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Abstract 24 

Only a third of immune-associated loci from genome-wide association studies (GWAS) colocalize 25 
with expression quantitative trait loci (eQTLs). To learn about causal genes and mechanisms at 26 
the remaining loci, we created a unified single-cell chromatin accessibility (scATAC-seq) map in 27 
peripheral blood comprising a total of 282,424 cells from 48 individuals. Clustering and topic 28 
modeling of scATAC data identified discrete cell-types and continuous cell states, which helped 29 
reveal disease-relevant cellular contexts, and allowed mapping of genetic effects on chromatin 30 
accessibility across these contexts. We identified 37,390 chromatin accessibility QTLs (caQTL) 31 
at 10% FDR across eight cell groups and observed extensive sharing of caQTLs across immune 32 
cell contexts, finding that fewer than 20% of caQTLs are specific to a single cell type. Notably, 33 
caQTLs colocalized with ~50% more GWAS loci compared to eQTLs, helping to nominate 34 
putative causal genes for many unexplained loci. However, most GWAS-caQTL colocalizations 35 
had no detectable downstream regulatory effects on gene expression levels in the same cell type. 36 
We find evidence that the higher rates of colocalization between caQTLs and GWAS signals 37 
reflect missing disease-relevant cellular contexts among existing eQTL studies. Thus, there 38 
remains a pressing need for identifying disease-causing cellular contexts and for mapping gene 39 
regulatory variation in these cells. 40 
 41 
 42 

All rights reserved. No reuse allowed without permission. 
preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for thisthis version posted December 12, 2024. ; https://doi.org/10.1101/2024.12.05.24318552doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.12.05.24318552


2 

Introduction 43 
 44 
A major goal in complex trait genomics is to understand the biological mechanisms of trait-45 
associated variants. To this end, a general approach has been to map molecular quantitative trait 46 
loci (molQTLs) in one or more cell types or states, and then colocalize these molQTLs with GWAS 47 
loci. GWAS loci colocalized with a molQTL are then often considered to be “explained”. To date, 48 
molQTL of gene expression levels (eQTL) have been the focus of nearly all studies. Although 49 
eQTLs have greatly improved our ability to identify genes and contexts that are impacted at many 50 
GWAS loci, over half of GWAS signals remain unexplained for most complex traits1. 51 
 Several groups have proposed that standard eQTL analyses from bulk samples generally 52 
identify large, but unimportant genetic effects that are shared across many cell-types2. Consistent 53 
with this view, an analysis of GTEx eQTLs – the largest collection of eQTLs which covers over 55 54 
human organs – revealed that cis-eQTLs only mediate ~11% of trait heritability on average3. 55 
These findings are often interpreted to suggest that many GWAS variants function through cell-56 
type or context specific effects on gene regulation, motivating searches for eQTLs in specific cell-57 
types and contexts (i.e. cell subtypes/state, disease conditions) that may be more relevant to the 58 
traits of interest. Indeed, several studies have now identified cell-type specific and highly transient 59 
genetic effects on gene expression level that colocalize with association signals at GWAS loci4. 60 
Even so, each study only contributes to a tiny number of additional colocalizations, raising 61 
questions as to whether this approach is effective. 62 
 More recently, two studies mapped chromatin phenotypes QTLs (cQTLs) and found that 63 
cQTLs substantially increased the fraction of GWAS loci that colocalizes with a molQTL5,6. For 64 
example, Aracena et al. (2024) found that chromatin accessibility QTLs (caQTLs) mediate roughly 65 
twice as much trait heritability as eQTLs and colocalize with a larger fraction of GWAS loci 66 
compared with eQTLs5. It is unclear why the rates of caQTLs colocalization are larger than that 67 
of eQTLs, especially given that caQTLs must impact gene expression levels in their causal path 68 
to influence human traits. Still, these findings, along with earlier reports that trait heritability 69 
explained by eQTL SNPs (11%-14%)7 are generally smaller than that explained by SNPs in 70 
enhancer and promoter regions (24%-79%)8, suggest that mapping QTLs for chromatin-level 71 
phenotypes, such as chromatin accessibility QTLs (caQTLs), may help unravel genetic 72 
mechanism of as yet unexplained GWAS loci. 73 

To test this strategy, we built a unified map of single-cell chromatin accessibility (scATAC) 74 
profiles in peripheral blood mononuclear cells (PBMCs) from 48 individuals enrolled in three 75 
independent studies9,10. We integrated these data and developed novel computational 76 
