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ABSTRACT

Recent studies have reported increases in early-onset cancer cases (diagnosed under age 50) and call
into question whether the increase is related to earlier diagnosis from other medical tests and reflected
by decreasing tumor-size-at-diagnosis (apparent effects) or actual increases in underlying cancer risk
(true effects), or both. The classic Multi-Stage Clonal Expansion (MSCE) model assumes cancer
detection at the emergence of the first malignant cell, although later modifications have included lag-
times or stochasticity in detection to more realistically represent tumor detection requiring a certain
size threshold. Here, we introduce an approach to explicitly incorporate tumor-size-at-diagnosis in
the MSCE framework and account for improvements in cancer detection over time to distinguish
between apparent and true increases in early-onset cancer incidence. We demonstrate that our model
is structurally identifiable and provides better parameter estimation than the classic model. Applying
this model to colorectal, female breast, and thyroid cancers, we examine changes in cancer risk while
accounting for detection improvements over time in three representative birth cohorts (1950-1954,
1965-1969, and 1980-1984). Our analyses suggest accelerated carcinogenic events and shorter mean
sojourn times in more recent cohorts. We further use this model to examine the screening impact
on the incidence of breast and colorectal cancers, both having established screening protocols. Our
results align with well-documented differences in screening effects between these two cancers. These
findings underscore the importance of accounting for tumor-size-at-diagnosis in cancer modeling and
support true increases in early-onset cancer risk in recent years for breast, colorectal, and thyroid
cancer.
Keywords: Early-onset cancer, Cancer kinetics, Tumor size, Sojourn time, Screening impact

Significance

This study models recent increases in early-onset cancers, accounting for both true factors contributing to cancer risk
and those caused by improved detection. We show that while advancement in detection has led to earlier detection,
our model estimates shorter sojourn times and more aggressive carcinogenic events for recent cohorts, suggesting
faster tumor progression. Further, a counterfactual analysis using this model reveals the known statistically significant
reduction in colorectal cancer incidence (supporting a robust modeling approach), likely due to screening and timely
removal of precancerous polyps. Overall, we introduce an enhanced model to detect subtle trends in cancer risk and
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demonstrate its ability to provide valuable insights into cancer progression and highlight areas for future refinement and
application.

Introduction

Cancer is the second most common cause of death in the world and is predicted to be responsible for about 2 million new
cases and more than 600 thousand deaths in 2024, according to the American Cancer Society Statistics [1]. Moreover,
globally, early-onset (less than 50 years of age) cancer incidence has increased by 79.1% with a 27.7% increase in death
between 1990 and 2019 [2]. Colorectal, breast, and thyroid cancers are among those with the most dramatic surges in
early-onset incidence [3].

Many studies have aimed to understand the reason for such recent increases in early-onset incidence, with dietary
factors, tobacco use, and alcohol consumption recognized as the most common modifiable risk factors [3]. Moreover,
screening policies have been modified to respond to this issue. For example, the United States Preventive Task Force
(USPSTF) updated their guidelines in 2024, recommending that all women begin screening for breast cancer (BrC) at
age 40, as opposed to ages 45 and 50, as recommended previously [4]. The USPSTF also recommended the age of
colorectal cancer (CRC) screening at 45, lowered from 50, in 2021 [5]. Given that screening facilitates earlier diagnosis,
such population-level screening could result in increases in incident cases. In addition, advancements in and increased
use of medical imaging technologies including the increased use of CT scan [6], enable the detection of smaller tumors,
even for cancer types with no population screening, such as thyroid cancer (ThC) [7, 8], which could, in part, contribute
to the apparent increases in incidence among young adults. Indeed, the tumor sizes recorded at diagnosis in general
decreased over time since 1988 when the Surveillance, Epidemiology, and End Results (SEER) program started to
report these data [9] (Figure 1(A)). Thus, the apparent increases need to be accounted for to gauge the true risk increases
more accurately and to examine the underlying etiology of early-onset cancers.

Mathematical models have been applied to explore the underlying factors contributing to cancer incidence. A prime
example of such application is Armitage and Doll’s pioneering work in 1954, which introduced the theory of multistage
carcinogenesis and set the groundwork for similar cancer models [10]. This theory posits that cancer is the product
of the accumulation of genetic mutations in normal cells. Building on this, in a series of papers, Moolgavkar et al.
(1979, 1981) showed that a two-stage mutation model is not enough to capture the intricacies of cancer incidence unless
stage-wise clonal expansion of mutated cells is also considered [11, 12]. This led to the introduction of the Multistage
Clonal Expansion (MSCE) model, which incorporates the proliferation of mutated cells at each stage in addition to the
accumulation of genetic mutations. In recent years, various studies have modified and adopted the MSCE model to
capture different details that contribute to cancer incidence. These include multiple studies examining the number of
mutations (i.e., the number of stages in the MSCE model) needed to capture the age-specific incidence patterns for
different cancer types [13, 14, 15, 16]; the development of different hazard functions to better capture the phases and
transitions of tumor growth kinetics over the life course [17, 18]; additional model components to account for cancer
detection [19, 20]; and the incorporation of population- or individual- level risk factors in the mutation rates [21, 22].
Another line of cancer kinetics modeling examines the evolutionary dynamics of cancer initiation and progression; for
instance, Paterson et al. (2020) [23] and Li et al. (2023) [24] considered the heterogeneity of mutation orders to explore
the genetic pathways that drive these dynamics.

