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Abstract 

Objectives: Current study aimed to investigate radiomics features derived from two-center 
diffusion-MRI to differentiate benign and hepatocellular carcinoma (HCC) liver nodules. 

Methods: A total of 328 patients with 517 LI-RADS 2-5 nodules were included. MR images were 
retrospectively collected from 3T and 1.5T MRI vendors. Lesions were categorized into 242 
benign and 275 HCC based on follow-up imaging for LR-2,3 and pathology results for LR4,5 
nodules, and randomly divided into training (80%) and test (20%) sets. Preprocessing included 
resampling and normalization. Radiomics features were extracted from lesion volume-of-interest 
(VOI) on diffusion Images. Scanner variability was corrected using ComBat harmonization 
method followed by High-correlation filter, PCA filter, and LASSO to select important features. 
Best classifier model was selected by 10-fold cross-validation, and accuracy was assessed on the 
test dataset. 

Results: 1,434 features were extracted, and subsequent classifiers were constructed based on the 
16 most important selected features. Notably, support-vector machine (SVM) demonstrated better 
performance in the test dataset in distinguishing between benign and HCC nodules, achieving an 
accuracy of 0.92, sensitivity of 0.94, and specificity of 0.86. 

Conclusions: Utilizing diffusion-MRI radiomics, our study highlights the performance of SVM, 
trained on lesions’ diffusivity characteristics, in distinguishing benign and HCC nodules, ensuring 
clinical potential. It is suggested that further evaluations be conducted on multi-center datasets to 
address harmonization challenges. 

Advances in knowledge: Integration of diffusion radiomics, for monitoring water restriction 
patterns as tumor histopathological index, with machine learning models demonstrates potential 
for achieving a reliable noninvasive method to improve the current diagnosis criteria. 
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Abbreviations 
HCC: Hepatocellular carcinoma 

LI-RADS: Liver Imaging Reporting and Data System 

DCE: Dynamic contrast-enhanced 

DWI: Diffusion-weighted imaging 

ADC: Apparent diffusion coefficient 

ICC: Intrahepatic cholangiocarcinoma 

EPI: Echo planar imaging 

SPGR: Spoiled gradient-recalled echo 

SSFSE: Single-shot fast spin echo 

ROI: Region of interest 

GLCM: Grey-level co-occurrence matrix 

GLSZM: Gray level size zone matrix 

GLRLM: Gray level run length matrix 

GLDM: Gray level dependence matrix 

RF: Random Forest 

LR: Logistic regression 

SVM: Support vector machine 

MLP: Multilayer perceptron 

GB: Gradient Boosting 

ROC: Receiver operating characteristic 

AUC: Area-under-curve 
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Introduction 

Hepatocellular carcinoma (HCC), 75% of primary liver cancers, is the sixth most frequent cancer 

worldwide and the fourth leading cause of cancer-related mortalities 1. The American College of 

Radiology has approved the Liver Imaging Reporting and Data System (LI-RADS) to standardize 

information and report hepatocellular masses in patients with cirrhosis. Based on the tumors' 

typical features assessed on CT or MR modalities, this classification reports the relative risk of 

HCC development in categories ranging from LR-1 (definitely benign) to LR-5 (definitely HCC). 

Accurate differentiation between benign masses and (HCC), particularly within LR-3 and LR-4 

categories, remains challenging, necessitating consideration of histopathological results alongside 

imaging methods despite the invasive nature of biopsy 2-6. Therefore, finding imaging markers 

associated with a higher risk of progression from intermediate likelihood of HCC to HCC is 

important. 

MRI demonstrates superior sensitivity and specificity compared to CT and ultrasound imaging for 

early assessment of HCC nodules, enabling early diagnosis in cirrhotic patients' treatment 

pathways 7. Diffusion-weighted imaging (DWI) is a type of non-invasive functional MRI that 

assesses water restriction patterns and provides insights into tumor microstructural features like 

cellular density, cellular proliferation, vascularity, and heterogeneity 2,3,6. Conflicting results have 

been found for the visual features of diffusion MRI in differentiating between LR-3, 4, and 5 5,8-

17. Signal hyperintensity on high b-value DWI is associated with a high risk of progression toward 

HCC18, which makes DWI an ideal candidate over other MRI modalities for further investigation. 