approaches to map the impact of immune-related GWAS variants on chromatin accessibility 77 
across immune cell-types, contexts, and cell trajectories. Remarkably, our caQTLs colocalize with 78 
~50% more GWAS loci on average than bulk eQTLs, helping us to examine the genetic regulatory 79 
mechanisms that underpin previously uncolocalized immune disease-associated variants. 80 
However, by analyzing these caQTLs with immune cell-type resolved eQTLs, we find that a 81 
substantial fraction of caQTL effects do not have any eQTL effect in the corresponding cell-types 82 
or contexts. We find that these can be predicted by the lack of enhancer-promoter interactions 83 
and not by low statistical power. Thus, many genetic effects on chromatin accessibility are unlikely 84 
to be functional in most cell-types. Notably, many immune GWAS loci that colocalizes with 85 
caQTLs do not colocalize with an eQTL in any assayed cell-type, we interpret this to suggest that 86 
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there are many cellular contexts in which eQTL data are missing. Thus, our findings highlight the 87 
need for expanding the catalog of eQTLs in cell-types and contexts that are more relevant to 88 
disease. 89 

Results 90 

A harmonized map of chromatin accessibility in immune cells from 59 samples 91 
 92 
To obtain a comprehensive map of chromatin accessibility in peripheral blood mononuclear cells 93 
(PBMCs), we obtained and compared scATAC-seq data from participants with active COVID-19, 94 
COVID-19 convalescent donors, and healthy controls (Supplementary Table 1). We collected 95 
scATAC-seq data from the PBMCs of 25 unique donors, including 20 individuals hospitalized with 96 
COVID-19 (both in active disease and a subset at a convalescent stage) as well as 5 healthy 97 
controls. We obtained additional COVID-19 convalescent and healthy controls from two recently 98 
published PBMC scATAC-seq datasets of similar quality (i.e., in terms of TSS read enrichment 99 
and fragments per cell; Extended Data Fig. 1a,b). Specifically, we used 13 healthy control 100 
samples from Bengalio, et al.9 and 8 COVID-19 convalescent and 2 healthy control samples from 101 
You, et al10 (Fig. 1a). 102 

After filtering, integration using LSI, and reducedMNN harmonization, we retained 282,424 103 
high-quality cells for further analysis (Supplementary Table 1). To obtain a cell-type resolved 104 
map of chromatin accessibility, we first annotated cell-types using Azimuth11 from previously 105 
published COVID-19 scRNA-seq data12 and transferred labels to our scATAC data. We also 106 
identified 26 distinct cell clusters in this integrated dataset and confirmed that they are highly 107 
consistent with Azimuth-annotated cell-types (Extended Data Fig. 1c). Our final annotation has 108 
two levels of granularity: L1 annotations are later used for caQTL mapping, and contains seven 109 
major immune cell-types, while L2 annotation are used for finer-grained interpretation, and 110 
contains 21 cell-types/subtypes that are well represented in our data (Fig. 1b-c). We then called 111 
a unified peak set consisting of 327,746 cis-regulatory elements (peaks)13. To confirm the quality 112 
of these annotations, we assessed gene activity (GA) scores of marker genes in each cell-type 113 
and observed high gene activity (GA) scores at known marker genes: MS4A1 in B cells, CD3E 114 
and CD8A in T cells, NCR1 in NK cells, S100A8 in monocytes, and FLT3 in DC (Fig. 1d). We 115 
also visualized genome browser tracks for markers in L2 cell annotations, and found patterns of 116 
cell-type specific peaks that are broadly consistent with the annotated cell-types (Fig. 1e-f). 117 
 118 
We compared the three donor groups (healthy, active COVID-19, and COVID-19 convalescent) 119 
to identify differences in cell-type compositions. While the overall cell-type compositions were 120 
similar among all individuals, there were a few notable exceptions. Two groups of COVID-19 121 
patients had either expanded NK cell or monocyte populations, consistent with previous 122 
reports10,14 (Fig. 1g). At the L2 annotation level, we found increased proportions of memory B 123 
cells in COVID-19 patients compared to healthy controls (Extended Data Fig. 1d). 124 
 125 
We next sought to obtain genotypes for scATAC-seq samples from the three harmonized datasets 126 
in order to map genetic determinants of chromatin accessibility, i.e. quantitative trait loci (caQTL). 127 
Even though one of the studies (You et al.) did not genotype individual donors, we reasoned that 128 
we could approximate low-pass whole-genome sequencing (WGS) coverage by aggregating 129 
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single-cell reads from each individual and adapt GLIMPSE15 to accurately impute common 130 
variants in these individuals. We tested this by comparing Minimac4-imputed SNPs from 131 
