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ABSTRACT 

The relationship between mitochondrial DNA (mtDNA) heteroplasmy and nuclear DNA 

(nDNA) methylation (CpGs) remains to be studied. We conducted an epigenome-wide 

association analysis of heteroplasmy burden scores across 10,986 participants (mean 

age 77, 63% women, and 54% non-White races/ethnicities) from seven population-

based observational cohorts. We identified 412 CpGs (FDR p < 0.05) associated with 

mtDNA heteroplasmy. Higher levels of heteroplasmy burden were associated with lower 

nDNA methylation levels at most significant CpGs. Functional inference analyses of 

genes annotated to heteroplasmy-associated CpGs emphasized mitochondrial functions 

and showed enrichment in cardiometabolic conditions and traits. We developed CpG-

scores based on heteroplasmy-count associated CpGs (MHC-CpG scores) using elastic 

net Cox regression in a training cohort. A one-unit higher level of the standardized MHC-

CpG scores were associated with 1.26-fold higher hazard of all-cause mortality (95% CI: 

1.14, 1.39) and 1.09-fold higher hazard of CVD (95% CI: 1.01–1.17) in the meta-

analysis of testing cohorts, adjusting for age, sex, and smoking. These findings shed 

light on the relationship between mtDNA heteroplasmy and DNA methylation, and the 

role of heteroplasmy-associated CpGs as biomarkers in predicting all-cause mortality 

and cardiovascular disease.  

KEY WORDS: Mitochondrial DNA heteroplasmy, DNA methylation, Cardiovascular 

disease, Cross-talk between nuclear DNA and mitochondrial DNA, epigenome-wide 

association analysis. 
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INTRODUCTION 

In addition to producing molecular energy, mitochondria are central to biochemical 

processes including metabolite synthesis, ion homeostasis, oxidative stress, and 

apoptosis.1-3 Defects in mitochondria are implicated in various human diseases 

including neurodegenerative disease,4 cancer,5 and cardiovascular disease (CVD).6,7 

Mitochondria have their own genome, a double-stranded DNA molecule (mtDNA), which 

is 16.6 kb in size and exists in multiple copies per cell.7 This gives rise to two important 

characteristics: mtDNA copy number (mtDNA CN), a measure of the average number of 

mtDNA molecules per cell, and heteroplasmy, whereby different mtDNA alleles coexist 

in the same sample.7  

DNA methylation, the most commonly studied form of epigenetic modification, 

has been linked to mtDNA variation as a mechanism through which mtDNA may 

influence the etiology of complex diseases by regulating gene expression.8,9 mtDNA-

directed changes in DNA methylation are one of the mechanisms by which mtDNA and 

nuclear DNA (nDNA) cross-talk. A recent study found that global nDNA methylation 

levels vary in human cybrid cells, in which the cells contained the same nuclear DNA 

but different mtDNA haplogroups.10 Another study showed that mammary tumor 

metastasis was altered through changes in DNA methylation levels in a hybrid mouse 

model with nDNA from one strain and mtDNA from another strain.11 The subsequent 

gene expression levels were also altered in response to the change in nDNA 

methylation levels in both studies.10,11 Recent epigenome-wide association studies 

(EWAS) and meta-analyses identified CpG sites associated with mtDNA CN.12,13  

Several of these CpG sites were associated with mortality and CVD, which suggests 
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that mtDNA CN may play a role in adverse health outcomes via specific nDNA 

methylation markers.12,13  

Despite evidence of the interplay between mtDNA and nDNA methylation, 

knowledge gaps remain, particularly regarding the link between mtDNA heteroplasmy 

and nDNA methylation. Coupled with the prior evidence, we hypothesized that mtDNA 

heteroplasmy is associated with methylation levels of nDNA, which may play a role in 

age-related health outcomes such as CVD and mortality. Leveraging data from multiple 

large-scale cohort studies incorporating diverse race groups (Figure 1), we aimed to 

identify nDNA CpG sites that are associated with mtDNA heteroplasmy and to 

investigate whether the heteroplasmy-associated methylation markers are associated 

with all-cause mortality and CVD.  

 

RESULTS 

Participant characteristics 

The study participants (n=10,986, 54% non-White participants, 63% women) were 

mostly middle-aged (mean age 57) participants across the seven cohorts 

(Supplemental Tables 1 - 2). The Women’s Health Initiative (WHI) included only 

women. All the other cohorts consisted of more women than men, ranging from 50% to 

72% women.  A small proportion of participants were current smokers, ranging from 8% 

to 22%. Former smokers ranged from 15% to 45% and never smokers ranged from 41% 

to 65%. The predicted smoking score and reported smoking status were consistent for 

most participants (Supplemental Figure 1). Approximately one-third of the participants 
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carried at least one heteroplasmic variant. About 8.3% to 18.8% of participants exhibited 

an MSS between 0.01 and 0.25, 2.7% to 5.8% displayed an MSS between 0.251 and 

0.5, and 5.4% to 10.8% had an MSS greater than 0.5 (Supplemental Tables 1 - 2).  

Association and meta-analyses of heteroplasmy with DNA methylation 

We performed cohort- and race-specific association analyses between mtDNA 

heteroplasmy (MHC and MSS) and DNA methylation levels using linear or linear mixed 

regression models, followed by meta-analyses (n=10,986) (Figure 2A). As main results, 

we report MSS- and MHC-associated CpG sites (FDR p < 0.05) present on both the 

Infinium HumanMethylation450 and Illumina MethylationEPIC arrays (Supplemental 

Table 3). The CpG sites identified solely in the Illumina MethylationEPIC BeadChip 

array (n=5581 participants, p<1e-4) are included in the Supplementary Materials. Race-

specific meta-analysis revealed consistent directionality for most CpGs across both 

White and Black participants (Supplemental Figures 3-6). Below we report results from 

pooled analyses. 