Beside conventional features assessed from DWI, Radiomics, as a promising quantitative method, 

evaluates morphological features such as shape and texture, offering insights into 

pathophysiological changes encompassing inter- and intra-tumor heterogeneity at the millimeter 

scale6,19-23.  

The performance of radiomics in enriching machine learning algorithms in liver imaging was 

evaluated in different MRI sequences, including T1, T2-weighted, DWI, and dynamic contrast-

enhanced (DCE) perfusion 13,24-28. DCE-MRI is a powerful imaging technique for quantifying 

tumor physiological properties, such as perfusion, vascularity, and permeability, which correlate 

with tumor aggressiveness. Recent studies demonstrate the DCE-MRI’s potential, particularly 

when combined with radiomics, in predicting tumor biological features, especially in early 
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detection of HCC nodules 29-31. However, multicenter implementation is challenging due to 

variability in contrast agents, protocol standardization, artifact sensitivity, and quantification 

complexity. In contrast, DWI offers reproducibility, Non-Invasiveness, and easier standardization, 

providing reliable method in multicenter studies32,33. Many researchers have found that ML models 

trained on radiomics features extracted from DWI can achieve high accuracy in the early diagnosis 

and prognosis of HCC. However, these studies still suffer from reliability and validity on external 

dataset 13,24 . 

In the current landscape, limited research has explored applying radiomics features of water 

diffusivity patterns for reliable HCC and benign nodules differentiation. Consequently, a pressing 

need exists to train a machine learning algorithm using specific features and validate its efficacy 

on external datasets, ultimately constructing the most precise and reliable diagnosis-aided 

algorithm for clinical translation. This study addresses this gap by training classifier algorithms 

utilizing DWI-driven radiomics features and evaluation on external dataset to classify HCC and 

benign liver nodules effectively. 

 

Methods 

Patients 

This retrospective study was approved by the institutional review board of the Cancer Institute. 

All patients with cirrhotic nodules who underwent MRI between January 2018 and June 2023, 

including 1133 patients, were initially included in the study. All cirrhotic individuals over the age 

of 18 years with at least one liver MR scan were included. Exclusion criteria are depicted in Figure 

1 as follows: 1. Patients with no LI-RADS 2–5 liver lesions, 2. patients without a diagnosis through 

imaging and follow-up (LR-2,3) or biopsy (LR-4, 5), 3. prior transarterial chemoembolization 

treatment due to variable signal increase in DWI values or interventional surgery before the initial 

MRI scan, 4) prior malignancy, and 5) low-quality diffusion imaging. Finally, A total of 328 

patients with 517 nodules met the inclusion criteria (Table 1). 

All patients with LR-4,5 lesions or those considered for a liver transplant underwent nodule biopsy 

(277 pathology-proven nodules). Follow-up imaging was performed on LR-2,3 nodules for a 

minimum of 12 months. We divided all nodules into two cohorts: 1- benign nodules (242 nodules; 

118 nodules from LR-2, 75 nodules from LR-3, 42 nodules from LR-4, and 7 nodules from LR-5) 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.08.24318637doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.08.24318637


6 
 

2- HCC nodules (275 nodules; 133 nodules from LR-5, 95 nodules from LR-4, 40 nodules from 

LR-3, and 7 nodules from LR-2).  

Image Acquisition  

MRI was performed using 3T (GE Medical System, Discovery 750w) and 1.5T (GE Medical 

System, Signa) MRI machines. The routine modalities and protocols included the following: 1) 

DWI with three orthogonal directions along with respiratory-triggered 2D echo planar imaging 

(EPI) with three b-values (0, 200, 800 s/mm2) was used before Gadolinium contrast agent injection. 

