
Social determinants of cognitive aging trajectories

across 39 countries

Victor Gilles1,2, Syrine Salouhou1,2, Rémi Vallée1, Hugo Spiers3,
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Abstract

Distinguishing between normal and pathological cognitive aging is challenging
because there is no typical older person. Some people in their eighties have cog-
nitive abilities similar to many 30-year-olds, while others experience significant
cognitive decline at a much younger age. The variation in age-related cogni-
tive decline is not arbitrary. Several non-modifiable (e.g. genetic) and potentially
modifiable (e.g. high blood pressure, smoking, and hearing loss) risk factors are
associated with faster cognitive aging. Beyond these individual-level risk factors,
a growing body of evidence has identified associations between cognitive impair-
ment and social, economic, and environmental factors. These associations are
even more pronounced in developing countries, notably because of greater dispar-
ities in education and socioeconomic status. However, people from these countries
are rarely studied in scientific research: a citizen of a high-income country is 37
times more likely to appear in a study in top medical journals than a citizen
of a low-income country. Here, we examine the association between sociodemo-
graphic factors and cognitive aging trajectories among 715,295 participants in 46
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countries. Cognition is assessed using Sea Hero Quest, a spatial navigation video
game that predicts spatial ability in the real world. We find that the social, eco-
nomic, and environmental well-being of older adults, as measured by the Global
AgeWatch Index (GAWI), is negatively associated with age-related decline in
spatial ability. In particular, the GAWI Health and Environment subscores are
strongly correlated with the effect of age on wayfinding performance. We also
found that gender differences in spatial navigation skills increase with age, and
even more so in countries with greater gender inequality, as estimated by the
Gender Inequality Index. Our results show that cognitive aging must be under-
stood as a dynamic, heterogeneous process that is strongly linked to potentially
modifiable environmental and social factors.

Keywords: aging, cognitive decline, cross-country analysis, spatial abilities, gender,
socio-demographic inequalities

Introduction

Population aging represents a unique demographic shift occurring globally for the
first time. By 2030, one in six people worldwide will be aged 60 or older, and by 2050,
the number of people in this age group will have doubled to 2.1 billion. The number
of people aged 80 and older is expected to triple between 2020 and 2050, reaching 426
million [1]. This demographic shift is accompanied by a rise in age-related diseases: in
2017, the burden of age-related diseases represented 51.3% of the total global disease
burden [2].

Dementia is one of the most prominent age-related diseases, marked by a considerable
decline in cognitive abilities, which leads to dependence in daily activities [3]. Normal
cognitive aging also involves a gradual cognitive decline. Distinguishing between
normal and pathological cognitive aging is essential to optimize patient medical care,
particularly for early identification of the disease before major neuronal damage
occurs. This distinction is challenging, however, because there is no typical older
person. Some individuals in their eighties have cognitive abilities similar to many
30-year-olds, while others experience a significant cognitive decline much younger.

The differences in age-related cognitive decline are not arbitrary. Several factors are
associated with cognitive aging, including non-modifiable genetic predispositions and
potentially modifiable risk factors such as hypertension, smoking, and hearing loss
[4, 5]. Beyond these risk factors at the individual-level, a growing body of evidence
has identified associations between cognitive disorders and social, economic and envi-
ronmental factors [6–11] . For instance social isolation is a risk factor for dementia
[12, 13], and social inequalities involving age, gender, ethnicity, purchasing power and
overall health lead to major disparities in the development, diagnosis and treatment
of cognitive disorders [14–22]. These inequalities are not only more frequent but also
more pronounced in developing countries shaped by the interactions of lower educa-
tion and socioeconomic status, a higher cardiovascular disease burden, and genetic
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variability [23]. Most modifiable risk and protective factors for cognitive decline and
dementia demonstrate sex/gender differences in their rate and/or risk expression,
with these differences often being more pronounced in developing countries [24, 25].
For instance, country-level gender inequality is associated with brain structural dif-
ferences [26], and with differences in cognitive performance [27].