We observed an appropriate genomic control (λGC) with MSS (λGC = 0.94) and a 

conservative λGC with MHC (λGC =0.83) (Supplementary Table 4). We observed 

consistent effect sizes for the genome-wide associations of DNA methylation with MSS 

and MHC, with a Pearson correlation coefficient of 0.71. This reflects the moderately 

high correlation between the two heteroplasmy metrics across the cohorts (Figure 2B, 

Supplemental Table 5). Using Bonferroni correction (p < 1e-7), we identified 3 

significant CpGs from the MHC analysis and 18 CpGs from the MSS analysis.  At FDR 

p < 0.05, we identified 412 unique CpGs associated with MSS (n=380) and MHC (n=51); 

these identified CpGs are distributed across the genome (Figure 2A, Table 1, 
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Supplemental Tables 6 & 7). The majority of CpGs (84.3% for MHC and 96.8% for 

MSS with FDR p < 0.05) displayed negative associations with heteroplasmy, meaning 

that a higher level of heteroplasmy was associated with a lower level of DNA 

methylation (Figure 2C). The directionality of the association was mostly consistent 

across the cohorts for significant CpGs as exampled in Figure 2D.  

Several top CpGs associated with MSS and MHC are located in genes encoding 

proteins involved in essential cellular functions. For example, cg09991306 (beta = -

0.019, FDR p = 2.6e-7), located in the enhancer region of SNED1 (Sushi, Nidogen, and 

EGF-like domains) on chromosome 2 at locus q37.3, displayed the most significant 

association with MSS and was also associated with MHC (beta = -0.0047, FDR p = 0.01) 

(Table 1). The SNED1 gene codes for an extracellular matrix (ECM) protein present in 

many tissues.14 Another top CpG, cg02633767 (beta = -0.010, FDR p= 6.1E-5 with MSS; 

beta=-0.0028, FDR p = 0.015 with MHC), is located in transporter 2, ATP binding 

cassette subfamily B (TAP2)15 on chromosome 6. The TAP2 transporter is associated 

with antigen processing and plays a crucial role in the immune system.16 

Functional inference of heteroplasmy-associated CpGs 

Heteroplasmy-associated CpGs and their associated traits  

We queried the MRC-IEU EWAS Catalog17 to link previously reported diseases/traits 

with the 412 CpGs associated (FDR p < 0.05) with MSS and MHC. We identified 32 

CpG-trait associations (27 unique CpGs associated with six traits [p < 1e-7] in studies 

with more than 5000 participants in the MRC-IEU EWAS Catalog 17 (Supplemental 

Table 8). The six traits included alcohol consumption per day (associated with 4 CpGs), 

body mass index (association with 5 CpGs), C-reactive protein (associated with 2 
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CpGs), educational attainment (associated with 1 CpG), prenatal smoke exposure 

(associated with 5 CpGs), and smoking (associated with 15 CpGs) (Figure 3A).    

Transcriptomic implication of CpGs associated with heteroplasmy 

To investigate possible downstream consequences of DNA methylation, we retrieved the 

gene transcripts associated with the identified CpGs (eQTM) from the Framingham 

Heart Study eQTM database.18 We found 49 heteroplasmy-associated CpGs exhibiting 

significant associations with the transcripts of 99 cis-genes within 1 Mb of a CpG (p < 

1e-7) (Supplemental Table 9). Of the 49 CpGs, 15 displayed significant associations 

with the transcript levels of the genes where the CpGs were situated. For example, 

cg02633767, located in the 3’- untranslated region of TAP2 (chromosome 6) was 

significantly associated with expression of TAP2 (p=10e-29). Seventeen CpGs were 

associated with transcript levels of multiple genes within 1 Mb of a CpG. cg00589850 

was associated with 22 protocadherin (Pcdh) genes clustered in a single genomic locus 

on chromosome 5 (q31.3).19 cg00589850 is located in the intronic regions of the Pcdh 

genes, explaining 2%-10% of the variance in the transcript levels of these genes. 

Eleven CpGs were significantly associated with long non-coding RNA (lncRNA) 

transcript levels. For example, cg17394978 in IRF1 (Interferon regulatory factor 1) was 

associated with AC116366.1, a lncRNA that plays a critical role in tumor immunity 

(Supplemental Table 9).20,21
  

 

 

Gene set enrichment analysis 
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A total of 255 genes were annotated to the 412 CpGs associated with MSS and MHC, 

and were then used for functional enrichment analysis with DAVID, a comprehensive 

database for functional annotation, disease association and Gene Ontology (GO) 

analyses.22  The 255 genes were significantly enriched in a broad selection of diseases 

such as metabolic conditions (FDR p = 0.007), cancer (FDR p = 0.015), and chemical 

dependency (addicted to drugs, nicotine, or alcohol) (FDR p = 0.015), among others 

(Figure 3B, Supplemental Table 10). GO analysis identified pathways, such as 

signaling (e.g., regulation of signaling [GO:0023051], FDR p = 1.5e-7), cell 

differentiation and system development (e.g., cell differentiation [GO:0030154], FDR p = 

2.9e-7), and immune process (e.g., T cell differentiation [GO:0030217], FDR p = 0.017) 

(Figure 3C, Supplemental Table 11). GO analysis also identified cellular components 

involving synaptic functions and neurotransmission (e.g., synapse [GO:0045202], FDR 

p =0.047), and membrane components (e.g., endomembrane system [GO:0012505], 

FDR p= 0.010) (Supplemental Table 12).  

Genes involved in mitochondrial assembly and function 

Through functional annotation with DAVID22 and MitoCarta3.0.23, we identified 27 genes 

known or predicted to be involved in mitochondrial activities (Supplemental Table 13). 

Among these, nine genes encode proteins constituting the mammalian mitochondrial 

proteome according to MitoCarta3.0,23 such as fragile histidine triad diadenosine 

triphosphatase (FHIT), ferritin heavy chain 1 (FTH1), and mitochondrial ribosomal 

protein L23 (MRPL23). Most of the remaining 18 genes encode proteins involved in 

activities dependent on NAD+/NADP+/NADPH or may impact the phosphorylation 
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pathway.  For instance, CRYM (crystallin mu) encodes a protein found in both the 

nucleus and mitochondria, playing a role in oxidoreductase.24 (Supplemental Table 13).  

mQTLs for heteroplasmy-associated CpGs 

Investigating DNA methylation quantitative trait loci (mQTL) and their associated GWAS 

traits/diseases may help identify a common genetic basis underlying heteroplasmy and 

DNA methylation, as well as their relationship to human traits/diseases.25,26 We 

identified 110,898 mQTL-CpGs pairs (p < 1e-7) from 104,160 distinct SNPs and 328 

heteroplasmy-associated CpGs. We linked the 9526 GWAS results (p < 5e-8) from 1287 

traits to these mQTLs involving 216 CpGs (Supplemental Table 14).  Traits/diseases 

associated with the lead mQTLs included a wide range of traits, such as CVD (e.g., 

coronary artery disease) and risk factors (e.g., BMI, blood pressure traits, lipids, and 

diabetes; smoking and alcohol consumption), and immune functions (e.g., platelet count) 

(Supplemental Table 14).  