This study focuses on modeling early-onset cancers, particularly three cancer types with reported incidence increases
in the United States (US): BrC, CRC, and ThC. Although BrC and CRC diagnostics have improved over time, case
detection prior to the recommended screening age for these cancer types is typically due to symptoms. On the other
hand, ThC is not recommended for population screening in the US. However, as noted above, the recent increased use
of medical imaging and subsequent incidental detection of ThC has been speculated as a factor for its rising incidence
[7]. These differences in detection improvements and screening practices allow model testing and comparison of the
estimated apparent effects due to increased detection (more prominent for ThC compared to the other two cancer
types) and true cancer risks, as well as examining the impact of population screening. To account for such changing
detection, we propose a model that captures the clonal expansion of malignant cells via a simple birth process in the
MSCE framework while accounting for tumor-size-at-diagnosis. By adding this factor, our model encompasses both
the apparent and true effects in the observed early-onset cancer incidence. Unlike previous works that numerically test
the fitness of MSCE models with different numbers of stages [13, 14, 15, 16], we adopt a general modeling framework
with three stages of mutation and clonal expansion based on findings from recent genetic analyses [25]. To capture the
heterogeneity of cancers, we use incidence data to estimate the rate of progression during each stage and the relative
contribution of each stage, such that the model can be applied to different cancer types. We apply this model to the
three key early-onset cancers (BrC, CRC, and ThC) over multiple birth cohorts. Our results show that our model is fully
structurally identifiable, has a better parameter estimation capability, and explains the increase in early-onset cancer
better than the classic model. By accounting for changing detection, we are able to estimate the increases in tumor
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growth rates and the key stages of such increases in different birth cohorts for the three cancers. In addition, using the
model estimates, we calculate the mean sojourn times (the time from the occurrence of the first malignant cell to cancer
detection) and conduct a counterfactual analysis to investigate the impact of population screening on BrC and CRC.

The model: framework, identifiability and validation

Model framework. It is a widely accepted theory that cancer arises from the accumulation of genetic mutations that
turn normal stem cells into malignant ones [26]. Key mutations occur in genes that regulate cell proliferation and death
[27], such as APC, TP53, and KRAS in colorectal cancer; TP53, PIK3CA, and GATA3 in breast cancer; and BRAF,
CHEK2, and RET in thyroid cancer [28, 29, 30]. Research by Tomasetti et al. suggests that as few as three driver
mutations may be sufficient for cancer to develop, based on studies of colorectal and lung cancers, which have the
highest number of somatic mutations (i.e., can serve as an upper bound for other cancer types) [25]. Therefore, in this
study, we consider three mutations before malignancy, but note the model provided here can be easily expanded to
account for more mutations. Figure 1 (B) shows a schematic of the biological assumption considered for the model. An
Ordinary Differential Equation (ODE) system can be derived to describe the changes in survival (i.e., the probability
that an individual’s tumor size is less than the reported size-at-diagnosis at age t) and the associated hazard rate given
the three transitions in this MSCE process.

Survival probability 1:
dx1

dt
= µ0N0x1(x3 − 1), (1)

Hazard rate of cancer incidence:
dx2

dt
= −µ0N0x4 (2)

Survival probability 2:
dx3

dt
= β1 − (α1 + β1 + µ1)x3 + µ1x3x5 + α1x

2
3, (3)

Derivative of survival probability 2:
dx4

dt
= −(α1 + β1 + µ1)x4 + µ1x4x5 + µ1x3x6 + 2α1x3x4, (4)

Survival probability 3:
dx5

dt
= β2 − (α2 + β2 + µ2)x5 + µ2f(t)x5 + α2x

2
5, (5)

Derivative of survival probability 3:
dx6

dt
= −(α2 + β2 + µ2)x6 + µ2f

′(t)x5 + µ2f(t)x6 + 2α2x6x5. (6)

The value N0 denotes the number of stem cells. For breast we set N0 = 1.74 × 1010 [31], for colon and rectum
N0 = 2 × 108 [32], and for thyroid N0 = 6.5 × 107 [32]. Table 1 gives all the variable and parameter descriptions.
The derivation process entails tracking how stem cells transition from normal to malignant as they accumulate genetic
mutations. The model considers a birth-death process for each stage, where cells can divide, die, or mutate at specific
rates. By incorporating the probabilities of these transitional events, we estimate the likelihood that a certain number of
malignant cells will develop and form a detectable tumor by a given age. Refer to the supplementary materials for more
details on the model and derivation. When f(t) = 0, equations (1)-(6) give the classic MSCE model as first introduced
in [12] (referred to as the MSCE model hereafter), which counts cancer incidence at the occurrence of the first malignant
cell. Here, we introduce a model that counts a tumor as a case only if it surpasses the reported size-at-diagnosis in the
data. This is an attempt to segregate the apparent effects (caused by improved diagnosis over time) and true effects
(caused by mutagenic factors) contributing to the recent increases in early-onset cancer. To include the tumor size in the
model, we derive the probability of having less than Nt malignant cells given one malignant cell at t = 0 through a
linear birth-death process (See Bailey chapter 8 [33]):

f(t) = 1− (α3 − β3)α
Nt−1
3 {1− e(β3−α3)t}Nt−1

{α3 − β3e(β3−α3)t}Nt
. (7)

Briefly, to derive equation (7), we first solve the moment-generating partial differential equation of the linear homoge-
neous birth-death process. For the solution, we then obtain the probability generating function and use that function to
generate a general formula for the probability of having exactly n malignant cells. Using an infinite sum over n and
the geometric series formula, we arrive at equation (7); see the details in the supplementary material. Combining this
function with (1)-(6) gives a general model accounting for tumor-size-at-diagnosis (referred to as the General MSCE-T
model in this paper).
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Table 1: Models, model variables and parameters definition.