Although population aging began in high-income countries (for example in Japan
30% of the population is already over 60 years old) low- and middle-income countries
are now experiencing the greatest shift in age distribution. By 2050, over 65% of the
world’s population over 60 years will live in low- and middle-income countries. The
combined impact of this demographic shift and these environmental risk factors under-
scores the importance of studying the effects of socioeconomic and environmental
factors on cognitive aging, particularly in populations beyond the WEIRD (Western,
Educated, Industrialized, Rich and Democratic) countries that are usually studied in
scientific research [28]. A citizen of a WEIRD country is 37 times more likely to appear
in a medical study from top medical journals than a citizen of a non-WEIRD country
[29]. A notable exception to this population bias is a recent multi-centric study that
analyzed functional Magnetic Resonance Imaging and electroencephalography data
from 5,306 participants across 15 countries: 7 Latin American and Caribbean coun-
tries (LAC) and 8 non-LAC countries [30]. The authors investigated the discrepancies
between brain age and chronological age and showed that structural socioeconomic
inequality were influential predictors of increased brain-age gaps, especially in LAC.

In this study, we will investigate the association between demographic, social,
economic and environmental well-being factors and cognitive aging among 715,295
participants in 46 countries. Cognitive aging will be assessed with Sea Hero Quest, a
spatial navigation video game predictive of spatial ability in the real world [31, 32].
The Sea Hero Quest project has gathered one of the largest and most diverse behav-
ioral dataset, including participants from every country and 150 000 participants
above 50 y.o [27, 33]. Country-level socio-economic inequalities with aging will be
assessed with the Global AgeWatch Index (GAWI) [34, 35], and gender inequality
will be assessed with the Gender Inequality Index [36].

Results

Sea Hero Quest is a spatial navigation video game available on tablets and smart-
phones. It was designed to quantify the player’s sense of direction through a series
of tasks. Players were given the possibility to enter demographic information such
as their age, gender, and nationality. Here we focus on wayfinding levels, where the
player is asked to memorize a map of an aquatic environment with a set of ordered
checkpoint 1. When the player is ready, the map disappears and they have to navigate
as quickly as possible to the checkpoints, in the correct orders. The first two levels
are tutorial levels as no sense of direction is required. To quantify spatial ability, we
used the length of the trajectories in different levels: the shorter the trajectory, the
better the spatial ability.
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Fig. 1 Sea Hero Quest level and trajectory length | Top: Sea Hero Quest screenshots rep-
resenting the map and a navigation scene for wayfinding level 11. Bottom: Trajectory length as a
function of age for wayfinding (in blue) and training (in yellow) levels. Trajectory length is inversely
proportional to performance. Data points represent the average trajectory lengths within five-year
windows. Error bars correspond to standard errors.

Similarly to previously published studies based on the Sea Hero Quest dataset,
to provide a reliable estimate of spatial navigation ability we only examined data
from participants who completed at least 11 levels of the game (including the first
4 wayfinding levels: levels 6, 7, 8 and 11), and who entered their age, gender and
nationality [37]. The focus of the current study being the differences in cognitive
aging across countries, we only included participants from countries with at least
100 participants between 50 and 75 years old. This left us with 715,295 participants
across 46 countries (320,876 females, mean age = 36.78 years, SD = 15.10 years).
After a continuous decline in spatial ability with age, performance starts to re-increase
after 78 y.o., see Figure 1. The first two levels did not require any spatial ability. They
were designed to familiarize the participants with the game controls, and incidentally
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Fig. 2 Wayfinding trajectory length as a function of age in 39 countries | Z-scored wayfind-
ing trajectory length from 20 to 65 y.o. Data points represent the average z-scored trajectory lengths
within five-year windows. See Figure S1 for age range up to 95 y.o, and Figure S2 for the effect sizes
between the older group (50-65 y.o.) and the younger group (20-35 y.o.). Error bars correspond to
standard errors.

test their motor skills. Performance at these tutorial levels follow the same trends,
but with a much weaker effect of age. To quantify these differences, we computed
the effect size of age on motor and spatial ability. We used Hedge’s g to contrast
younger (20-35 y.o.) and older (50-65 y.o.) participants. We found g = 0.94 (95%
CI = [0.93, 0.95]) for spatial ability, and g = 0.23 (95% CI = [0.22, 0.24]) for motor
ability. We previously interpreted this counter-intuitive inflexion point as a strong
selection bias, causing the performance of older participants to be substantially higher
than would be expected in unselected participants of the same age [27, 37]. This
pattern also exists for training performance, but to a much smaller scale. As shown
in Supplementary Figure 1, this selection bias age varies between countries, from 48
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Fig. 3 Association between Age Effect Size and GAWI subscores | Positive age effect sizes
indicate better wayfinding performance for younger participants. Larger GAWI values indicate better
living condition for older participants. The red lines illustrate the strong negative correlations between
the Health (r = −0.59, p < 0.001) and Environment (r = −0.60, p < 0.001) GAWI subscores and the
age effect size.

