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Abstract
Clinical decision support systems (CDSS) employing data-driven technology such as ar-
tificial intelligence, machine- and statistical-learning are increasingly deployed in health-
care settings. These systems often provide clinicians with diagnostic, prognostic, or
risk scores modelled from curated patient-level data and frequently involve iterative and
non-deterministic optimisation of flexible, parameterised models. All of these data and
algorithms have uncertainties associated with them that should be taken into account
when used to support clinical decisions at the patient level. This scoping review aims
to describe the literature on how deployed data-driven CDSSs present information about
uncertainty to their intended users. We describe common clinical applications of CDSSs,
characterise the decisions that are being supported, and examine how the CDSS provides
outputs to end users, including uncertainty at the individual patient level, as well as
indirect measures such as CDSS performance against a reference standard. We conclude
with a discussion and recommendations on how CDSS development can be improved.

1 Introduction
Clinical decision support systems (CDSSs) are important tools in modern healthcare
used to augment clinicians’ decision-making processes [143]. With the rapid advance
in data-driven technologies – notably, artificial intelligence (AI) and machine learning
(ML) alongside more traditional statistical learning – their incorporation into CDSSs is
frequently described as having the potential to revolutionise healthcare by augmenting
human decision-making to improve diagnostic accuracy and personalised treatment.

The outputs of these systems, often probabilistic in nature, encapsulate various forms
of uncertainty [76]; but there is ambiguity in how risk data and different model predictions
are presented and this can be confusing for the end user. For example, QRISK31 [66]
calculates the risk of a patient having a heart attack or stroke over the next 10 years.

1https://www.qrisk.org/
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QRISK3 uses 21 predictors and outputs the resulting risk of an event as a percentage and
with a natural frequency style expression2. The same natural frequency representation is
presented visually as an icon array showing the risk of an event alongside a comparison
to a “healthy” individual (of the same age, ethnicity and sex) delivered as a numerical
relative risk or risk ratio (i.e. the ratio of the patient and the “healthy” person’s QRISK
score). These methods of communicating risk need to be clear to the end user of the tool
as different expressions of uncertainty may alter comprehension, immediate decisions, and
consequent actions.

Incomplete medical knowledge, which affects the labelling of data [32] used to develop
CDSS algorithms, or the complexity of interacting and comorbid diagnoses/conditions
[68], can also introduce uncertainty into an algorithm. Accurately representing and ef-
fectively communicating this uncertainty in CDSS algorithms is crucial, as it should
influence clinical decision-making and may affect clinician and patient trust in AI recom-
mendations [19, 59, 123]. There are numerous approaches that could be used to express
the uncertainty of a clinical outcome all of which have potential benefits and drawbacks,
although there is little consensus as to what the best approach would be [137].

The increasing accessibility of programming tools that can embed prediction models
in clinical workflows has made creating data-driven clinical decision support systems rela-
tively straightforward. The first step is to pick a clinical decision that the tool will support
and then, locating and curating the relevant data and choosing a suitable algorithm to
be used to fit the model to the data. Once this has been completed the model needs to
be evaluated and, hopefully, it can be concluded that the clinical decision support tool is
appropriate for use. The final step is the deployment of the tool, requiring constructing
a user interface so that the tool can be used fluently in clinical practice. Then the model
needs to be maintained as many lose performance with drifts in population health and
data [65]. This review focuses on deployed systems as it is assumed that the creators
have had to at least consider the communication of the tool’s outputs to the end-user.

This scoping review aims to explore the representation of uncertainty in deployed data-
driven and AI-based clinical decision support systems. By systematically examining the
existing literature, we seek to identify current practices, highlight challenges, and propose
directions for future research.

1.1 Defining deployed AI based Clinical decision support sys-
tems

For the purposes of this scoping review, we will make use of the following three definitions.

Definition 0. A clinical decision support system is based on an algorithm designed to
aid a medical decision or augment the decision making process where a human could not
be reasonably expected to perform the calculations using the same data manually.3

Definition 1. A clinical decision support system is considered to be AI-based if it uses
an algorithm that requires learning from some training data (e.g. Logistic regression,
neural networks, etc).4

2These are of the style: “In other words, in a crowd of 100 people with the same risk factors as you,
N are likely to have a heart attack or stroke within the next 10 years.”

3For example, a computerised version of the PHQ9 questionnaire [82] that simply reports the total
score for screening would be excluded since it could be calculated manually and on it’s own, a computer-
based implementation of PHQ9 is not prognostic.

4As opposed to an algorithm that been derived from pre-existing logical rules.
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Definition 2. A clinical decision support system is considered to be deployed if any of
the following are true:

(a) The tool is being used within clinical practice,

(b) The tool has been validated by use in clinical practice, or

(c) The authors of the tool have made it publicly accessible.

Hereafter we will use the acronym CDSS to refer to deployed AI clinical decision
support tools.

