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Abstract

The increasing availability of whole-genome sequencing (WGS) has begun to elu-
cidate the contribution of rare variants (RVs), both coding and non-coding, to
complex disease. Multiple RV association tests are available to study the relation-
ship between genotype and phenotype, but most are restricted to per-gene models
and do not fully leverage the availability of variant-level functional annotations.
We propose Genome-wide Rare Variant EnRichment Evaluation (gruyere), a
Bayesian probabilistic model that complements existing methods by learning
global, trait-specific weights for functional annotations to improve variant prior-
itization. We apply gruyere to WGS data from the Alzheimer’s Disease (AD)
Sequencing Project, consisting of 7,966 cases and 13,412 controls, to identify
AD-associated genes and annotations. Growing evidence suggests that disruption
of microglial regulation is a key contributor to AD risk, yet existing methods
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31 have not had sufficient power to examine rare non-coding effects that incorpo-
2 rate such cell-type specific information. To address this gap, we 1) use predicted
33 enhancer and promoter regions in microglia and other potentially relevant cell
34 types (oligodendrocytes, astrocytes, and neurons) to define per-gene non-coding
3 RV test sets and 2) include cell-type specific variant effect predictions (VEPs)
36 as functional annotations. gruyere identifies 15 significant genetic associations
37 not detected by other RV methods and finds deep learning-based VEPs for splic-
38 ing, transcription factor binding, and chromatin state are highly predictive of
39 functional non-coding RVs. Our study establishes a novel and robust framework
40 incorporating functional annotations, coding RVs, and cell-type associated non-
4 coding RVs, to perform genome-wide association tests, uncovering AD-relevant
42 genes and annotations.

43 Keywords: Rare variants, Alzheimer’s Disease, Bayesian probabilistic model,

44 whole-genome sequencing

s 1 Main

s The recent increase in available whole-genome sequencing (WGS) data has facilitated
«  the study of rare variants (RVs), particularly in understanding their effects on complex
s diseases like late-onset Alzheimer’s disease (AD). AD is a neurodegenerative disorder
w  with an estimated heritability between 59% and 74% [1]. While genome-wide associ-
o ation studies (GWAS) have identified over 100 loci linked to AD, with the APOE-¢e4
si  allele as the strongest genetic risk factor, they are restricted to common variant asso-
2 ciations [2, 3]. Despite considerable efforts to quantify the polygenic nature of AD, a
53 significant portion of genetic heritability remains unaccounted for. Some of this miss-
s« ing heritability may be recovered with RVs [4]. RVs generally exhibit larger effect sizes
55 than common variants, but their role is not yet well understood [5]. Studies have shown
ss  that integrating RVs into cumulative polygenic risk scores (PRS) can enhance predic-
v tive performance [6], but existing methods have identified fewer gene associations and
ss have lower predictive power compared to common variant approaches. While a num-
5o ber of genes, including TREM2, ABCA7 and SORL1 [7], have known RV associations
e in AD, the majority of these findings are restricted to coding variants. As most GWAS
e signals lie in the non-coding genome, expanding RV association studies beyond coding
& variants is critical. However, the study of non-coding RVs poses challenges due to the
&3 vast number of these variants, most of which likely have no functional impact [8]. It is
s therefore of substantial interest to use functional annotations for variant filtering and
es prioritization. To develop a more robust understanding of the contributions of both
e coding and non-coding RVs to AD, we propose a novel method that not only weights
o7 variants according to annotations but also prioritizes functional annotations that are
6 most trait-relevant.

69 Applying traditional variant-level approaches like GWAS to RVs has low statistical
7o power due to sparsity and a high multiple testing burden due to the large number of
n RVs compared to common variants. To address these limitations, RV methods aggre-
= gate variants in biologically related regions, typically by gene, to increase power [9].
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7z More recent RV methods additionally account for functional annotations to prioritize
= relevant variants and filter out those predicted to have no function, which otherwise
s reduce power [10, 11]. Despite growing efforts to accurately predict which variants will
s affect particular molecular phenotypes (e.g., enhancer activation, RNA splicing) [12—
7 16], there is a limited understanding of which functions are the most disease-relevant.
7 Using functional annotations that have no phenotypic associations to weight RVs can
7 add noise to models and decrease their power. This motivated us to develop a method
s that learns a genome-wide mapping from functional annotations to variant importance.
81 Growing evidence suggests that disrupted gene regulation in central nervous sys-
2 tem (CNS) cell types, particularly microglia, is associated with the development and
53 progression of AD [1, 17]. The majority of RV tests are developed for coding variant
w associations because 1) predicting functional coding variants is comparatively straight-
s forward (at least for loss-of-function), 2) population-scale whole-exome sequencing
s predates WGS, and 3) defining non-coding regions for testing is challenging in itself.
s Some methods use sliding windows, but testing overlapping windows of varying sizes
s can result in loss of power due to multiple testing [18]. Other methods use predicted
s cis-regulatory elements (CREs), in particular enhancers and promoters, to construct
o testing regions [19-21]. Given their modest size (typically less than 2kb), testing indi-
o1 vidual CREs still has limited statistical power. Combining multiple CREs that regulate
o2 a gene could help address this limitation but relies on accurate predictions of enhancer-
s gene links. We leverage the Activity-by-Contact (ABC) model, which predicts cell-type
w  specific enhancer-gene connectivity using chromatin state and conformation data [22].
s We aggregate ABC-predicted enhancer-gene pairs to determine non-coding, cell-type
o and gene specific RV testing regions.