Variable/Parameter/Model Description

x1 Survival∗ given N0 normal cells and no other cell types at time zero.
x2 Hazard rate∗∗ of cancer incidence, i.e., −d

dt [lnx1]

x3
Survival given N0 normal cells, one FSMC†, and

no other cell types at time zero.
x4 Auxiliary variable defined as d

dt [x3]

x5
Survival given N0 normal cells, one SSMC‡, and

no other cell types at time zero.
x6 Auxiliary variable defined as d

dt [x5]
µ0 Mutation rate of normal/stem cells
µ1 Mutation rate of FSMCs
µ2 Mutation rate of SSMCs
α1 Birth rate of FSMCs
α2 Birth rate of SSMCs
α3 Birth rate of malignant cells used in Models 2 and 3
β1 Death rate of FSMCs
β2 Death rate of SSMCs
β3 Death rate of malignant cells used only in Models 2
Nt Number of malignant cells at diagnosis time t

µ1 × (α1 − β1) Aggressiveness⋄ of FSMCs
µ2 × (α2 − β2) Aggressiveness of SSMCs

MSCE model

Equations (1)-(6) with f(t) = 0,
[x1(0), x2(0), x3(0), x4(0), x5(0), x6(0)] = [1, 0, 1, 0, 1,−µ2],
cancer incidence := the occurrence of the first malignant cell,

No α3 and β3.

General MSCE-T model

Equations (1)-(6) with f(t) given by (7),
[x1(0), x2(0), x3(0), x4(0), x5(0), x6(0)] = [1, 0, 1, 0, 1, 0],

cancer incidence := having Nt or more malignant cells,
Both α3 and β3 require estimation.

MSCE-T model

Equations (1)-(6) with f(t) given by (8),
[x1(0), x2(0), x3(0), x4(0), x5(0), x6(0)] = [1, 0, 1, 0, 1, 0],

cancer incidence := having Nt or more malignant cells,
α3 is known and β3 is not required.

∗ Survival: The probability of having less than Nt malignant cells. For the MSCE model, Nt = 1.
∗∗Hazard rate: the instantaneous rate at which a specific event occurs.

† FSMC: First-Stage Mutated Cell, ‡ SSMC: Second-Stage Mutated Cell,
⋄ Aggressiveness: Likelihood of newly proliferated cells to mutate to the next stage.

A well-accepted simple model of cancer growth is the logistic growth with the rate of αN(t)(1− N(t)
K ) [34]. Parameters

α and K are net proliferation rate and carrying capacity, respectively, and N(t) is the number of cancer cells at a given
time t. If the carrying capacity is much larger than N(t), then it can be approximated by a simple birth process αN(t).
In this study, as tumor sizes were recorded at the time of diagnosis, the sizes would be much smaller than the carrying
capacity. For example, for CRC, the largest size at diagnosis reported in SEER data is around 52 mm, while tumors as
big as 17 cm are possible [35]. Hence, by setting β3 = 0 in equation (7), we obtain the probability of having less than
Nt malignant cells assuming a simple birth process:

f(t) = 1− {1− e−α3t}Nt−1. (8)

Combining function (8) with equations (1)-(6) leads to a simplified model to account for tumor-size-at-diagnosis and
the main model in this study, which we refer to as the MSCE-T model. The MSCE-T model can be further simplified
using the reported doubling times for different cancer types in the literature. The average doubling time is 193 days for
BrC [36], 211 days for CRC [37, 38], and 967 days for ThC [39]. This allows us to set α3 = 365×ln 2

doubling time in (8). This
simplification is not feasible for the General MSCE-T model, as α3 − β3 (the net proliferation rate) is not uniquely
determined, and the term β3 appears with an exponential factor in the denominator. Thus, we can instead use the
reported doubling times to establish bounds for estimating α3 and β3 in the General MSCE-T model.
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Finally, to solve (1)- (6) along with (7) or (8) we consider the initial conditions
[x1(0), x2(0), x3(0), x4(0), x5(0), x6(0)] = [1, 0, 1, 0, 1, 0]. However, solving the classic MSCE model (i.e., f(t) = 0)
will entail a different set of initial conditions namely [x1(0), x2(0), x3(0), x4(0), x5(0), x6(0)] = [1, 0, 1, 0, 1,−µ2].
The initial values for x1,x3, and x5 are one because they represent the survival (i.e., the probability of having less than
Nt malignant cells) at time zero given different initial scenarios for mutated cells. The initial values for x2, x4 and x6

are a consequence of their definition (see Table 1) which can be directly determined from equations (1), (3) and (5).
See Table 1 for a summary of each model.

Model identifiability. A model is structurally identifiable if model parameters can be determined uniquely given perfect
(noise-free and error-free) data, indicating that there is a unique mechanism as represented by the estimated parameter
set that can explain the observation. Conversely, a model is termed structurally unidentifiable if several parameter
sets yield the same data, indicating unreliable parameter estimation. As such, structural identifiability is important for
parameter estimation.

The MSCE model, despite its simplicity, is not structurally identifiable. Using a differential algebraic approach, Brouwer
et al. prove that for the MSCE model, the system is unidentifiable and the parameters need to be combined into groups
to retrieve full structural identifiability [40].

The General MSCE-T model does not resolve the identifiability issue. Moreover, due to highly nonlinear terms,
including two extra unknown parameters α3 and β3, recovering identifiable groups like that of the classic MSCE model
is difficult. Please refer to the supplementary material for a justification.

For the MSCE-T model, when α3 in equation (8) is known (based on values reported in the literature), and Nt is
obtained from the data, equation (8) can be treated as a known input to the model. Introducing additional inputs is a
recognized approach to mitigate structural unidentifiability, and incorporating (8) instead of (7) makes the model fully
structurally identifiable. A detailed proof is provided in the supplementary material.

