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Abstract 

 

Brain imaging is a high-content modality that offers dense insights into the structure and 

pathology of the brain. Existing genetic association studies of brain imaging, typically focusing 

on a number of individual image-derived phenotypes (IDPs), have successfully identified many 

genetic loci. Previously, we have created a 128-dimensional Unsupervised Deep learning 

derived Imaging Phenotypes (UDIPs), and identified multiple loci from single-phenotype 

genome-wide association studies (GWAS) for individual UDIP dimensions, using data from the 

UK Biobank (UKB). However, this approach may miss genetic associations where one single 

nucleotide polymorphism (SNP) is moderately associated with multiple UDIP dimensions. Here, 

we present Joint Analysis of multi-phenotype GWAS (JAGWAS), a new tool that can efficiently 

calculate multivariate association statistics using single-phenotype summary statistics for 

hundreds of phenotypes. When applied to UDIPs of T1 and T2 brain magnetic resonance 

imaging (MRI) on discovery and replication cohorts from the UKB, JAGWAS identified 195/168 

independently replicated genomic loci for T1/T2, 6 times more than those from the single-

phenotype GWAS. The replicated loci were mapped into 555/494 genes, and 217/188 genes 

overlapped with the expression quantitative trait loci (eQTL) of brain tissues. Gene enrichment 

analysis indicated that the genes mapped are closely related to neurobiological functions. Our 

results suggested that multi-phenotype GWAS is a powerful approach for genetic discovery 

using high-dimensional UDIPs.  
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Introduction 

 

Imaging genetics is an interdisciplinary field that seeks to unravel the intricate interplay between 

genetic variations and the phenotypes captured in imaging data to better understand the 

biological underpinnings of complex traits and diseases1,2. In particular, the emerging field of 

brain imaging genetics holds immense promise for advancing our understanding of the genetic 

basis of various neuropsychiatric disorders, cognitive functions, and behavioral traits3. To 

harness the potential of imaging genetics, researchers employ sophisticated methodologies and 

tools to generate imaging-derived phenotypes (IDPs), and conduct genetic association studies 

of these IDPs for investigating the relationships between genetic factors and neuroimaging 

measures4–7. The integration of genetic data, often obtained through techniques like single 

nucleotide polymorphism (SNP) arrays and sequencing technologies8, and the UK Biobank 

(UKB) is a rich prospective epidemiological study with a large-scale sequencing database9. 

Additionally, UKB has a brain and body imaging extension, which aims to scan over 100,000 

participants for the structural, diffusion and functional modalities4. Through genetic studies using 

large-scale, high-quality, and consistently acquired imaging data from the UKB, researchers 

identified genetic variants associated with specific IDPs and subsequently explored their 

implications for various neurological and psychological conditions5,10–12. A sophisticated image 

processing pipeline minimizes artifacts, standardizing images across various modalities and 

participants. Moreover, it produces a multitude of IDPs, offering distinct metrics of both brain 

structure and functions13. This approach has the potential to bridge the gap between the 

molecular basis and the macroscopic features of brain structure and function, shedding light on 

the mechanisms underlying both normal variations in brain traits and deviations that contribute 

to disease susceptibility14.  

Besides traditional IDPs, our previous studies leveraged an unsupervised deep learning 

approach to derive robust, heritable and interpretable phenotypes, called Unsupervised Deep 

learning derived Imaging Phenotypes (UDIPs)15, from UKB T1 and T2 brain imaging data. We 

conducted single-phenotype genome-wide association studies (GWAS) and demonstrated that 

these specific phenotypic sets have higher individual heritability and can identify new loci not 

reported in the GWAS of traditional IDPs. The single-phenotype approach in GWAS has been 

routinely used in imaging genetics. Multiple IDPs are typically tested via GWAS one by one, and 

the results from individual GWAS are aggregated using multiple testing adjustments. However, 

such an approach does not exploit information contained in summary statistics from GWAS of 

related traits, especially for brain imaging IDPs, involving a large number of highly heritable 

brain morphological features. Previous GWAS have identified a great number of significant loci 

for individual IDP, by testing brain imaging phenotypes separately12,16–18. One of the largest 

GWAS of which, based on brain imaging data from 51,665 individuals, identified 199 significant 

loci18. Testing these related IDPs jointly could result in a further boost in statistical power to 

identify genetic variants with small effect sizes on individual IDPs19. 