o7 Due to the large number of genes and several million RVs found in population-scale
e WGS, existing methods are primarily restricted to per-gene models. This limits our
o0 understanding of disease-associated functional annotations. Most existing RV meth-
w0 ods are explicitly, or can be viewed as, generalized linear mixed models (GLMM). We
w1 instead develop a Bayesian generalized linear model (GLM) Genome-wide Rare Vari-
12 ant EnRichment Evaluation, or gruyere, to model cell-type specific, non-coding RV
103 associations on a genome-wide scale. In gruyere, a variant’s effect is a deterministic
w4 function of its annotations and the estimated AD-relevance of the gene it is linked
s to (if any). Our Bayesian model iteratively learns AD-relevant gene effects, covariate
10s  weights, and functional annotation importance while quantifying uncertainty, provid-
w7 ing increased flexibility to capture the complex, hierarchical structure of genetic data.
108 We test our model using simulation analyses and compare results to several existing RV
10 methods. We apply gruyere to WGS data from the Alzheimer’s Disease Sequencing
uo  Project (ADSP), consisting of 7,966 cases and 13,412 controls. Our model determines
w  splicing, transcription factor (TF) binding, and chromatin state annotations most
n2 enriched for AD-associated non-coding RVs and identifies 16 significant genes, 15 of
3 which are uniquely identified by gruyere. Of these, four — C9orf78, MAF1, NUP93,
ms  and GALNTY9 — remain significant in omnibus tests.
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2 Results
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Fig. 1 Overview of the application of gruyere to AD. Input data includes A) WGS and clinical
information for AD cases and controls, B) Enhancer-gene interactions predicted by the ABC model
for microglia, oligodendrocytes, astrocytes, and neurons, and C) variant functional annotations. D)
Example analysis for the TREM2 gene and microglia cell-type on existing methods. Columns rep-
resent RVs; light grey rectangles represent individual-level genotypes from WGS data for cases and
controls; functional annotations for each RV are shown below genotypes; Burden, SKAT, SKAT-O,
and ACAT-O are existing tests that use genotype, covariate, and AD status; FST and STAAR-O
additionally use functional annotations. E) Workflow for gruyere. Per-gene RVs are aggregated and
used for fitting the hierarchical Bayesian GLM. gruyere learns weights for covariates, genes, and func-
tional annotations. We use simulations to assess gruyere at different heritabilities. Likelihood ratio
tests are used to calculate gene-level p-values. Optionally, the gruyere p-values can be integrated
with existing methods through omnibus testing.
us 2.1 Genome-wide Rare Variant EnRichment Evaluation
wr (gruyere) overview

Table 1 Summary of gruyere Variables

Variable | Shape Description
Y nxl1 Phenotypes for n samples
X nxc ¢ Covariates for n samples
Gy n X pg Genotypes for p variants in gene g for n samples
Zg Pg X ¢ | g Functional annotations for p variants in gene g
Qg cx1 ¢ Covariate coeflicients
Bgj pg x 1 Variant effect sizes for p variants in gene g
w; pg x 1 Variant weight Beta(M AFj;|1,25)
Wy 1x1 Gene importance weights
T gx1 Functional annotation weight
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Current RV methods rely on independent per-gene models and, therefore, cannot
capture genome-wide functional annotation importance. gruyere serves as a comple-
mentary method to existing RV tests by learning trait-specific functional annotation
weights, covariate coefficients, and gene effects under a Bayesian framework (Supple-
mental Figure 1, Table 1). Rather than modeling each gene separately, we jointly fit
gruyere as a hierarchy of per-gene GLMs using stochastic variational inference (SVI)
[23]. We model AD risk for each gene g,

logit(pig) = Xiag + Gigfgj

where p;4 is the probability of AD for individual ¢ given the genotypes for RVs associ-
ated with gene g, X; is a vector of covariates (e.g. sex, age, APOE-e4 genotype), and
G4 is a genotype vector. We learn covariate weights o, and variant effects 8,;. We
set B4; to be a deterministic function of a learned gene effect wy, transformed minor
allele frequencies (MAFs) w;, functional annotations Z (detailed in Methods 3.4 and
Figure 1C), and learned annotation importance weights 7,