genotyping arrays available from Benaglio et al. to the imputed SNPs from scATAC-seq using our 132 
GLIMPSE workflow (Methods). We found that genotype dosages imputed from scATAC reads 133 
and genotyping arrays were highly correlated across all reference minor-allele frequency (MAF) 134 
bins (>91%, Fig. 1h, Extended Data Fig. 1e-g), indicating that imputed genotypes from scATAC-135 
reads are highly accurate and are not biased by allelic imbalance in chromatin accessibility. This 136 
allowed us to merge genotype likelihood estimates from all three studies and to perform joint 137 
imputation using GLIMPSE, resulting in a harmonized callset of 6.75 million high-quality SNPs for 138 
caQTL mapping (Extended Data Fig. 1h). 139 
 140 
Altogether, we constructed a map of accessible chromatin from 282,424 PBMCs from 59 samples 141 
with high-quality, harmonized genotype information for all individuals, enabling fully-integrated 142 
downstream analysis. Imputation using aggregated scATAC-seq reads offers high-quality 143 
genotype information and our workflow (Data availability) can be easily adopted for future 144 
population-scale scATAC studies. 145 
 146 
Topic analysis of chromatin accessibility defines cell-types and states programs 147 
Single-cell genomics data can capture gene expression in rare cell-types as well as transitional 148 
cell states. However, typical single-cell data analysis aggregates cells into discrete clusters, 149 
masking heterogeneity among cells within the same cluster. As an alternative to clustering, we 150 
applied topic modeling to our scATAC-seq data. Topic modeling represents each cell as a grade 151 
of membership (referred to as “loadings” hereafter) to inferred topics16,17. Each topic captures an 152 
axis of variation in the data which may represent cell-types, contexts, or biological processes. 153 
This allows us to identify peaks with differential accessibility across topics, and to measure the 154 
importance of a peak to each topic (referred to as “scores” hereafter)18. As such, peaks with the 155 
highest scores in each topic often reveal their associated biological functions. 156 
 157 
We applied a topic modeling approach, fastTopics19, to our scATAC count matrix, and built models 158 
for six to 20 total topics (referred to as "k" hereafter, Methods). As expected, the number of topics 159 
greatly influences the resolution at which cell states and biological processes are captured. In our 160 
k=6 model, topics largely delineate common immune cell-types including B cells, CD4 T cells, 161 
CD8 T cells/NK cells, and monocytes. In our k=10 model, both CD8 T cells and NK cells are 162 
represented by k8, which captures the cytotoxic signatures shared between these two cell-types 163 
(Fig. 2a). We chose the model with 20 topics for all downstream analyses, as it captures the 164 
majority of common cell-types and recognizable cell states in our PBMC data (Fig. 2a, Extended 165 
Data Fig. 2). 166 
 167 
We observed that multiple topics were almost exclusively used by certain cell-types, including B 168 
cells (k1, k11), monocytes (k10, k12), and DC (k4) (Fig. 2b). In contrast, T cell subsets often map 169 
to more than one topic, highlighting the subtle differences across T cell subsets and cell states, 170 
and the challenges in using clusters to represent T cell states. One topic, k2, was ubiquitously 171 
present in all cell-types. Upon investigation, we found that k2 loadings are highly correlated with 172 
the TSS enrichment score. The top 3,000 peaks with the highest scores in k2 are over-173 
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represented in promoter regions (p-value < 2e-16, hypergeometric test; Extended Data Fig. 3a,b), 174 
suggesting that k2 likely represents single-cell data quality rather than biological variation. 175 
 176 
To functionally annotate the different topics, we derived gene-level scores in each topic from the 177 
peak-level scores. We tested four different peak-to-gene mapping strategies and found that 178 
distance-based exponential weighting function from ArchR performed the best on our 179 
benchmarking (Extended Data Fig. 3c, Methods)20. Using this strategy, we identified a set of 180 
genes driving each topic and we observed well-known cell-type markers among the highest-181 
scoring genes, including EBF1 and CD83 for naive B cells (k1); CD27 and TNFSF9 for memory 182 
B cells (k11); CD247 and ZBTB16 for NK cells (k8); S1PR5, KLRD1, PRF1 and TBX21 for 183 
cytotoxic CD8 T cells (k3); and ICOS and CTLA4 for Treg cells (k20) (Fig. 2c, Supplementary 184 
Table 2). The high-scoring genes in each topic were also enriched in relevant biological process 185 
gene sets (Extended Data Fig. 3d; Supplementary Table 3). Finally, we tested the enrichment 186 
of transcription factor (TF) binding motifs in the top 3,000 peaks with the highest scores for each 187 