ADC maps were calculated in the prepared workstation. 2) DCE-MRI, LAVA sequence, which is 

based on a 3D spoiled gradient-recalled echo (SPGR) sequence with uniform fat suppression, was 

performed in the axial plane with a breath-hold 2D gradient echo T1-weighted sequence. Data 

acquisition began 10 seconds before injecting the contrast agent to acquire the baseline signal 

intensity. Thirty-six dynamic contrast slices with a temporal resolution of 4 s/image were acquired 

during 66 acquisition phases and normal breathing 3) Axial T2-weighted with single-shot fast spin 

echo (SSFSE). Detailed information about the imaging protocol is listed in Table 2.   

Data labeling, Image preprocessing, and lesion segmentation  

Two radiologists with 8 and 12 years of diagnostic MR imaging experience assessed the patients’ 

MR images and established a consensus using LI-RADS v2018 for primary LI-RADS 2–5 

categorization 34. The kappa score for inter-rater variability between radiologists was 0.76. In cases 

of disagreement, the subjects were referred to a supervising radiologist for final decision. 

 To guarantee both reproducibility and reliability, we followed the image biomarker 

standardization guidelines (ref1).  MRI images were resampled to a uniform voxel size of 2x2x2 

mm³. Z-score normalization was then applied, transforming pixel intensities to have a mean of 0 

and a standard deviation of 1. Linear scaling was then used to map the z-scores to a display range 

of [0, 255] for clear visualization. 

Manual segmentation on lesions was performed using ITK-SNAP software. The boundary of 

lesions was drawn on axial DWI images (Figure 2). Segmentation was performed by the first 

radiologist and checked by the senior radiologist to ensure the reproducibility and consistency of 

the results. Felisa Kappa among radiologists was 0.85 in lesion segmentation.  
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Feature Extraction and selection 

Following 3D segmentation of the lesions, radiomics features were extracted from DWI images 

using PyRadiomics 3.0.1, an open-source Python library, which computes seven distinct feature 

categories: first‐order statistics, shape‐based, grey level co-occurrence matrix (GLCM), gray level 

size zone matrix (GLSZM), gray level run length matrix (GLRLM), gray level dependence matrix 

(GLDM), and neighboring gray-tone difference matrix. The 16 form descriptors and features 

extracted from the original and derived images were adjusted for PyRadiomics (LoG with five 

sigma levels, one level of wavelet decomposition yielding eight derived images, and images 

derived using square, square root, logarithm, and exponential filters) 35.  

To adjust for scanner-related variability in radiomics features from 1.5T and 3T DWI images, 

ComBat was applied using the parametric model. This approach corrects for batch effects by 

directly modeling and adjusting for scanner-induced variability based on predefined parametric 

assumptions. The implementation, which differs from the standard EB approach, was chosen to 

meet specific study requirements. R scripts for ComBat are available at 

https://github.com/Jfortin1/neuroCombat_Rpackage/. 

The number of retrieved characteristics exceeded the number of patients, so feature selection was 

utilized to avoid overfitting. After extracting 1,434 features, we explored three methods: a high 

correlation filter, a linear combinations filter, and the 10-fold cross-validation LASSO technique. 

To remove redundant features, the high correlation filter eliminates variables with substantial 

absolute correlation, with thresholds of 0.8 adjusted to maintain consistent features. The linear 

combinations filter, utilizing Principle Coefficient Analysis (PCA) with a 95% variance threshold, 

addressed collinearity by iteratively removing columns until achieving full rank. These methods 

yielded 51 features post-filtering. Employing the LASSO technique with 10-fold cross-validation 

further refined feature dimensionality, ensuring robustness against overfitting. Parameter 

optimization, including regularization strength, was conducted via cross-validation to optimize 

model performance. These feature reduction strategies, executed using the scikit-learn 1.5.0 and 

pandas 2.2.2 libraries in Python. 