q

Bgj = wgw;(10 + Z ZgikTh)-
k=1

us In our analyses, gruyere learns annotation weights 7 for a range of annotations 7,
ne including in silico mutagenesis deep learning model predictions of splicing disruption
1o (derived as the maximum of four individual SpliceAT scores [24]) and cell-type specific
i TF binding and chromatin state (derived from the Enformer model [14]). A larger
12 magnitude of wy indicates that disruption of gene g is associated with a higher pre-
123 dicted risk of AD. Similar to a burden test, gruyere assumes all variants within a gene
1« have the same direction of effect [25, 26]. However, because our functional annotations
125 include both loss- and gain-of-function predictions, we are able to capture additional
126 dispersion-based signal. To ensure robust generalization of learned parameters, we
17 split data into training (80%) and test (20%) sets, where model weights are optimized
s using the training set and assessed on the unseen test set. We apply gruyere to both
129 coding and non-coding RVs for AD, defining four cell-type specific non-coding groups
1w for AD-relevant cell types (microglia, oligodendrocytes, astrocytes, and neurons [17])
1 and testing each group individually.

12 Step 1. Estimating global annotation weights 7.

s Fitting 7 jointly across the entire genome would be 1) computationally challenging
1 due to the large number of RVs and 2) statistically inefficient, as only AD-associated
135 genes will contribute relevant signal. We therefore estimate 7 under the gruyere model
s from a subset of potentially AD-relevant genes identified using a lenient significance
w7 threshold (nominal p < 0.01) for the Functional Score Test (FST)[27]. We assess
s the robustness of gruyere estimates when selecting genes with varied significance
139 thresholds and for a number of existing RV tests and find annotation weights 7 are
1o broadly consistent (+/ — 0.02).
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wm  Step 2. Per-gene analysis.

12 Once genome-wide estimates for 7 are obtained, gruyere simplifies to a logistic
s regression that learns covariate oy and gene w, weights. We efficiently fit gruyere
e separately and in parallel for all genes, holding 7 fixed. We perform likelihood ratio
s tests (LRT) to compare a covariate-only regression against combined covariate and
us  genotype regression models to determine gene-level significance for wy.

w 2.2 Constructing cell-type & gene specific variant sets using

18 predicted CREs
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Fig. 2 Predicted regulatory element and variant counts across cell types. A) Bar plot
of predicted CRE counts by cell type (ABC > 0.02). B) Upset plot of variant overlap across 4 cell
types in ADSP data; Light grey bars on left indicate total RV counts for each cell type; Vertically
connected dots represents groups and corresponding bars indicate variant overlap for that group.

149 We grouped non-coding RVs by gene and CNS cell type using the Activity-by-
150 Contact (ABC) model (Figure 1B) [22]. The ABC model uses epigenomic profiles and
151 chromatin conformation to determine cell-type specific enhancer-gene interactions,
12 filtering out genes that are not expressed. We use publicly available ATAC-seq and
153 H3K27ac ChIP-seq signals for microglia, oligodendrocytes, astrocytes, and neurons
e [28], as well as Hi-C averaged across ten CNS cell types to account for 3-dimensional
155 chromatin interactions. For each gene, we analyze RVs aggregated across all CREs
156 interacting with that gene (ABC > 0.02). We test each cell type separately and also
157 analyze rare coding variants for comparison. In total, ABC defines 70,300 CREs across
18 all four cell types and 17,929 genes, with higher relative counts of microglia-predicted
150 enhancers (Figure 2A). Predicted CREs frequently co-occur across cell types, with
w0 39.4% of CREs found in more than one cell type. Promoter regions tend to have higher
10 ABC scores than enhancers (mean ABC = 0.07 vs. mean ABC = 0.04), but their
12 genomic lengths are similar, with an average length of 632bp and standard deviation
163 of 132bp. ABC accounts for interactions of a single enhancer with multiple genes so
s one RV can be linked to multiple genes. In our analysis, an ABC enhancer maps to
15 an average of 3.8 genes in microglia and between 5.4 and 5.9 genes in the other three
16 cell types. Our non-coding variant sets contain an average of 376 RVs per gene. There
w7 are a total of 2,092,931 RVs in CREs across the four cell types, 901,570 of which are
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s included for more than one cell type, and 550,001 that are in all four cell types (Figure
169 2B) .

w 2.3 Simulation studies confirm accurate estimation of model
n parameters

2 We generate synthetic phenotypes (see Methods 3.5) and fit gruyere on 100 sets of
s simulated data with estimated heritability between 5% and 30% (detailed in Supple-
s mental Methods [29]) using 500 randomly selected genes. We find that all variables
s are well recovered, with average Pearson correlations R = 0.81,0.95,0.98,0.97 for
W Qg, By, wg and T respectively (Figure 3). Covariates o, have the lowest R, possibly
w7 due to correlated covariates. Average recovery across all variables remains high when
ws  varying the prior distributions (Pearson R > 0.78) as well as when simulated distri-
o butions differ from the priors used during inference (Pearson R > 0.66). Results are
10 robust to the number of covariates, genes, and annotations modeled.
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Fig. 3 Learned versus true gruyere parameters across 100 simulations. Points are colored
by the Pearson correlation coefficient of a parameter for a given simulation. A) Covariate regression
coefficients « (¢ = 30 covariates). B) Variant effect 3. C) Gene effect wg (M = 500 randomly selected
genes). D) Annotation weight 7 (¢ = 13 annotations).