2 Methods
2.1 Protocol and registration
This scoping review’s protocol has been published and is available on the Open Science
Framework website [55].

2.2 Inclusion/Exclusion criteria
To be included in the scoping review, papers needed to present a deployed AI-CDSS
(meeting definitions 1 and 2). Papers need to have been published in a peer reviewed
journal before 31st March 2024 (with no start date) and written in English. Papers
were excluded if they presented CDSSs that were clearly not related to medicine or
healthcare. Tutorial, commentary, perspective, discussion and literature review papers
were also excluded from the review. Where the search returned two papers that describe
the same CDSS only one has been included within the review5. This may be due to
authors publishing ‘development of’ and ‘evaluation of’ papers for the same CDSS6 or
independent groups publishing evaluations of pre-existing CDSSs7. In these cases the
origin paper, that is the paper that first described the CDSS, was found unless it was
possible to extract all the required information from the evaluation paper. Some CDSS
have been iteratively refined over time, meaning that where a more recent or updated
version of an original tool was located, the older paper was rejected 8.

2.3 Search
The following bibliographic databases were searched: Pubmed, Web of Science and IEEE
Xplore. The final searches were carried out in April 2024. The search terms are shown
the Appendix A. PubMed was accessed using the Biopython library [29]. The PubMed
and IEEE results were filtered post-search to exclude papers that were published after
1st April 2024.

5Very often this would be the development paper even though it itself might not be in scope as it
fails to meet definition 2

6Jauk et al. present two papers of their delirium prediction model, in [71] the model is introduced
whereas Jauk et al. 70 qualitative explores the use if the algorithm within a clinical setting. As such,
only [71] is included within this review.

7For example, [6] independently assess the performance of EuroScore II in patients with structural
deterioration of aortic bioprostheses.

8For example, EuroSCORE II [105] was included over the original EuroSCORE model [104]
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2.4 Screening
After removing duplicates, papers were subjected to title and abstract screening against
the inclusion/exclusion criteria yielding a set of papers eligible for full-text review and
evaluation with respect to the inclusion/exclusion criteria. During full-text review, ad-
ditional papers were identified from reviewed papers’ bibliographies (“snowballing” or
citation tracing) and any papers that presented CDSSs that were also in another paper
were removed and the origin paper prefered. In total, we located 130 papers for data
extraction.

2.5 Data Extraction
Data extraction proceeded by reviewing the full-text of each paper against four key
questions (the detailed criteria for each key question are given in the Appendix B):

QS0– Meta information about the paper, including year of publication, the authors’ or
their institution’s geographical region, the clinical specialty of the CDSS and its
intended use.

QS1– What algorithms / methods were used and what output was produced by the CDSS?

QS2– Is uncertainty considered and presented and if so, how is uncertainty presented?

QS3– How is the performance of the CDSS assessed?

Whilst not directly relevent to the presentation of uncertainty from deployed CDSSs, it
is still important to consider how the performance of the models are assessed. For models
that present high accuracy, people may derive reassurance that the system is reliable (by
implication, certain) by looking at its summary performance. This may be misleading as
there still can be significant uncertainty about a patients diagnosis, for instance because of
the prevalence of the condition or because of the uncertainty associated with the creation
of the model [124, 125]. This is similar to the base rate fallacy in traditional medical
testing, where despite the fact that test can have excellent accuracy, there can still be
significant uncertainty about whether or someone has a disease after a positive test [46].
We were also interested to explore how, for CDSSs that do present non-probabilistic
uncertainty (for example “don’t know’ classifications), the whether performance of the
uncertain outputs are explicitly assessed.

3 Results
3.1 Search Results
The search returned a total of 3897 papers across the three bibliographic databases.
After removing 538 duplicates, the title and abstracts of 3359 papers were screened for
inclusion. After abstract screening 306 papers were carried forward for full paper review.
During the full text review 36 papers were discovered through the snow-balling process
and 8 origin papers were used to extract the required data about the models. In total
350 papers where subjected to full text review, of which, 130 papers were included in
this scoping review and data extraction. A PRISMA diagram is shown in figure 1. The
reasons for exclusion are shown in figure 2. 108 papers were excluded as they did not
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present a model that met the deployed definition in definition 2. Another 51 did not
meet the definition of AI (definition 1) or CDSS (definition 0). Finally, 32 papers were
deemed out of scope for other reasons and 3 were not accessible to the authors.

Not AI-CDSS (51)

Not deployed (108)

Out of scope (32)

Model in different paper (26)

Inaccessible (3)

Figure 2: Reasons for exclusion

3.2 Characteristics of included studies
The number of deployed CDSSs (meeting our definition) has been increasing since the mid
2010s as shown in figure 3. The models found in the review covered a total of 44 different
medical specialities, as shown in figure 4 and Table 1 in the Appendix. Eight of the eleven
infectious disease CDSSs specifically concern the diagnosis/prognosis of COVID-19.
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Figure 3: Number of models published by year. The 2024∗ label includes papers only up
to April, and the ≤ 2009 label contains papers from years before 2009.
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Figure 4: Medical specialities of the included models. The other category includes spe-
cialities for which only one model was found. A full list of specialities can be found in
Table 1.