In addition, joint analysis of these traits is consistent with the notion that brain regions function 

as a synergistic unit and may leverage the discovery of genetic variants with distributed effects 

across regions and morphological measures20. It has been reported that large-scale multi-
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phenotype genomic analysis can elucidate the genetic architecture of shared components for 

complex diseases21. Several multi-phenotype GWAS approaches have been developed for 

genetic association analysis19,22–25. They were closely related to the multivariate analysis of 

variance (MANOVA)26, testing at a given SNP if the genotype is not associated with any of the 

phenotypes. MQFAM, also referred to as MV-PLINK, and MultiPhen, share a common approach 

involving multivariate regression19,22. Other multi-phenotype GWAS strategies, such as 

MultiABEL24, metaUSAT25 and MOSTest19, employ the MANOVA F-test or a chi-square test to 

compute the multivariate p-values. MTAG does not directly test the multivariate null hypothesis. 

Instead, it leverages association evidence from related traits to enhance genetic discoveries on 

a primary trait27. MultiABEL and metaUSAT operate on single-phenotype GWAS summary 

statistics to calculate the multivariate summary statistics. MOSTest does not take summary 

statistics, and instead it requires permutation on individual-level data. All these methods 

typically work efficiently for phenotypes with limited dimensions. For high-dimensional 

phenotypes, however, the lack of optimized software programs for a large number of 

phenotypes has become a bottleneck in the field. Here we introduce Joint Analysis of multi-

phenotype GWAS (JAGWAS), designed to boost the power in brain imaging GWAS with 

hundreds of derived phenotypes for tens of thousands of possibly related individuals. JAGWAS 

takes single-phenotype GWAS summary statistics, estimates the correlation matrix from 

residualized phenotypes to improve computational efficiency, and computes the multivariate p-

values analytically. Details of the JAGWAS procedure can be found in the Methods section.  

We applied JAGWAS to deep-learning derived UDIPs to perform a 128-dimensional multi-

phenotype GWAS. This analysis identified 6 times more loci than a Bonferroni-corrected 

analysis of 128 separate single-phenotype GWAS. The newly discovered loci are associated 

with various neurological disorders and critical brain morphology measurements, including 

cortical thickness, cortical surface area, and hippocampal subfield volume. The gene set and 

tissue enrichment analysis further linked these loci to neurobiological processes essential for 

cognitive function, emphasizing their potential relevance in neurological disorders like 

Alzheimer's Disease (AD). By uncovering these connections, our study highlights the power of 

joint analysis of UDIPs in revealing complex genetic architectures and opens new pathways for 

understanding the biological underpinnings of AD, thereby aiding in the development of targeted 

therapies. This methodology showcases the potential to advance the genetic basis of 

neurological conditions through efficient multivariate statistical frameworks. 
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Results 

Overview of the study. JAGWAS is a highly efficient summary statistics-based multi-

phenotype GWAS method for up to hundreds of phenotypes (Methods: JAGWAS). In this study, 

we applied JAGWAS on 128 T1/T2 UDIPs building on our previous work15. The summary 

statistics for discovery, replication, and meta-analyses from these UDIPs were already available 

in the GWAS catalog28. These summary statistics, along with their estimated correlation 

matrices, were processed in JAGWAS to perform a multi-phenotype GWAS. The resulting 

summary statistics were fed into FUMA for locus clumping and functional gene mapping via the 

SNP2GENE function29. Independent genomic risk loci were identified, and a T-map was 

generated to visualize the brain regions affected by the top SNPs. Clustering analysis was 

performed using the optimal linear combination of the 128 UDIPs, with full methodological 

details outlined in the Methods: Clustering analysis. The mapped genes underwent further 

analysis in FUMA's GENE2FUNC function to extract gene sets and tissue enrichment results for 

functional interpretation29. All the post-GWAS analyses focused exclusively on loci that had 

been successfully replicated in the independent replication cohort (Supplementary Data 1-2).  

 
 

Fig. 1 Overall pipeline of the study. The blue boxes represent the input and output of JAGWAS for the 

multi-phenotype GWAS of 128 T1/T2 UDIPs. The orange boxes represent the input and output from post-

GWAS analyses using FUMA and clustering analysis. 
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Discovery and replication multi-phenotype GWAS. We performed JAGWAS on the 128 

UDIPs using discovery (22,880 T1/T2) and replication cohorts (T1=12,359/T2=11,265). In the 

discovery stage, the genome-wide significance threshold was set at α = 5 × 10−8. JAGWAS 

produced much stronger signals compared to the minP approach, which selects the minimum p-

value across single-phenotype GWAS for the 128 UDIPs, applying a Bonferroni-corrected 

threshold of 5 × 10−8 /128. The difference in p-value magnitude is particularly noticeable in Fig. 