181 We analyze how simulation performance correlates with overall and genetic her-
12 itability for each simulation. This allows us to more meaningfully evaluate model
13 performance for complex diseases like AD where estimated heritability is low. As
s expected, we find that gruyere is better able to recover 3,; and w, with increased
s genetic heritability (Supplemental Figure 2). However, even when total heritability
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16 is as low as 5%, the minimum correlation between true and estimated parameters
17 remains quite high (Pearson R = 0.68).

w 2.4 Applying gruyere to AD WGS data reveals novel disease
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Fig. 4 Performance of gruyere. A) Boxplots of per-gene AUROCS for train and test sets across
cell types. B) Boxplots of per-gene accuracies for train and test sets across cell types. C) Trace ELBO
loss over 300 epochs across cell types. D) Average training time per epoch (seconds) versus number
of genes used in joint model for each cell type.

1w Performance on ADSP WGS data. After validating model performance through
11 simulations, we fit gruyere to the ADSP WGS data. We analyze coding and non-
102 coding (microglia, oligodendrocyte, neuron, astrocyte) groups separately, and refer to
13 each set as a cell type. For each cell type, we use a subset of genes for joint fitting
e (FST p-value < 0.01), leading to between 267 and 333 genes per cell-type. AD predic-
105 tion performance is fairly consistent across non-coding variants (average test set Area
1ws  Under the Receiver Operating Characteristic, or AUROC, of 0.69) and slightly higher
w7 for coding variants (average AUROCes; = 0.70) (Figure 4A-B). When averaging pre-
s dicted probabilities across genes, performance further improves (AU ROCiest = 0.72)
109 for all cell types. These metrics are in line with current AD literature and outperform
20 a covariate-only regression model (AUROCest = 0.65) [30]. There is a substantial
21 range in prediction performance for each cell type (e.g. minimum AU ROC;es; = 0.62,
20 maximum AU ROCiest = 0.71 for microglia), highlighting the varying degrees of asso-
203 clation with AD across genes. We find that gene-level performance is consistent across
20 model refitting and that the loss converges reliably (4C) [31]. Fitting time increases
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25 approximately logarithmically with the total number of genes (Figure 4D). On aver-
206 age, it takes 37 seconds per epoch and three hours total to jointly fit gruyere across
207 300 epochs. Per-gene estimation is much faster, taking an average of 4.3 seconds per
208 gene to complete.

Conservation

Monocyte H3K4me3 Delta |,
Monocyte H3K27me3 Delta
Monocyte H3K27ac Deltad |,

Intercept

Sex

fllumina NovaSeg
APOE-e

PCa
USUHS/Miami

lllumina HiSeq 2000 —
A) LoF B) Common Var)\\a:gtPnﬁ —
e —
splicing | pCL —
Absolute (Min TF Delta) { | — gayior —
Absolute (Max TF Delta) | — 2500
soacme] | oo Tme polS0E
MAF N . Age x Sex x Sex Cell Type
[ -Mlgroglla Broa Ml Microglia
Enhancer{ | [l Oligodendrocyte gté [l Oligodendrocyte
Intercept{ | [l Neuron Pelo [ Neuron
Pathogenicity{ | [ Astrocyte age x 3¢ I Astrocyte
‘ Coding Hiuming H\SSg)S( Coding

Monocyte DNASE Delta |, MEDGENOME
llumina

02 04 06 2
Annotation Weight Covariate Weight

. "“WWHWWWMMHMMM

o

Fig. 5 gruyere parameters learned from ADSP WGS. A) Bar plot of genome-wide annotation
weights 7 learned in jointly fit model across cell types. We denote crosses (X) to the left of bars where
an annotation is not included for a cell type. B) Bar plot of per-gene covariate weights (ag) learned
in jointly fit model across cell types. Error bars illustrate the minimum and maximum values learned

across genes.

200 Learned annotation and covariate weights. We find that the top gruyere
20 functional annotation weights come from splicing across all non-coding RV groups and
an loss-of-function (LoF) for coding variants (Figure 5A). LoF variants can be highly
a2 disruptive to gene function and are often used as a variant filtering method in gene-
a3 based tests. Therefore, it is predictable that we find gruyere places a large weight
s on LoF coding RVs. It is perhaps not surprising that gruyere also prioritizes RVs
a5 predicted to disrupt normal splicing, as they can substantially change the protein
a6 product or have large effects on gene dosage via nonsense mediated decay. For all
a7 non-coding regions, cell-type specific TF binding predictions from Enformer contain
28 the next largest annotation weights. This suggests RVs associated with an increase
20 (Max TF Delta) or decrease (Min TF Delta) in binding are predicted to have larger
20 effects on AD, at least in AD-relevant genes. For microglia RV sets, we additionally
a1 find increased AD association for variants related to histone modification (H3K4me3,
22 H3K27me3, H3K27ac) and DNASE in monocytes (often used as a proxy for microglia
2 [32]). We restrict Enformer annotations to non-coding variants as they are specific
24 to cell-types. The enhancer category has very small weights across cell-types. Since
»s all variants included in the non-coding analyses are in putative CREs, it is perhaps
26 N0t too surprising that cell-type specific enhancer annotations are lowly prioritized by
2271 gruyere.

