelApp crowdsources expert knowledge to establish consensus diagnostic gene panels. Nat Genet 51, 1560-1565 (2019). 662 663 https://doi.org/10.1038/s41588-019-0528-2 664 5 Adams, D. R. & Eng, C. M. Next-Generation Sequencing to Diagnose Suspected Genetic Disorders. N Engl J Med 379, 1353-1362 (2018). 665 666 https://doi.org/10.1056/NEJMra1711801 667 6 Pajusalu, S. et al. Large gene panel sequencing in clinical diagnostics-results 668 501 consecutive cases. Clin Genet 93, from 78-83 (2018). 669 https://doi.org/10.1111/cge.13031 670 Aspromonte, M. C. et al. Characterization of intellectual disability and autism 7 671 comorbidity through gene panel sequencing. Hum Mutat 40, 1346-1363 672 (2019). https://doi.org/10.1002/humu.23822 673 8 Liao, E. N., Taketa, E., Mohamad, N. I. & Chan, D. K. Outcomes of Gene 674 Panel Testing for Sensorineural Hearing Loss in a Diverse Patient Cohort. JAMA 5. 675 Netw Open e2233441 (2022). 676 https://doi.org/10.1001/jamanetworkopen.2022.33441 677 9 Downie, L. et al. Exome sequencing in infants with congenital hearing impairment: a population-based cohort study. Eur J Hum Genet 28, 587-596 678 679 (2020). https://doi.org/10.1038/s41431-019-0553-8 680 10 Gu, X. et al. Genetic testing for sporadic hearing loss using targeted 681 massively parallel sequencing identifies 10 novel mutations. Clin Genet 87, 682 588-593 (2015). https://doi.org/10.1111/cge.12431
- 11 Jung, J. et al. Genetic Predisposition to Sporadic Congenital Hearing Loss in

684		a Pediatric Population. Sci Rep 7, 45973 (20)17).
685		https://doi.org/10.1038/srep45973	
686	12	Pennisi, E. Upstart DNA sequencers could be a "game changer.". Science	376 ,
687		1257-1258 (2022).	
688	13	Retterer, K. et al. Clinical application of whole-exome sequencing ac	ross
689		clinical indications. Genetics in Medicine 18, 696-704 (2016).	
690	14	Wojcik, M. H. et al. Genome Sequencing for Diagnosing Rare Disease	s. N
691		Engl J Med 390, 1985-1997 (2024). https://doi.org/10.1056/NEJMoa23147	<u>′61</u>
692	15	Lee, S. et al. Whole genomic approach in mutation discovery of infa	Intile
693		spasms patients. Front Neurol 13, 944905 (20)22).
694		https://doi.org/10.3389/fneur.2022.944905	
695	16	Gallego-Martinez, A. et al. Using coding and non-coding rare variants to ta	arget
696		candidate genes in patients with severe tinnitus. NPJ Genom Med 7	, 70
697		(2022). https://doi.org/10.1038/s41525-022-00341-w	
698	17	Huq, A. J. et al. Clinical impact of whole-genome sequencing in patients	with
699		early-onset dementia. J Neurol Neurosurg Psychiatry (20)22).
700		https://doi.org/10.1136/jnnp-2021-328146	
701	18	Macken, W. L. et al. Specialist multidisciplinary input maximises rare dise	ease
702		diagnoses from whole genome sequencing. Nat Commun 13, 6324 (20)22).
703		https://doi.org/10.1038/s41467-022-32908-7	
704	19	van Eyk, C. L. et al. Yield of clinically reportable genetic variants in unsele	cted
705		cerebral palsy by whole genome sequencing. NPJ Genom Med 6, 74 (20)21).
706		https://doi.org/10.1038/s41525-021-00238-0	
707	20	Pagnamenta, A. T. et al. Structural and non-coding variants increase	the
708		diagnostic yield of clinical whole genome sequencing for rare disea	ises.
709		Genome Med 15, 94 (2023). https://doi.org/10.1186/s13073-023-01240-0	
710	21	Kim, B. J. et al. Significant Mendelian genetic contribution to pediatric mile	d-to-
711		moderate hearing loss and its comprehensive diagnostic approach. Gen	etics
712		<i>in Medicine</i> 22 , 1119-1128 (2020).	
713	22	Nam, D. W. et al. Molecular Genetic Etiology and Revisiting the Middle	Ear
714		Surgery Outcomes of Branchio-Oto-Renal Syndrome: Experience in a Ter	tiary
715		Referral Center. Otology & Neurotology 44, e319-e327 (2023).	
716	23	Karczewski, K. J. et al. The mutational constraint spectrum quantified	from