2a, with the Miami plot in Fig. 2b further illustrating the enhanced signals. JAGWAS identified 

66,802/66,959 significant genetic variants clustering into 467/463 independent loci for T1/T2 

(Supplementary Data 3). Using a 250 kb threshold, we merged the loci clumped by FUMA29 

from the JAGWAS and minP results, and counted the number of merged loci contributed by 

JAGWAS and minP. Using the same approach, we compared our loci with those previously 

found by the big40 IDP GWAS10, which is one of the greatest efforts in identifying novel 

associations for brain imaging phenotypes. As can be seen in Fig. 2c, 108/113 loci previously 

identified by IDP GWAS were shared with JAGWAS on UDIPs. Additionally, all but one (both T1 

and T2) loci discovered by the minP approach were also identified by JAGWAS. The total 

number of loci found by JAGWAS exceeded the combined total from both minP and IDP GWAS 

(218/233). Of all the loci identified, 384/376 were not detected by the minP approach, and 

313/311 were exclusively identified by JAGWAS. 
 

 
Fig. 2 JAGWAS identifies new loci in the UKB (discovery cohort). a. Scatter plot of -log10 p-values 

from JAGWAS vs. minP (T1). b. Miami plot of -log10 p-values of JAGWAS vs. minP (T1), with JAGWAS 

on the top half and minP on the bottom half. The y axis represents the -log10 p-value and x axis shows 

the relative genomic location, grouped by chromosome, and the red dashed lines indicate the genome-

wide significance threshold of 5 × 10-8. c. Venn diagrams displaying the number of loci identified by 

JAGWAS, overlapping between minP and previous IDP GWAS for T1 and T2, and overlapping between 

T1 and T2 UDIPs.  
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Replication analysis was carried out using an independent replication cohort, focusing on 

66,802/66,959 significant variants identified during the discovery stage. Out of which, 

21,422/19,357 significant variants, involving 195/168 independent loci for T1/T2, were 

successfully replicated at significance thresholds of 0.05/66,802 and 0.05/66,959 respectively 

(Supplementary Data 1).  

 

Meta-analysis. The discovery and replication cohorts were also meta-analyzed using a 

correlation matrix computed from the weighted average of covariance matrices from scaled 

residuals (discovery and replication). The meta-analysis results are consistent with the pooled 

analysis on the combined sample (discovery and replication), as shown in Supplementary Fig. 

3. With a larger sample size, JAGWAS identified 156,650/145,708 variants which clustered into 

844/776 independent association loci for T1/T2, at the genome-wide significance threshold of 5 

× 10−8 (Supplementary Data 10). The Miami plot of JAGWAS vs. minP for meta-analysis can be 

found in Supplementary Fig. 3.  

Novel loci. As shown in Fig. 1c, JAGWAS identified hundreds of loci missed by the minP 

approach and previous IDP-GWAS. To better illustrate the loci uniquely found by our multi-

phenotype GWAS method, a stringent approach in favor of minP was used. JAGWAS loci must 

pass a two-stage selection process (being significant in the discovery followed by replication) to 

ensure that any novel loci reported would not have been identified through minP in a meta-

analysis, which combines the sample sizes of both the discovery and replication stages. With a 

larger sample size, the minP approach could find more loci, and still, 45/33 of the replicated loci 

from JAGWAS were not significant in minP results using a significance threshold of 5 ×10-8/128 

(Supplementary Data 9). Among them, 9/4 loci identified by JAGWAS were still missed by the 

minP approach using a less stringent significance level of 5×10-8, without accounting for multiple 

testing of 128 phenotypes, as shown in Table 1. All the 9/4 loci in Table 1 were significant in 

both the discovery and replication cohorts of multivariate tests (p<0.05/66,802 = 7.48×10-7 and 

p<0.05/66,959=7.47×10-7, were considered significant in replication stage for T1/T2).  

Many interesting associations were found (Table 1). For example, rs708723 (p = 2.51×10-10, T1 

UDIPs) on chromosome 1 was reported to be associated with Parkinson’s disease (PD)30. Other 

loci associated with neurological disorders were: rs8039305 (p = 4.61×10-11, T1 UDIPs) on 

chromosome 15 was identified by MTAG for associations with bipolar disorder, schizophrenia, 

and major depressive disorder31; the shared loci rs186347 (p = 1.14×10-30/1.55×10-20, T1/T2  

UDIPs) was associated with language functional connectivity32; rs35478105 (p = 2.51×10-10, T1 

UDIPs) on chromosome 16 was associated with insomnia33. A total of 7 of these loci showed 

associations with brain measurement or cortical measurement. Examples are rs11614730 of T1 

on chromosome 12 (p = 9.33 ×10-22, T1 UDIPs) was reported to be associated with cortical 

thickness by MOSTest19; rs6097618 (p = 9.44 ×10-14, T2 UDIPs) was associated with brain 

region volumes, cortical volume, vertex-wise cortical thickness, and vertex-wise cortical surface 

area12,34,35; the shared loci rs186347 was associated with cortical volume and hippocampal 

subfield right CA4 volume34,36, hippocampal subfield volume was reported to be closely 

associated with verbal memory after first‐ever ischemic stroke37. 
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Table 1 JAGWAS identified novel loci previously missed by the minP approach. The table lists 9/4 

(T1/T2) loci that were replicated in JAGWAS but missed by minP in a meta-analysis of discovery and 

replication, with an unadjusted threshold of 5×10-8. The p-values for discovery and replication cohorts of 

JAGWAS are listed, and the minP p-values are represented by P (minP meta).   