28 Covariate effects are learned consistently across genes and cell types, with sequenc-
29 ing center, common variant polygenic risk score, and Illumina HiSeq 2000 sequencing
20 platform as the top three covariates (Figure 5B). As expected, APOFE-e/ is learned to
an have a large positive risk effect while the APOE-e2 allele has a negative (protective)
. effect [2]. These effects agree well with those of a simple logistic regression predicting
23 AD status from covariates.
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Fig. 6 Top gruyere genes. A) Manhattan plot across cell types. The Y-axis shows — log;((p-value)
for each gene and X-axis shows gene position. Each color is a cell type. gruyere-significant genes are
labeled. B) Stacked upset plot of significant gene overlap across all tests after pruning for coregulation.
Dark grey bars on left indicate total number of significant genes for each test. Vertically connected
dots represent groups and corresponding bars indicate the number of overlapping significant genes
identified for that group. Each bar is colored by cell type.

23 Learned gene effects and associations: Estimated gene effects w, are fit from
235 a per-gene logistic regression, where we use LRTs to determine gene-level gruyere p-
26 values (Methods 3.2). Significant genes after Bonferroni correction for each cell type
o7 are shown in Figure 6A, where a total of 16 genes reach genome-wide significance.
25 The well-established TREM2 RV association [33], as well as MAF1, C9orf78, and
20 GRIKS3 are found significant for coding variants. Although not as widely recognized as
a0  TREM2, MAF1 has been previously reported in association with AD [34], and C9orf78
21 has been identified in an AD dementia meta-analysis [35]. GRIKS has emerged as a
a2 gene of interest due to the role of kainate receptors in neuroinflamation, a key feature
a3 of AD. Inflammatory responses can amplify glutamate release and disrupt receptor
2s  functioning, which may further accelerate neurodegeneration. This makes GRIKS,
25 and glutamate signaling more broadly, potential targets for therapies [36, 37]. The
us identification of these genes by gruyere highlights their potential as candidate genes
a7 for further study in AD.

218 gruyere identified 12 non-coding RV associations across cell types with 2 in
20 microglia, 6 in astrocytes, 1 in neurons, and 3 in oligodendrocytes. The most significant
250 of these is NUP93 (microglia), which, although not specifically linked to AD, is part of
251 a group of nucleoporin (Nup) mutations associated with neurodegenerative disorders
s like AD [38]. Three significant genes, GALNTY, FBRSL1, and LOC101928416, are
253 closely located on chromosome 12q24.33 and share over 80% of their ABC-predicted
s CREs, indicating that their associations are driven by the same set of RVs. Although
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»s  variants can map to multiple genes in our model framework, making our analysis sus-
6 ceptible to coregulation, we are able to investigate and identify the specific CREs
»7 - driving these associations. Of the overlapping promoters for these three genes, regions
s have higher ABC scores for FBRSL1 (ABC = 0.20) compared to GALNT9 (ABC =
0 0.04) and LOC101928416 (ABC = 0.06), suggesting a stronger regulatory impact on
%0 FBRSLI and further isolating overlapping signal. FBRSL1 (neuron), has not been
s linked to AD, but it presents a strong candidate gene for its distinctive neuronal expres-
%2 sion profile and involvement in neurogenesis and transcriptional regulatory networks
3 [39]. Multiple associations (GALNT18, CTRY, EIF}G2, ZBED5-AS1, LOC101928053,
xwe and MRVI1) specific to astrocyte and oligodendrocyte cell-types are coregulated in
s chromosome 11p15.4, and the strongest signal, GALNT18, has been connected to AD
%6 in more than one study [40, 41]. After pruning coregulated signals, gruyere identifies
7 8 significant genes.

268 We identify both known and novel AD-associated risk genes with gruyere. Sig-
%0 nificant gruyere genes are associated with increased gene expression across thirteen
o0 brain tissues found in GTEx (2-sample t-test p = 9.2 x 10731, Supplemental Figure
o 3A) [42]. 5 of our 16 significant genes have expression QTLs in our microglia genomic
a2 atlas (iIsoMiGA) that colocalize with AD or Parkinson’s disease (PD) GWAS (Sup-
a3 plemental Figure 3B) [43-46]. Specifically, TREM2 and MAF1 have significant SNPs
e in a recent AD GWAS [44] while FBRSL1, EIF4G2, and ZBED5-AS1 are signifi-
a5 cant in a large PD GWAS [45]. AD and PD have known genetic overlap, motivating
a6 QTL colocalization of both traits [47]. Finally, we compare gruyere p-values with the
o Alzheimer’s Disease Variant Portal (ADVP) catalog of 956 reported AD genes, find-
a3 ing that gruyere yields more significant p-values for ADVP versus non-ADVP genes
oo (2-sample t-test p = 7.1 x 1079, Supplemental Figure 3C) [48].

w0 Comparing gruyere to existing methods.