Most of the models (126, 93%) are expected to be used by a clinician, with 23 (17%)
expecting to be used by a patient with 16 expected to be used by both. Of the remaining
models, 3 were for use by administrators [148, 150, 163] and 1 was expected to be used
by a carer [131].

The purposes of the CDSSs were varied but fall into several categories, see Figure 5:

• Prediction/diagnosis of condition – These models predict a condition. For
example, Akbulut et al. [2] predicts fetal health status and Casal-Guisande et al.
[18] presents a diagnosis of sleep apnea. The output of many of these CDSSs are
analogous to clinical decision making, especially in the case of diagnosis.

• Risk of condition or clinical outcome – These models calculate the risk of
some condition occurring, sometimes the risk of the condition occurring within a
specified time interval. For example, QRISK3 presents the risk of a cardio- or
cerebro-vascular event occurring within a 10 year period.

• Intervention recommendation – These models assess the likely benefit of an in-
tervention. For example, Lau et al. [86] present a CDSS that assesses the risk/benefit
of an encephalitis vaccine and Figueiredo et al. [39] predicts the expected improve-
ment after arthroscopic hip preservation surgery.

• Triage/Screening –- Assisting clinicians decide on an assessment and/or treat-
ment service or pathway for a patient. For example, using electronic heath records
[37, 41], through ‘lifestyle’ questions [173] or through medical test results [36].

• Prediction of outcome after intervention – A significant number of models,
especially those within the surgery domain, predict the risk of adverse outcomes
after a procedure or intervention is performed.
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• Monitoring/Management – This includes papers which predict the likelihood of
patients presenting to hospital emergency departments [117, 150], Umscheid et al.’s
[151] sepsis early warning systems and Bertoncelli et al.’s [12] epilepsy and seizure
detection.

Only Bertoncelli et al. presents a paper that spans multiple catagories (diagnosis and
monitoring). In 21 of these papers, death is the outcome that is being predicted. The
full list of papers that fall into these catagories are listed in table 2 in Appendix C.2, also
listed within the same table are the death-as-outcome papers.

Risk of
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Figure 5: The use cases for the found CDSSs.
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Figure 6: The algorithm used in the CDSS.

The most popular algorithm for deployed CDSSs was logistic regression, although there
was a large number of different algorithms used. For 5 models [14, 20, 43, 45, 131] it was
not possible toidentify the methodology uses, this was due to the fact that the CDSSs
were developed commercially and details were not described in the retrieved papers. The
full list of algorithms used by the CDSSs is shown in Table 3.

3.4 Outputs
The majority of the CDSSs (96) present a number as the output of the model and 64
present a classification, with 33 presenting both a number and a classification. Only
one CDSS presented a different output, Anand et al. [5] presented questions for a heath
care professionals to ask the patients parents (since it the CDSS is for pediatric use) to
help determine risk factors (example questions, include “Is [the child] in pain today” or
“Does [the child] take perscription or over-the-counter medicine”). For 2 CDSSs it was
not possible to find a clear description of the output delivered to the user [163, 164].

9For this study, logistic regression includes related methodologies such as multivariate–, multinomial–
and bayesian logistic regresion.
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Of the 96 papers that presented a number, 71 presented a probability and of the 65
that presented a classification 51 classified the patient into risk levels (i.e. low risk/high
risk). Of the classification models, only 35 papers explicitly describe the decision rule
including how any classification thresholds were determined. Of these 35, 17 used an
arbitrary threshold (e.g. Sun et al. [142] categorises the patient – on the basis of an
event probability output – as low risk for p < 0.5, medium risk as 0.5 ≤ p ≤ 0.75, and
high risk as p > 0.75). 11 papers determined a threshold by optimising various statistics:
for example Huo et al. [69] optimises the decision threshold on the basis of sensitivity
and specificity, Ginestra et al. [51] used positive/negative predictive value, Sher et al.
[130] used Youden’s index and Patterson et al. [116] the number needed to treat. Other
statistical methods were used to establish the threshold, for example, two papers [79, 85]
based the threshold value of pre-existing values.

Number Classification63 33 31

Figure 7: Outputs of the algorithms deployed in CDSSs. Note: there were 3 papers that
presented ‘other’ outputs; Anand et al. [5] presents questions to ask the patient and for
[163, 164] it was not possible to determine the output presentation.