topic (Supplementary Table 4). Again, TFs known for immune cell-types and states show 188 
significant enrichment in the corresponding topics (Extended Data Fig. 3e). 189 
 190 
Cell transitions from one state to another (e.g. during disease progression) generally exhibit a 191 
continuous rather than a discrete change in gene expression21,22. We reasoned that the loading 192 
of topics corresponding to a cell state transition captures the cell trajectory along possible 193 
transitions. Indeed, we identified evidence that topic k1 loadings represent the transition between 194 
naive B cells to memory B cells (Methods). For example, we observed progressive enrichment 195 
of non-naive B cells (including memory B cells and plasmablasts) along the k1 trajectory (Fig. 2d, 196 
top). We also adapted the ArchR getTrajectory algorithm to identify genes with changing activities 197 
along memory B cell trajectory and observed decreasing GA scores for naive B cell marker genes 198 
(IL4R, TCL1A, IGHM, IGHD) and increasing GA scores for memory B cells marker genes (AIM2, 199 
CD27, COCH) (Fig. 2d, bottom) (Supplementary Table 5). Thus, cell loadings from our topic 200 
modeling effectively and directly capture biologically-meaningful trajectories along cell states. 201 
 202 
Finally, we determined the relevance of each topic in terms of explaining complex disease 203 
heritability. We used stratified LD score regression (s-LDSC)8 to calculate heritability enrichment 204 
of each topic across 50 GWAS traits (Supplementary Table 6). As expected, we observed 205 
greater h2g enrichment in many immune-related diseases and blood phenotypes compared to 206 
height, a trait used as negative control. Notably, we found large h2g enrichment for three 207 
autoimmune diseases (RA, systemic lupus erythematosus [SLE] and multiple sclerosis [MS]) in 208 
the lymphoid-related topics (Fig. 2e). For SLE, B cell topics (k1 and k11) are the most enriched, 209 
consistent with the known role of B cells in SLE etiology23,24. In addition, monocyte and myeloid-210 
related GWAS (MONO%, MONO#, GRAN%MYELOID) are enriched in monocyte-related topics 211 
(k5, k9, k10, k12, k13, k15; Fig. 2e), in line with the expectation that cellular programs in 212 
monocytes causally regulate myeloid cell numbers and proportions. Interestingly, we found that 213 
one topic, k17–which was found in some CD8 T and non-classical T cells–was significantly 214 
enriched for heritability for both hospitalized and critical COVID-19 GWAS (Fig. 2e). 215 

Thus, our analyses identify cell states and regulatory programs that likely mediate genetic 216 
risks for several complex immune traits. 217 
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 218 
Topic-derived cell trajectories identify COVID-19–associated cell state continuums 219 
 220 
We next sought to find topics that may be associated with COVID-19. As we found k17 to be 221 
significantly enriched for COVID-19 GWAS heritability, we tested the association between k17 222 
loadings and cell donor COVID-19 status to assess whether cell donor active COVID-19 status 223 
explains a significant proportion of variation in loadings (Methods). Indeed, k17 is significantly 224 
enriched for COVID-19 cells (p-value = 0.023). Topic k17 largely represents CD8 TEM, and cells 225 
with high k17 loadings are disproportionately from COVID-19 donors (Fig. 2f, top), suggesting an 226 
expanded CD8 TEM population in COVID-19 patients. 227 
 228 
To further investigate k17, we built a trajectory using k17 loadings and grouped cells by trajectory 229 
quintiles (Fig. 2f). We found that several genes previously linked to COVID-19 showed varying 230 
chromatin accessibility along the k17 trajectory (Supplementary Table 7). For example, we 231 
observed decreased accessibility around the PRG4 gene body along the k17 trajectory25, while 232 
accessibility increased around CCL3 and CCR226 (Fig. 2g). Taken together with the independent 233 
observation that high-scoring k17 peaks are enriched in COVID-19 heritability (Fig. 2d), our 234 
results suggest that an expanded CD8 TEM cell population in peripheral blood is a hallmark of 235 
COVID-19 and that CD8 TEM cells–or related cells–are important mediators of COVID-19 genetic 236 
risk. 237 
 238 
More generally, we compared GA scores in COVID-19 cells across quintiles against healthy cells. 239 
COVID-19 cells in higher quintiles exhibited more differentially active genes than those in lower 240 
quintiles (Extended Data Fig. 3f, Supplementary Table 8). Notably, these differentially active 241 
genes were enriched in pathways related to chemotaxis, immune cell migration and T cell 242 
activation, consistent with the immune response upon COVID-19 infection (Extended Data Fig. 243 
3g). These findings complement our observation that k17 is enriched with COVID-19 cells and 244 