2 We compare pruned gruyere results with AD associations identified by a number of
22 existing RV methods: burden test, sequence kernel association test (SKAT), optimal
283 unified test (SKAT-O), functional score test (FST), aggregated Cauchy association test
20 (ACAT), and variant-set test for association using annotation information (STAAR)
25 [10, 25, 27, 49-51]. Burden, SKAT, SKAT-O, and ACAT-O tests do not include
286 functional annotations, while FST and STAAR incorporate them (description in Sup-
27 plemental Table 1 and detailed in Figure 1D for TREM2 and microglia). We use the
28 same set of functional annotations for FST and STAAR as for gruyere. We find that
20 gruyere —logip(p-values) have the highest correlation with Burden tests (Pearson
20 R =0.86) and show moderate to high correlation with combination methods STAAR-
2 O, SKAT-O, FST, and ACAT-O (Pearson R = 0.45 — 0.58) (Supplemental Figure
22 4A). The higher observed correlation with burden tests is expected, as gruyere also
203 assumes unidirectional variant effects within a gene. We examine overlap of significant
20e  genes across all tests and find that there is minimal overlapping signal across meth-
25 ods (Figure 6B). Of the 16 (8 pruned) AD associations identified by gruyere, 15 (7
26 pruned) are unique to gruyere, while TREM2 (coding) is detected across all tests but
27 SKAT where it narrowly misses significance. In total, burden, SKAT, SKAT-O, and
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208 ACAT-O tests identify only two significant associations, highlighting the importance
20 of including functional annotations, particularly for non-coding RV associations.

300 Integrating gruyere into omnibus tests. We combine gruyere p-values with
s existing methods using ACAT (Supplemental Figure 4B). Comparing AC AT (burden,
s SKAT, SKAT-O, FST, ACAT, STAAR) to ACAT (gruyere, burden, SKAT, SKAT-
s O, FST, ACAT, STAAR), we find that the inclusion of gruyere in omnibus tests
s boosts the number of significant associations from 12 to 16, adding C9orf78, MAF1,
s NUP93 and GALNTY. There is no loss of power with this method, as all existing
s signals remain after including gruyere; we simply increase the total number of AD
a7 associations identified.

w3 Methods

w 3.1 Data Overview

a0 Whole-Genome Sequencing Data: We analyze the latest release of WGS data
su  from the Alzheimer’s disease sequencing project (ADSP) consisting of 21,378 unre-
a2 lated individuals over the age of 65 (7,966 cases, 13,412 controls) after QC [527 ]. We
a3 follow a standard pipeline to QC WGS data. First, we combine phenotype information
s across multiple cohorts and remove genetically identical duplicates (IBD 7 > 0.95) and
as  technical replicate samples, selecting samples with the highest call rates. We priori-
a6 tize phenotype information for individuals in family studies over case-control studies.
a7 Related individuals are removed using Kinship-based INference for Gwas (KING) [53],
ss  keeping AD cases where possible. In PLINK [54], we remove individuals with more
si9 than 10% genotype missingness, variants with less than 90% genotyping rate, and
0 keep only biallelic variants with an observed M AF < 0.05. Missing genotypes are
;21 imputed as the average observed MAF. For analysis, we randomly split samples into
2 80% train and 20% unseen test sets, stratifying by ancestry. ADSP samples are pri-
23 marily of European (N = 9,133), African (N = 5,173) and Hispanic (5,059) ancestry,
2¢  with smaller South Asian (N = 1,951) and East Asian (N = 62) groups.

»s  Clinical Information: We use 30 available covariates in our model: sex, age,
2 age’, age X sex, age x sex?, APOE-ej genotype, APOE-e2 genotype, 10 ancestry
27 principal components calculated from the 1000 Genomes Project [55], a common vari-
»s ant PRS [56], one-hot encoded sequencing platform (Illumina HiSeq 2000, HiSeqX,
2o Nova Seq), one-hot encoded sequencing center (Illumina, USUHS, USUHS/Miami,
0 NYGC, MEDGENOME, Baylor, Broad, WashU), and an intercept term (Figure 1A).
s Covariates are min-max scaled to a range of 0 to 1.

» 3.2 Proposed Bayesian rare variant model: gruyere

We develop gruyere, a hierarchy of per-gene GLMs (Supplemental Figure 1). We
define our model jointly as

logit(uig) = Xiag + Gigfy;
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where p;4 is the probability of AD for individual ¢ associated with gene g, X; is a
vector of covariates, and G, is a vector of genotype dosages for each RV. Covariate
coefficients oy are modeled from prior,

ay ~ Normal(0,1).