For the robustness and generalizability of our models, we split our dataset into a training set (414 

lesions, 371 lesions from 3T and 43 lesions from 1.5T) for hyperparameters tuning and model 
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selection using 10-fold cross-validation, and an external test dataset (103 lesions, 91 lesions from 

3T and 12 lesions from 1.5T) for evaluating the performance of the selected model on unseen data.  

Statistical Analysis 

For Model construction, we selected classifiers, including Logistic Regression (LR), Support 

Vector Machines (SVM), RF, Multilayer perceptron (MLP), and Gradient Boosting (GB), for a 

comprehensive analysis. Each classifier offers unique advantages and characteristics, making them 

appropriate candidates for further study. To ensure a robust assessment, we utilized the scikit-learn 

library in Python, a widely adopted toolkit for machine learning tasks 36. The classifiers were 

trained on the original training set, and their performance was evaluated on both the original and 

test sets. Evaluation metrics, including accuracy and confusion matrices, were calculated to 

provide a deep understanding of each classifier's strengths and weaknesses. 

Furthermore, Receiver Operating Characteristic (ROC) curves were employed to assess the 

classifiers' ability to differentiate between the two classes across different threshold values. The 

Area Under the Curve (AUC) was calculated for each ROC curve, providing a quantitative 

measure of the classifiers' overall classification performance. The student's t-test was utilized to 

compare continuous variables between benign and malignant groups, while the chi-square test was 

applied to analyze differences in categorical variables across the two groups. 

Results 

Clinical Characteristics 

The study included 328 individuals (208 males, mean age 57.08 ± 11.33, range 29–81 years) with 

517 lesions (mean size 33.09 ± 30.93 mm) of LI-RADS 2–5. The clinical characteristics of the 

nodules are shown in Table 2. Arterial phase hyperenhancement was seen in 68% of HCC and 

only 35% of benign masses; 44% of benign and 58% of HCC lesions contained enhancing capsule, 

and 82% in HCC and 36% in benign lesions reported a non-peripheral washout appearance. Tumor 

size and washout from DCE showed significant p-value in differentiation of HCC and benign 

nodules. The mean ADCs for lesions, liver, paravertebral muscle, ADC1 ratio (lesion to liver) and 

ADC2 ratio (lesion to paravertebral) for benign and HCC lesions are shown in Table 2.  
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Feature selection  

The workflow for image processing and analysis is depicted in Figure 3 and includes image 

preprocessing, lesion segmentation, feature extraction and selection, model creation, and 

validation. Initially, 1,434 features were extracted from seven radiomics categories. Applying a 

correlation threshold reduced the number to 150 features. Subsequent PCA analysis, aimed at 

eliminating collinear features, further reduced this number to 51. Lasso regression identified 17 

features with non-zero coefficients. Finally, by applying an optimal lambda threshold of 0.69, 16 

features were selected for training the classification models. The results of each step are depicted 

in Figure 4 and  the selected features are listed in Table 3. GLCM, shape, and first-order feature 

classes showed the highest importance in benign and HCC classification. The top features 

identified for the GLCM, GLDM, GLSZM, and first-order classes belonged to the Wavelet filter. 

In the Shape class, the chosen features were Major axis and elongation from original image. 

Model evaluation  
Precision and accuracy were employed to assess the radiomics model's performance, as detailed 

in Table 4. ROC curves in Figure 5 illustrate the classifier function, with Logistic Regression 

achieving an accuracy of 0.69, sensitivity of 0.59, specificity of 0.86, and ROC AUC of 0.85. SVM 

exhibited superior performance with an accuracy of 0.92, sensitivity of 0.94, specificity of 0.86, 

and ROC AUC of 0.97. RF displayed an accuracy of 0.56, sensitivity of 0.29, specificity of 1.00, 

and ROC AUC of 0.86. Neural Network yielded an accuracy of 0.45, sensitivity of 0.14, specificity 

of 0.97, and ROC AUC of 0.82. Gradient Boosting achieved an accuracy of 0.61, sensitivity of 

0.40, specificity of 0.90, and ROC AUC of 0.80. 