COVID-19 heritability and could not be replicated using a cluster-based approach. These results 245 
demonstrate the utility of modeling continuous cell states using a topic modeling framework. 246 
 247 
A high-resolution map of caQTLs in PBMCs 248 
 249 
We next used our harmonized dataset to map the impact of genetic variation on chromatin 250 
accessibility in multiple cell-types. To map caQTLs, we first used RASQUAL to model both intra-251 
individual allelic-imbalance and inter-individual variation in chromatin accessibility for SNPs in a 252 
10 Kb window flanking the peak center in PBMCs (aggregating all cells from a donor) as well as 253 
the seven immune cell-types defined in our L1 annotation. We used phenotypic principal 254 
components (PCs), genotype PCs, and multiple quality control measurements27 as covariates 255 
(Methods, Extended Data Fig. 4a). In total, we identified 37,390 caQTLs (corresponding peaks 256 
are referred as cPeaks hereafter, making up 11.7% of all tested peaks), 8,792 of which were 257 
discovered in L1 cell-types (Fig. 3a), but not when aggregating all PBMC cells. This far surpasses 258 
the number of significant caQTLs identified in previous studies9,28. 259 
 260 
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To verify that the caQTLs we found are likely true positives, we separately mapped PBMC caQTLs 261 
in each of the three scATAC-seq datasets. We found multiple lines of evidence indicating that the 262 
caQTLs uniquely identified in our harmonized data (“novel caQTLs”) are bona fide caQTLs. First, 263 
novel caQTLs showed allelic imbalance in the smaller dataset from Benaglio et al., despite being 264 
non-significant (Fig. 3b). Second, both our total caQTL set and novel caQTLs are strongly 265 
enriched in bulk caQTLs from lymphoblastoid cell lines (LCLs) (Fig. 3c)29. Finally, caQTLs in L1 266 
cell-types showed cell-type specific enrichment in eQTLs from 15 immune cell-types in the DICE 267 
consortium1,30. For instance, caQTLs in monocytes and B cells are the most enriched for eQTLs 268 
in classical/non-classical monocytes and naive B cells in DICE, respectively (Fig. 3d). Similarly, 269 
caQTLs in CD4 T cells were broadly enriched in eQTLs across various T cell subtypes in DICE. 270 
When visualizing the p-value distribution of caQTL SNPs in DICE eQTLs, a similar trend emerged 271 
(Fig. 3e). We also obtained single-cell eQTLs identified from scRNA-seq data collected from 63 272 
COVID-19 and 106 control donors, of which 25 donors overlap ours (Randolph et al.). Again, we 273 
found cell-type-specific enrichment of caQTLs in eQTLs in matched cell types (Extended Data 274 
Fig. 4b). Together, this evidence suggests that our caQTLs are likely to be true positives. 275 
 276 
The goal of our work is to determine the extent to which caQTLs can explain immune disease-277 
associated loci. However, RASQUAL does not report effect size and standard error of identified 278 
caQTLs, which complicates statistical integration of RASQUAL caQTLs with GWAS summary 279 
statistics. Additionally, caQTLs mapped using RASQUAL are biased toward heterozygous SNPs 280 
with high read coverage, as SNPs outside peaks have weaker or no allele-specific signal, and 281 
lower phasing accuracy. To adapt single-cell caQTL data for colocalization analysis31, TWAS32,33, 282 
mashr34 and meta-analysis35, we used a single-cell Poisson mixed-effects model (sc-PME)36 to 283 
generate standard summary statistics of caQTL effects. In addition to providing critical statistics 284 
for downstream statistical analyses, sc-PME allows a larger mapping window (250Kb) compared 285 
to the 10Kb used in RASQUAL. This window is difficult to extend in RASQUAL because it requires 286 
haplotype phasing, which worsens as a function of distance. Yet, a larger mapping window may 287 
help capture additional significant caQTLs (Extended Data Fig. 4c). 288 
 289 
To reduce computational time and avoid inflated p-values due to high dropout rates in scATAC 290 
count data, we restricted our analysis to the 37,390 significant cPeaks from RASQUAL in PBMC 291 
and L1 cell-types. As expected, we did not find many caQTLs in underrepresented cell-types 292 
(5,006 caQTLs in DC and 3,662 caQTLs in “Other T Cells”, 10% FDR). However, in the other 5 293 
immune cell-types, we identified 10,739-22,785 caQTLs (mean: 16,297; 10% FDR). We then 294 
compared sc-PME results to those from RASQUAL, focusing specifically on the effect size 295 
estimates at top caQTL SNPs. We observed high concordance between the two approaches (e.g. 296 
98.08% in monocytes; Fig. 3f), supporting the validity of the sc-PME results. We also found that 297 
across L1 cell-types, an average of 79.1% of RASQUAL caQTLs are replicated by sc-PME. As 298 
anticipated, the rate of replication is lowest among rare cell-types (Fig. 3g). Finally, compared to 299 