The key innovation in the gruyere model is the construction of per-variant genetic
effects for gene g, or By; = (Bgj1, ...,ngp)T, which is defined as the product of gene
effects, transformed MAF, and weighted functional annotations. Of note, if a variant
7 is included in the RV set for both genes g1 and go, the variant effect can differ for
Bg,; and By, ;. We define 3,; as

q
Bgi = waw;(To + Z ZgjkTh)
k=1

where w, are gene importance weights, w; are variant weights based on observed
MAF as suggested by Wu et al.[49], 7 are genome-wide annotation importance scores,
and Zgji, is a scaled functional annotation k for RV j and gene g. The variables are
modeled as,
w; = Beta(MAF}|1,25)
wy ~ Normal(0, 1)
7 ~ Dirichlet(1,)

33 For each gene, we use a Bernoulli likelihood to sample o(X;0y + Gigf4;), and
;4 aggregate loss across each g € M. Learned parameters are ag,wg, and 7. We select
ss  a Dirichlet prior for annotation weights 7 to ensure identifiability between 7 and wy.
16 Without constraining 7 to a fixed sum, w, can be swapped for wy/c and 7 for cr for
a7 any positive constant ¢ without changing the likelihood, leading to non-identifiability
18 between gene and annotation weights.

330 We approximate the true posterior distribution for gruyere by minimizing the
s Kullback-Leibler (KL) divergence, which is equivalent to maximizing the Evidence
s Lower Bound (ELBO) [31]. To maximize the ELBO, we use SVI, implemented in the
s2  pyro probabilistic programming language [57]. We approximate the posterior distribu-
ss tion of latent variables a, and wy with mean field normal distributions (AutoNormal
us  guide), while optimizing annotation weights 7 as point estimates with a Delta distri-
us  bution (AutoDelta guide). We apply the Adam optimizer, a learning rate of 0.1, train
us  for 300 epochs, and draw 50 samples from the posterior to estimate standard devi-
w7 ations of the learned parameters. We explore different prior distributions for all key
s parameters.

349 Once global 7 is learned, we streamline gruyere with a per-gene analysis. Holding 7
0 fixed, our model simplifies to a logistic regression where only o, and w, are estimated.
s gruyere efficiently computes gene-level p-values using LRTs comparing a covariate-
32 only regression to a combined covariate and genotype regression model:

LRg =—-2X (LLcornbinedg - LLcovariate only)a df =1
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gruyere p-value(g) = P(x* > LR,)
where LL are the log-likelihoods for each logistic regression. For each cell type, we use
Bonferroni correction to define the p-value significance threshold:

< 0.05
# genes per cell type

P =288x 1075 <p<3.64x10°

s 3.3 Cell-type specific RV gene set prediction using the ABC
354 model

5 We calculate enhancer-gene connectivity using publicly available ATAC-seq and
6 H3K27ac ChIP-seq data for human microglia, oligodendrocytes, astrocytes, and
s7 - neurons [28]. We apply ABC to this data following the guidelines and default parame-
s ters provided at https://github.com/broadinstitute/ ABC-Enhancer- Gene-Prediction.
0 This involves first calling candidate peak regions for the ATAC-seq DNase hypersen-
0 sitive sites (DHS) using MACS2 (peakExtendFromSummit = 250, nStrongestPeaks =
s 150000). Then we quantify enhancer activity as the geometric mean of the read counts
w2 of DHS and H3K27ac ChIP-seq in candidate enhancer regions. Lastly, we compute
s the ABC score using averaged Hi-C data (hic_resolution = 5000) fit to the power-law
w4  model. The omics data is aligned to hgl9, so we converted the ABC-predicted start
s and end positions of enhancers to hg38 for analysis. For each gene and separately
s each cell type, we aggregate all elements E for gene G that have an ABC > 0.02 and
w7 extract RVs from within these regions to determine our cell-type specific non-coding
s RV gene sets.

w 3.4 Calculating functional annotation groups

s We use a range of variant-level functional annotations primarily from the Whole
sn Genome Sequencing Annotation database [58]. Annotations with greater than 5%
sz missingness in our RVs are removed, resulting in 50 coding variant and 52 non-coding
33 variant functional annotations listed in Supplemental Table 2. To reduce dimensional-
s ity of related annotations while accounting for their diverse biological effects, we apply
w5 non-negative matrix factorization (NMF) to summarize groups of related annotations,
s inspired by STAAR [10]. We use NMF to retain interpretable directional scaling of
sz annotations. Based on correlation structure and a priori knowledge, we define six
s major functional categories — splicing, conservation, integrative deleterious predictions,
a0 brain-related Roadmap epigenetics, population-specific MAF, and enhancer activity
0 [15, 59, 60]. Because the splicing annotation group is derived from four SpliceAl pre-
s dictions that are not highly correlated and sparsely distributed, we instead use the
s maximum score for this category. We also include a binary LoF prediction calculated
ss with Loss-Of-Function Transcript Effect Estimator (LOFTEE) [61] for coding vari-
s ants along with an intercept term. All annotations are scaled between 0 and 1, where
s a larger value represents increased predicted variant function.