717		variation in 141,456 humans. <i>Nature</i> 581 , 434-443 (2020).
718		https://doi.org/10.1038/s41586-020-2308-7
719	24	Lee, J. et al. A database of 5305 healthy Korean individuals reveals genetic
720		and clinical implications for an East Asian population. Exp Mol Med 54, 1862-
721		1871 (2022). https://doi.org/10.1038/s12276-022-00871-4
722	25	Choi, W. H. et al. Functional pathogenicity of ESRRB variant of uncertain
723		significance contributes to hearing loss (DFNB35). Sci Rep 14, 21215 (2024).
724		https://doi.org/10.1038/s41598-024-70795-8
725	26	Richards, S. et al. Standards and guidelines for the interpretation of sequence
726		variants: a joint consensus recommendation of the American College of
727		Medical Genetics and Genomics and the Association for Molecular Pathology.
728		Genet Med 17, 405-424 (2015). <u>https://doi.org/10.1038/gim.2015.30</u>
729	27	Buchert, R. et al. SPATA5 mutations cause a distinct autosomal recessive
730		phenotype of intellectual disability, hypotonia and hearing loss. Orphanet
731		Journal of Rare Diseases 11, 1-7 (2016).
732	28	Jaganathan, K. et al. Predicting Splicing from Primary Sequence with Deep
733		Learning. <i>Cell</i> 176 , 535-548 e524 (2019).
734		https://doi.org/10.1016/j.cell.2018.12.015
735	29	Yun, Y. et al. Expanding Genotype-Phenotype Correlation of CLCNKA and
736		CLCNKB Variants Linked to Hearing Loss. Int J Mol Sci 24 (2023).
737		https://doi.org/10.3390/ijms242317077
738	30	Nam, D. W. et al. Allelic hierarchy for USH2A influences auditory and visual
739		phenotypes in South Korean patients. Sci Rep 13, 20239 (2023).
740		https://doi.org/10.1038/s41598-023-47166-w
741	31	Delmaghani, S. & El-Amraoui, A. Inner ear gene therapies take off: current
742		promises and future challenges. <i>Journal of clinical medicine</i> 9 , 2309 (2020).
743	32	van der Valk, W. H. et al. A single-cell level comparison of human inner ear
744		organoids with the human cochlea and vestibular organs. Cell Rep 42,
745		112623 (2023). https://doi.org/10.1016/j.celrep.2023.112623
746	33	Investigators, G. P. P. et al. 100,000 Genomes Pilot on Rare-Disease
747		Diagnosis in Health Care - Preliminary Report. N Engl J Med 385, 1868-1880
748		(2021). https://doi.org/10.1056/NEJMoa2035790
749	34	Turro, E. et al. Whole-genome sequencing of patients with rare diseases in a

750		national health system. <i>Nature</i> 583 , 96-102 (2020).
751		https://doi.org/10.1038/s41586-020-2434-2
752	35	Lunke, S. et al. Integrated multi-omics for rapid rare disease diagnosis on a
753		national scale. <i>Nat Med</i> 29 , 1681-1691 (2023).
754		https://doi.org/10.1038/s41591-023-02401-9
755	36	Yang, Y. et al. Reevaluating the splice-altering variant in TECTA as a cause of
756		nonsyndromic hearing loss DFNA8/12 by functional analysis of RNA. Hum
757		Mol Genet (2024). https://doi.org/10.1093/hmg/ddae071
758	37	Jiang, L., Wang, D., He, Y. & Shu, Y. Advances in gene therapy hold promise
759		for treating hereditary hearing loss. Molecular Therapy (2023).
760	38	Petit, C., Bonnet, C. & Safieddine, S. Deafness: from genetic architecture to
761		gene therapy. Nature Reviews Genetics, 1-22 (2023).
762	39	Yun, Y. & Lee, S. Y. Updates on Genetic Hearing Loss: From Diagnosis to
763		TargetedTherapies.JAudiolOtol28,88-92(2024).
764		https://doi.org/10.7874/jao.2024.00157
765	40	Lv, J. et al. AAV1-hOTOF gene therapy for autosomal recessive deafness 9: a
766		single-arm trial. Lancet 403, 2317-2325 (2024). https://doi.org/10.1016/S0140-
767		<u>6736(23)02874-X</u>
768	41	Wang, H. et al. Bilateral gene therapy in children with autosomal recessive
769		deafness 9: single-arm trial results. Nat Med 30, 1898-1904 (2024).
770		https://doi.org/10.1038/s41591-024-03023-5
771	42	Kim, J. et al. A framework for individualized splice-switching oligonucleotide
772		therapy. Nature 619, 828-836 (2023). <u>https://doi.org/10.1038/s41586-023-</u>
773		<u>06277-0</u>
774	43	Kweon, J. et al. Targeted genomic translocations and inversions generated
775		using a paired prime editing strategy. Molecular Therapy 31 , 249-259 (2023).
776	44	Chen, P. J. & Liu, D. R. Prime editing for precise and highly versatile genome
777		manipulation. Nature Reviews Genetics 24, 161-177 (2023).
778	45	Yi, H. et al. CRISPR-based editing strategies to rectify EYA1 complex
779		genomic rearrangement linked to haploinsufficiency. Mol Ther Nucleic Acids
780		35, 102199 (2024). https://doi.org/10.1016/j.omtn.2024.102199
781	46	Liao, E. N., Taketa, E., Mohamad, N. I. & Chan, D. K. Outcomes of Gene
782		Panel Testing for Sensorineural Hearing Loss in a Diverse Patient Cohort.