Model validation using synthetic data. We validate the model and parameter estimation approach using synthetic
data. This synthetic dataset is generated through Poisson sampling, using the model-derived incidence as the mean, to
simulate the imperfect observations in real-world settings (see the "Materials and methods" section for more details). As
the parameters are prescribed, we can compare the model estimates with the true parameter values (typically unknown
for real-world data) in addition to model fit. Here, we assess i) the model fit to the data, ii) the accuracy of parameter
estimation from the best-fit model run, and iii) the consistency based on the ensemble from 100 runs. As shown in
Figure 2, the MSCE-T model performs best in all three aspects – It generates the narrowest incidence output range from
the parameter ensemble, its estimated parameters have the lowest error compared to the true values, and it has high
consistency as shown by tighter parameter distributions. These results are consistent with the structural identifiability of
the MSCE-T model.

Data analysis results

Parameter estimates accounting for tumor size. We next apply the MSCE-T model to examine the tumor growth
kinetics of three early-onset cancers – BrC (under age 40), CRC (under age 50), and ThC (all ages included), based
on cancer incidence across three representative cohorts (1950-1954, 1965-1969, and 1980-1984) in the US. All three
cancer types saw increases in incidence among young adults in more recent cohorts (Figure 3; darker colors for more
recent cohorts). The MSCE-T model is able to capture the observed incidence trends for all three cohorts (Figure
3). For ease of interpretation, we group the parameters into three sets representing three key stages of carcinogenesis
considered in the model: the mutation rate of normal stem cells (i.e., initial mutation), the first-stage mutated cell
(FSMC) aggressiveness (combining the stage-specific mutation-, birth-, and death rate; Table 1), and the second-stage
mutated cell (SSMC) aggressiveness. However, we note these parameter sets are computed directly using individual
parameter estimates from the MSCE-T model given it is fully identifiable, rather than through reparametrization using
these groupings. Across the three cancer types, the estimated mutation rate of normal stem cells is higher in CRC than
BrC and ThC, while estimated aggressiveness for both the first-stage and second-stage mutated cells is the highest in
ThC.

Importantly, for all three cancer types, sensitivity analysis indicates the parameter combination µ1 × (α1 − β1), which
measures the aggressiveness of FSMCs, incurs the highest sensitivity such that per-unit change in this parameter set
leads to the largest change in cancer incidence (Figure 4), sensitivity plots, red curves). The MSCE-T model estimates
an increase in this parameter set in more recent birth cohorts (Figure 4, second column of box plots, higher red bars in
later cohorts) for all three early-onset cancers. For female BrC, compared to women born in 1950-1954, the estimated
FSMC aggressiveness increased by 10.4% (95% CI: 1-21; 1965-1969 cohort) and 23.3% (95% CI: 11-35; 1980-1984
cohort) in a span of 30 years. In addition, the model estimates higher values for this parameter in females than males for
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both CRC and ThC (Figure 4, see the second column of box plots, higher darker red bars for females). Particularly, for
CRC, compared to the 1950-1954 birth cohort, estimated FSMC aggressiveness increased by 3.9% (95% CI: 0.1-9;
female) and 7.8% (95% CI: 5-10; male) in the 1965-1969 birth cohort and by 22.2% (95% CI: 16-29; female) and 10.4%
(95% CI: 7-14; male) in the 1980-1984 birth cohort. For ThC, the estimated increases were even higher, by 80.7% (95%
CI: 20-147; female) and 22.2% (95% CI: 12-32; male) in the 1965-1969 birth cohort and by 111.9% (95% CI: 32-191;
female) and 180.9% (95% CI: 158-206; male) in the 1980-1984 birth cohort. Estimates for the other two parameter sets
are less consistent across cohorts and sexes, and as noted, the model is less sensitive to these parameter sets.

Sensitivity and supplemental analyses. To assess the robustness of our model estimates, we conducted a sensitivity
analysis by varying the values of α3 for all three cancer types, given that this parameter is derived from the literature.
Figure S2 compares parameter estimation results for both increased and decreased values of α3. Despite the variation
in parameter values, the qualitative trends remain consistent with the results reported above (and shown in Figure 4)
across all parameter sets and cancer types. Particularly, the most sensitive parameter (i.e., the aggressiveness of FSMC)
consistently increases by birth cohort for different values of α3.

As noted in the Introduction, improvement in cancer detection and incidental detection due to increased use of medical
imaging could, in part, contribute to the apparent increases in cancer incidence. Such biases in the data are more
profound for ThC (see the large increases in Figure 3)[7]. To examine the ability of the MSCE-T model to account for
such detection-related data biases, we conducted two additional analyses. First, we compare parameter estimates using
the MSCE model, which does not account for tumor size, with estimates from the MSCE-T model. As shown in Figure
S3, estimates by the MSCE model do not show clear changes by birth cohort for the three cancer types examined. In
the second analysis, we performed parameter estimation for ThC by subtype. About 90% of ThC cases are papillary
carcinomas, 1% are anaplastic carcinomas, and the remaining cases are follicular, Hürthle, and medullary carcinomas
[41]. Despite its scarcity, anaplastic ThC accounts for over 30% of all ThC-related deaths [41]. Thus, we conducted
the analysis for papillary (most prevalent) and anaplastic (most lethal) ThC separately. Given the low incidence of
anaplastic ThC, for this analysis, we aggregate the data for 15-year cohorts (i.e.,1940-1954, 1955-1969, and 1970-1984)
to reduce observational noises. However, we note the mean incidence of anaplastic ThC is still low (Figure S4) and
caution the greater uncertainty in model estimates for this subtype. As shown in Figure S4 (A), the MSCE-T model
estimates increases in the FSMC aggressiveness for papillary ThC over the three birth cohorts, similar to the main
analysis combining all ThC subtypes. In contrast, for anaplastic ThC, there are no clear changes in incidence over the
three cohorts for both sexes, and the model does not estimate an increase in FSMC aggressiveness (Figure S4 (B)).
Together, these results demonstrate the ability of the MSCE-T model to account for changing detection and identify
changes in tumor growth kinetics and suggest there are increases in the risk of the three early-onset cancers (for ThC,
such increases are mostly related to papillary ThC) in more recent cohorts, independent of changing detection.