Mendelian randomization (MR) analysis of heteroplasmy-associated CpGs for CVD risk 

and all-cause mortality 

We performed MR analysis to investigate possible causal relations between 

heteroplasmy-associated CpG sites (FDR p < 0.05) and CVD-related traits and all-

cause mortality. We identified significant cis-mQTLs (p < 5e-8) for 216 (of 412) 

heteroplasmy-associated CpGs (FDR p < 0.05). We presented the most significant 

results for the fourteen traits related to cardiovascular disease (FDR p <0.05) 

(Supplemental Table 15). For example, cg03732020 in NR1H3 was inferred to have 

causal associations with body mass index (MR FDR p = 3.1e-42) and HDL cholesterol 

(MR FDR p = 5.5e-90). cg02639359  in FCH domain only 1 (FCHO1) gene showed 
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evidence for causal effects for myocardial infarction (MR FDR p = 1.3e-7). In addition, 

cg07773769  in myocyte enhancer factor-2-activating motif and SAP domain-containing 

transcriptional regulator (MAMSTR) gene showed evidence for causal effects for 

myocardial infarction (MR FDR p = 1.3e-7). 

DNA methylation sites associated with both mtDNA CN and heteroplasmy 

We previously identified DNA methylation signatures of mtDNA CN.13 Three CpGs 

(cg03732020, cg09109520, and cg02318784) associated with MSS/MHC (FDR p < 0.05) 

displayed p < 1e-4 (~0.05/412) in their associations with mtDNA CN. cg03732020 is 

located in the nuclear receptor subfamily 1 group H member 3 (NR1H3) on 

chromosome 11, and cg09109520 is located in adhesion G protein-coupled receptor G1 

(ADGRG1 on chromosome 16) encoding G protein-coupled receptor 56 (GPR56). 

Several genes – ARHGEF10, C14orf73, DNMT3A, LFNG, PRDM16, TCEA3, and VARS 

– contain different CpGs that are associated with either heteroplasmy or mtDNA CN, 

indicating that these genes show varying patterns of methylation related to these two 

mtDNA features, exampled in VARS (Supplemental Figure 7 & Supplemental Table 

16).  

Association analysis of heteroplasmy-associated DNA methylation score with all-

cause mortality 

We observed 347 deaths with a median follow-up of 13 years among 3,418 participants 

in the FHS. In the other cohorts, we observed a total of 806 deaths with a median 

follow-up of 14 to 21 years across the JHS, MESA, and WHI cohorts (Supplemental 

Table 17). The HRS cohort had a median follow-up of 3 years for mortality 

(Supplemental Table 17).  
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We applied elastic net Cox regression to heteroplasmy-associated CpGs and 

identified 29 CpGs associated with MHC for all-cause mortality, using the FHS cohort as 

the training set (Supplemental Table 18). We constructed a weighted MHC-CpG score 

and found that a one standard deviation (SD) higher level of this score was associated 

with a 1.42-fold higher hazard of all-cause mortality (95% CI: 1.31, 1.51), adjusting for 

age, sex, and smoking. In the testing samples, we found that a one-SD higher level of 

the weighted MHC-CpG score was associated with a 1.14-fold higher hazard of all-

cause mortality (95% CI: 1.04, 1.26) in the meta-analysis of JHS, MESA, and WHI 

cohorts, and a 1.26-fold higher hazard of all-cause mortality (95% CI: 1.14, 1.39) in the 

meta-analysis of JHS, MESA, WHI, and HRS cohorts, adjusting for age, sex, and 

smoking (Figure 4).  

Similarly, we identified 56 MSS-associated CpGs for all-cause mortality using 

elastic net Cox regression in the FHS cohort as the training sample (Supplemental 

Table 19). We found consistent results between the MSS-CpG weighted score and all-

cause mortality in the training sample, as well as in meta-analyses of the JHS, MESA, 

WHI, and HRS cohorts as testing samples, adjusting for age, sex, and smoking status 

(Supplemental Figure 8). Furthermore, we observed consistent results in both the 

base model (age and sex adjusted) and the multi-covariate adjusted model for the 

associations of both MHC- and MSS-weighted scores with all-cause mortality 

(Supplemental Figures 8 & 9).   

Association analysis of heteroplasmy-associated DNA methylation score with 

CVD 
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In the FHS, 304 participants developed CVD during a median follow-up of 8 years 

among 3,536 participants. We observed a total of 624 incident CVD cases with a 

median follow-up of 14 to 16 years across the JHS, MESA, and WHI. However, HRS 

had a much shorter median follow-up (4 years) compared to other cohorts 

(Supplemental Table 17).  

We selected 13 CpGs for MHC using elastic net Cox regression (Supplemental 

Table 20) for CVD. In the FHS testing sample, we found that a SD higher level of the 

weighted MHC-CpG score was associated with a 1.37-fold higher hazard of CVD (95% 

CI: 1.24–1.51), adjusting for age, sex, and smoking. In the testing cohorts, we found 

that a one-SD higher MSS-CpG score was associated with a 1.12-fold higher hazard of 

CVD (95% CI: 1.01–1.25) in the meta-analysis of JHS, MESA, and WHI, and a 1.09-fold 

higher hazard of CVD (95% CI: 1.01–1.17) in the meta-analysis of JHS, MESA, WHI, 

and HRS (Figure 4).  

We identified 9 MSS-associated CpGs for CVD using elastic net Cox regression 

in FHS (Supplemental Table 21). Compared to that of the weighted MHC-CpG score, 

the weighted MSS-CpG score showed slightly weaker associations with CVD in the 

training cohort and meta-analysis of JHS, MESA, WHI, and HRS as the testing samples 

in both base model and the model with smoking as an additional covariate 

(Supplemental Figure 10). Adjusting for additional multi-covariates further attenuated 

the associations for both weighted MHC- and MSS-scores (Supplemental Figure 11).  
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DISCUSSION 

We examined the associations between nuclear DNA (nDNA) methylation and 

mitochondrial DNA (mtDNA) heteroplasmy in 10,964 individuals from seven population-

based cohorts, primarily middle-aged individuals from diverse racial and ethnic 

backgrounds. Our analysis identified 412 unique CpGs with differential methylation 

linked to mtDNA heteroplasmy, with a greater number of CpGs associated with 

mitochondrial stress signal (MSS) than with mitochondrial health condition (MHC). 