It is made available under a CC-BY-NC-ND 4.0 International license .

783 JAMA Network Open **5**, e2233441-e2233441 (2022).

47 Lee, S.-Y. *et al.* Natural course of residual hearing with reference to GJB2 and
785 SLC26A4 genotypes: Clinical implications for hearing rehabilitation. *Ear and*786 *Hearing* 42, 644-653 (2021).

- 48 Lee, S.-Y. *et al.* No auditory experience, no tinnitus: lessons from subjects
 with congenital-and acquired single-sided deafness. *Hearing research* 354, 915 (2017).
- Lin, P.-H. *et al.* Etiologic and audiologic characteristics of patients with
 pediatric-onset unilateral and asymmetric sensorineural hearing loss. *JAMA otolaryngology–head & neck surgery* 143, 912-919 (2017).
- Han, K.-H. *et al.* Establishment of a flexible real-time polymerase chain
 reaction-based platform for detecting prevalent deafness mutations
 associated with variable degree of sensorineural hearing loss in Koreans. *PloS one* **11**, e0161756 (2016).
- Lee, S.-Y. *et al.* Flexible real-time polymerase chain reaction-based platforms
 for detecting deafness mutations in Koreans: A proposed guideline for the
 etiologic diagnosis of auditory neuropathy spectrum disorder. *Diagnostics* 10,
 672 (2020).
- Kim, S. Y. *et al.* Prevalence of p. V37I variant of GJB2 in mild or moderate
 hearing loss in a pediatric population and the interpretation of its pathogenicity. *PloS one* 8, e61592 (2013).
- 804 53 Van der Auwera, G. A. et al. From FastQ data to high confidence variant calls: 805 the Genome Analysis Toolkit best practices pipeline. Curr Protoc 11 10 33 806 **Bioinformatics** 43. 10 11-11 (2013). 807 https://doi.org/10.1002/0471250953.bi1110s43
- Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of
 genetic variants from high-throughput sequencing data. *Nucleic Acids Res* 38,
 e164 (2010). <u>https://doi.org/10.1093/nar/gkq603</u>
- Jung, K. S. *et al.* KRGDB: the large-scale variant database of 1722 Koreans
 based on whole genome sequencing. *Database (Oxford)* 2020 (2020).
 <u>https://doi.org/10.1093/database/baaa030</u>
- 81456Stenson, P. D. *et al.* The Human Gene Mutation Database: towards a815comprehensive repository of inherited mutation data for medical research,