Enrichment of neurobiologically relevant genes and differentially expressed genes. 

Through FUMA29, 555/494 genes were mapped respectively for T1/T2 replicated loci, and 

217/188 of them overlapped with expression quantitative trait loci (eQTL) of one or more of the 

13 Genotype-Tissue Expression (GTEx) v8 brain tissues (Supplementary Data 4). We used 

FUMA SNP2GENE function to perform gene set and tissue enrichment analysis, which are 

based on the hypergeometric distribution test with a lower p-value indicating greater over-

representation. Tissue specificity is tested using the differentially expressed gene (DEG) sets 

defined for each of the GTEx v8 tissue types. Using T1 as an example, the gene sets 

demonstrate significant enrichments for biological processes, including neurogenesis (p = 3.54 

× 10-8), generation of neurons (p = 5.24 × 10-8), animal organ morphogenesis (p = 1.52 × 10-8), 

and regulation of neuron differentiation (p = 5.49 × 10-7).  

Through gene set enrichment analyses, we identified 19 significant biological process ontology 

sets for T1 UDIPs, many of which related to neuronal development and differentiation, with the 

top 10 listed in Fig. 3a (Supplementary Data 5). The tissue enrichment results of JAGWAS and 
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minP classified by organ systems for T1 are listed in Fig. 3b (Supplementary Data 6). The most 

enriched tissues from JAGWAS are pancreas (p = 1.44 × 10-10), putamen basal ganglia (p = 

3.51 × 10-9) and most of the brain tissues categorized under the nervous system. The top 5 

enriched brain tissues are putamen basal ganglia (p = 3.51 × 10-9), amygdala (p = 7.22 × 10-9), 

caudate basal ganglia (p = 1.65 × 10-8), substantia nigra (p = 1.74 × 10-7) and hypothalamus (p 

= 3.24 × 10-7). In contrast, none of the tissues displayed statistically significant enrichment for 

minP results. The corresponding Fig. a-c for T2 are in Supplementary Fig. 4.  

Clustering reveals lead SNPs with similar pleiotropic effects. Clustering lead SNPs based 

on their best linear combination of UDIPs (Supplementary Data 7) identifies clusters with a great 

proportion of SNPs associated with brain morphology traits and neurological traits for T1, see 

Fig. 3c. Specifically, we perform hierarchical clustering based on the cosine similarity 

(Supplementary Data 8) between the vectors of optimal weights for each lead SNP (Methods: 

Clustering analysis). See supplementary information for details of the derivation of the weights. 

The color in the plot indicates cosine similarity, with darker colors representing highly similar 

SNPs. We analyzed the SNP clusters given by performing hierarchical clustering on the UDIP 

weights. A high proportion of SNPs within the clusters are associated with brain morphology 

traits and neurological traits, see Fig. 3c. For example, recent articles pointed out that HDAC9-

mediated calmodulin deacetylation induces memory impairment in AD, and FOXP1 plays a 

crucial role in the molecular mechanisms underlying schizophrenia38,39; GNA12 is associated 

with Parkinson's disease and bipolar disorder40,41. 
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Fig. 3 Enrichment and clustering analyses indicate high neurobiological relevance of JAGWAS 

hits (T1). a. Results from gene-set enrichment analyses for JAGWAS and minP. The top 10 most 

significant Biological Process Gene Ontology sets for JAGWAS (blue bars) are shown on the y axis, -

log10 p-value on the x axis. The corresponding minP p-values are represented by the orange bars. The 

red dashed significance line (0.05/7,750) has been adjusted using a Bonferroni correction. b. Results 

from tissue enrichment analyses for JAGWAS (blue bars) and minP (orange bars). The GTEx v8 54 

tissue types classified by organ systems are shown on the x axis, -log10 two-sided DEG p-value on the y 

axis. The red dashed significance line (0.05/54) has been adjusted using a Bonferroni correction. c. 

Clustering lead SNPs by their vectors of optimal weights on the 128 UDIPs to group SNPs with similar 

pleiotropic effects. Darker colors indicate highly similar SNPs based on cosine similarity. 
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Comparison between JAGWAS and other tools. We compared JAGWAS with other multi-

phenotype GWAS methods, including MultiABEL and MOSTest, in addition to minP. MultiABEL 

takes single-phenotype GWAS summary statistics and employs Pillai’s trace MANOVA to 

calculate the multivariate p-value from an F-statistic, which in large samples is close to the chi-

square test utilized by JAGWAS. In contrast, MOSTest requires access to individual-level data 

and generates single-phenotype GWAS results by permuting genotype vectors for each SNP 

and then integrates effects across the phenotypes using the Mahalanobis norm to produce a 

multivariate summary statistic. Features of these multi-phenotype GWAS methods are 

presented in Table. 2. All the analyses were running on an x86 64-bit Linux system with 48 

cores. The elapsed time and peak resident memory size (RES) were recorded for each method. 

