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Abstract 

Background: During residency, each resident is observed and receives feedback based on their 

performance. Residency training is demanding, with a few residents struggling in their academic 

performance. A competency-based residency training program’s success depends on its ability to 

identify residents with difficulty during their first year of post-graduate education and to provide 

them with timely intervention and support. 

Objective: In large training programs such as Family Medicine, identifying residents at risk of 

failing their certification exams is difficult. We develop a AI system using state-of-the-art 

technologies in Machine Learning (ML), Deep Learning (DL), Natural Language Processing 

(NLP) and Explainable AI (XAI) to detect at-risk residents automatically. 

Methods:We implemented ML, DL and NLP models for the prediction and its performance 

analysis. The target variable chosen for the prediction was the determination of whether the 

resident would fail or pass their certification exam. XAI was used to enhance the understanding 

of the model's inner workings.  

Results:In total, there were 1382 data points of residents. The champion model, Support Vector 

Machine (SVM), achieved an accuracy of 89.05% and an F1 score of 74.54 for the multiclass 

classification when multimodal (text and tabular) data was used. This model outperformed the 

models that only used qualitative or quantitative data exclusively. 

Conclusion:  Combining qualitative and quantitative data represents a novel approach and has 

provided better classification results. This research demonstrates the feasibility of an automated 

AI system for the early identification of residents at risk of academic struggle. 
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Introduction 

Residency programs play a crucial role in molding future specialist and generalist physicians by 

providing them extensive clinical experience.  When residents encounter problems late in their 

residency, it is often more difficult to rectify them. Ideally, these problems should be identified 

earlya in residency, which would allow them to be resolved promptly, avoiding ramifications, 

such as failure on certification examinations. Early identification of at-risk residents is a vital 

responsibility of a residency's program of evaluation. Artificial intelligence (AI) is suggested to 

be used for early detection of at-risk residents.  

According to a survey of internal medicine program directors, struggling residents display 

characteristics of inadequate medical knowledge, poor clinical judgment, and inefficient use of 

their time1. Additionally, struggling residents may feel overburdened, unsure of the objectives of 

training, unclear about their performance evaluation and thus incapable of prioritizing areas of 

improvement2. The demanding nature of residency programs, the long work hours, and the stress 

of transitioning to residency, all play a role in these challenges3.  

 

The use of Machine Learning (ML) and Natural Language Processing (NLP) in medical 

education to improve students' and healthcare professionals' teaching and learning processes has 

gained popularity in recent years. Several promising strategies have emerged because of studies 

exploring the potential applications of ML8,10,12-19 and NLP4-8,9,11 in medical education. This 

emphasis on NLP has practical applications. Automated essay scoring (AES) for medical 

knowledge examinations and constructed-response assignments, automates grading by linking 

language to human scores using word processing and NLP4,5. NLP was applied to examine 

faculty and medical residents' feelings about entrustable professional activity (EPA) evaluations 

revealing that general surgery participants expressed fewer positive emotions compared to those 

in emergency medicine6. Explainable AI (XAI) has shown to improve decision making and 

educational results, by improving a prediction model’s transparency and comprehension20-24. The 

explainability of the otherwise complex reasons behind ML predictions play an important role in 

establishing end users’ trust in AI systems’ credibility, by mapping the important patterns, 

phrases and terms associated with the highest information value for the predictions25. 

 
The identification of at-risk residents and the subsequent educational interventions can be greatly 
improved with the use of AI. We propose a multimodal approach of combining Qualitative (Text) 
and Quantitative (Numerical) data utilizing Post Graduate Year 1 (PGY 1) Family Medicine 
rotation data, along with XAI for model explanation. This integration of data in the form of text 
and narration, allows AI systems to consider real-life experiences26. Integration of humanistic 
opinions can enhance AI's data-centric methods. Our study attempts to close the research gap, by 
investigating the efficiency of combining qualitative and quantitative data, via three independent 
sets of experiments. By examining the synergy between the two types of data,  we hope to show 
that their combination produces more valid results. The study makes use of advanced models 
such as XLNET29 for the prediction of the residents at risk, along with the implementation of 
XAI to help improve the end user’s understanding.  

The objectives of our study are twofold. First, we will explore the feasibility of the automating 
the identification and prediction of at risk residents in educational trouble using ML and NLP. 
Second, we will use XAI and language models (LM), to identify the important latent 

 
a By Early we mean, as soon as the resident evaluation data becomes available.  
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characteristics, discriminating patterns and generate insights. 