3.5 Uncertainty
Of the 130 papers, 90 attempt to express some quantification of uncertainty in the output
of the CDSS. 10 The most common representation of uncertainty (68 CDSSs) was to
present a simple probability statement of the form probability of X = 0.7 or risk of X =
70%, without any further expressions of uncertainty. Other models presented probabilities
using natural frequencies, i.e. 10 out of100 have X [13, 36, 66, 71, 131, 169]. More verbose
natural language statements were also used as outputs, for example Xu et al. [169] a
statement for the form Today, in a group of 1000 people like me, 30 will have chlamydia
and 970 people will not have chlamydia. Some papers presented confidence intervals
around the probability [42, 140, 156, 172] or continuous score [110, 129].

Some CDSSs presented uncertainty in a visual way; for example, Hippisley-Cox et al.
[66] uses an icon array to present the probability of an event, Yu et al. [172] presents
a graph of the risk level with error bars, Gardner et al. [45] used various visualisations
(including icon arrays) to present risk information.

Many of these graphical outputs use colours to highlight risk levels. For example, Bil-
imoria et al. [15] presents their results with red for above average risk, yellow for average

10The remaining 40 includes papers for which the actual output of the model was u nclear, as such it
is not appropriate to say that the do not present any uncertainty quantification.
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and green for low risk. Gonçalves et al. [53] uses colours to highlight the confidence of the
output, greener denotes smaller error. Some papers present bars that grow, have a mov-
ing pointer and/or change colour [See as examples 45, 64, 138, 144, 149, 172]. Another
approach used by Dihge et al. [35] and Tseng et al. [149] is to show the full distribution
of the esitmated risks and highlight where the patient sits within the distribution.

3.6 Performance
When assessing the performance of the CDSSs, there are two popular methods. The most
popular, used by 96 CDSSs, is to use a receiver operating characteristic (ROC) curve and
its associated area under the curve (AUC) metric. The second most popular method of
assessing performance was to use statistics derived from a confusion matrix11, 66 CDSSs
use this method. There were a variety of different alternatives, including: comparisons to
existing methods (such as X or Y), calibration plots of expected v observed risks, Brier
score, Hosmer-Lemeshow test. A full list can be found in Table 4. Many of the models
use multiple different performance metrics. Figure 8 shows a Venn diagram of the overlap
between the (AU)ROC, CMS and the other metrics.

Of the models included in this review, only Kang et al. [78] tested how the (explicitly)
outputted uncertainty, in their case a “unsure” prediction, affected the overall decision
makeing process. This is acheived by checking whether uncertain predictions by the
model reduced the number of false negative cases.

(AU)ROC
Confusion

matrix
statistics

Other

32 33 16

20

13

12

5

Figure 8: Venn diagram of how the performance of the models are assessed.

4 Discussion12

To frame this discussion it is useful to consider what the modal CDSS looks like and how
it is may be used in practice. The tool is designed to be used by a clinician to predict the
development of a health state or occurrence of a medical event in a given patient. The
CDSS outputs a probability (possibly with a low/high risk classification), this probability

11Such as accuracy, sensitivity/specificity, precision/recall, F1 score etc
12The use of example papers within this section is in no way intended to denigrate particular authors

or papers nor to be reflexive of the merits of the CDSS presented within them.
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will be presented in the form 0.74 or 74%. The performance of the CDSS will have been
validated by measuring its ability to discriminate between classes using a ROC curve and
through the creation of a confusion matrix to test accuracy of the binary (high/low) risk
classification.

There are two distinct types of uncertainty: the aleatory uncertainty that charac-
terises natural variability and epistemic uncertainty that covers lack of knowledge. In
a medical context, aleatory uncertainty answers the question: “How many patients with
similar symptoms/histories have the disease?”, whereas epistemic uncertainty answers
Does this patient have the disease? When it comes to medical decision making, and for
the CDSSs that present results akin to clinical reasoning, is it the latter question that
needs answering. Communicating these distinct types of uncertainty via scalar probabil-
ity values alone is often misunderstood, especially when describing the probability of a
single patient having a disease [7, 8, 38, 48, 137, 161].

Improvements can be made by presenting information in ways people find easier to
understand, such as using natural frequencies as a more intuitive way for people to
understand probabilities [47, 49]. Icon arrays are another approach that can be used to
communicate probabilities [44], showing natural frequency information using pictograms,
however only a few models made use of these approaches despite the fact that there is a
clear benefit to using them. Which approach is best is unclear, and depends on the risk,
mathematical and health literacy of the user [115, 137, 157]

Another thing that is important to consider is how these probabilities should be
interpreted and very often those models that present probabilities do not make it clear
what exactly the probability is. For example, BASH-GN is a CDSS that assesses the risk
of a patient having obstructive sleep apnea [69], that has most of the characteristics of the
modal CDSS.13 The output of the model is a naked probability alongside a low/high-risk
classification (e.g. 30.9% - low risk14). It is not entirely clear from the BASH-GN’s
user interface what exactly this probability refers to, there are several interpretations
that could be valid:

1. 31% of patients with similar symptoms suffer from sleep apnea on at least some
nights,

2. 31% of nights the patient suffers from sleep apnea, or

3. 31% of the time the patient is asleep, the patient has sleep apnea episodes.