816		genetic diagnosis and next-generation sequencing studies. Hum Genet 136,
817		665-677 (2017). https://doi.org/10.1007/s00439-017-1779-6
818	57	Landrum, M. J. et al. ClinVar: improving access to variant interpretations and
819		supporting evidence. Nucleic Acids Res 46, D1062-D1067 (2018).
820		https://doi.org/10.1093/nar/gkx1153
821	58	Li, Q. & Wang, K. InterVar: Clinical Interpretation of Genetic Variants by the
822		2015 ACMG-AMP Guidelines. Am J Hum Genet 100, 267-280 (2017).
823		https://doi.org/10.1016/j.ajhg.2017.01.004
824	59	Oza, A. M. et al. Expert specification of the ACMG/AMP variant interpretation
825		guidelines for genetic hearing loss. Hum Mutat 39, 1593-1613 (2018).
826		https://doi.org/10.1002/humu.23630
827	60	Tang, S. & Huang, T. Characterization of mitochondrial DNA heteroplasmy
828		using a parallel sequencing system. Biotechniques 48, 287-296 (2010).
829		https://doi.org/10.2144/000113389
830	61	Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural
831		variant read extraction. <i>Bioinformatics</i> 30 , 2503-2505 (2014).
832		https://doi.org/10.1093/bioinformatics/btu314
833	62	Kim, S. et al. Strelka2: fast and accurate calling of germline and somatic
834		variants. Nat Methods 15, 591-594 (2018). https://doi.org/10.1038/s41592-
835		<u>018-0051-x</u>
836		
837		

It is made available under a CC-BY-NC-ND 4.0 International license .

838	Acknowledgements: This research was supported and funded by SNUH Kun-hee
839	Lee Child Cancer & Rare Disease Project, Republic of Korea (grant number: FP-
840	2022-00001-004 to Sang-Yeon Lee), SNU Medicine grant (basic and clinic
841	cooperation research grant number: 800-20230428 to Sang-Yeon Lee), and National
842	Research Foundation of Korea (NRF) and funded by the Ministry of Education (grant
843	number: 2022R1C1C1003147 to Sang-Yeon Lee). This research was supported by a
844	grant from the Korea Health Technology R&D Project through the Korea Health
845	Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare,
846	Republic of Korea (grant number: HI22C182600 to June-Young Koh).
847	
848	Contributions: Concept and design: SY.L., JH.C. Acquisition, analysis, or
849	interpretation of data: SY.L., S.L., S.P., JY.K., S.H.J., Y.J., W.H.C., J.H.C. Drafting
850	of the manuscript: SY.L., S.L., S.P., JY.K. Critical review of the manuscript for
851	important intellectual content: SY.L., S.L., S.P., JY.K. Statistical analysis: SY.L.,
852	S.P., JY.K. Obtained funding: SY.L., JY.K. Administrative, technical, or material
853	support: H.Y., S.L., MW.S., M.K.P., JJ.S., B.Y.C., J.H.L. Supervision: JH.C. Y.S.J.
854	
855	Competing interests:
856	Young Seok Ju is the founder of Inocras Inc., a genome analysis and interpretation

company. Young Seok Ju, June-Young Koh, Seongyeol Park, and Sangmoon Lee
hold stocks or stock options in Inocras Inc.

It is made available under a CC-BY-NC-ND 4.0 International license .

859 Figure legends

860	Figure 1. Study design and diagnostic pipeline. Flow diagram illustrating a
861	prospective, step-by-step genetic approachof 394 unrelated SNHL families and 750
862	individuals including probands in our cohort study. The diagnostic pipeline included
863	Step 1 (real-time PCR screening kit and direct GJB2 sequencing), Step 2-1 (targeted
864	panel sequencing or whole-exome sequencing), Step 2-2 (MLPA and/or mtDNA
865	panel sequencing), Step 3-1 (whole-genome sequencing), and Step 3-2 (deep
866	intronic variant analysis). SNHL, sensorineural hearing loss; BOR/BO syndrome,
867	branchio-oto-renal/branchio-otic syndrome; MLPA, multiplex ligation-dependent
868	probe amplification; mtDNA, mitochondrial DNA; CI, confidence interval.
869	
870	Figure 2. Stepwise genetic diagnosis outcomes in SNHL patients.
871	(a) Diagnostic yield of each genetic test for the whole SNHL cohort. Bar graph
872	showing the cumulative diagnostic rate according to genetic diagnosis steps. (b-c)
873	Diagnostic yield based on SNHL phenotypes and comparative analysis within the
874	whole SNHL cohort ($n = 394$ families; b) and within the WGS cases ($n = 120$ families;
875	c). Statistical significance for hearing loss onset and syndromic features was
876	determined using one-way ANOVA with Bonferroni's multiple comparisons tests and
877	the t-test, respectively. Significance levels are indicated as $*P < 0.05$. (d) Pearson's
878	correlation coefficient values for causative variants between the allele frequencies
879	(AFs) in our cohort and those from other populations. The AFs in our cohort showed
880	the highest correlation with the Korean database, KOVA, followed by the East Asian
881	population within gnomAD. (e) Dot plots shows the AF correlation between our
882	cohort and KOVA. There are three variants (pink dots) showing higher AFs in KOVA,
883	suggesting their phenotypic variability such as low penetrance or late onset

It is made available under a CC-BY-NC-ND 4.0 International license .

associated with these variants. A fitted line of linear regression model (blue line) and
95% confidence intervals (grey area) are displayed. (f) Distribution of variant
subtypes identified at each diagnostic step. WGS, whole-genome sequencing; MLPA,
multiplex ligation-dependent probe amplification; mtDNA, mitochondrial DNA; SNHL,
sensorineural hearing loss; SNV, single nucleotide variant; indel, insertion/deletion.