s Deep Learning Delta Scores: For all four cell types, we include additional cell-
w7 type specific functional annotations: absolute maximum and absolute minimum TF
s delta scores derived from Enformer [14], a deep learning genomics model. We calculate
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s variant delta scores for 5,318 functional genomics assays. The Enformer model predicts
s read counts (in 128 BP bins) of these assays as a function of 196,608 BP input DNA
s sequence. For a particular variant, we compare the model output of the reference
32 sequence, centered around the variant position, with the output of the alternative
33 sequence which replaces the reference allele with the alternative allele. For a particular
s genomics assay, the delta score is the difference between the sum of reference sequence
s predictions for the middle 32 bins and the sum of the alternate sequence predictions
w6 for the same bins. We normalize these scores by first calculating the delta scores for
s7  the approximately 18 million variants from the UK Biobank cohort used in PolyFun
38 [62, 63], and then Z-score normalize each assay according based on this collection of
w0 variants. We apply this normalization to the delta scores used in our analysis. We
wo aggregate delta scores to determine composite maximum and minimum predictions
w1 for each variant, highlighting the delta scores of only the enriched TFs within each of
w2 the four cell types (][28]). For microglia non-coding variant sets, we additionally use
w3 delta scores for 4 epigenetic marks (H3K4me3, H3K27ac, H3K27me3, and DNASE)
wa  for monocytes, a proxy for microglia.

w5 3.5 Data Simulation

We use simulations to evaluate gruyere performance. We randomly sample val-
ues for each parameter and use these simulated variables in the GLM framework,
logit(uig) = Xiag + GigBy. The real ADSP genotypes G4, covariates X;, and func-
tional annotations Zg;, along with simulated parameters ag ,wg , and 7°, generate
simulated phenotypes Ylg . Simulations are restricted to a maximum estimated heri-
tability of 30% to realistically evaluate complex diseases. For each simulation, we draw

gruyere parameters from the following distributions:
045 ~ Normal(0, 1), wf ~ Normal(0,1), 7% ~ Dirichlet(1,)

We define 84; in the same way, simply using simulated variables:

q

s _ .5 s

ﬁgj = W, Wy ZZngTk
k=1

ws Using this combination of true data and simulated parameters, we sample synthetic
w7 phenotypes yf from a Bernoulli distribution. We perform 100 simulations on M =
ws 500 randomly selected genes. In general, we sample gruyere parameters from the
wo same distribution that they are learned. We have also tested model performance when
a0 simulated data comes from a different distribution than its learned counterpart (e.g.
a1 sampling wy from a Normal distribution in simulations but fitting from a Gamma
a2 prior).

« 4 Discussion

as - We develop gruyere, a functionally-informed RV association test that fits a hierar-
as  chy of Bayesian GLMs to estimate genome-wide functional annotation importance,
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a6 gene effects, and covariate coefficients. gruyere builds upon existing RV methods with
a7 two key advancements: 1) a genome-wide approach that enables trait-specific weight-
ss  ing of functional annotations, and 2) a flexible, powerful and calibrated probabilistic
a9 framework that estimates uncertainty. We incorporate an innovative methodology for
w20 analyzing RVs in the non-coding genome. Using the Activity-by-Contact model, we
a1 predict cell-type-specific enhancer-gene connectivity from chromatin state and con-
w22 formation data, aggregating predictions by gene to define interpretable non-coding
w23 RV testing regions. We use in silico mutagenesis under state-of-the-art deep learning
«2¢  models of pre (SpliceAl) and post (Enformer) transcription gene regulation to pre-
w5 dict RV effects. Simulation analyses validate gruyere and show it is able to recover
w6 ground truth parameters across diverse model specifications and even for realistically
27 low heritability.

428 We apply gruyere, along with a number of established RV association tools, to
290 the most recent WGS release from ADSP. Our analysis identifies both known (e.g.,
s TREM?2) and novel (e.g., NUP93) candidate AD genes. Specifically, gruyere uniquely
a  identifies 15 genes, of which C9orf78, MAF1, NUP93 and GALNTY9 remain signif-
w2 icant in aggregated Cauchy tests. Our analysis additionally provides an improved
.3 understanding of AD-relevant functional annotations. gruyere confirms the expecta-
s tion that LoF is the most informative annotation for coding variants, but additionally
.5 finds deep learning-based predictions for splicing, TF binding and chromatin state are
a6 highly predictive of functional non-coding RVs.

437 We use ancestry principal components as covariates to account for population
s diversity, but one area for future work would be integrating a random effect term to
a0 better account for relatedness and population structure [64]. Another possible exten-
wo  sion to gruyere would be incorporating gene-level features as priors [65]. While we
s focus our analysis on AD, gruyere can be applied to any complex disease with suf-
w  ficient WGS data. As the quality of functional annotations continues to improve,
w3 gruyere will become an increasingly valuable tool for identifying disease-associated
wme  genes and annotations.
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