y.o. in Uganda to 88 y.o in Finland. To avoid biasing our aging estimates with this
phenomenon, we decided to exclude countries where the selection bias age is under 65
y.o. We also excluded participants above 65 y.o. in the remaining countries, leading
to a final dataset of 593,746 participants across 39 countries (268,708 females, mean
age = 35.70 y.o., SD = 13.38 y.o.), see Table S1 and Figure 2. We defined a younger
group with participants between 20 and 35 y.o. (N = 289,762, 43% females) and an
older group with participants between 50 and 65 y.o. (N = 118,132, 53% females).

Cognitive aging trajectories and socio-economic inequalities
We observed a similar pattern of cognitive decline with age across all countries (Figure
2). However, the rate of this decline presents stark differences between countries. As
previously we used Hedge’s g to contrast younger (20-35 y.o.) and older (50-65 y.o.)
participants, see Figure 2. Hedge’s g ranged from 0.59 in Japan to 1.76 in Mexico,
positive values indicating longer trajectories for older participants.
To better understand what are socio-economic inequalities associated with aging
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Fig. 4 Wayfinding trajectory length as a function of age, stratified by gender, in 39
countries | Countries are sorted according to the value of the age x gender interaction term clustered
by country in a linear mixed model. Data points represent the average trajectory lengths within five-
year windows. Error bars correspond to standard errors.

across the globe, the Global AgeWatch Index (GAWI) was developed in 2013 [34].
The most recent iteration, updated in 2015 [35], employs a four-category classification
system, including Income Security, Health Status, Capability, and Enabling Environ-
ment (see Methods). We found a strong negative correlation between GAWI and the
effect of age on wayfinding ability (Pearson’s correlation r = −0.57, p < 0.001). Both
Health and Environment GAWI subscores are strongly negatively correlated with the
effect of age on wayfinding ability (Pearson’s correlation r = −0.59 and r = −0.60
respectively, p < 0.001), see Figure 3. The Capability subscore was moderately cor-
related with the age effect (r = −0.33, p = 0.04) and the Income subscore was not
significantly correlated with the age effect (r = −0.22, p = 0.17). To control whether
these differences were not related to difference in age or gender distribution across
countries, we computed a linear mixed model with trajectory length as the depen-
dent variable, age, gender and their interaction as fixed effects, and age, gender and
their interaction as random effects clustered by countries (see Methods). As with the
Hedge’s g, we obtained a strong correlation between the GAWI and the age slopes
clustered by countries (r = −0.56, p < 0.001).
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Fig. 5 Interaction between Age and Gender as a function of the Gender Inequality Index
(GGI) | The Age x Gender interaction terms are calculated by a linear mixed model, with Trajectory
Length as the response variable, Age, Gender and their interaction as fixed effects, and Age, Gender
and their interaction as random effects clustered by countries. Negative Age x Gender interaction
values correspond to gender differences increasing with age. Increasing GGI values correspond to
larger gender differences within countries. We found a significant negative correlation (r = −0.63,
p < 0.001), indicating that in countries with greater gender inequality, females experience a more
rapid cognitive decline than males.