Sojourn time. We use the MSCE-T model to calculate the mean sojourn time (the time from the emergence of first
malignant cell to cancer detection) of BrC, CRC, and ThC for the three cohorts (1950-1954, 1965-1969, and 1980-1984).
An illustration of the sojourn time based on the MSCE-T model incidence curves is provided in Figure S5. The
mean sojourn times (Table 2) estimated here are comparable to results from the Cancer Intervention and Surveillance
Modeling Network (CISNET), for example, 2-4 years for breast cancer [42] and 10.6 years (with an interquartile range
of 5-14 years) from adenoma incidence to cancer diagnosis for CRC [43]. Here, we provide more detailed estimates
by sex and birth cohort. The estimates are similar for females and males of the same cohort. However, we notice a
decreasing trend for more recent cohorts for all cancer types. To assess the influence of the likely improved detection
over time on the estimates, we fixed Nt as the average across all cohorts to compute the sojourn times controlling for
changes in tumor-size-at-diagnosis. The declining trend in sojourn time persisted but with a slight reduction (though
more noticeable for ThC) in each value. Together, these results suggest increases in tumor aggressiveness (hence the
shorter sojourn times), consistent with the model parameter estimates reported above.

Impact of population screening on cancer incidence. Given the mechanistic design, the MSCE-T model also affords
prediction to help assess the impact of population screening on cancer incidence. Particularly, for BrC and CRC, the
parameters are estimated using incidence data before the recommended screening ages. These estimates thus represent
tumor growth kinetics without screening, and the model projections would represent incidence under a counterfactual
scenario where there is no population screening. We thus use these parameter estimates to project the incidence of BrC
for ages above 40 (Figures 5 (A)) and CRC for ages above 50 (Figures 5 (B) & (C)) to assess the impact of screening
for these two cancer types. For this analysis, we examine two cohorts with high rates of screening (>∼60%) for each
cancer type (i.e., the 1950-1954 and 1955-1959 cohorts for BrC and the 1955-1959 and 1960-1964 cohorts for CRC),
and an earlier cohort (1945-1949) with limited screening for comparison (for more details, refer to the "Materials and
methods" section).

For BrC, the model projected incidence rates better match with the observed values for the comparison cohort born
in 1945-1949 (with less than 30% above the age of 40 screened [44]; Figure 5 (A) left). For the two main screening-
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Table 2: Mean sojourn time for different cancer types and cohorts

Cancer Type Sex Cohort (Years) Mean sojourn time
with the actual Nt (Years)

Mean sojourn time
with fixed N∗

t (Years)
1950-1954 3.9 3.8

BrC Female 1965-1969 3.8 3.8
1980-1984 3.6 3.5
1950-1954 10.7 10.5

CRC Female 1965-1969 10.1 10
1980-1984 8.8 8.7
1950-1954 10.7 10.5

CRC Male 1965-1969 10.1 10
1980-1984 8.8 8.8
1950-1954 17.1 16.3

ThC Female 1965-1969 14.7 14.4
1980-1984 12.3 12.2
1950-1954 17 16.4

ThC Male 1965-1969 14.7 14.5
1980-1984 12.2 12

* Nt is fixed as the average tumor cell counts at diagnosis across all cohorts.

affected cohorts (1950-1954 and 1955-1959), the model projections align closely with the observed incidence until
approximately ages 50-55 (Figures 5 (A) middle and right) – around this age range, there was a brief transition phase
(i.e., slow-down) in incidence rates. After age 50-55, the observed incidence rates start to more substantially surpass the
model projections (see, e.g., Figure 5 (A) middle vs left; dots above the lines). The larger discrepancy between the
model projection and the data for cohorts with higher rates of screening likely reflects the increased earlier detection of
BrC through screening. However, as similar discrepancy is also seen for those older than 50-55 years of age in the
comparison cohort with limited screening, we suspect the higher-than-projected incidence is in part due to a true risk
increase in those ages.

For CRC, the model projected incidence rates in general align with the observed values for the comparison cohort
of 1945-1949 (with less than 34% above the age of 50 screened [45]; Figures 5 (B) & (C) left). For the cohorts of
1955-1959 and 1960-1964, among those aged 50 and above, the projected incidence (without screening) is much higher
than the observed (with screening) for both females and males (Figures 5 (B) & (C) middle and right). This discrepancy
likely reflects the preventive impact of CRC screening using colonoscopy, which not only detects but also facilitates the
removal of precancerous polyps, thereby preventing malignancies from progressing to clinically observable cases [46].

Overall, the observed differences in the contribution of screening for BrC and CRC might be attributed to the nature
of the procedure. The removal of breast precancerous lesions is more complex compared to CRC, often requiring
lumpectomy followed by radiation therapy as a preventive measure [38]. This may explain the absence of a sudden
decline in incidence following the screening age, as observed for CRC. Additionally, BrC screening is recommended
biennially [41], potentially contributing to the delayed increase in incidence due to detection (after the transition phase).
However, the discrepancy between the model projection and the less screened population (cohort 1945-1949) might
indicate additional underlying true risks.