Higher heteroplasmy burden was consistently linked to lower nDNA methylation levels. 

Functional analyses of genes annotated to heteroplasmy-associated CpGs highlighted 

mitochondrial functions and revealed enrichment in cardiometabolic traits. We 

developed CpG scores based on these CpGs and found that higher scores were 

associated with increased risks of total mortality and cardiovascular disease. 

 Our findings align with previous evidence suggesting cross-talk between nDNA 

and mtDNA.27-29 This interaction involves bidirectional information flow and coordination 

in epigenetic processes that regulate a cell’s resp.onse to external cues.29 This is 

supported by our analysis of significant CpG-annotated genes, which are implicated in 

signaling, cell differentiation, and system development. For instance, SNED1 

(cg09991306) encodes an extracellular matrix protein critical for dynamic protein 

assembly in multicellular organisms, influencing developmental processes and tissue 

organization.30 TAP2 (cg02633767) encodes a membrane-associated protein belonging 

to the ATP-binding cassette (ABC) superfamily, facilitating the transport of various 

molecules across the plasma membrane, intracellular membranes of the endoplasmic 

reticulum, peroxisome, and mitochondria.31 Moreover, our study identified over two 
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dozen nDNA genes associated with heteroplasmy-related CpGs (Supplemental Table 

13) involved in mitochondrial biosynthesis, mtDNA replication, and methylation 

regulation. Examples include MRPL23,  which encodes a 39S subunit protein aiding in 

protein synthesis within the mitochondrion,32 and FTH1, encoding ferritin heavy chain 1. 

FTH1 regulates multiple physiological processes, including oxidative stress, 

inflammation, and a type of programmed cell death characterized by altered 

mitochondrial morphology and increased lipid peroxides.33-35 DNMT3A encodes DNA-

methyltransferase 3A, which localizes to mitochondria and maintains CpH methylation 

in neurons in vivo.36 Knockout of DNMT3A perturbs mtDNA regional methylation 

patterns, while overexpression of DNMT3A greatly increases mtDNA methylation and 

strand bias.36 

We have identified CpGs associated with mtDNA CN in our previous study.13  

mtDNA CN reflects the quantity of mtDNA molecules, while heteroplasmy levels 

represent the genetic variation within the mtDNA population in an individual. We 

compared the CpGs associated with two mitochondrial metrics and found few CpGs 

were commonly associated (p<1e-7) with both mtDNA heteroplasmy level and CN, 

suggesting that distinct DNA methylation patterns in the nuclear genome are related to 

these two mtDNA features. In contrast, certain genes harbor different CpGs associated 

with these two features. For example, multiple CpGs within the VARS gene showed 

significant or suggestive associations with both mtDNA heteroplasmy and CN 

(Supplemental Figure 7), suggesting that these genes might be involved in crosstalk 

with mtDNA in their physiological roles in humans.  
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Our MR analysis supports prior research on the role of DNA methylation in CVD 

risk. For example, methylation levels of NR1H3 may causally influence several CVD risk 

factors such as blood pressure BMI, fast blood insulin, and HDL cholesterol 

(Supplemental Table 15). Previous research reported CpGs at NR1H3 were 

associated with CVD risk factors like aging and smoking.37 NR1H3 encodes a protein in 

the nuclear receptor superfamily that is important for regulating macrophage function 

and transcriptional programs that regulate lipid homeostasis and inflammation.38
  

Additionally, cg03732020 at NR1H3 has been associated with mtDNA CN in our 

previous studies.13 Our results suggest that mtDNA heteroplasmic variants may 

influence physiological traits through methylation changes in multiple nDNA CpGs. 

Investigating how heteroplasmic variants may causally affect nDNA methylation levels is 

a key direction for future research. 

We developed CpG-scores based on heteroplasmy-count associated CpGs (MHC-CpG 

scores) using elastic net Cox regression in a training cohort. A one-unit higher level of 

the standardized MHC-CpG scores were associated with 1.26-fold higher hazard of all-

cause mortality (95% CI: 1.14, 1.39) and 1.09-fold higher hazard of CVD (95% CI: 1.01–

1.17) in the meta-analysis of testing cohorts, adjusting for age, sex, and smoking. These 

findings shed light on the relationship between mtDNA heteroplasmy and DNA 

methylation, and the role of heteroplasmy-associated CpGs as biomarkers in predicting 

all-cause mortality and cardiovascular disease.  

We developed CpG scores based on MHC- and MSS-associated CpGs using 

elastic net Cox regression, with the FHS serving as the training cohort. We found that 

higher levels of MHC- and MSS-CpG scores were strongly linked to an increased 
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hazard of all-cause mortality in the testing cohorts, with similar magnitudes. Our findings 

support prior research suggesting that heteroplasmy-burden scores predict all-cause 

mortality.39 Additionally, we observed that a higher MHC-CpG score was associated with 

an elevated hazard of CVD, though the association was notably weaker than that with 

all-cause mortality. Our findings suggest two potential explanations. First, nDNA 

methylation levels could mediate the effect of mtDNA heteroplasmy on all-cause 

mortality and CVD. Alternatively, our results may simply reflect an association between 

nDNA methylation, mtDNA heteroplasmy, and the outcome variables, without implying a 

causal link. To test whether nDNA methylation mediates the effects of mtDNA 

heteroplasmy on all-cause mortality and CVD, future studies could employ longitudinal 

designs with larger, more diverse cohorts. Additionally, functional studies using 

experimental models (e.g., cell lines or animal models) could manipulate mtDNA 

heteroplasmy to evaluate its impact on nDNA methylation and associated outcomes 

Despite using consistent methods to identify heteroplasmy, we observed 

differences in cohort- and race-specific association analyses. This variability is likely due 

to genetic differences, unaccounted social and environmental factors, and variations in 

the conditions under which an experiment is conducted. To address this, we employed a 

random effects model in our meta-analysis. While studying DNA methylation and 

heteroplasmy in whole blood may not fully capture all tissues and cell types, blood 

samples are easily accessible and provide a broad overview of various tissues and 

organs. The study's strength lies in its rigorous statistical analysis, employing 

comprehensive methods to explore the complex relationship between mtDNA 

heteroplasmy and DNA methylation across cohorts with diverse populations, and using 
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a series of models to adjust for potential confounders. This approach enhances the 

credibility and generalizability of our findings.  