Despite the consistent and high accuracy observed across all models during training, as evident 

from the ROC curves across various folds shown in Figure 5, a noteworthy divergence becomes 

apparent when assessing their performance on the test dataset. Only the SVM model maintains its 

accuracy on the test data, showcasing a robust generalization capability. In contrast, the remaining 

models experience a decline in accuracy when evaluated on the test dataset. 
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Discussion 
The differentiation between benign and HCC lesions requires accurate biomarkers for appropriate 

treatment planning. Due to the similarity in MRI-derived markers between LI-RADS 3, 4, and 5, 

particularly when comparing 3 with 4 and 5, there is a practical need to investigate novel imaging 

techniques, characteristics, and classification models 37,38. Our initial findings suggest that the 

water restriction pattern, analyzed through reliable radiomics tools, holds promise in reliably 

differentiating between benign nodules and HCC. 

The basis of current imaging diagnosis of primary cirrhotic nodules, especially HCC, is the use of 

visual features of contrast-enhanced MRI as a complicated method and in some cases with 

controversy in the indication 39-41. Peng et al. showed that ADC values significantly classify benign 

and HCC lesions in Asian populations 11. Some studies have explored alternative approaches, 

employing AI and quantitative features for improving LI-RADs categorization accuracy or 

predicting pathology results. Hai-Feng Liu trained ML models with DCE-MRI radiomics features 

to classify HCC into well, moderate, and poorly differentiated HCC classes according to pathology 

results and reached an AUC of 0.86 on the validation dataset 42. Rong Hu used radiomics features 

of T1-contrast and T2 modalities to train ML models to differentiate HCC from ICC, reaching an 

accuracy of 73% 43. Oestmann et al. 44 constructed a 3D-CNN model using a contrast-enhanced 

MRI dataset of 118 patients with 150 lesions, to differentiate between HCCs and non-HCCs which 

reached an overall accuracy of 87.3%. In the previous investigations, studies used DWI to improve 

diagnostic accuracy without applying further quantitative feature implementation 11-13,45.  

Utilizing DWI, a non-invasive technique, in conjunction with radiomics, has the potential to 

significantly contribute to the precise monitoring of pathology outcomes 13,24,26,46,47. We conducted 

this two-center study using machine-learning approaches combined with radiomics features 

extracted from DWI, minimizing the uncertainty of decisions in LI-RADS categorization.  

Selected significant GLCM features, Wavelet-LHH-IDM and Wavelet-HLH-IDMN, provide 

insight into the local homogeneity of pixel intensities in various orientations within the wavelet-

transformed image, offering sensitivity across different intensity scales. Similarly, Wavelet-HLL-

Joint Average focuses on specific frequency components in both horizontal and vertical directions, 

shedding light on the average relationship between pixel intensities at different scales and 
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orientations. Additionally, selected shape-based radiomic features highlighted that irregular shapes 

or asymmetry in tumors may correlate with more aggressive behavior 48,49.  

Major Axis, Elongation, and Sphericity metrics contribute valuable information about lesion 

extent, elongation, and overall geometry, respectively. In the context of selected first-order 

features, interpretations involve understanding tissue characteristics and their potential 

associations with pathophysiological changes, considering alterations in cellularity, necrosis, 

microstructural properties, and vascularity. Furthermore, selected GLSZM features quantify size 

and intensity variations of homogeneous regions, while selected GLDM features capture changes 

in cellularity, tissue heterogeneity, and microstructural alterations, providing insights into spatial 

dependencies, homogeneity, and intricate textural patterns associated with specific tumor 

characteristics or microstructural organization 49. 

The results indicated that the designed SVM classifier could reliably and accurately diagnose 

benign and HCC classes with accuracy/sensitivity/specificity of 0.92/0.94/0.86, respectively. 