We benchmarked JAGWAS, MOSTest and MultiABEL by conducting a multi-phenotype GWAS 

with roughly 8.1 million SNPs. We found that JAGWAS spent only 32.3% of the time and 0.07% 

of peak memory compared to MultiABEL. This efficiency is attributed to JAGWAS's optimized 

C++ implementation and memory-efficient file handling. Another advantage of JAGWAS is that it 

provides an option to output p-values on the log scale, overcoming the double precision limit of 

MultiABEL for extremely significant results, as shown in Supplementary Fig. 5. 

Starting from summary statistics and using a flexible input/output (I/O) strategy, JAGWAS was 

able to obtain the results faster while using less memory than MOSTest. Lastly, both JAGWAS 

and MultiABEL can account for sample relatedness by using the single-phenotype GWAS 

summary statistics from mixed effects models. All three methods produced consistent results 

with each other, as in Supplementary Fig. 5-6, which is assuring.   

 

Table. 2 Features of JAGWAS and other multi-phenotype GWAS methods. 

 
 

SNP effect visualization. We visualized the effect of each replicated lead SNP by comparing 

the MRI imaging data between homozygous carriers and non-carriers (Method: Visualizing SNP 

effect). Interestingly, we found many SNPs with localized patterns of difference that had not 

been identified previously, suggesting that genetic variations at these loci could be driving 

localized brain changes and highlighting the power of our method. For example, rs11706279 

displayed a significant pattern of differences in the lingual gyrus and occipital lobe, regions 

crucial for visual processing and memory42,43. No prior associations have been documented for 

this SNP in the GWAS Catalog or the UK Biobank big40 PheWeb10,28,44. Research suggested 

that in AD patients with depression, functional connectivity between the dorsal anterior cingulate 

cortex and the right occipital lobe and right lingual gyrus is reduced45. Occipital lobe is also 

involved in schizophrenia, but the exact nature of the relationship is not fully understood46. This 

SNP is located in an intron of FOXP1, which has been associated with both Alzheimer’s disease 

and schizophrenia 39,47. 
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Fig. 4 Visualization of the SNP effect of rs11706279. The top figure shows the voxel-wise absolute t-

statistics for the contrast between homozygous carriers and non-carriers. The bottom figures highlight the 

lingual gyrus. 

 

Discussion 

 

Our results showed that applying the multivariate approach JAGWAS to UDIPs greatly boosted 

the power of loci discovery for brain imaging endophenotype GWAS. We discovered 6 times 

more loci than minP, and two times more loci than the previous IDP GWAS that used a similar 

or larger sample size5,10. With JAGWAS, we identified a large number of loci that were missed 

by the minP method, which indicated the high level of pleiotropy of the variants associated with 

the high-dimensional UDIPs. Through post-GWAS functional analyses, we found that our 

replicated loci showed significant enrichment in associations with brain and cortical 

morphological traits, as well as neurological disorders, attesting to the power of JAGWAS in 

uncovering new loci.  

 

We showed that the loci and genes found by JAGWAS have high neurobiological relevance. 

First of all, genes associated with biological processes like neurogenesis, generation of 

neurons, and regulation of neuron differentiation are enriched within the gene set; all of these 

processes play an essential role in forming the nervous system. Neurogenesis primarily occurs 

during embryonic development48, which corresponds with the embryonic development terms in  

Fig. 3a. However, neurogenesis also continues in certain regions of the adult brain, notably in 

the hippocampus, which is associated with memory and learning48. Generation of Neurons 

involves the differentiation of neural stem cells into neurons, followed by their migration to the 

appropriate location in the brain, and then integration into existing neural networks49. Neuron 

differentiation is a complex process that is regulated by a variety of factors50. These processes 

are essential for brain plasticity, the ability of the brain to adapt and reorganize itself, especially 
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in response to learning, experience, and injury. None of the top 10 significant biological 

processes were over-represented in minP genes. This might indicate that multivariate 

approaches like JAGWAS can capture biological pathways of the brain missed by the single-

phenotype approaches.  