Methods 

Research Setting and Participants 

The dataset utilized for the study is the Family Medicine In-Training Evaluation Report (ITER) 

of first-year residents (PGY-1) and their certification exam data. The ITER data is sourced from 

the Department of Family Medicine at the University of Ottawa. The exams data is based on the 

CFPCb certification exam, which has two components Simulated office oral (SOO) and Short-

answer management problems (SAMP) and they make up the Canadian Family Medicine 

Certification exam. The exams are offered in the Spring and the Fall of each year. The exam data 

used in this analysis covers the following periods: Spring: 2018-2022,  Fall: 2018 - 2022. There 

was no data for Spring 2020, as the exam was cancelled due to the COVID-19 pandemic. 

Given this exam data, we focused on analyzing the performance outcomes represented by the 

target variable "Pass/Fail," which is a multiclass classification with four different classes, Fail in 

SOO, Fail in SAMP, Fail in both and Pass (See Figure 1). The dataset is imbalancedc, meaning 

some classes have a much greater count than others. Exam results are recorded as z-scores for 

the SOO and the SAMP where a z-score of less than -2.0 marks a failure. Of the 1382 SOO 

scores, 61 fell below this level. Of 1382 SAMP scores, 21 fell below -2.0. Only 8 out of 1382 

failed both parts. Most candidates passed: 1292 out of 1382 either passed both components or 

one if only one was available. This distribution shows a significant skew towards the "PASS" 

category, highlighting the imbalance in the dataset. 

 

Figure 1. Distribution of Target Variable “Pass/Fail” 

 
b CFPC: College of Family Physicians of Canada 
c We used SMOTE to deal with the imbalance, please refer to methods section for more details. 
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Interventions 

This section presents the techniques employed to develop an AI-based medical residency intervention 

system. Figure 2 illustrates the comprehensive approach implemented in our methodology.  

The dataset comprises of multiple columns representing both qualitative and quantitative evaluations of 

the resident. This data was constructed from the assessment conducted by faculty members based on the 

resident's performance during their family medicine rotations in residency during their first year. We aim 

to utilize a multimodal approach, which involves combining quantitative (tabular) and qualitative (text) 

data, which includes feedback, and comments offered by the faculty to each resident. Furthermore, the 

examined dataset also includes the residents' final Pass or Fail status on their first certification exam 

attempt. 

 

 Figure 2. Research Methodology for Medical Residency Intervention 

AI Modelling 

Data were cleaned in preparation for the experiment. The cleaning process involved filling empty 

entries and performing categorical encoding to the quantitative part of the data. Subsequently, a 

multi-step cleaning process was implemented for the qualitative data, encompassing converting 

the text to lowercase, removing special characters, tokenizing, and lemmatizing the text. We then 

vectorized the data using TF-IDF27 to convert the text into numerical representations and 

produced dense vector representations encapsulating the semantic meaning of the text using 

Doc2Vec28 embeddings for additional model processing. A Language Model XLNET29 and a 

Deep Learning model Long Short-Term Memory (LSTM)30 which is a type of Recurrent Neural 

Network designed to remember long-term dependencies were applied on qualitative data. 

Outcomes Measured 

Our study involved a series of three AI experiments utilizing “Pass/Fail” as the target variable 

for all the three experiments. For comparison purposes, we experimented with three kinds of data 

within the dataset: qualitative, quantitative and multimodal. 
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Series of Experiments I: Qualitative Data 
In these experiments, we employed four approaches focusing solely on qualitative data via a) 

ML models on text vectorization (TF-IDF), b) ML Models on text embeddings (Doc2Vec), c) 

fine tuning the pre-trained XLNET on the data and d) LSTM, a Deep Learning model. 

Series of Experiments II: Quantitative Data 
We utilized only quantitative data. SMOTE36 was applied to balance the data. We used SMOTE 

to synthetically increase the short segments within the dataset without introducing any bias. The 

experimental methodology followed these steps: feature scaling and normalization, Principal 

Component Analysis (PCA), feature selection (Mutual Information gain), hyperparameter tuning 

(Grid search) and model evaluation (Cross-validation) and prediction. 

Series of Experiments III: Multimodal (Combination of Qualitative and Quantitative Data) 
This final series of experiments aimed to enhance information richness and evaluate whether 

multimodality benefits the AI model’s performance. Before concatenating the data, we applied 

TF-IDF and Doc2Vec to text data, followed by SMOTE, as done previously. Finally, we plugged 

the transformed data into the algorithm. 

Analysis of Outcomes 

Evaluation Metrics and Cross Validation 

The F1 (macro) score and accuracy were selected as evaluation metrics to measure model 

performance (See Supplementary Material 1). A 5-fold cross-validation was performed on the 

stratified data of which four parts were used for training the AI model and one part for testing. 

Through the cross-validation we reported the average of the indices with a variance of up to 

3%33. 