a single-cell linear mixed-effects model, effect sizes from sc-PME had higher reproducibility and 300 
correlation with RASQUAL caQTLs (Extended Data Fig. 4d).  301 
 302 
We hypothesized that sc-PME would allow us to map caQTLs missed by RASQUAL owing to 303 
larger testing window sizes. To test this, we analyzed 1,337 peaks in B cells whose sc-PME lead 304 
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QTLs are more than 10 Kb away from the cPeak center but reside in distal chromatin accessibility 305 
peaks, as these cases are more likely to capture distal causal effects. These distal peaks are 306 
enriched in cPeaks (8.9% versus 3.4% genome-wide, p<2e-16; hypergeometric test), suggesting 307 
that sc-PME captures bona fide distal caQTLs that are missed by RASQUAL. We highlight a peak 308 
(chr10:47599729-47600229) whose lead RASQUAL caQTL is located within the cPeak itself, but 309 
the lead sc-PME caQTL is ~50 Kb upstream, is much more statistically significant, and colocalizes 310 
with an eQTL for gene ANTXRLP1 in B cells (PP4=0.95, Fig. 3h). Thus, beyond providing critical 311 
summary statistics (i.e. Z-scores) that can be used for downstream statistical analyses, sc-PME 312 
can also help capture causal SNPs that are invisible to RASQUAL. 313 
 314 
In addition to identifying caQTLs in the L1 cell-types, we identified dynamic genetic effects along 315 
cell trajectories as defined by loadings from our topic modeling. Specifically, we tested for the 316 
linear interaction between lead caQTL in the L1 cell-types and the loadings of each topic 317 
(Methods), which capture a continuum of cell states along different axes of biological variation. 318 
We only mapped dynamic caQTLs in each cell type to avoid confounding with cell-type specific 319 
caQTLs. In total, we identified 4,200 peaks (Q-value < 0.01) that have at least one dynamic caQTL 320 
in one or more cell-type-topic pairs. On average, we detected 158 significant dynamic caQTL in 321 
each cell-type-topic pair and, as expected, we found that the number of cells in a topic greatly 322 
influenced the statistical power for calling dynamic caQTLs (Fig. 3i). 323 
 324 
To showcase examples of dynamic caQTLs, we highlight k17-interacting caQTLs in CD8 T cells. 325 
We divided dynamic caQTLs into two groups: (i) Consistently significant, which are significant 326 
along the entire k17 trajectory, but with varying effect sizes, and (ii) Partially significant caQTLs, 327 
which have significant effects in parts of the trajectory. The variability in the effect sizes of these 328 
caQTLs along the k17 trajectory is visualized and contrasted with that of randomly chosen non-329 
dynamic caQTLs (likelihood-ratio test p-value > 0.5) (Fig. 3j). To map dynamic caQTL peaks to 330 
genes, we used the Activity-by-Contact (ABC) model and found that genes associated with k17 331 
dynamic caQTLs were enriched in immune and disease-related pathways, including natural killer 332 
cell mediated cytotoxicity (GO:0002228, p-value=2.61e-8) and regulation of lymphocyte activation 333 
(GO:0051249, p-value=3.36e-7) (Extended Data Fig. 4e). Additionally, several linked genes in 334 
ABC model were also implicated in the k17-associated COVID-19 genes we identified in topic 335 
analysis, including IFNLR1, IL5RA, IL6ST, KLRC4, KLRD1, KLRK1, SYNGR1, TLR1 and 336 
TNFSF14. 337 
 338 
In summary, we established a map of 37,390 static and 4,200 dynamic caQTLs in PBMC and 339 
common immune cell-types. Not only do these caQTLs capture the impact of genetic variants on 340 
chromatin accessibility in common immune cell-types, but they also capture dynamic effects that 341 
manifest in important cell contexts such as cytotoxic cells. Summary statistics for all caQTLs can 342 
be readily used in standard and popular downstream analyses and are publicly available (Zenodo: 343 
TBD). 344 
  345 
Sharing and specificity of caQTLs and eQTLs across cell-types and states 346 
 347 
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Observations from single cell RNA-seq studies suggest that eQTLs and caQTLs are largely cell-348 
type-specific9,28,37. In contrast, molQTL maps derived from bulk RNA-seq data suggest that most 349 
QTL effects are shared across cell-types1,38–40. We sought to systematically evaluate the 350 
specificity of caQTL effects across the seven immune cell-types in our L1 annotation, and to 351 
evaluate their cell-type specific impact on gene expression levels. 352 
 353 
We first compared the sharing of our sc-PME caQTLs. The general picture that emerged is that 354 
the majority of caQTLs are shared among all seven immune cell-types, except for monocytes, for 355 
which 42.5% of caQTLs identified were monocyte-specific. Still, only an average of 18.8% of 356 
caQTLs were cell-type specific, and this number is even lower after excluding monocytes (12.9%, 357 