Discussion

This study introduces an extension to the classic multistage carcinogenesis model by including tumor-size-at-diagnosis
data. Our findings suggest that adding this input significantly improves the model’s sensitivity and ability to capture
important trends in cancer progression. The main MSCE-T model outperformed both the classic model and a more
general model (incorporating the birth and death of malignant cells) in terms of structural identifiability and parameter
estimation.

To gauge the accuracy of our model estimates, we compare the mean sojourn times estimated using our model and
those reported in the literature. Luebeck et al. (2013) used a similar routine and definition for sojourn time as in this
study (i.e., from the occurrence of the first malignant cell to cancer diagnosis). However, their estimates for CRC –
5.2 years (CI: 3.6–6.2) for male CRC and 6.5 years (CI: 5.2–7.6) for female CRC [20] – are much shorter than our
estimates (8-10 years in Table 2). Two main methodological differences may have contributed to this discrepancy. First,
Luebeck et al. (2013) treated detection as a stochastic event, whereas our model explicitly tracks tumor growth from
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the first malignant cell to diagnosis based on reported tumor size data. Second, Luebeck et al. (2013) adjusted their
incidence data for cohort and period effects, while we used the cohort-specific data directly. The Cancer Intervention and
Surveillance Modeling Network (CISNET) MISCAN-Colon project defines sojourn time as the time from preclinical
cancer to diagnosis, reporting 3 years (CI: 1-4) for this transition and 10.6 years (CI: 5-14) for the transition from
adenoma to diagnosis [43]. The latter transition time is more in line with our estimate for CRC. For BrC, our estimates
match the estimates of the CISNET-DFCI model (using data from various sources in the pre-screening era), which
suggests a transition time of 2-4 years [42]. However, when comparing to these studies, extra caution is required
since CISNET models either calculate the mean sojourn time using a simulated population (with assumptions such
as transition probabilities, tumor growth patterns, and detection sensitivity) [43] or consider it as an input estimated
through transition probabilities with the possibility of regression [42]. Nonetheless, all these sojourn time estimates
are in the order of years (e.g., 5-10 years for CRC), which is substantial compared to the human lifespan and not as
negligible as assumed in many previous models.

For ThC, we estimated much longer sojourn times (∼15 years; Table 2), despite the earlier lifetime occurrence of ThC
than the other two cancer types (i.e., BrC and CRC; see age-specific incidence in Figure 3). Given the elevated incidence
rates starting around ages 15-20 (Figure 3), these estimates suggest that the initiation of ThC might have started at a
very early stage of life. We are unable to locate a similar model estimation of sojourn time for ThC for comparison (it is
less modeled). However, extensive clinical studies have also pointed to the likely initiation of ThC during the infantile
period [47]. Particularly, studies of children and adolescents exposed to the Chernobyl nuclear accident reported the
highest incidence rate of ThC among those who were under 1 year of age at the time of Chernobyl, and the rates
decreased progressively through age 12 [48]. Large population-scale health surveys of Fukushima residents, conducted
to monitor the impacts of the TEPCO-Fukushima Daiichi Nuclear Power Plant accident, also revealed high baseline
(i.e., not associated with the accident) incidence rates of ThC among children, particularly those aged 15 and older
[49, 50]. Further, detailed autopsy data showed the prevalence of ThC (i.e., identified through autopsies of people who
died from mostly non-ThC-related causes) increases steeply from age 15 to 34 and then stays roughly constant for
the remaining lifetime (see Fig 2 of Takano 2017 [47]). This is possible as ThC is self-limiting (i.e., malignant yet
causing very low mortality; [47]). The consistency of our model estimates with these independent clinical observations
indicates our model is able to accurately identify the underlying cancer kinetics.

The changes in the kinetics of early-onset cancers are particularly of interest, given the dramatic increases in incidence
during recent years in the US and globally [2]. After controlling for potential data biases due to changing detection,
estimated carcinogenic aggressiveness still increased substantially for the three studied cancers, i.e., BrC, CRC, and ThC,
which indicates a genuine rise in the underlying cancer risk. Further, we identify the increases in the aggressiveness of
the first-stage mutated cells (i.e., FSMC aggressiveness) to be the most impactful intermediate step affecting cancer risk.
Comparing three cohorts born over a span of 30 years (1950-1954 to 1980-1984), estimated FSMC aggressiveness
shows higher values for female cancer than male cancer and has increased significantly over the 30-year study period
for both sexes (e.g., by ∼23% for female BrC or by ∼10% for male CRC; see Figure 4). Given that our model considers
only three rate-limiting mutation stages before malignancy, we speculate that the estimated increased carcinogenic
effects (i.e., FSMC aggressiveness) correspond to early and mid-adulthood events. However, a separate study is required
regarding the timing of driver gene mutations, potentially leveraging the current model and incidence data in conjunction
with gene expression data to more precisely estimate the timing of intermediate mutations.