Each of these different interpretations might have a significant impact on doctors or
patients decisions about further testing or treatments. The use of natural frequencies or
natural language statements can help with this, for example the output could have been
“Out of 100 patients with a similar phenotype, 31 will have sleep apnea on at least some
nights” which make the output clear. However, these approaches may also be misleading
as they invite a population average, whereas the key clinical decision is about what is the
best decision this patient not what is best on average for 100 similar ones.

Many of the CDSSs present results with a high/low risk classification. As we have seen
in many cases, the decision rule thresholds for classifications do not arise from a statistical
methodology and most decision rules are evaluated for their performance using improper

13It is accessible at https://c2ship.org/bash-gn-metric/
14This result is produced with the following inputs: female, aged 54, neck circumference 24cm, weight

90kg, height 1.56m, with high blood pressure and snoring as loud as talking.
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scoring rules [52]. For the modal CDSS discussed within this paper, whatever uncertain
nuance is supposed to be characterised by presenting a probability with high/low risk
output may be lost–especially when thresholds are set arbitrarily (i.e. without reference
to clinically relevant thresholds), where thresholds have been determined from optimising
classification performance (e.g. the Yourdon index) or where model-output probability
calibration has not been demonstrated in advance of the imposition of a binary decision
rule. A doctor might simply interpret high-risk (or a high probability) as though it
implies what the correct decision should be. Such classifications are perhaps best left to
epidemiologists or public health experts and not viewed as a computer science decision
problem. In the framework of statistical decision theory [11, 126], the model output
– a probability, or a probability distribution – should be combined with a cost/utility
function for the decision to be made and the minimum-cost decision should be preferred.
A difficulty with this more rigourous and formal statistical decision theoretic approach is
that it is often difficult to ‘design’ or estimate a cost/utility function [60]. An exception
is the use of decision curve analyses [154] where the cost of true-positive is fixed at
unity and the relative cost of a false positive can be calculated (for mutually exclusive
binary decisions) by deriving the net benefit over a range of threshold probabilities (model
outputs).

Very few papers present uncertainty about the probabilities that they present, however
this uncertainty certainly exists within all of the models. Very often such uncertainty is
viewed as unhelpful at best, however it can be critical to the decision making process.
BASH-GN (the CDSS predicting sleep apnea)outputting Pr = 31% implies a level of
confidence that may be unwarranted. If the algorithm outputted an interval probability,
the output Pr = [29, 33]% implies that the result is stable and reliable, whereas if the
output was Pr = [5, 95]%, then the vacuousness of this result suggests that the algorithm
should not be relied on in the decisions making process.

The most popular approaches to assessing the performance of the models are to use
ROC curves or statistics derived from confusion matrices, both of these methods assess
the discriminatory performance of the model. ROC curves primarily assess the trade-off
between true positive rates and false positive rates across different thresholds, potentially
neglecting the calibration of predicted probabilities, which is crucial for risk assessments.
They also weigh errors equally and do not give information about the distribution of
errors [93]. Confusion matrices, on the other hand, provide counts of true positives,
true negatives, false positives, and false negatives based on a fixed threshold, which can
oversimplify the performance by not capturing the uncertainty about the predictions.
The important question for the user of a risk prediction model is whether an outputted
probability of 31% actually implies that 31% of people have the disease. This can be
done by plotting the observed vs expected risk or through a statistical means such as
Hosmer-Lemeshow test or Brier score.

The use of basic binary discrimination performance metrics says nothing about clinical
performance of the CDSS, especially given in most CDSSs there is significant imbalance
between the classifications. For example, Cohen et al. [30] present CDSS to predict the
someones suicide risk. A false negative on such a CDSS (failing to identify a suicidal
individual) has much graver implications than a false positive. ROC plots cannot differ-
entiate between the different impacts of such errors and implicitly assume that they are
symmetrically consequential, whilst this is numerically convenience it is clinically non-
sensical. Giving equal weighting to false positive and false negative consequences is an
example of numerical convenience and clinical nonsense. Therefore, even though Cohen
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et al. report AUC = 0.81 (which does indicate good discriminatory performance), the
tool may still be suboptimal in clinical practice if it leads to substantial and unmitigated
harms.