Fig. 4a). Interestingly, these results suggest much higher QTL sharing than those obtained from 358 
RASQUAL caQTLs, for which 20,851 (68.5%) were unique to one cell-type, and merely 49 359 
caQTLs were shared in all seven cell-types (Fig. 4b). Thus, the discrepancies in sharing between 360 
RASQUAL and sc-PME are explained by statistical power, and further increasing QTL mapping 361 
power will yield higher estimates of sharing. We conclude that the prevalence of cell-type specific 362 
QTLs observed in single-cell genomics compared to bulk genomics data is likely explained by low 363 
QTL mapping power rather than cell-type specificity. For this reason, we used sc-PME caQTL 364 
results for all analysis below. 365 
 366 
Chromatin accessibility QTLs are expected to regulate promoter or enhancer activity with an effect 367 
on the expression level of one or multiple nearby genes; therefore, we asked whether our sc-PME 368 
caQTLs are also eQTLs in the DICE dataset or in the scRNA-seq dataset from matched COVID-369 
19 patients and controls. As the DICE dataset consist of 15 bulk sorted immune cell types from 370 
~90 individuals30, we matched the 15 cell-types/states available to five cell-types in our scATAC 371 
data (excluding DC and “Other T cells” in L1 annotation; Extended Data Fig. 5a). In total, we 372 
identified 6,228 unique caQTL-eQTL pairs that colocalized in at least one DICE-matching context 373 
(referred to as COLOC caQTL-eQTL pairs hereafter), including 2,635 eGenes (24% of all tested) 374 
(Supplementary Table 9). In comparison, when using our eQTLs from scRNA-seq of matched 375 
COVID-19 patients and controls (Randolph et al.), we found fewer caQTL-eQTL colocalizations 376 
(representing only 203 cPeaks, or 2.6% of all tested; Fig. 4c). This is possibly due to the sparsity 377 
of the PBMC scRNA-seq data compared to bulk RNA-seq of sorted immune cells. We therefore 378 
used caQTL colocalizations with DICE eQTLs for downstream analyses. 379 
 380 
We made two notable observations from this analysis. First, a very small fraction of caQTLs 381 
colocalizes with an eQTL. Across five contexts, only 4,088 cPeaks (18.6% of all tested) were 382 
colocalized with an eQTL (i.e. “eQTL-caQTL”). This suggests that the majority of caQTLs do not 383 
influence the expression level of a nearby gene in the many immune cell-types and contexts 384 
included in the DICE dataset (Fig. 4c). Second, even when an eQTL colocalizes with a caQTL in 385 
DICE, it often does so in just a single context. Indeed, 5,995 (84.5%) of all caQTL-eQTL pairs 386 
exist in just one context. This is in stark contrast to the widespread sharing of caQTL we observed. 387 
In fact, the majority of caQTLs shared between cell-types do not have shared colocalization with 388 
an eQTL. For example, among the 3,091 caQTLs with effects in both CD8 T cells and monocytes, 389 
only 134 were eQTL-caQTLs in both cell-types. This number is notably small considering that 390 
4,805 and 7,425 eQTL-caQTL colocalizations were identified in CD8 T cells and monocytes, 391 
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respectively (Fig. 4c). For example, cPeak chr11:60018902-60019402 has a shared caQTL in 392 
monocytes and CD8 T cells, but only colocalized with an MS4A4A eQTL in monocytes (Fig. 4d). 393 
Similarly, shared cPeak chr1:89742288-89742788 only colocalized with GBP5 in naive CD8 T 394 
cells in DICE (Fig. 4d). In both cases, the lack of colocalization is attributed to the absence of 395 
eQTL signals. Thus, we find that eQTL effects are more cell-type specific compared to caQTLs 396 
at a large number of loci. 397 
 398 
To understand how caQTLs impact gene expression levels in a cell-type specific manner despite 399 
affecting accessibility in multiple cell-types, we sought to identify genomic factors that can predict 400 
the presence or absence of caQTL-eQTL colocalizations. To this end, we used a logistic 401 
regression model to predict caQTL-eQTL colocalization with (1) gene expression level, (2) 402 
chromatin accessibility level, (3) enhancer-to-gene links from ABC model41 in matched cell-types 403 
and (4) whether a caQTL-eQTL pair colocalize in multiple cell-types. Notably, gene expression or 404 
chromatin accessibility levels were not predictive of caQTL-eQTL colocalization, suggesting that 405 
statistical power does not explain the lack of caQTL effects on gene expression levels. 406 
Interestingly, although many caQTL-eQTL colocalizations are cell-type specific, we found that a 407 
strong predictor for caQTL-eQTL colocalization in a given cell-type is the presence of a caQTL-408 
eQTL colocalization in another cell-type (Fig. 4e), consistent with the notion that cis-regulatory 409 
elements – particularly promoters – control the same genes across cell-types. We found that the 410 