 

In addition, tissue enrichment results from FUMA indicated the genes have a great enrichment 

in all tissues from the nervous system, with the top five enriched tissues for T1/T2 being 

amygdala, hypothalamus, and three tissues come from basal ganglia: putamen, caudate and 

substantia nigra. Amygdala and putamen are actively involved in memory formation, learning 

and cognitive functioning51,52. Hypothalamus, long recognized for its role in nutrient sensing and 

the regulation of arousal and motivation, is also actively involved in updating both associative 

and non-associative memories53. It has been reported that there could be strongly reduced 

volumes of putamen and thalamus in AD52. Caudate and substantia nigra are implicated in 

movement control; and notably, substantia nigra was affected in Parkinson's disease54. In 

contrast, all the brain tissues have non-significant enrichment for minP of T1/T2, which further 

highlights the great power of JAGWAS in uncovering the genetic architecture of the brain (Fig.3 

and supplementary Fig. 4).  

 

An additional benefit of UDIPs is that we can cluster SNPs into groups with similar pleiotropic 

effects (Supplementary Data 8). The clusters identified in Fig. 3c show a high proportion of 

SNPs that are associated with brain morphology and neurological traits, including AD and PD. 

Specifically, the most enriched clusters contain 9 out of 13, 6 out of 11, and 8 out of 10 SNPs 

linked to these traits. SNPs within these clusters exhibit high cosine similarity based on their 

optimal weights across the UDIPs, with several SNPs associated with the same neurological 

traits. A notable example includes three neighboring SNPs in the cluster map:  rs12705150 

(RELN, p = 2.16 × 10-27), rs11614730 (SYT1, p = 1.84 × 10-38) and rs12722976 (COL11A1, p = 

2.53 × 10-33), with cosine similarities of 0.51, 0.39, and 0.24 between each other. RELN has 

been linked to neuropathology in AD55, while COL11A1 is associated with AD polygenic risk 

score56; additionally, SYT1 and COL11A1 have been reported to be involved in conditions such 

as attention deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), or 

intelligence, indicating pleiotropy57. Another example of three adjacent SNPs are:  rs8039305 

(FURIN, p = 1.13 × 10-23), rs4775006 (ALDH1A2, p = 5.13 × 10-103) and rs12256551 

(MIR1915HG, p = 2.55 × 10-58), with cosine similarities of 0.48, 0.23, and 0.15 between them. 

Both FURIN and MIR1915HG have been linked to insomnia, while ALDH1A2 and FURIN are 

associated with schizophrenia58,59. Furthermore, ALDH1A2 has been reported in association 

with both AD and cognitive decline in AD60,61. These results suggest that the clustering analysis 

effectively captured the functional similarity of the lead SNPs based on their optimal weights 

across the 128 UDIPs. The observed enrichment and clustering findings align with our novel loci 

discoveries, both FURIN and SYT1 are present in Table 1. Neurological disorders such as AD 

and PD are strongly linked to abnormal brain morphology and structural measures, which are 

influenced by differential gene expression in specific brain regions62. We further looked into 

these replicated lead SNPs by comparing the MRI imaging data between homozygous carriers 

and non-carriers (Fig. 4 and Supplementary Fig. 7). Localized patterns of difference were found 

in brain regions like lingual gyrus, occipital lobe and insular cortex, while no such association 
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was previously found. Our multivariate approach is tailored to reveal this kind of relationship 

beyond the single-phenotype approach. 

 

JAGWAS was designed to jointly analyze GWAS summary statistics of hundreds or even 

thousands of phenotypes, with exceptional computational efficiency. We compared the feature 

of JAGWAS to several commonly used multi-phenotype GWAS tools and did a detailed 

benchmark test. The key features of JAGWAS include: 1) the ultra-efficiency in time and 

memory usage through an optimized C++ implementation; it can analyze 128 summary 

statistics files of 8.1 million SNPs in approximately 20 minutes (Table. 2). 2) JAGWAS supports 

various summary statistics formats, including score tests (score and variance), Wald tests (beta 

and standard errors), or simply z-scores. 3) JAGWAS can output -log10 p-value to get p-values 

smaller than the double precision limit. This leverages the large-scale meta-analyses and high-

dimensional multi-phenotype GWAS by allowing the output of extremely significant p-values.      

 

With the large gain of power of using high-dimensional UDIPs, the majority of the loci identified 

by JAGWAS were missed by previous IDP GWAS. This includes not only the original big40 

GWAS but also subsequent brain imaging studies in the UK Biobank and other datasets5,10,19. 

Despite the significant advancement in loci discovery, using UDIPs as phenotypes presents an 

inevitable challenge caused by the difficulty in interpretation. In traditional IDP GWAS, each 

brain morphology measure can have a specific meaning, and regional analysis can be 

conducted to identify genetic variants with localized effects. However, with UDIPs, it is 

challenging to interpret what each UDIP represents since they are essentially interchangeable. 

Another limitation of JAGWAS is shared by all multivariate methods, i.e., multi-phenotype 

associations might be less intuitive to interpret compared to single-phenotype associations. 