While the RF, MLP, LR, and GB models consistently achieved high accuracy during training on 

3T images, as evidenced by ROC curves across folds, a significant divergence emerged when 

evaluating their performance on the test dataset encompassing both 1.5T and 3T images. SVM's 

ability to maintain accuracy on the test dataset positions it as a promising candidate for real-world 

applications. Potential overfitting, model complexity, or sensitivity to specific characteristics in 

the training data might contribute to the observed disparities. It is crucial to carefully examine the 

training metrics and the behavior of the model on separate datasets to guarantee dependable and 

consistent performance in real-world scenarios. 

Our study had several limitations. First, our training and testing sample size was relatively small 

when compared to the extensive databases typically relied upon for translating results to clinical 

settings. This could potentially affect the generalizability of our findings. To address this issue, we 

assessed the technique's generalizability by utilizing an external dataset obtained from a different 

MRI unit. Second, selection bias may have existed because we retrospectively analyzed patients 

with cirrhosis without prior treatment. Pathologic assessment was limited, as not all patients 

underwent biopsy or liver transplantation. We also excluded some lesions without pathology or 

follow-up imaging, as malignancy/DWI, or precision-matching between the MRI images and 

histopathologic findings could not be performed.  
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Conclusion 
Our study explored machine learning models using radiomics features in classifying HCC from 

benign nodules by extracting water restriction patterns. By focusing on the distribution of water 

restriction and selecting important features, we achieved an accurate classification of HCC from 

benign nodules with 92% accuracy. For future studies, it is essential to establish a correlation 

between MRI features and histopathological markers employed in primary tumor evaluation to 

deepen our understanding of cancer progression in HCC and metastatic stages. Importantly, these 

prediction models may significantly impact clinical decision-making regarding systematic liver 

biopsy in lesions with uncertain MRI findings in the early stages. 
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Figures and Tables: 

 

 

 

 

 

 

 

 

 

Figure 1. Patient inclusion and exclusion flowchart. 
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Figure 2. A case with a solitary cirrhotic nodule with hepatocellular carcinoma proven pathology. Region of interests 
(ROIs) are placed on ADC map for the nodule, liver, and paravertebral muscle (A and C). ROIs are positioned for lesion 
ADC value on each slice. Liver ADC is calculated with three ROIs placed at the surrounding liver avoiding bile ducts 
and vessels. The mean value for liver ADC was added. ROI for Paravertebral ADC was placed on the right paravertebral 
muscle. On DWI (b value, 800 s/mm2), restriction is seen (A) along with an ADC map with low signal areas 
corresponding to restriction in the tumor (C).  The T1-weighted image reveals a heterogeneous hyperintensity in the 
lesion due to fat-containing (B) with mild hyperintensity in the T2-weighted slice (D). The nodule demonstrates arterial 
phase hyperenhancement (E) with washout in the portal venous phase (F) and enhancing capsule in the delayed phase 
(G). 
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Figure 3. Study workflow and lesion segmentation. DWI and lesion segmentation of cirrhotic nodules (left), Radiomics 
feature extraction (middle), feature selection, Machine-learning model construction (right), and evaluation with external 
dataset. 
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Figure 4. Feature Selection Workflow: (A) Correlation map of all 1,434 radiomic features. (B) Correlation map after applying 
a high-correlation filter with a 0.8 threshold, reducing the number of features to 150. (C) Principal Component Analysis (PCA) 
with a 0.95 variance threshold, resulting in 51 features. (D) LASSO regression identified 17 features with non-zero coefficients. 
(E) The deviance-log(lambda) curve determined a regularization parameter threshold of 0.69. (F) Applying this threshold led 
to the selection of 16 features. 
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Figure 5. Receiver operating characteristic (ROC) curves. The horizontal axis is the false positive rate, and the vertical axis 
shows the true positive rate. Different Models' performance on the external test dataset (A), and training dataset for Logistic 
Regression (B), Multilayer Perceptron (C), Random Forest (D), Support Vector Machine (E), and Gradient Boosting (F). 
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Table 1 Study characteristics. 