890 Figure 3. Genomic landscape of the SNHL cohort.

891 (a) Bar plot showing the frequencies and inheritance patterns of 63 SNHL-associated 892 genes from 219 genetically diagnosed families. Pie chart showing the percentages of 893 inheritance patterns. (b) Bar plot showing the mutational landscape of the total 352 894 likely pathogenic or pathogenic variants among the 63 SNHL genes. Pie chart 895 showing the percentages of variant types. (c) Proportion of novel variants among 896 identified causal variants. (d) Structural variants (SVs) were more common among 897 novel variants compared to previously reported variants. (e) Novel variants were 898 frequently identified through WGS (Step 3-1) and SpliceAI-based deep intronic 899 variants analysis (Step 3-2). (f, g) Schematic illustrations showing the location of 900 each identified pathogenic variant within SPATA5 and CLCNKA-CLCNKB in the 901 probands (top, respectively). The genomic regions corresponding to each variant are 902 visualized using the integrative genomics viewer (bottom) for each figure. SNHL, 903 sensorineural hearing loss; SNV, single nucleotide variant; indel, insertion/deletion; 904 SV, structural variation.

905

Figure 4. Analysis of carrier and deep intronic variants in undiagnosed SNHL
patients.

908 (a) Schematic diagram illustrating carrier status identification and screening for

It is made available under a CC-BY-NC-ND 4.0 International license .

909	pathogenic deep intronic variants. (b) Bar plot showing the proportion of genetic
910	carriers for SNHL-related genes across each cohort. (c) Cumulative distribution plot
911	showing the MAF of candidate pathogenic variants across cohorts. (d) Schematic
912	illustration of the location of each identified pathogenic variant within USH2A in each
913	patient. (e) Schematic diagram of the pSPL3 vector with USH2A c.7120+1475A>G
914	(left), c.14134-3169A>G (middle), and c.4628-26037A>G (right). (f) Electrophoresis
915	gel image showing the bands corresponding to the pSPL3 empty vector (263 bp),
916	each variant, and wild-type. (g) Schematic representation of the splice products with
917	the wild-type splicing profile, and the splice variant profiles for each mutant type.
918	SNHL, sensory neural hearing loss; WGS, whole-genome sequencing; HC, healthy
919	control; AR, autosomal recessive; MOI, mode of inheritance; P, pathogenic; LP, likely
920	pathogenic; MAF, minor allele frequency; SV, structural variation; TE, transposable
921	element; SD, splicing donor; SA, splicing acceptor; PE, pseudoexon.
922	

923 Figure 5. Functional classification and clinical relevance of SNHL-related

924 genes. (a) Schematic illustration of seven functional categories according to the 925 molecular mechanisms related to inner-ear function. (b) Heatmap showing the 926 correlation of gene expression patterns across different gene categories. (c) 927 Comparison of specific phenotypic presentations by seven inner ear functional 928 categories. The x-axis represents classifications based on inner ear molecular 929 functions, and y-axis indicates the proportion of clinical phenotypes among affected 930 probands. (d) Bar graphs showing post-hoc analysis using the false discovery rate. 931 Red represents the proportion of affected probands within the total number of 932 probands assigned to specific inner ear molecular functional groups.* denotes 933 statistical significance (P < 0.05).

Main figure 4

medRx preprint doi: https://doi.org/10.1101/2024.12.08.24318682; this version posted December 10, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.

1 Hair bundle development and function ② Synaptic transmission

- 3 Hair cell adhesion and maintenance ④ Cochlear ion homeostasis
- (5) Transmembrane and extracellular matrix

Onset of HL

(Early Identification)

d

100%

75%

50%

25%

0%

3

4

- 6 Oxidative stress, autoinflammation, and mitochondria
- Transcriptional regulation ⑧ Not determined

Gene category according to inner ear molecular function