Such associations can usually be interpreted as a genetic variant being associated with at least 

one of the phenotypes, but multivariate methods do not directly identify which one or more 

phenotypes are associated.  

 

The UDIPs are high-dimensional with moderate correlation, and each individual dimension is 

expected to be orderless and interchangeable, thus making it a naturally good fit for efficient 

multi-phenotype GWAS methods like JAGWAS. For highly correlated phenotypes, however, the 

correlation matrix might be close to singular and non-invertible. In that case, a Moore-Penrose 

generalized inverse of the correlation matrix should be used in JAGWAS. On the other hand, 

like many phenotypes, the genetic discovery of traditional brain IDPs is limited. Therefore, the 

primary challenge of the field is likely to transition into designing novel and robust descriptors of 

the brain morphology, in combination with efficient multivariate approaches to further enhance 

the genetic findings of imaging phenotypes. Our work represents an attempt in this direction and 

more future works are warranted. For example, multi-phenotype fine-mapping techniques have 

demonstrated the ability to identify putative causal variants by leveraging the shared structure 

across multiple phenotypes63. A future direction would be to explore memory-efficient multi-

phenotype fine-mapping approaches for high-dimensional imaging phenotypes.  

 

In conclusion, our work is a multi-phenotype GWAS application of UDIPs derived from an 

unsupervised deep learning approach. It offers a promising strategy for enhancing loci discovery 
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in imaging phenotypes compared to the single-phenotype GWAS using minP approach. With 

the ultra-efficient multivariate approach JAGWAS, this method paves the way for future 

research to unravel intricate genotype-phenotype relationships, especially within the field of 

brain imaging. 

Methods 

Sample and dataset descriptions. We made use of UKB data obtained from the data 

repository under the project 24247. Subjects with White British ancestry were selected for this 

study. A total of 35,239 T1 and 34,145 T2 subjects were divided into discovery (22,880 T1/T2) 

and replication cohorts (T1=12,359/T2=11,265), subjects in replication cohort that are closely 

related to subjects in discovery cohort have been removed15. A total of 46,099 T1 (44,181 

subjects) and 45,294 T2 (43,381 subjects) UKB MRIs (field ID 20252/field ID 20253) were 

downloaded on October 15, 2021. The 128-dimensional UDIPs, derived from an unsupervised 

deep learning model, are independent and exhibit higher heritability compared to traditional 

IDPs. They can also capture information from multiple regions of the brain. The details of the 

deep learning architecture and training can be found in Patel et al15. 

Single-phenotype GWAS procedure. The UKB v3 imputed dataset, following the 

comprehensive quality control procedures detailed by the UKB genetics team, was used for the 

single-phenotype GWAS. We additionally carried out standard quality check procedures, 

including removing SNPs with more than 5% missingness. We further set a minor allele 

frequency (MAF) threshold to remove low-frequency and rare variants with MAF < 0.01. Each of 

the 128 UDIPs (T1/T2) was pre-residualized through a linear model, with age (field ID 21003), 

age2, sex (field ID 31), sex x age, sex x age2, top 10 genetic PCs (field ID 22009), head size 

(field ID 25000), head position in scanner (field ID 25756-25758), scanner table position (field ID 

25759), location of the assessment center (field ID 54) and date of attending assessment center 

(field ID 53) as covariates. We performed genome-wide scans on each of the pre-residualized 

and normalized UDIPs for 8,126,192 genetic variants, on the discovery, replication and meta-

analysis cohort for both T1 and T2. We used fastGWA from GCTA (Genome-wide Complex 

Trait Analysis)64 (Version 1.94.1) package for running GWAS using 256 UDIPs obtained from 

T1(128 dimensions) and T2(128 dimensions) MRI linear mixed model association analysis with 

a sparse kinship matrix provided by the UK Biobank (field ID 22011/field ID 22012). By 

employing a linear mixed model, JAGWAS can increase the sample size by including related 

individuals. GWAS was run for both the discovery and the replication cohorts separately. For 

calling any SNP-UDIP pair genome-wide significant, we used the minP approach on 128 single-

phenotype UDIP p-values at the significance level of 5 × 10−8/128 for the discovery cohort. The 

resulting summary statistics files were then passed onto JAGWAS for joint analysis. Details of 

the single-phenotype GWAS can be found in Patel et20. 