In conclusion, our study identified associations between mtDNA heteroplasmy 

and DNA methylation. We uncovered numerous heteroplasmy-associated CpGs 

implicated with metabolic traits, signaling pathways, system development, and total 

mortality. These findings shed light on the intricate interplay between mtDNA 

heteroplasmy and DNA methylation, providing insights into their roles in human health 

and disease.  

METHODS 

Study participants    

This study included 10,964 participants (mean age 57 years, women 63%, 54% non-

White participants) from seven cohorts: ARIC (Atherosclerosis Risk in Communities),40 

CARDIA (Coronary Artery Risk Development in Young Adults),41 FHS (Framingham 

Heart Study),42,43 GENOA (Genetic Epidemiology Network of Arteriopathy),44 JHS 

(Jackson Heart Study),45 MESA (Multi-Ethnic Study of Atherosclerosis),46 and WHI 

(Women’s Health Initiative).47 Based on prior research,48 most FHS participants showed 

high genetic similarity to European ancestry reference panels, while most JHS and 

GENOA participants were similar to African ancestry reference panels (mean ~80%). 

Other cohorts included individuals from both self-identified groups. For simplicity, we 

refer to these groups as White participants and Black participants in this paper. Our 

analyses were stratified by self-reported race/ethnicity, without excluding genetic 

ancestry outliers. Thus, race/ethnicity as used in this study should not be considered 

equivalent to ancestry proportions. In addition, MESA included 33% Hispanic 
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participants (Supplemental Table 1). Details on each cohort are described in the 

Supplementary Methods. 

Profiling and quality control of DNA methylation in whole blood 

Peripheral whole blood samples from fasting blood tests were used for genomic DNA 

extraction and bisulfite conversion, followed by methylation profiling per the 

manufacturer’s protocol (Illumina Inc., San Diego, CA). Two platforms were used for 

DNA methylation measurement across cohorts (Supplemental Table 1): the Infinium 

HumanMethylation 450k BeadChip array (covering over 480,000 CpG sites, Illumina 

Inc., San Diego, CA) for FHS, WHI, and ARIC, and the Infinium MethylationEPIC 

BeadChip array (covering over 850,000 CpG sites, Illumina Inc., San Diego, CA) for 

CARDIA, GENOA, JHS, and MESA. Over 90% of CpGs from the 450k array are 

covered by the EPIC array. Analyses included all CpGs covered by both arrays, with 

subsequent analyses focusing on overlapping CpGs. To ensure data quality, we 

excluded CpGs with high missing rates (>20%), non-significant detection p-values 

(>0.01), those that were SNPs or had an underlying SNP (minor allele frequency > 5%) 

in participants from the 1000 Genomes Project data within 10 bp of the probes, or those 

mapped to multiple locations. Samples with high missing rates (>1%), poor genotype 

matching, or identified as outliers in clustering analysis were also excluded.49 Additional 

cohort-specific methods are detailed in the Supplementary Methods.   

Whole genome sequencing in whole blood   

The whole blood-derived DNA in each cohort underwent whole genome sequencing 

(WGS) at several TOPMed contract sequencing centers.48 The Human Genome 

Sequencing Center at the Baylor College of Medicine and the Broad Institute performed 
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WGS for ARIC and CARDIA samples.  Whole genome sequencing of the FHS, WHI, 

and MESA samples was conducted by the Broad Institute of MIT and Harvard. Samples 

from JHS were sequenced at the University of Washington. WGS of GENOA was 

performed at the University of Washington and the Broad Institute. All the sequencing 

centers employed consistent data processing and sequencing processing criteria. 

Subsequent DNA sequence alignment of the reads to human genome build GRCh38 

was also carried out at these locations. The generated BAM files were sent to 

TOPMed’s Informatics Research Center (IRC). For the purpose of consistency, the IRC 

administered re-alignment and the remake of the BAM files using a common 

pipeline.48  This study used the WGS data from Freeze 8. 

Identification and quantification of mtDNA heteroplasmy 

The MToolBox software package50 was applied to identify heteroplasmy in mtDNA 

sequence reads for all cohorts except ARIC, where the mitochondrial high-performance 

call (mitoHPC)51 pipeline was applied. MToolBox removed nuclear mitochondrial DNA 

segments (NumtS) by remapping reads onto the reference nuclear genome 

(GRCh37/hg19) and applied scripts to detect nucleotide mismatches and detect indels50. 

mitoHPC is an automated pipeline to analyze mtDNA sequence reads with a 

circularized mitochondrial chromosome. mitoHPC extracts NumtS to build up mtDNA 

read sinks. mtDNA reads were further remapped to a circularized mitochondrial 

chromosome (chrM) to recover low coverage areas.51   

For this study, we only considered heteroplasmic sites from single nucleotide 

variants (SNVs). At each mtDNA site, a variant allele was identified by comparing 

mtDNA sequence reads to the revised Cambridge Reference Sequence (rCRS)52. A 
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variant allele fraction (VAF) was defined as the ratio of variant allele reads to the overall 

sequence reads observed at that mtDNA site. To minimize false positives, a 

heteroplasmic variant was determined using the 5%-95% threshold of VAF based on a 

previous study.39 For a mtDNA site j of individual i, the heteroplasmic variant, denoted 

as H��, was defined by the following indicator function. If the VAF at a mtDNA site 

exceeded the lower or upper bound, the indicator function was assigned a value of 0:  

H�� � 1�VAF��� � 	1 if VAF��  �0.05, 0.95�
0            o. w.   

�                           

To investigate the association between heteroplasmy and DNA methylation, we 

constructed two continuous variables to quantify heteroplasmic burden: mitochondrial 

heteroplasmy count (MHC) and the mitochondrial local constraint score sum (MSS).39,53 

The MHC of participant i was defined as the sum of the number of mtDNA 

heteroplasmic sites: MHCi �  ∑ H��� . The MSS was based on the measure of the 

mitochondrial local constraint (MLC) score that functionally characterizes a mtDNA 

allele. Each mtDNA allele is assigned a MLC score between 0 and 1, and a higher MLC 

score indicates more harmful biological consequences.54 The MSSi was defined as the 

sum of the MLC scores of variant alleles at all heteroplasmy sites in individual i or 

MSS� �  ∑ m�H��� . Thus, the MSS quantifies the potential functional influence of the 

heteroplasmic burden for an individual. In the primary analysis, the MSS served as the 

main predictor in the association analyses with DNA methylation sites. 