Parameters Benign 
(n=242) 

HCC 
(n=275) P-value 

LI-RADS 2 118 7 - 

LI-RADS 3 75 40 - 

LI-RADS 4 42 95 - 

LI-RADS 5 7 133 - 

Age 64.12±9.7 69.2±13.1 0.62 

Sex(M/F) 181/61 173/102 0.07 

Tumor size (mm) 19.27±13.99 34.65±33.74 < 0.01* 

APHE(Yes/No) 87/155 193/82 0.04 

Capsule(Yes/No) 104/138 164/111 0.72 

Washout(Yes/No) 93/149 231/44 < 0.01* 

Lesion ADC (m ± sd) mm2/s 1520±127 1384±184 0.05 

Liver ADC (m ± sd) mm2/s 1207±158 1213±161 0.46 

Paravertebral ADC (m ± sd) 
mm2/s 

1585±189 1591±133 0.29 

ADC1 ratio (lesion/liver) 1.26±0.28 0.92±0.21 0.05 

ADC2 ratio 
(lesion/paravertebral) 

0.92±0.17 0.85±0.12 0.02 

Arterial phase hyperenhancement: APHE, Hepatocellular Carcinoma: HCC, ADC: Apparent Diffusion Coefficient, 
LI-RADS: Liver Imaging Reporting and Data System. * p < 0.01 
 

Table 2. MR Imaging parameters 

MRI: Magnetic Resonance Imaging, T1WI: T1-weighted imaging, T2WI: T2-weighted imaging, DWI: Diffusion-
Weighted Imaging, DCE: Dynamic Contrast-Enhanced. 

 

 

 

 

 

 

 

Sequence Repetition time 
(ms) 

Echo 
time 
(ms) 

Inversion time 
(ms) 

Slice thickness 
(mm) 

Flip 
angle 

B value 
(s/mm2) 

T1WI 100 4.2 120 5 24° - 
T2WI 538 110 150 5 90° - 
DWI 9400 70 110 8 90° 0, 200, 800 
DCE 3.7 1.7 5 5 15° - 
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Table 3 Selected radiomics-driven features in differentiation HCC and benign nodules. 

Feature Class Feature Applied Filter P-value 

GLCM 

LHH-IDM Wavelet 0.001* 
HLH-IDMN Wavelet 0.001* 

HLL-Joint Average Wavelet 0.03 
Joint Entropy Original image 0.07 

GLDM 

LLH-Large Dependence Low 
Gray Level Emphasis Wavelet 0.003* 

sigma-2mm-Large Dependence 
Low Gray Level Emphasis Log 0.015 

HH-Large Dependence Low Gray 
Level Emphasis Wavelet 0.02 

GLSZM 

HLL Zone Variance Wavelet 0.008* 
sigma-3mm Size Zone Non-

Uniformity Normalized Log 0.004* 

sigma-2mm High Gray Level 
Zone Emphasis Log 0.02 

Shape 
Major Axis Original image 0.01* 
Elongation Original image 0.01* 
Sphericity Original image 0.04 

First-order 
LHH-Kurtosis Wavelet <0.001* 
HHL-Median Wavelet <0.001* 
LHL-Kurtosis Wavelet 0.001* 

GLCM: grey level co-occurrence matrix, IDMN: inverse difference moment normalized, GLDM: gray level 
dependence matrix, GLSZM: gray level size zone matrix. * p < 0.01. 

 

Table 4 ML models efficiency on external dataset 

 

 

Classification model Accuracy Sensitivity Specificity 
Logistic Regression 0.69 0.59 0.86 

Support Vector Machine 0.92 0.94 0.86 

Random Forest 0.56 0.29 1.00 

Neural Network 0.45 0.14 0.97 

Gradient Boosting 0.61 0.40 0.90 
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