Sex difference in cognitive aging
In Figure 4 we show the trajectory length as a function of age for males and females
in each country. On average, males have better wayfinding performance than females.
We showed in [27] that the gender effect size was correlated with a country-level
metric of gender inequality: countries having a high level of gender inequality in their
society also have a larger gender difference in Sea Hero Quest performance. Here we
are interested in the difference in the cognitive slope across lifespan between male
and female participants in the 39 included countries. As in the previous section, we
computed a linear mixed model with trajectory length as the dependent variable, age,
gender and their interaction as fixed effects, and age, gender and their interaction as
random effects clustered by countries. We computed Pearson’s correlation between
the interaction coefficient clustered by countries and the Gender Inequality Index
(GII). The GII is a country-level index for the measurement of gender inequality tak-
ing into account reproductive health, empowerment, and labor market participation
[36]. We found a negative correlation (Figure 5, r = −0.63, p < 0.001), indicating that
in countries with higher gender inequality, females have a faster cognitive decline in
terms of wayfinding abilities compared to men.
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Discussion

In this study, we investigate how age-related cognitive decline assessed using a spatial
navigation video game varies in over 590 000 participants from 39 countries. We find
that the social, economic and environmental well-being in older adults as measured by
the Global AgeWatch Index (GAWI), is negatively associated with age-related decline
in spatial ability. In particular, the Health and Environment GAWI subscores are
strongly correlated with the effect of age on wayfinding performance. We also found
that gender differences in spatial navigation skills increase with age, and even more
so in countries with greater gender inequality, as estimated by the Gender Inequality
Index. Our results show that the dynamics of cognitive aging vary considerably with
socio-economic indicators at the country level. This is particularly true for health
(life expectancy, psychological well-being) and environmental (social connections,
physical safety, civic freedom, access to public transport) indicators. On the contrary,
indicators of income (pension, poverty rate in older age, Gross National Income per
capita) and capability (employment and educational status of older people) indicators
are less associated with country differences in cognitive decline. These findings are
consistent with previous work that have shown how environmental characteristics
can affect individual and global health [8, 38–41]. For instance, more socially active
older adults experience less cognitive decline in old age [42], and loneliness increase
the risk for all-cause dementia by 30%, even when controlling for other modifiable
risk factors [43]. Public policy such as age-friendly transportation (e.g. free public
transport) could be used to improve cognitive health in oder adults by promoting a
less sedentary and more social behavior [44, 45].

While gender differences in some cognitive tasks have been shown to correlate with
national indicators of gender equality [27, 46], the interaction between age and gender
has rarely been analyzed (although see [22]). Our results suggest that the decline in
spatial navigation skills is more pronounced in women over the course of the adult
life. The gender difference in the slope of cognitive decline is correlated with the Gen-
der Inequality Index (GII), indicating that in countries with lower gender inequality,
males and females show smaller differences in cognitive aging. These differences can
be interpreted in two ways. First, the acceleration of cognitive decline in women
could be explained by a cumulative effect: the longer females live in an unequal
environment, the greater the contrast with men. Second, cognitive gender differences
could be greater for people in their sixties than in their twenties because they have
not been exposed to the same inequalities, which tend to decrease with time [47]. In
this way, differences between men and women at a particular age could be a snapshot
of gender inequalities experienced by that generation.

There are several limitations to our study. First, the demographic profile of our
participants is limited, as we only asked for general information such as their age,
gender, and country of residence. Access to more precise information such as their
socio-professional categories, level of education, reading or intellectual game habits
would allow us to estimate their cognitive reserve, which is often associated with
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cognitive decline trajectories [38, 48–50]. Similarly, knowledge of participants’ neigh-
borhood at a finer scale would be helpful, as previous research has shown that greater
access to green spaces from childhood through to adulthood can help to slow down
the rate of cognitive decline in later life [51, 52].
Another limitation is the selection bias inherent in cross-sectional studies of unse-
lected participants. A recent study showed that people with higher incomes and better
computer skills are more likely to agree to participate in such scientific experiments
[53]. As they get older, unselected participants are more likely to have above-average
cognitive health, as shown by the inflection point in Figure 1. As our cognitive task
is based on a video game, this selection bias is likely reinforced by the effect of dig-
ital exclusion, which particularly affects older people [54] and participants from less
developed countries [55]. Digital device use has been positively associated with cog-
nitive reserve and cognition [50, 56], in addition to general health [57, 58] and social
connection [59–61] in older people. However, two results mitigate these concerns.
First, the effect of age on pure motor skills, as assessed during the tutorial levels, was
four times smaller than the effect of age on wayfinding skills. This indicates that the
effects measured with SHQ and presented in this manuscript have a strong cognitive
component and are not simply a matter of familiarity with digital technology. Second,
we have previously reported that SHQ performance is predictive of performance at a
similar task in the real world [31]. This result was recently replicated in a cohort of
older adults (54-74 years old), but not for SHQ levels identified as either too easy or
too difficult, which were not included in the current analysis [32].
We use spatial navigation as a proxy for cognition. Spatial navigation is particu-
larly interesting because it involves many cognitive processes, including interpreting
a map, planning a multi-stop route, remembering the route, monitoring progress
along the route and updating the route plan, and transforming the bird’s eye view
into an egocentric perspective [62]. It relies on different brain structures such as the
hippocampus (episodic memory, map representations, place cells), the retrosplenial
cortex (egocentric and allocentric translation), or the posterior cingulate cortex (land-
mark position and attention). All of these brain structures are affected by Alzheimer
disease in preclinical and prodromal stages [63], and are therefore often implicated
in age-related cognitive decline. However, other cognitive functions are not directly
probed by our spatial navigation task, such as purely memory-based or executive
functions, which are also often affected by age-related cognitive decline.