 

Explainable AI (XAI) 

Explaining an AI model means rendering its output understandable to a human being35. XAI 

plays a crucial role in understanding what is going on behind a complex ML model. To gain 

insights into our AI model, SHAP31 and BERTopic32 were employed for model explanation and 

to understand why certain predictions were made. SHAP helped us identify important input 

variables, akin to the industrial term "fine classing," which is comparable to the PCA (Principal 

Component Analysis) used in our process. On the other hand, BERTopic is a topic modelling 

technique that leverages language model and assists in "explaining" output predictions by 

identifying and grouping topics within the textual data. Our utilization of BERTopic as a tool for 

"Global Explainability" is reinforced using a Language Model (XLNET). The key features were 

then shared with an expert.  
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Shapley Additive Explanations (SHAP) 

SHAP31 was used for model interpretation to identify crucial features and provide their order of 

importance. Together this information would allow the faculty and supervisors to understand 

which aspects of the residency to focus on when a resident is at risk. 

BERTopic 

BERTopic32, is a cutting-edge topic modelling technique that leverages BERT embeddings and 

class-based TF-IDF to create dense clusters, enabling the generation of easily interpretable topics 

while retaining important words in the topic descriptions. This approach is particularly valuable 

in the context of XAI, as it emphasizes transparency and interpretability in the modelling 

process.  

Feasibility and Acceptability 

These models were feasible in time and resources, making them an effective screening tool. 

Sharing key features with experts ensured feasibility, relevance, and acceptability. 

REB statement 

The project’s scope was reviewed by the Office of Research Ethics and Integrity at the 

University of Ottawa and was determined deemed exempt from further review.  

Results 

We reported the score averages of performance of the ML models for three sets of experiments 

in Table 1. 

Series of Experiments I: Qualitative Data 

XLNET outperformed the other models with an accuracy of 72.45% and an F1 score of 55.48. 

LSTM performed second best with an accuracy of 70.33% and an F1 score of 53.73. 

Series of Experiments II: Quantitative Data 

The SVM model, followed by the CatBoost model, achieved the highest performance with an 

accuracy of 81.71% and 80.93%, and an F1 score of 63.43 and 63.01, respectively. 

Series of Experiments III: Multimodal Data 

The SVM (TF-IDF) model outperformed all other models with an accuracy of 89.05% and F1 

score of 74.54, followed by SVM (Doc2Vec) with an accuracy of 82.10 and an F1 score of 72.40.  

The results clearly indicate that the SVM (TF-IDF) model from Experiment III was the 

champion. It used TF-IDF on text data and a multimodal approach, outperforming other  models 
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in Experiments I, II, and III. Interestingly, despite Doc2Vec being context-dependent, the TF-

IDF model outperformed it, likely due to TF-IDF's better performance with smaller datasets33. 

Table 1. Model Performances of each Experiment 

 
d MLP: Multinomial Logistic Regression 
e BNB: Bernoulli Naïve Bayes 
f GNB: Gaussian Naïve Bayes 
g RF: Random Forest 
h MLP: Multi-layer Perceptron 

Model Experiment No. Data Type Accuracy Precision  Recall F1 score 

MLRd (Doc2Vec) 1 Qualitative 67.16 42.25 42.65 42.44 

BNBe (Doc2Vec) 1 Qualitative 62.93 38.10 34.91 36.43 

GNBf (Doc2Vec) 1 Qualitative 67.55 39.45 46.27 42.58 

SVM(Doc2Vec) 1 Qualitative 70.33 58.61 43.75 50.10 

MLR (TF-IDF) 1 Qualitative 66.50 41.20 47.25 44.02 

BNB (TF-IDF) 1 Qualitative 61.68 35.01 32.84 33.89 

GNB (TF-IDF) 1 Qualitative 68.81 38.91 45.65 42.01 

SVM (TF-IDF) 1 Qualitative 70.93 58.35 45.44 51.09 

LSTM 1 Qualitative 70.33 60.22 48.51 53.73 

XLNET 1 Qualitative 72.45 63.10 49.51 55.48 

SVM 2 Quantitative 81.71 64.98 61.97 63.43 

RFg 2 Quantitative 76.43 62.60 59.10 60.79 

MLPh 2 Quantitative 77.92 64.04 59.79 61.84 
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Explainable AI 

SHAP 

The summary plot for the most important features is shown in Figure 3 and is explained below: 

The summary plot shows the feature in order of importance, where the bar length for each class 

represents its impact on that class. Target variables were labelled as follows, Class 0 for students 

who fail SAMP, Class 1 for those who fail SOO, Class 2 for those who fail both, and Class 3 for 

students who pass both SAMP and SOO. The most crucial feature was, "Were the rotation 

objectives discussed with the resident?" This feature has two possible answers: Yes or No. It was 

observed that the residents who had discussed their objectives with their supervisor had a failure 

rate of 7.2%, but those who did not have a failure rate of just 4.1%.  It is hypothesized that during 

residency, there is a higher chance that the rotation's objectives will be discussed if the resident is 

having difficulty. This contrasts with a resident who is known or perceived to be doing well and 

who has not undertaken these measures with the faculty. 