Association and meta-analyses of mtDNA heteroplasmy burden with DNA 

methylation  
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Association analyses: We employed either a linear (for unrelated data) or a linear mixed 

(for family data) regression model to quantify the association between a mtDNA 

heteroplasmy burden variable and the levels of a DNA methylation site (i.e., CpG) 

(Figure 1). Our analysis framework is as follows. In the first step, the nDNA methylation 

residuals were calculated by regressing the nDNA methylation values of a CpG on age, 

age squared, sex, smoking score, white blood cell counts, and batch variants (chip IDs 

and rows/columns). The smoking score was calculated from 183 CpGs using the 

EpiSmokEr R package55 to provide a more objective assessment of a person’s smoking 

status and better reflect smoking history compared to self-report (e.g., recall bias, 

second-hand smoking or missing data due to reluctance to report). The methylation 

residuals were then modeled as the outcome variable with the mtDNA heteroplasmy 

burden as the explanatory variable, adjusting for age, age squared, sex, smoking score, 

and the year of blood draw (representing the batch variable for mtDNA measurement). 

55 Linear mixed effect models were used to account for the random effects indicated by 

maternal lineage IDs in cohorts with family structures (i.e., FHS, GENOA, and JHS). To 

minimize the confounding effect of smoking,39 we explored different smoking variables 

in the regression analyses of methylation residuals with heteroplasmy burden, including 

smoking status (i.e., never, former, and current smokers), smoking score, and the 

combination of smoking status and smoking score. We found that the smoking score 

was able to capture the most smoking-related signals, and hence, we used the smoking 

score in our primary analysis. Analyses incorporating self-reported smoking status can 

be found in the supplemental materials. We conducted cohort- and race-specific 

association analyses. In MESA, participants of Hispanic ethnicity were combined with 
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non-Hispanic White participants because previous findings indicate that the genetic 

effects tend to be similar between these racial groups.56 We adjusted an index variable 

to represent racial groups in the association analysis of the combined participants in 

MESA. 

Meta-analysis: The inverse variance weighted random effects method was used to 

combine results across cohorts. To identify race-specific associations, we conducted 

separate meta-analyses for Black and White participants (Figure 1). To explore 

associations across races, we conducted a meta-analysis of all participants. We 

reported primary results for CpGs that were present on both the Infinium 

HumanMethylation450 BeadChip array and the MethylationEPIC BeadChip array in the 

meta-analyses. We used FDR p < 0.05 in meta-analysis to account for multiple testing. 

All subsequent analyses were conducted with these CpGs. 

Functional inference 

Linking traits to heteroplasmy-associated CpGs  

For functional inference, we mapped heteroplasmy-associated CpGs (FDR-adjusted p < 

0.05) to disease traits by querying the MRC-IEU EWAS Catalog.17 We reported 

diseases/traits for CpGs with p < 1e-7 in studies with sample sizes exceeding 5,000 

from the MRC-IEU EWAS Catalog.17 

Gene set enrichment analysis 

We used the DAVID22 (Database for Annotation, Visualization and Integrated Discovery) 

web server for functional enrichment analysis and functional annotation of genes 

mapped to heteroplasmy-associated CpGs (FDR p< 0.05). DAVID offers a robust suite 
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of functional annotation tools aimed at decoding the biological significance of gene 

sets.22 In particular, DAVID obtains biological terms from Go Ontology and pathways 

from resources, such as BioCarta57 and Kyoto Encyclopedia of Genes and Genomes 

(KEGG).58 Statistically significant pathways were reported at FDR p ≤ 0.05. 

 

Identification of DNA methylation quantitative trait loci (mQTL)  

To explore the genetic basis of heteroplasmy-associated CpGs, we queried the mQTL 

database generated in the 4126 FHS participants who had both WGS and DNA 

methylation data59. The mQTL analysis identifies single nucleotide polymorphisms 

(SNPs) that are associated with the methylation of neighboring (cis-) or distant (trans-) 

CpGs. We focused on cis-mQTLs, i.e., SNPs residing within 1 Mb (±1 Mb) from a CpG 

site. Details for data generation and statistical analyses to generate the mQTL database 

were described previously.59 We examined traits that showed associations with the 

significant cis-mQTLs (i.e., SNPs) using the NHGRI-EBI GWAS Catalog.60 We 

considered SNPs that showed significant associations (p < 5e-8) with traits in studies 

with more than 5000 samples in discovery and replication analyses, or studies with 

more than 10,000 participants with only discovery analyses. mQTLs were used in 

Mendelian randomization (MR)61 to infer causal association between CpGs and traits 

related to CVD risk. 

Identification of expression quantitative trait methylation (eQTM)  

To explore possible downstream consequences of heteroplasmy-associated CpGs, we 

queried the eQTM database generated in the FHS.18 The eQTM analysis identifies CpG 

sites that display associations with expression of nearby (cis-) or remote (trans-) genes. 
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In FHS, the eQTM resource was generated using DNA methylation and gene transcript 

levels based on RNA sequencing (i.e., RNAseq) in 2,115 study participants. Detailed 

QC procedures for DNA methylation and RNA sequencing have been previously 

described18. We focused on cis-eQTMs, which were gene transcripts whose 

transcription start sites were within 1 Mb of a CpG. The identified cis-eQTMs (i.e., 

nearby genes to the CpGs) were used for gene enrichment analysis (Figure 1)  

 

Mendelian randomization (MR) analysis for CVD-related traits and all-cause mortality  

To investigate whether differential methylation at heteroplasmy-associated CpGs 

causally influences CVD risk and mortality, we performed two-sample MR61 between 

exposures (heteroplasmy-associated CpGs) and a range of CVD and mortality-related 

traits as outcomes (myocardial infarction, body mass index, obesity, systolic blood 

pressure, diastolic blood pressure, hypertension, fasting glucose, fasting insulin, 

diabetes, total cholesterol, HDL cholesterol, LDL cholesterol, triglycerides, and all-cause 

mortality). Our in-house developed analytical pipeline, MR-Seek 

(https://github.com/OpenOmics/mr-seek.git), was used for MR analysis.62  Full summary 

statistics for 516 GWAS datasets were downloaded from NHGRI-EBI.  