Conclusions

Our study highlights the diversity of cognitive aging trajectories in different coun-
tries across the five continents and their association with socioeconomic indicators
and gender inequalities across the lifespan. The challenge of cognitive aging, with an
exponential increase in cognitive impairment and dementia in the coming decades, is
even more important to understand and prevent in countries of the global South, by
addressing growing socioeconomic inequalities, in addition to traditional individual
risk factors. Cognitive aging must be understood as a dynamic, heterogeneous process
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that is strongly linked to environmental and social factors. From a prevention point
of view, a better understanding of the drivers of these inequalities is a key point for
preparing specific interventions in education, global health and social connectedness.
These interventions need to be implemented at the neighborhood level, but also led by
strong public policies at the national level, in order to better prepare for the challenges
of aging populations around the world.
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Methods

Data
The design and the data collection process for SHQ have been thoroughly described
in previous manuscripts [27, 37]. The data has been collected between 2016 and 2019
with the mobile and tablet video game Sea Hero Quest, freely available on all app
platforms.

Informed consent and ethics approval
This study has been approved by the UCL Ethics Research Committee. The ethics
project ID number is CPB/2013/015. Participants were made aware of the purpose
of the game within the opening screen. Demographics such as their age, gender and
home country were provided by consenting participants. They were asked whether
they were willing to share their data with us and were guided as to where they could
opt out. The opt-out was always available in the settings.

Cognitive Task
In this study we used the wayfinding task in the video game Sea Hero Quest. At the
beginning of each wayfinding level, participants were shown locations (checkpoints)
to visit on a map. The map disappeared, and they had to navigate a boat through a
virtual environment to find the different checkpoints. The checkpoints were typically
not encountered in the order in which they were passed, but had to be navigated
by returning from one checkpoint to another (Figure 1). The first two levels were
tutorial levels to familiarize the participant with the game commands.

Participants A total of 3 881 449 participants played at least one level of the game;
60.8% of the participants provided basic demographics (age, gender, home country)
and 27.6% provided more detailed demographics (home environment, level of edu-
cation). To provide a reliable estimate of spatial navigation ability, we examined
data only from participants who had completed a minimum of 11 levels of the game
(including the first 4 wayfinding levels: levels 6, 7, 8 and 11) and who entered all
their demographics. The focus of the current study being the differences in cognitive
aging across countries, we only included participants from countries with at least 100
participants between 50 and 75 years old. This left us with 715 295 participants across
46 countries (320876 females, mean age = 36.78 years, SD = 15.10 years). To avoid
biasing our aging estimates with the selection bias (see in Results and Discussion),
we decided to exclude participants from countries where the selection bias age is
under 65 y.o. We also excluded participants above 65 y.o. in the remaining countries,
leading to a final dataset of 593 746 participants across 39 countries (268 708 females,
mean age = 35.70 y.o., SD = 13.38 y.o.), see Table S1.