Often overlooked when discussing uncertainty within CDSS tools is uncertainty about
the model itself. Unlike the epistemic and aleatory uncertainties discussed above, this
uncertainty is artefactual, it is the result of the exact dataset used, imprecision within the
data, and assumptions and decisions made within the creation of the model itself. Almost
all the CDSSs we investigated did not consider this as an important source of uncertainty,
instead presenting a single, middle-of-the-road, model. However, there are many different
CDSSs that could have been fitted from the same data [139]. Whilst some papers do
optimise the data cleaning process, the selection of algorithms and hyperparameters so
that the final CDSS is optimal, it should be noted that different decisions in each of these
stages can lead to models that produce significantly different results [124]. Models can
be highly unstable–implying large model uncertainty–especially if there is limited If the
model creation process is highly unreliable, is is undesirable if for different patients a
clinical decision might be made solely as an artefact of the model creation process [125].
It also needs to be acknowledged that a patient presentation is a unique instance and that
their future will be influenced by a unique set of countless environmental, physiological
and psychological factors in constant interplay, ergo using a single dataset to inform
decision making is flawed [106, 107].

As much of the attention of AI research (and popular discourse) has moved onto
the potential of large language models (LLMs) to aid in diagnosis [134]. It is critical
that LLM-based CDSSs are able to correctly handle uncertainty to ensure that they do
not produce factually inaccurate or harmful statements. This can can be achievied by
expressing confidence about the prediction enabling users to defer to other information
sources or experts when needed. This is an artefactual uncertainty, resulting from the
knowledge based, training data and model parameters of the LLM, and must be treated
differently to the aleatory and epistemic uncertainty discussed above. Although LLMs do
have the advantage of using natural language to be able to communicate this [90]. It is
also worth remembering that the ability of LLMs to pass medical exams (See Jung et al.
[75] as an example), says nothing of their ability to perform these talks in the real world.

5 Conclusion
The promise of the increasing use of AI within medicine is that better decisions will be
made sooner for (and with) patients. The downside of such an ambition is the risk that
these tools are used to enable doctors to do less work whilst shifting accountability onto
black-box decision making processes that purport to be evidence based. Care needs to be
taken to ensure that the outputs of such CDSSs are appropriately understood, especially
in a risk context. When it comes to probabilistic outputs Further research needs to be
conducted to establish how best to achieve this.

Reporting protocols for AI in medicine, including TRIPOD+AI [31], CLAIM [100]
and DECIDE-AI [153], do not uniformly consider either the uncertainty associated with
the outputs of a model nor how this is presented in a CDSS. This is bacause most of the
protocols focus upon model training/development and testing/validation and not on the
deployment. The informatics of end-to-end CDSS development and deployed optimisation
is a more complex problem involving risk/uncertainty communication, decision theory and
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human-computer interaction considerations.
The development of CDSSs needs to not be seen as a tournament of algorithms com-

peting to be the most empirically correct, but as a part of system to improve the medical
decision making process in general. Careful communication of risk and uncertainty is a
key component of that process.
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A Search terms
A.1 PubMed Search Term
”ML”[Title/Abstract] OR ”Artificial intelligence”[Title/Abstract] OR
”AI”[Title/Abstract] OR ”machine intelligence”[Title/Abstract] OR ”machine
learning”[Title/Abstract] OR ”intelligent *”[Title/Abstract] OR ”expert
system”[Title/Abstract] OR ”neural network”[Title/Abstract] OR ”natural language
processing”[Title/Abstract] OR ”generative AI”[Title/Abstract] OR ”deep
learning”[Title/Abstract] OR ”bayesian”[Title/Abstract] OR ”fuzzy
logic”[Title/Abstract] OR ”Artificial Intelligence”[MeSH Terms] AND (”predictive
modelling”[Title/Abstract] OR ”prediction modelling”[Title/Abstract] OR ”prognostic
modelling”[Title/Abstract] OR ”Decision Support Tool”[Title/Abstract] OR ”decision
support system”[Title/Abstract] OR ”risk prediction”[Title/Abstract] OR ”decision
support systems, clinical”[MeSH Terms]) AND (”Journal Article”[Publication Type])
AND (”uncertainty”[Title/Abstract] OR ”risk”[Title/Abstract]) AND
(”English”[Language]) NOT ”imaging”[Title/Abstract] NOT ”image”[Title/Abstract]
NOT ”vision”[Title/Abstract] NOT ”literature review”[Title/Abstract] NOT ”scoping
review”[Title/Abstract] NOT ”systematic review”[Title/Abstract] NOT
”environment*”[Title/Abstract] NOT ”veterinary”[Title/Abstract] NOT
”Organisims”[Title/Abstract] NOT ”Drug”[Title/Abstract]

A.2 Web of Science search term
The search can be accessed at: https://www.webofscience.com/wos/woscc/summary/
056d9f82-4755-4801-b331-50c6f9b65847-e17ef8f8/relevance/1

A.3 IEEE Xplore Search Term
((”ML” OR ”Artificial intelligence” OR ”AI” OR ”machine intelligence” OR ”machine
learning” OR ”expert system” OR ”neural network” OR ”natural language processing”
OR ”generative AI” OR ”deep learning” OR ”bayesian” OR ”fuzzy logic” OR ”Artificial
Intelligence”) AND (”predictive modelling” OR ”prediction modelling” OR ”prognostic
modelling” OR ”Decision Support Tool” OR ”decision support system” OR ”risk
prediction”) AND (”uncertainty” OR ”risk”) NOT (”imaging” OR ”image” OR ”vision”
OR ”literature review” OR ”scoping review” OR ”systematic review” OR
”environment*” OR ”veterinary” OR ”Organisms” OR ”Drug”))
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B Questions
The use of square brackets indicates that the answer was expected to be a categorical
answer. In all cases Other answers are followed up by establishing what the other is.