Cis-mQTL variants59 were used as the instrumental variables (IVs) in the MR 

analyses (Figure 1). We selected independent cis-mQTLs (linkage equilibrium, r2 < 

0.001),63  retaining only the cis-mQTL variant with the lowest SNP-CpG p-value in each 

LD block. Inverse-variance weighted (IVW) MR tests were applied to combine results 

from multiple IVs, and used the MR-Egger method to assess horizontal pleiotropic 

effects.63 Results with a significance level of p<0.05 for heterogeneity were excluded. 
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For CpG with only one IV, the Wald MR method was used to access significance. 

Significance levels of MR results were determined based on the Benjamini-Hochberg 

corrected FDR adjusted p-value with a threshold of <0.05. The most significant result 

was presented for each trait (outcome). 

 

Examining common CpGs associated with mtDNA heteroplasmy and copy number 

Previous studies have identified several CpGs associated with mtDNA CN.12,13 We 

examined the overlap between CpGs associated to mtDNA heteroplasmy and those 

associated with mtDNA CN. We also compared the genes annotated to both lists (i.e., 

CpGs associated with mtDNA heteroplasmy and those with mtDNA CN) using a relaxed 

threshold (p < 1e-4). Additionally, we investigated DNA co-methylation patterns using 

the coMET64 software to visualize patterns in selected genes containing multiple CpGs 

related to both mtDNA heteroplasmy and copy number.  

 

Association analysis of heteroplasmy-associated CpG score with all-cause 

mortality and cardiovascular disease (CVD) 

Outcome definitions: We investigated whether heteroplasmy-associated CpGs were 

associated with all-cause mortality and CVD, given that mtDNA heteroplasmy has been 

associated with all-cause mortality39 and hypertension, a major risk factor for CVD65 All-

cause mortality includes deaths from any cause. Incident CVD events included 

myocardial infarction (recognized or unrecognized or by autopsy), angina pectoris, 

coronary insufficiency, congestive heart failure, cerebrovascular accident, 

atherothrombotic infarction of brain, and death due to these conditions.  
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Given the correlation among many CpGs, we employed the elastic-net method with 

regularized Cox regression from the 'glmnet' R package to select heteroplasmy-

associated CpGs for testing their association with all-cause mortality and CVD. 

Selection of CpGs for predicting all-cause mortality and CVD: Given the correlation 

among many CpGs, we selected heteroplasmy-associated CpGs for predicting all-

cause mortality and CVD using the elastic-net method with regularized Cox regression 

from the “glmnet” R package.66,67 The elastic-net method combines Ridge and Lasso 

penalties, allowing flexible regularization for feature selection and coefficient shrinkage 

despite covariate multicollinearity. We first obtained CpG residuals by regressing CpGs 

(i.e., those associated to MHC and MSS) on age, sex, and smoking scores. The FHS 

cohort was used as the training set, and we selected CpGs to predict CVD and all-

cause mortality using an alpha of 0.5 and five-fold cross-validation to determine the 

lambda value that minimizes the mean cross-validated error.66,67  

The selected CpGs were used to construct the heteroplasmy-associated CpG 

scores for predicting CVD or all-cause mortality. For individual �, the score ��  was 

constructed as a weighted sum of methylation levels across heteroplasmy-associated 

CpG sites:  �� � ∑ �� ·  ���  , where �� is the estimated effect size of the ith CpG obtained 

from the regularized regression,   �� is the residuals of CpG ! for individual j.  The scores 

were standardized to have a mean of 0 and a standard deviation (SD) of 1, referred to 

as CpG-standardized scores. Separate CpG-standardized scores were obtained for the 

CpGs associated with MHC and MSS. 

Association analyses with all-cause mortality and CVD: The Cox proportional hazard 

model was fitted to evaluate the associations of all-cause mortality and CVD with the 
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CpG-standardized scores for both MHC and MSS. The base model includes age and 

sex as covariates. The second model additionally accounted for smoking status (never, 

former, and current). Smoking status was used instead of smoking score because the 

former has traditionally been included in association analyses of all-cause mortality or 

CVD as the outcome. Additionally, the smoking score variable was not available in the 

replication cohort.  The multi-covariate model included age, sex, smoking status, BMI, 

systolic blood pressure (SBP), use of antihypertensive medication, total cholesterol, 

high-density cholesterol, diabetes, and use of lipid-lowering medication. We conducted 

race- and cohort-specific association analyses in JHS, MESA, and WHI. Since FHS was 

used as the training cohort to select CpGs, a meta-analysis was performed using the 

random effects inverse variance method, excluding FHS for internal validation.  

External replication: The Health and Retirement Study (HRS), established in 1992, 

recruits participants aged 50 and older, along with their spouses, to investigate factors 

related to aging.68 HRS was utilized as an independent replication cohort to evaluate the 

association between the CpG-standardized scores and all-cause mortality as well as 

CVD. In HRS, DNAm was measured using Illumina HumanMethylationEPIC BeadChip 

(Supplemental Material). Race/ethnicity-specific association analyses were conducted 

in self-reported White (n=2506), Black (n=612), and Hispanic participants (n=532). The 

proportional hazards assumption was examined and found to be met in all analyses.  

 

URLs 

MRC-IEU EWAS Catalog: http://www.ewascatalog.org 

DAVID: https://david.ncifcrf.gov/ 
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Figure 1. Study flowchart 

Whole genome sequencing was used to identify mtDNA heteroplasmy in 10,964 
participants from seven cohorts. Cohort- and race-specific analyses were conducted to 
investigate the association of mtDNA heteroplasmy and nuclear DNA (nDNA) 
methylation levels. Meta-analyses were performed in both pooled and race-specific 
samples. Significant CpGs identified from the meta-analyses (FDR<0.05) underwent 
further investigation through functional analyses. DNA methylation scores were 
constructed using heteroplasmy-associated CpGs and used to conduct the association 
analysis with total mortality. 