Wayfinding performance
We collected the trajectory of each participant across levels 1, 2, 6, 7, 8 and 11. The
coordinates of participants’ trajectories were sampled at Fs = 2 Hz. As in previous
studies [27, 37], we computed the trajectory length in pixels, defined as the sum of
the Euclidean distance between the points of the trajectory. The first two levels only
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reflected video gaming skill (motor dexterity with the game controls) as no sense
of direction was required to complete them. For each level, we took the z-score of
participants’ trajectory length. This normalization leads to more interpretable results
across levels, which all have different size. We defined the overall training trajectory
length metric as the average between the z-scored trajectory lengths of training levels
1 and 2. We defined the overall wayfinding trajectory length metric as the average
between the z-scored trajectory lengths of wayfinding levels 6, 7, 8, and 11. As this
metric is based on the trajectory length, it varies as the opposite of the performance:
the longer the trajectory length, the worse the performance.

Country-level indicators
To quantify socio-economic inequalities associated with aging across the globe, the
Global AgeWatch Index (GAWI) was developed in 2013 [34]. The most recent iteration,
updated in 2015 [35], employs a four-category classification system, including:

• Income security: pension income coverage, poverty rate in old age, relative welfare
of older people, GNI per capita

• Health status: life expectancy at 60, Healthy life expectancy at 60, psychological
well-being

• Capability: employment of older people, educational status of older people
• Enabling environment: social connections, physical safety, civic freedom, access
to public transport.

Country-level gender inequality has been quantified with the Gender Inequality Index
(GII), an indicator developed by the United Nations Development Programme avail-
able for more than 170 countries. [64, 65]. We used the latest available GII values
(2022). This index is a composite measure to quantify the loss of achievement within
a country due to gender inequality. It uses three dimensions to measure opportunity
cost: reproductive health, empowerment, and labor market participation. This indica-
tor has recently been used in a study comparing brain health across countries [25, 30].

Statistical Analysis
- LMM computation
We computed a linear mixed model with trajectory length as the dependent variable,
age, gender and their interaction as fixed effects, and age, gender and their interaction
as random effects clustered by countries:

Trajectory length ∼ age*gender + (age*gender | country)

To study the effect of age across countries we used the age random slopes clustered
by countries. To study the sex differences in cognitive aging across countries we used
the age x gender random interaction values clustered by countries
The parameters of the linear mixed models were estimated with the maximum likeli-
hood method, and the covariance matrix of the random effects were estimated with
the Cholesky parameterization.
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- Hedge’s g
Hedge’s g between group 1 and group 2 is defined as :

g =
(m1 −m2)

s∗pooled

where mi is the mean of group i, and s∗pooled is the pooled and weighted standard
deviation:

s∗pooled =

√
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

with ni the sample size of group i, and si the standard deviation of group i.

The 95% confidence intervals displayed in this manuscript are exact analytical
confidence intervals based on iterative determination of noncentrality parameters of
noncentral t or F distributions

Code and Data availability
The code and data necessary to reproduce the results presented in this manuscript are
available at https://osf.io/e6tgk/?view only=1890283b477b4f259f75e8a7c9117045.
We also set up a portal where researchers can invite a targeted group of partici-
pants to play SHQ and generate data about their spatial navigation capabilities.
Those invited to play the game will be sent a unique participant key, generated by
the SHQ system according to the criteria and requirements of a specific project.
https://dash.seahero.quest/wiki/ Access to the portal will be granted for non-
commercial purposes.

Funding Information
This work was supported by a grant from the French National Research Agency
as part of the “Investissements d’Avenir ExcellencES” program from France 2030
(SHAPE-Med@Lyon ; ANR-22-EXES-0012), and by the ANR project ACTSOMA
(ANR-23-CE45-0023-01). The Sea Hero Quest initiative has originally been funded
and supported by Deutsche Telekom. The video-game company Glitchers designed
and produced the game.

References

[1] World Health Organization.: Ageing and health. Accessed: Nov 2024. Available
from: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health.

[2] Chang A, Skirbekk V, Tyrovolas S, Kassebaum N, Dieleman J. Measuring popu-
lation ageing: an analysis of the Global Burden of Disease Study 2017. The Lancet
Public Health. 2019 03;4:e159–e167. https://doi.org/10.1016/S2468-2667(19)
30019-2.