QS0 – About the CDSSs
Q0.1 – What is the area of medicine?

Q0.2 – Who is the intended user of the CDSS?
[Clinician/Patient/Both/Other]

Q0.3 – What ‘decision’ is the CDSS ‘supporting’?

Q0.4 – Is the CDSS trying to be analogous to clinical reasoning? [Yes/No]

QS1 – What is the algorithm and its output?
The first set of questions is to consider what exactly in the underlying machine
learning algorithm is within the model and what the results look like.
Q1.1 – What is the algorithm?
Neural Network, Logistic Regression, Linear Regression, SVM, random forest, etc.
Q1.2 – What is the output of the algorithm?
[Number/Classification/Both/Other]

If Number then Q1.3 is asked.
If classification Q1.4 is asked.
If Both Q1.3 and Q1.4 is asked.

Q1.3 – What is the number? [Probability/Score/Other]

Q1.4 – Is it classifying into risk levels? [Yes/No]

Q1.5 – Does there exist a threshold value that transforms a numeric value into a
classification? [Yes/No]

If the answer is Yes then Q1.6 is asked
Q1.6 – How has that threshold been established?

QS2 – Presentation of uncertainty
Q2.1 – Is any uncertainty presented alongside the output? [Yes/No]
If the answer is No, then no more questions in this question are asked.
Q2.2 – What is the uncertain object?
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Q2.3 – How is the uncertainty presented?

QS3 – Assessment of performance
Q3.1 – How is the performance of the CDSS assessed?
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C Data Tables
C.1 Medical specialities

Table 1: Medical Specialities of the included models

Specialty Count Reference Specialty Count Reference
Oncology 21 9, 35, 89, 91, 97,

140, 42, 149, 53,
3, 43, 81, 130,
160, 132, 141,
27, 102, 155,
171, 173

Gastroenterology 2 95, 58

Surgery 19 17, 53, 99, 13,
105, 1, 14, 15,
108, 112, 58, 61,
128, 62, 87, 159,
119, 118, 156,
163

Hematology 2 74, 122

Cardiology 19 40, 74, 94, 172,
37, 162, 138,
22, 148, 105,
112, 122, 121,
79, 152, 103, 66,
158, 57

Nursing 1 25

Emergency Medicine 14 98, 16, 54, 129,
13, 117, 144,
119, 118, 150,
156, 71, 164, 34

Gynecology 1 27

Nephrology 12 10, 63, 92, 145,
77, 64, 111, 133,
84, 109, 28, 146

Transplant 1 50

Covid 11 73, 33, 23, 39, 4,
72, 136, 167, 51,
151, 171

Hepatology 1 50

Urology 8 12, 9, 39, 140,
77, 111, 133,
141, 155, 24, 71

Tropical Medicine 1 54

Diabeties 7 96, 127, 131,
159, 135, 67, 36

Sports Medicine 1 83

Orthopaedics 6 21, 88, 113, 61,
120, 62

Orthopedics 1 83

Diabetes 5 39, 114, 168, 26,
45

Rheumatology 1 85

Continued on next page
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Specialty Count Reference Specialty Count Reference
Hospital 5 80, 142, 116,

110, 165
Travel Medicine 1 86

Obstetrics 4 2, 168, 166, 36 Psycology 1 97
General Practice 4 98, 41, 117, 45 Social Care 1 98
Neurology 3 12, 24, 71 Neurosurgery 1 128
Otorhinolaryngology 3 18, 69, 56 Outpatients 1 144
Pulmonology 3 20, 74, 122 Malnutrition 1 147
Psychiatry 3 101, 30, 71 Oral Health 1 149
Sleep Medicine 3 78, 69, 56 Geriatric Care 1 150
Paediatrics 2 170, 5 Sexual Health 1 169
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C.2 Use case of the CDSSs

Table 2: The use cases of the CDSSs.
Use Count Models
Risk of condition 47 3, 4, 22, 24, 25, 26, 27, 28, 30, 33,

42, 43, 45, 50, 54, 56, 57, 66, 67, 71,
72, 73, 77, 79, 80, 81, 84, 88, 101,
103, 113, 118, 120, 129, 133, 135,
136, 141, 142, 144, 148, 152, 162,
166, 169, 170, 171