JAGWAS method. A multivariate association test statistic was derived for JAGWAS. Let zij be 

the test statistic (z-score) obtained from the single-phenotype GWAS between the ith phenotype 

and jth SNP. Then let 𝒛𝒋 = [𝑧1𝑗, … , 𝑧𝑘𝑗] be the vector of z-scores across the 𝑘 phenotypes on the 

jth SNP. The JAGWAS method is based on a multivariate test statistic 𝑇𝑗 = 𝒛𝒋
𝑻𝑹−1𝒛𝒋, where 𝑹 

represents the phenotypic correlation matrix. Under the null hypothesis, this statistic 
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asymptotically follows a chi-square distribution with k degrees of freedom. Therefore JAGWAS 

performs a chi-square test using the test statistic 𝒛𝒋
𝑻𝑹−1𝒛𝒋, where 𝑹 is estimated by the k-by-k 

observed correlation matrix of scaled residuals. The scaled residuals are residuals obtained 

through a linear mixed model, divided by the residual variance estimate.  

Loci clumping. We adhered to the methodology outlined in our previous single-phenotype 

GWAS for loci clumping15, employing a two-step pruning process. Initially, significant SNPs 

were pruned at LD r2 = 0.6 to obtain a list of independent significant SNPs. Subsequently, these 

independent significant SNPs underwent further pruning at LD r2 = 0.1 to identify the 

independent lead SNPs. A genomic locus was defined as the smallest contiguous region 

encompassing all SNPs (including both GWAS markers and markers from the 1000 Genomes 

reference panel meeting the MAF threshold) with an r2 value exceeding 0.1 with the lead SNPs. 

Loci with adjacent physical distances less than 250 kb were merged together. Consequently, 

the presence of more than one lead SNP per locus is plausible. All loci clumping analyses were 

conducted using FUMA29. 

Meta-analysis. We used METAL(generic-metal-2011-03-25)65 to perform an inverse-variance-

weighted fixed effect meta-analysis of single-phenotype GWAS summary statistics from the 

discovery and replication cohorts. The GWAS summary statistics files from the meta-analysis 

were then jointly analyzed using JAGWAS, with the covariance matrix computed from the 

weighted average of discovery and replication covariance matrices:  

𝑽 = ((n1 − 1)𝑽𝟏 + (n2 − 1)𝑽𝟐)/(n1 + n2 − 1)  

Where n1 and n2 denote the sample size of the discovery and replication cohort,  𝑽1 and 𝑽2 

denote the covariance matrix of the discovery and replication cohort representatively. It has 

been shown that this pooled covariance matrix is a good estimate of the covariance matrix for 

meta-analysis66. The meta-analysis correlation matrix is then computed from this pooled 

covariance matrix 𝑽. 

Clustering analysis. Hierarchical clustering with the complete linkage method, which 

minimizes the maximum within-cluster distance, was applied to the vectors of optimal weights 

on the 128 UDIPs for each lead SNP. For any given weight vector 𝒘𝒋 with length 128 for SNP 𝑗, 

the univariate test statistic for a linear combination hypothesis  𝐻0 ∶ 𝒘𝒋
𝑻𝜷𝒋 = 0 is:  

𝒛𝒋
𝑻𝒘𝒋(𝒘𝒋

𝑻𝑹𝒘𝒋)
−1𝒘𝒋

𝑻𝒛𝒋. The optimal weight vector 𝒘𝒋 = 𝑹−1𝒛𝒋 maximizes this test statistic and 

gives the smallest p-value among all possible linear combinations (Supplementary information: 

Derivation of the optimal weights). The scale-free cosine distance metric was used to compute 

the similarity of optimal weight vectors between SNPs, and the cosine similarity matrix was used 

to indicate the color depth in the heatmap. The Python seaborn clustering package was used to 

derive the clusters and dendrograms67. Details of the derivation of optimal weights and the 

clustering procedure are available in the Supplementary information. 

Visualizing SNP effect. We visualized each lead SNP by generating a t-map of the MRI, 

comparing homozygous carriers to non-carriers in the UK Biobank dataset. For each voxel, the 

t-statistic was calculated as the difference in mean MRI signal intensity between the two groups, 

normalized by the pooled variance and sample size (Supplementary Fig. 7). 
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Querying GWAS Catalog. We used FUMA to query candidate SNPs in each locus in GWAS to 

identify previously reported associations. FUMA directly calls GWAS catalog API and thus our 

results reflect the GWAS catalog as of May 2024. Candidate SNPs are defined by having r2 >= 

0.6 with independent significant SNPs (See Methods: Loci clumping) not only in the GWAS 

variants but also in the 1000 Genomes reference panel. We filtered GWAS catalog results to 

include those with p-value < 5 × 10-8. We identified brain-related traits from the GWAS catalog 

results using careful manual inspection.  

Data availability 

The GWAS summary statistics generated in this study have been uploaded to the GWAS 

Catalog https://www.ebi.ac.uk/gwas/ with study accession ID GCST90455631, GCST90455632, 

GCST90455633, and GCST90455634. The UDIPs are being uploaded to http://deependo.org.  

Code availability 

The code is available via https://github.com/hanchenlab/JAGWAS (GPLv3 license). 
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