14

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2024. ; https://doi.org/10.1101/2024.12.05.24318553doi: medRxiv preprint 

https://osf.io/e6tgk/?view_only=1890283b477b4f259f75e8a7c9117045
https://dash.seahero.quest/wiki/
https://www.who.int/news-room/fact-sheets/detail/ageing-and-health
https://doi.org/10.1016/S2468-2667(19)30019-2
https://doi.org/10.1016/S2468-2667(19)30019-2
https://doi.org/10.1101/2024.12.05.24318553
http://creativecommons.org/licenses/by-nc/4.0/


[3] Dubois B, Villain N, Schneider L, Fox N, Campbell N, Galasko D, et al.
Alzheimer disease as a clinical-biological construct—an International Working
Group recommendation. JAMA neurology. 2024;.

[4] Dintica CS, Yaffe K. Epidemiology and Risk Factors for Dementia. Psychiatric
Clinics of North America. 2022 12;45(4):677–689. https://doi.org/10.1016/j.psc.
2022.07.002.

[5] Livingston G, Huntley J, Liu KY, Costafreda SG, Selbæk G, Alladi S, et al.
Dementia prevention, intervention, and care: 2024 report of the Lancet standing
Commission. The Lancet. 2024 8;404(10452):572–628. https://doi.org/10.1016/
S0140-6736(24)00064-X.

[6] Besser LM, Hirsch JA, Galvin JE, Renne J, Park J, Evenson KR, et al. Asso-
ciations between neighborhood park space and cognition in older adults vary by
US location: The Multi-Ethnic Study of Atherosclerosis. Health & Place. 2020
11;66:102459. https://doi.org/10.1016/j.healthplace.2020.102459.

[7] Cerin E, Rainey-Smith SR, Ames D, Lautenschlager NT, Macaulay SL, Fowler
C, et al. Associations of neighborhood environment with brain imaging out-
comes in the Australian Imaging, Biomarkers and Lifestyle cohort. Alzheimer’s
& Dementia. 2017 4;13(4):388–398. https://doi.org/10.1016/j.jalz.2016.06.2364.

[8] Finlay J, Esposito M, Langa KM, Judd S, Clarke P. Cognability: An Ecological
Theory of neighborhoods and cognitive aging. Social Science & Medicine. 2022
9;309:115220. https://doi.org/10.1016/j.socscimed.2022.115220.

[9] Clarke PJ, Weuve J, Barnes L, Evans DA, Mendes de Leon CF. Cognitive decline
and the neighborhood environment. Annals of Epidemiology. 2015 11;25(11):849–
854. https://doi.org/10.1016/j.annepidem.2015.07.001.

[10] Wu YT, Prina AM, Jones AP, Barnes LE, Matthews FE, Brayne C, et al. Commu-
nity environment, cognitive impairment and dementia in later life: results from the
Cognitive Function and Ageing Study. Age and Ageing. 2015 11;44(6):1005–1011.
https://doi.org/10.1093/ageing/afv137.

[11] Weng PH, Chen JH, Chiou JM, Tu YK, Chen TF, Chiu MJ, et al. The effect of
lifestyle on late-life cognitive change under different socioeconomic status. PLoS
One. 2018;13(6):e0197676. https://doi.org/10.1371/journal.pone.0197676.

[12] Evans IEM, Martyr A, Collins R, Brayne C, Clare L. Social Isolation and
Cognitive Function in Later Life: A Systematic Review and Meta-Analysis.
Journal of Alzheimer’s Disease. 2019;70(s1):S119–S144. https://doi.org/10.3233/
JAD-180501.

[13] Lyu C, Siu K, Xu I, Osman I, Zhong J. Social Isolation Changes and Long-Term
Outcomes Among Older Adults. JAMA Network Open. 2024 7;7(7):e2424519.

15

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 8, 2024. ; https://doi.org/10.1101/2024.12.05.24318553doi: medRxiv preprint 

https://doi.org/10.1016/j.psc.2022.07.002
https://doi.org/10.1016/j.psc.2022.07.002
https://doi.org/10.1016/S0140-6736(24)00064-X
https://doi.org/10.1016/S0140-6736(24)00064-X
https://doi.org/10.1016/j.healthplace.2020.102459
https://doi.org/10.1016/j.jalz.2016.06.2364
https://doi.org/10.1016/j.socscimed.2022.115220
https://doi.org/10.1016/j.annepidem.2015.07.001
https://doi.org/10.1093/ageing/afv137
https://doi.org/10.1371/journal.pone.0197676
https://doi.org/10.3233/JAD-180501
https://doi.org/10.3233/JAD-180501
https://doi.org/10.1101/2024.12.05.24318553
http://creativecommons.org/licenses/by-nc/4.0/


https://doi.org/10.1001/jamanetworkopen.2024.24519.