Early detection and treatment through screening have been a key cancer intervention strategy. In the US, population
screening is recommended for both BrC (age >40) and CRC (age >50, or >45 from 2021 onward [5]). As clinical
trials are difficult to conduct in younger ages when cancer is rare, modeling often serves as a means to evaluate
the effectiveness of screening as well as etiology [51]. In particular, several large-scale CISNET models have been
developed and applied to test different screening policies and their effectiveness for both cancer types [52, 53, 54, 55].
Here, our model provides an alternative approach to assess the effectiveness. Using counterfactual modeling, we show
striking reductions in CRC incidence among those aged >50 (Figure 5 (B) & (C) middle and right), likely thanks to the
implemented screening programs and the feasibility of removal of precancerous polyps detected during screening [46].
For BrC, our modeling analysis indicates the absence of an immediate decline in incidence compared to CRC (likely
related to the complexity of breast lesion removal [38]) and a delayed increase in the incident cases (possibly due to
the biennial screening recommendation [41]); see Figures 5 (A) middle and right. Importantly, unlike the CISNET
models assessing screening impact primarily at the population level without explicitly accounting for cohort-specific
trends [56, 57, 43, 58], our model accounts for the apparent incidence changes due to changing detection and constructs
cohort-specific counterfactuals, based on cohort- and age-specific incidence and tumor-size-at-diagnosis data that
are readily available from the SEER program. This simplicity and specificity of our model thus affords a powerful
alternative to more explicitly assess the screening impacts, particularly in the context of evolving early-onset cancer
risk.

8

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 8, 2024. ; https://doi.org/10.1101/2024.12.05.24318584doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.05.24318584
http://creativecommons.org/licenses/by-nc-nd/4.0/


A PREPRINT - NOVEMBER 21, 2024

We recognize several study limitations. First, based on findings from Tomasetti et al. [25] and for generality, we adopt a
three-stage model for all three cancers studied here. While the model estimates are consistent with the literature as
noted in the Results, we cannot determine whether three rate-limiting mutations indeed apply to the three cancers (i.e.,
BrC, CRC, and ThC). Second, while we are able to estimate the changes in cancer kinetics, the current model does
not consider the underlying causes for the estimated changes. Future work can incorporate risk factor data (e.g., as
done in [21]) to help identify the main underlying causes. Third, for simplicity, we assume constant values for the
parameters in this study. Time-dependent parameters (e.g., based on risk factor data) would likely further improve model
performance and provide more detailed estimates, particularly the likely causes of the increased cancer risks during
different intermediate stages of tumor growth. Fourth, the tumor mass is likely highly complex, encompassing various
cell types. Here, for simplicity, we did not consider such heterogeneity when converting the tumor size to the number of
malignant cells (i.e., Nt in the model). Nonetheless, we note this simplification would not affect the estimated changes
by birth cohort, as shown in our analysis of mean sojourn time setting Nt to a fixed number for all cohorts; Table 2.
Finally, the model presented here is deterministic, with inputs and outputs that describe the overall population in each
cohort. For simplicity, we did not include stochasticity reflecting the individual-level heterogeneity in data, which may,
in turn, underestimate the parameter uncertainties. We intend to improve this model and its applications by addressing
these limitations in our future work.

In conclusion, this study introduces an improvement in cancer modeling by integrating tumor-size-at-diagnosis data
into the multistage carcinogenesis framework. This approach enhances the model’s ability to detect subtle trends in
cancer risk, controlling for observational biases due to changing detections. While the study has some limitations, its
contributions offer valuable insights into cancer progression and highlight areas for future refinement and application.

Materials and methods

Data sources and processing. We use the SEER cancer incidence registries for patients diagnosed during 1973-2015
with BrC, CRC, and ThC. We use the International Classification of Diseases for Oncology (ICD-O) codes to filter out
the three cancer types: 1) C50.0-C50.9 for BrC; 2) C180.0-C180.9, C19.9, and C20.9 for CRC to include the colon,
rectosigmoid junction, and rectum; and 3) C73.9 for ThC. We divide the data into 5-year birth cohorts and stratify them
by sex.

The SEER dataset reports the tumor-size-at-diagnosis for 1988-2015, while the year of diagnosis goes as far back as
1973. The size data are reported under 10-digit EOD (1988-2003) or CS tumor size (2004-2015) and describe the largest
dimension, or the diameter of the primary tumor, at the time of diagnosis. Using linear extrapolation, we estimate tumor
size at detection for years without SEER data (1973-1987); see Figure S1 in the supplementary material. Figure 1 (A)
shows the average size data extracted from SEER registry. A decreasing trend is evident for all three cancer types.
We use a formula based on Kepler’s conjecture to compute the number of cells from the tumor size (see details in the
supplementary material).

Model validation using synthetic data. We compare the parameter estimation for each of the three models. Models
MSCE and MSCE-T each have seven parameters, and the General MSCE-T model, with the unknown α3 and β3, has
nine parameters. To make the comparison fair, we add a constraint for this model’s parameter estimation, forcing the
algorithm to find α3 and β3 values such that α3 − β3 is equal to the pure birth rate of the MSCE-T model. We generate
synthetic data for the incidence curves using the models and an arbitrary parameter set - as the true parameter values are
known here, we can assess the accuracy of model estimates directly. To mimic noise in observations, we use Poisson
random sampling with the mean set to the model simulated incidence. We use Hybrid Genetic Algorithm (HGA)
optimization for parameter estimation [59], employing MATLAB’s HGA from the Global Optimization Toolbox. We
run the algorithm 100 times and record the fittest set of parameters and their fitness value in each iteration. The fitness
value is the least square distance of the model output from the data (cost). We consider the fittest (i.e., lowest least
square distance) of the 100 parameter sets as the best-fit parameter set. For illustration purposes, we calculate and plot
the distribution of the relative difference percentage between the best-fit parameter set and the true value, see Figure 2.