Prediction/diagnosis of condition 34 2, 9, 10, 12, 16, 18, 21, 23, 35, 40,
51, 63, 64, 74, 78, 85, 89, 92, 91, 94,
96, 97, 114, 116, 127, 131, 140, 145,
146, 149, 155, 158, 168, 172

Outcome after intervention 24 13, 14, 15, 17, 53, 58, 61, 62, 95, 99,
102, 105, 108, 109, 111, 112, 121,
122, 128, 130, 132, 156, 163

Triage/Screening 11 5, 20, 34, 36, 37, 41, 69, 147, 160,
167, 173

Intervention recommendation 8 39, 83, 86, 87, 110, 119, 159, 164
Monitoring/Management 7 12, 98, 117, 138, 150, 151, 165
Mortality prediction 21 13 22 33 43 54 62 80 81 88 105 108

111 112 113 129 130 133 148 163
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C.3 Algorithms used within the CDSSs

Table 3: Algorithm used by CDSSs
Algorithm Count Paper Reference
Logistic Regression 32 9, 12, 16, 17, 21, 33, 39, 40,

42, 53, 54, 64, 67, 69, 72, 83,
84, 99, 105, 108, 110, 112,
117, 120, 121, 122, 136, 141,
144, 146, 150, 151, 155, 156,
158, 164, 163

Random Forest 25 2, 23, 27, 41, 51, 63, 64, 71,
73, 77, 80, 81, 87, 89, 92, 97,
101, 128, 129, 147, 148, 167,
168, 169, 170

Gradient Boosting 18 1, 22, 28, 56, 57, 72, 81, 87,
88, 95, 96, 109, 114, 116,
128, 148, 149, 159

Proportional Hazards Models 15 3, 10, 26, 63, 66, 85, 111,
121, 130, 145, 151, 152, 162,
171, 173

Neural Network 12 12, 35, 50, 58, 64, 91, 101,
127, 135, 142, 148, 165

Regression 10 4, 15, 39, 61, 62, 103, 148,
170, 164, 172

Decision Tree 8 79, 98, 102, 132, 140, 164
Bayesian Network 8 86, 94, 113, 119, 118, 133,

160
Support Vector Machine 6 30, 36, 64, 81, 101, 148
Proprietary 5 14, 20, 43, 45, 131
Natural Language Processing 4 30, 37, 74, 98
Markov Model 2 24, 78
Fuzzy Logic 2 18, 34
Principle Component Analysis 1 12
Reinforcement Learning 1 138
Voting Classifier 1 148
Ensemble Prediction Model 1 128
Learning From Examples Using Rough Sets (Lers) 1 166
Arden Syntax Medical Logic Modules 1 5
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C.4 Performance Metric

Table 4: Metrics used to assess the performance of the CDSSs
Metric Count Models
(AU)ROC 97 3, 4, 9, 10, 13, 14, 15, 16, 17, 18, 23,

22, 25, 27, 30, 33, 35, 36, 37, 39, 40,
43, 42, 45, 50, 51, 53, 54, 56, 57, 58,
61, 62, 63, 64, 66, 67, 69, 71, 72, 73,
74, 77, 79, 80, 81, 83, 85, 87, 88, 89,
92, 91, 94, 95, 96, 97, 98, 99, 101,
103, 105, 108, 109, 110, 111, 112,
113, 119, 118, 116, 117, 120, 121,
122, 127, 129, 128, 130, 132, 133,
135, 136, 138, 140, 141, 142, 144,
145, 146, 147, 148, 149, 150, 152,
155, 156, 160, 159, 158, 162, 165,
166, 164, 163, 167, 168, 169, 170,
171, 172, 173

Confusion Matrix Statistics 66 1, 2, 4, 5, 12, 13, 14, 16, 18, 20, 21,
23, 24, 25, 27, 28, 30, 34, 37, 41, 43,
50, 51, 53, 54, 56, 69, 71, 72, 74, 78,
79, 80, 84, 85, 87, 88, 91, 94, 96, 97,
101, 102, 108, 109, 116, 117, 122,
128, 129, 133, 140, 144, 146, 149,
150, 152, 160, 159, 158, 165, 164,
166, 167, 169, 170

Comparison To Existing Practice 11 1, 20, 25, 34, 37, 40, 51, 86, 98, 151,
155

Calibration Plot 10 15, 42, 57, 63, 83, 88, 112, 130, 141,
148, 173

Brier Score 8 4, 15, 57, 119, 118, 141, 148, 149
Hosmer-Lemeshow 7 15, 67, 105, 119, 118, 141, 148
(AU)PRC 7 56, 80, 87, 96, 147, 152, 168
DCA 4 9, 50, 163, 172
χ2 Test 3 26, 91, 145
User Views 2 131,138
Wilcoxon Rank-Sum Test 1 9
Hazard Ratio 1 114
Mann-Whitney U Test 1 83
D-Statistic 1 66
r2 Test 1 66
Calibration Plots 1 57
NNT 1 116
Unclear 1 45
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