[14] Daly TP. Wealth as a determinant of brain health. BMJ. 2022;379(o2512).

[15] Krishnamurthy S, Rollin FG. We must be clear that the root cause of
racial disparities in Alzheimer’s disease is racism. Alzheimer’s & Dementia.
2023;19(11):5305–5306.

[16] Daly T. The iceberg of dementia risk: empirical and conceptual arguments in
favor of structural interventions for brain health. Cerebral Circulation-Cognition
and Behavior. 2023;6:100193.
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Country N Age (M ± SD) Females >50 y.o.
Argentina 3151 31.79 ± 12.02 0.38 0.12
Austria 4457 35.31 ± 12.96 0.43 0.19
Australia 13932 37.48 ± 13.86 0.51 0.24
Belgium 3075 36.39 ± 13.90 0.40 0.23
Brazil 11283 31.46 ± 12.05 0.43 0.12
Canada 16094 37.72 ± 14.00 0.49 0.25
Switzerland 5050 38.95 ± 13.62 0.43 0.27
Chile 2690 32.54 ± 12.29 0.39 0.13
Colombia 2433 30.50 ± 11.14 0.40 0.09
Costa Rica 963 33.30 ± 12.28 0.43 0.14
Czech Republic 39264 29.01 ± 9.92 0.43 0.05
Germany 63412 39.20 ± 13.17 0.46 0.27
Denmark 2713 34.58 ± 12.84 0.37 0.16
Spain 12598 35.71 ± 12.56 0.39 0.17
Finland 1373 32.99 ± 11.96 0.41 0.12
France 11821 34.78 ± 13.11 0.40 0.18
United Kingdom 106354 41.20 ± 13.37 0.46 0.32
Hungary 42519 29.04 ± 9.93 0.41 0.04
Indonesia 3237 27.23 ± 9.14 0.28 0.04
Ireland 2602 37.97 ± 12.77 0.41 0.21
Israel 999 32.60 ± 11.84 0.26 0.10
India 7536 26.33 ± 8.03 0.17 0.03
Japan 686 36.19 ± 12.82 0.36 0.18
Mexico 6456 28.79 ± 10.56 0.37 0.07
Netherlands 31644 35.49 ± 13.05 0.53 0.19
Norway 2006 32.33 ± 11.83 0.42 0.10
New Zealand 3010 37.35 ± 13.57 0.53 0.23
Philippines 3205 27.59 ± 9.63 0.46 0.05
Portugal 3597 33.44 ± 10.99 0.39 0.09
Russia 8268 28.06 ± 8.98 0.34 0.04
Sweden 3591 32.11 ± 12.10 0.39 0.11
Slovakia 18581 28.42 ± 9.57 0.42 0.04
Thailand 3221 29.44 ± 10.71 0.40 0.08
Turkey 4783 30.56 ± 10.05 0.33 0.06
Ukraine 2229 28.41 ± 9.65 0.32 0.06
United States 139817 37.45 ± 13.80 0.51 0.24
Uruguay 724 35.74 ± 13.35 0.38 0.20
Viet Nam 2274 25.72 ± 9.01 0.31 0.05
South Africa 2098 35.39 ± 12.91 0.42 0.18

Table S 1 For each country, number of participants included in the analysis (N), their mean age
and standard deviation, the proportion of females, and the proportion of participants between 50 y.o.
and 65 y.o.
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Fig. S 1 Wayfinding trajectory length as a function of age, in 46 countries — Z-scored
wayfinding trajectory length from 20 to 95 years. The red vertical line represents the global maximum
of each country curve. Countries are sorted according to this value. Data points represent the average
trajectory lengths within five-year windows. Error bars correspond to standard errors.
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Fig. S 2 Effect size of age on wayfinding trajectory length in 39 countries | The effect size
is the Hedge’s g between the older group (50-65 y.o.) and the younger group (20-35 y.o.). Positive
values indicate shorter wayfinding trajectories for younger participants. Error bars correspond to 95%
Confidence Intervals.
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