Parameter estimation for BrC, CRC, and ThC incidence data. We estimate parameters to identify trends in cancer
progression across different cohorts and cancer types. In this study, we estimated parameters for BrC, CRC, and ThC
based on the data for cohorts born in 1950-1954, 1965-1969, and 1980-1984. These cohorts were chosen to represent
distinct historical periods, allowing us to capture temporal trends in cancer biology and treatment advancements.
Additionally, these cohorts provide a significant number of early-onset incident cases. To minimize bias introduced
by cancer screening for BrC and CRC, we restrict our analysis to incident cases diagnosed before age 40 and 50,
respectively. As in the synthetic testing, parameter estimation for each cohort is carried out 100 times using MATLAB’s
HGA toolbox. We acquire a distribution of the parameter values from 100 iterations. We summarize the results
via three biologically meaningful groups containing all the model-estimated parameters. These groups represent the
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three key stages of carcinogenesis considered in the model: the initial mutation rate of normal stem cells µ0 and the
aggressiveness of the 1st and 2nd stage mutated cells, µ1 × (α1 − β1) and µ2 × (α2 − β2), respectively (Table 1).

Sojourn Time. To calculate the mean sojourn time, first, we acquire an estimation for parameter values by fitting the
MSCE-T model to the incidence of CRC (under age 50), BrC (under age 40), and ThC (all ages) for cohorts 1950-1954,
1965-1969, and 1980-1984, as explained in the previous section. Note that this fitting is done considering the tumor cell
count at diagnosis (Nt). Using the same parameters in the model but setting Nt = 1 will result in cancer incidence
being recorded at first malignancy. Hence, to find the sojourn time, we calculate the difference between the time the
MSCE-T model with varying Nt > 1 produces the same incidence as the MSCE-T model with Nt = 1. We obtain the
mean sojourn time by averaging the sojourn times restricted to cases for which relevant clinical data are available. We
repeat the procedure by fixing Nt (average over all cohorts) to explore the effect of detection improvement.

Impact of population screening on BrC and CRC incidence: a counterfactual analysis. As noted above, we
estimate model parameters for ages under 40 for BrC and 50 for CRC, who were not subject to population screening for
these cancers during the study period. To examine the impact of population BrC and CRC screening, we then use these
parameter estimates and the MSCE-T model to project cancer incidence for those older than the recommended screening
ages. That is, as the parameters do not include the impact of screening, these projections represent cancer incidence
under a counterfactual scenario with no screening. For female BrC, according to CDC National Center for Health
Statistics, mammogram screening for women over the age of 40 reached 59.7% by 1993 and increased to over 70% by
2000 [44]. Therefore, for analysis of BrC screening, we pick cohorts of 1950-1954 (reaching age 40 in 1990-1994)
and 1955-1959 (reaching age 40 in 1995-1999). For CRC, about 59-62% of adults over the age of 50 underwent some
colorectal screening procedures between 2005 and 2010 [45]. Therefore, for analysis of CRC screening, we pick
cohorts of 1955-1959 (reaching age 50 in 2005-2009) and 1960-1964 (reaching age 50 in 2010-2015). These cohorts
contain a significant number of data points before and after the screening age. Moreover, for both cancer types, we
include the cohort of 1945-1949 (less than 30% of the population for BrC [44] and 34% for CRC [45] were screened)
to compare the data trends when screening was much more scarce.
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Figure 1: Motivation and schematic of the models. (A) The mean tumor-size-at-diagnosis for breast, colorectal, and
thyroid cancer, extracted from the SEER database. (B) The carcinogenesis process from normal stem cells to malignant
cells. The classic MSCE model records the cancer incidence at the time of the first malignancy occurrence. The General
MSCE-T model considers birth (α3) and death (β3) rates for malignant cells and records the cancer incidence when the
number of malignant cells reaches ≥ N . The main model (MSCE-T) considers a known proliferation rate (α3) for
malignant cells and records the cancer incidence when the number of malignant cells reaches ≥ N .
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Figure 2: Model validation using synthetic data. (A) Shows the synthetic incidence data (dots) and best model fits (red
lines and ranges). (B) Shows the percentage of the relative difference between the estimated parameters and the true
values used to generate the synthetic data. The chosen true values for all the models are (µ0, µ1, µ2, α1, α2, β1, β2) =
(5.20× 10−5, 3.62× 10−5, 1.09× 10−3, 2.28, 4.87, 2.16, 4.73). For the General MSCE-T model, we consider α3 = 9
and β3 = 6.43. The value of α3 in the MSCE-T model is fixed and is equal to α3 − β3 from the General MSCE-T
model.
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Figure 3: Cancer incidence curves. The curves are produced by fitting the MSCE-T model to incidence data for three
different cancer types and three cohorts born in 1950-1954, 1965-1969, and 1980-1984.
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Figure 4: Sensitivity analysis and estimated parameters distribution, for (A) Breast cancer, (B) Colorectal cancer, and
(C) Thyroid cancer. The curve plots show the sensitivity of the MSCE-T model hazard to parameters: i) Normal cell
mutation rate µ0; ii) Aggressiveness of the first-stage mutated cells (FSMCs) µ1 × (α1 − β1); and iii) Aggressiveness
of the second-stage mutated cells (SSMCs) µ2 × (α2 − β2). The box plots show the distribution of these parameters for
three cohorts. Parameters µi, αi and βi all have the unit 1

time .
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Figure 5: Counterfactual modeling to examine the impact of population-level screening for BrC and CRC. The MSCE-T
model is fitted to female BrC patients born in 1945-1949, 1950-1954, and 1955-1959 (sub-figure A). For CRC, the model
is fitted to patients born in 1945-1949, 1955-1959, and 1960-1964 (sub-figures B for female and C for male patients).
The dashed lines mark the screening initiation. The model is first fitted to incidence before the recommended screening
age (dots to the left of the dashed lines) and then used to generate projections (orange curves; i.e., counterfactuals with
no screening) for older ages, comparing to the actual incidence (dots to the right of the dashed lines). The dashed lines
for the cohort of 1945-1949 are not annotated since screening was not yet as ubiquitous for this cohort.
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