CatBoost 2 Quantitative 80.93 66.10 60.94 63.01 

MLR (Doc2Vec) 3 Combined 75.42 69.48 67.85 68.65 

BNB(Doc2Vec) 3 Combined 70.79 52.50 49.85 51.14 

GNB (Doc2Vec 3 Combined 77.60 71.80 69.85 70.81 

SVM(Doc2Vec) 3 Combined 82.10 74.80 70.15 72.40 

MLR (TF-IDF) 3 Combined 80.26 73.45 70.10 71.73 

BNB (TF-IDF) 3 Combined 70.24 54.22 48.45 51.17 

GNB (TF-IDF) 3 Combined 82.15 72.32 69.69 70.98 

SVM (TF-IDF) 3 Combined 89.05 76.11 73.04 74.54 
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Figure 3. SHAP Summary plot  

BERTopic 

BERTopic has the potential to produce several topics, for the sake of clarity we have selected the 

top seven topics. Figure 4 presents the top terms for each topic using a bar chart that shows the 

importance of each word for the topic. The horizontal axis is the c-TF-IDF scores of the top five 

most representative words for each topic. For instance, Topic 1 “Trajectory” is related to the 

progress of the medical resident during their residency and their supervisor comments on 

whether the resident is off-trajectory or on-trajectory. It was observed that residents who were 

on-trajectory had a lower failure rate compared to the ones who were off-trajectory. Furthermore, 

Topic 7, for includes “teamwork”, and is strongly correlated with favorable outcomes. Residents 

who received comments like "team player with excellent communication skills," "excellent team 

player!" and "always a team player" passed their certification exams and were designated 

“PASS”. This shows that teamwork is a crucial indicator of positive performance outcomes. (See 

Supplementary Material 2 for detailed analysis). 
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Figure 4. Topic generated through BERTopic  

Discussion 

The SVM (TF-IDF) model from experiment 3, which utilized a multimodal approach combining 

qualitative and quantitative data, emerged as the model with the highest performance across 

experiments 1, 2, and 3, establishing itself as the champion model. This multimodal approach 

enhanced the prediction performance, comprehensive information and Cross-Domain learning of 

the model, leveraging the richness of information. Furthermore, the implementation of XAI 

including SHAP and BERTopic offered insightful analysis of the decision-making process of the 

model, hence stressing the explainability and transparency of the AI system. 

The study’s findings correspond with earlier studies using AI to forecast resident performance. 

An ML based model using previous data to predict resident performance reached 72% accuracy, 

showcasing the potential of ML in competency-based education18. The critical role of narrative 

feedback in decision-making is demonstrated by the ability of NLP and ML models to predict 

underperforming residents with 87% accuracy using narrative feedback from workplace-based 

assessments (WBAs)8. Additionally, classification and regression tree methods identified specific 

keywords in evaluation reports signaling residents at risk of failure, with precision rates of 23.3 

and 23.4%17. The enhanced accuracy of our multi-modal technique implies that combining 

diverse data sources provides a more complete analysis than past studies depending on just one 

data type. Moreover, our use of XAI provides a better understanding of model decision-making, 

thereby differentiating our work. 

 

Despite promising results, these techniques have limits. First, a relatively small and skewed 

sample of PGY 1 residents that might compromise generalizability of the model. Our study had a 

limited dataset of 1,382 data points. Although we attempted to mitigate potential bias by 

synthetically generating additional data using SMOTE, relying on authentic data would be more 

ideal for model accuracy. A second limitation could be restricted vocabulary coverage of the AI 
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models, highlighting the necessity for ongoing updates to the model's training data to include 

medical terminology and abbreviations. 

 

Our future research aims to enhance the department's practical application by translating domain-

specific knowledge into a usable tool through techniques like domain-specific language 

modeling and fine-tune models pre-trained on medical corpora such as Bio-BERT37 and Bio-

GPT38. Additionally, we plan to implement data augmentation techniques like GraphRAG39 to 

further improve the model's performance. 

Conclusion 

The Multi-modal SVM (TF-IDF) model showed the best performance among all the three 

experiments and was useful in predicting at-risk residents in the medical residency training 

program. This research emphasizes the advantages of amalgamating qualitative and quantitative 

data as well as using Explainable AI methods to give insightful analysis for early identification 

and intervention of residents in difficulty. 
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