 

Figure 2. Association and meta-analyses of mtDNA heteroplasmy with DNA 
methylation 

A. Manhattan plot: Cohort- and race-specific association analyses were conducted, 
followed by meta-analyses in pooled samples (n=10,964) to identify common CpGs 
associated with heteroplasmy across ancestries. A total of 51 CpGs displayed 
associations with MHC (left) and 380 CpGs displayed associations with MSS (right 
subplot) at FDR-adjusted p-value < 0.05.  The grey dotted line is the p-value 
corresponding to FDR=0.05 cutoff, the black dotted line is the more stringent 
Bonferroni-corrected p-value cutoff 1e-7.  

B. Comparison of effect sizes (beta values) of the genome-wide associations and meta-
analysis of DNAm with MSS to MHC. The red dots represent the CpGs significantly 
associated with both MSS and MHC (FDR<0.05). The blue dots are the CpGs found 
significantly associated with MSS (FDR<0.05) but not MHC. The green dots are the 
CpGs found significantly associated with MHC (FDR<0.05) but not MSS. The effect 
sizes are highly correlated (Pearson r =0.71). 

C. Volcano plot of association and meta-analysis of DNA methylation with MSS: The 
majority of significant CpGs (96.8% with FDR<0.05) identified in MSS analyses 
displayed negative associations with heteroplasmy. The blue points on the plot are the 
CpGs (FDR<0.05) with negative effect size, and the red points are the CpGs (FDR<0.05) 
with positive effect size. 

D. Forest plot for top CpG cg09991306 in MSS: All studies except for WHI AA shows 
consistent direction of effect. FHS, Framingham Heart Study; JHS, Jackson Heart Study; 
HRS, Health and Retirement Study; MESA, Multi-Ethnic Study of Atherosclerosis Study, 
WHI, Women's Health Initiative. 

ARIC, Atherosclerosis Risk in Communities; CARDIA, Coronary Artery Risk 
Development in Young Adults; FHS, Framingham Heart Study; GENOA, Genetic 
Epidemiology Network of Arteriopathy; JHS, Jackson Heart Study; MESA, Multi-Ethnic 
Study of Atherosclerosis Study, WHI, Women's Health Initiative 
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Figure 3. Functional Analyses 

A. Out of the 412 heteroplasmy-associated CpGs, 27 CpGs are associated with 6 traits 
in the EWAS catalog, including alcohol consumption, BMI, C-reactive protein, 
educational attainment, and smoking-related traits. MR analysis inferred causal 
relationship between 45 CpGs and cardiovascular disease risk factors including 
myocardial infarction, BMI, systolic blood pressure, diastolic blood pressure, 
hypertension, fasting glucose, cholesterol, HDL cholesterol, LDL cholesterol, and 
triglycerides. 

B, C. Enrichment analysis using disease pathways (DAVID) show the annotated genes 
are enriched in metabolic traits and multicellular organism process (e.g. cell interaction). 

 

Figure 4. Forest plot: Association analysis of heteroplasmy-count associated DNA 
methylation score with mortality and incident CVD. 

We applied elastic net Cox regression to heteroplasmy count (MHC) associated CpGs 
and selected 29 CpGs for all-cause mortality and 13 CpGs for CVD using the 
Framingham Heart Study (FHS) as the training sample. The forest plot illustrates hazard 
ratios (HR) with 95% confidence intervals (CI) for association analyses of the weighted 
MHC-CpG scores with mortality and incident CVD across the training and testing 
cohorts, adjusting for age, sex, and smoking status (never, former, and current). Testing 
was conducted in JHS, MESA, and WHI. Testing was also conducted in HRS, which 
was not used for selecting heteroplasmy-associated DNA methylation. CVD, 
cardiovascular disease; ARIC, Atherosclerosis Risk in Communities; CARDIA, Coronary 
Artery Risk Development in Young Adults; FHS, Framingham Heart Study; GENOA, 
Genetic Epidemiology Network of Arteriopathy; JHS, Jackson Heart Study; HRS, Health 
and Retirement Study; MESA, Multi-Ethnic Study of Atherosclerosis Study, WHI, 
Women's Health Initiative.  
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Table 1. Top 10 CpGs associated with MHC and MSS. 
CpG ID Chr Position Gene Beta SE p FDR p 

MHC 

cg04200362 2 73341598 RAB11FIP5 -0.0022 0.00043 2.3E-07 0.0097 
cg08719380 2 152830505 CACNB4 -0.0035 0.00068 4.1E-07 0.0126 
cg18822719 2 220035962 SLC23A3 -0.0033 0.00058 1.2E-08 0.0020 
cg09991306 2 241975140 SNED1 -0.0047 0.00091 1.8E-07 0.0097 
cg24187971 4 1628352 

 
-0.0025 0.00043 9.7E-09 0.0020 

cg01845501 5 31619428 
 

-0.0022 0.00042 1.4E-07 0.0097 
cg13567299 11 75201685 GDPD5 -0.0019 0.00037 2.0E-07 0.0097 
cg23261715 12 54144380 

 
-0.0028 0.00054 2.3E-07 0.0097 

cg06761203 12 58147888 MARCH9 -0.0022 0.00042 7.6E-08 0.0085 
cg02318784 15 27213174 

 
0.0023 0.00046 2.7E-07 0.0101 

MSS 

cg22032961 1 207152909 
 

-0.00821 0.001347 1.1E-09 6.1E-05 
cg00043800 2 74612144 LOC100189589 -0.011 0.001666 4.1E-11 6.8E-06 
cg09991306 2 241975140 SNED1 -0.01907 0.002663 7.9E-13 2.6E-07 
cg02633767 6 32794327 TAP2 -0.01017 0.001665 9.8E-10 6.1E-05 
cg14818812 8 142362180 

 
-0.01225 0.001983 6.4E-10 5.3E-05 

cg03818576 11 40312660 LRRC4C -0.00882 0.001487 2.9E-09 0.00012 
cg16879115 12 7819180 APOBEC1 -0.00764 0.001287 2.9E-09 0.00012 
cg15233611 12 122244660 SETD1B -0.01413 0.002386 3.2E-09 0.00012 
cg07843568 19 1254066 MIDN -0.00836 0.001346 5.2E-10 5.3E-05 
cg02409364 20 35199934 

 
-0.00862 0.001502 9.6E-09 0.00032 

 

MHC, mitochondrial heteroplasmy count score; MSS, mitochondrial local constraint score sum.  
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