second most predictive feature was enhancer-to-gene links from the ABC model (most predictive 411 
in monocyte: log2 effect=1.007, p-value=1.63e-66; least predictive in CD8 T cell: log2 effect=0.44, 412 
p-value=4.70e-7), providing a mechanistic explanation for cell-type specific caQTL effects on 413 
gene expression levels. These findings highlight the importance of distinguishing “merely active” 414 
accessibility peaks from “functional” peaks in caQTL analyses. Critically, our observations indicate 415 
that a large fraction of caQTLs have no impact on gene expression levels in any given cell-type 416 
because they are not physically connected to any gene in that cell-type. 417 
 418 
We also asked whether the presence of specific TF binding motifs could predict eQTL-caQTL 419 
colocalization in a cell-type. We focused on a comparison between CD8 T cells and monocytes 420 
as many TFs driving accessibility of these two cell-types differ and have been well characterized. 421 
Interestingly, we found that, compared to all peaks as background, cPeaks with cell-type specific 422 
caQTL-eQTL colocalizations were enriched for known lineage-associated TF motifs, e.g. RUNX1, 423 
RUNX2 and CBFB in CD8 T cells, and CEBPA, CEBPB and SPIB in monocytes. By contrast, we 424 
found that shared caQTL-eQTL colocalizations are enriched for TFs with broad activity, including 425 
ELK4 and E2F1 (Fig. 4f). These results suggest that cell-type-specific TFs can potentiate the 426 
impact of caQTLs on gene expression in a cell-type-specific manner. 427 
 428 
To find potential cellular contexts in which CD8 T cell or monocyte cPeaks without eQTL 429 
colocalization might potentiate an eQTL effect, we asked whether cPeaks without any eQTL 430 
colocalization were enriched in any recognizable TF binding motifs. In CD8 T cells, we found 431 
similar enrichments for a subset of TFs (including RUNX1, RUNX2, CBFB) in cPeaks with or 432 
without eQTL colocalizations. However, motifs for another set of TFs (including EOMES, RUNX3 433 
and TBX20) were significantly enriched in cPeaks without eQTL colocalization (Fig. 4g, left). 434 
Notably, EOMES, RUNX3 and TBX20 are all highly enriched in accessible regions of CD8 TEM 435 
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cells (Fig. 4g, right), supporting a potential gene regulatory function of these caQTLs in CD8 TEM 436 
cells. Further supporting this possibility, EOMES regulates differentiation of effector and memory 437 
CD8 T cells, and is also implicated in exhaustion; and RUNX factors are associated with CD8 T 438 
effector/memory (TEM) populations42–44. Although DICE dataset contains eQTLs from 15 different 439 
immune cell-types including activated CD8 T cells, it lacks eQTLs from exhausted or long-term 440 
memory CD8 T cells. Thus, many cPeaks lacking eQTL colocalizations likely correspond to 441 
poised or “primed” enhancers45 that can impact gene expression levels in a cell-type-specific 442 
manner through activation of cell-type-specific TFs. 443 
 444 
Taken together, our findings suggest that the impact of genetic variants on chromatin accessibility 445 
can be detected in many cell-types. However, whether chromatin accessibility at these regions 446 
influences gene expression levels depends on cell-type specific TFs, resulting in cell-type specific 447 
eQTL effects that are difficult to predict from caQTLs alone. 448 
 449 
GWAS loci colocalize more often with caQTL than eQTLs 450 
 451 
We sought to characterize the utility of our caQTLs for interpreting immune-related GWAS loci. 452 
We colocalized sc-PME caQTLs with GWAS of 11 immune-related diseases, two COVID-19 453 
phenotypes and 36 blood phenotypes. We compared these results with eQTL-GWAS 454 
colocalization from DICE43. In total, 56.8% (4,696 out of 8,271) of GWAS loci across all traits 455 
(GWAS-SNP pairs) colocalized either a caQTL or an eQTL (n=1,532), only caQTLs (n=2,015), or 456 
only eQTLs (n=1,149) (Supplementary Table 10,11).  457 
 458 
Among GWAS loci that colocalizes with both, we found an RA locus46 that colocalizes with a 459 
PVRIG eQTL in Tfh and Tregs, and a caQTL in CD4 T cells. PVRIG (also known as CD112R) is 460 
a co-inhibitory receptor for T cells47. The convergence of evidence from gene expression and 461 
chromatin accessibility suggests that genetically determined PVRIG expression changes underlie 462 
RA risks, potentially by modulating T cell activation (Extended Data Fig. 5b). As an example of 463 
GWAS locus that colocalizes with only eQTLs, RPS26 gene has a strong eQTL that is shared in 464 
all immune cell-types in DICE colocalizing with an RA locus (12:56470625; PP4: 0.93-0.95). 465 
Interestingly, the TSS peak of RPS26 (chr12:56435365-56435865) is accessible in all cell types, 466 
but their caQTL did not colocalize with the RA GWAS locus, suggesting possible alternative eQTL 467 
mechanisms48 (Extended Data Fig. 5c).  468 
 469 
GWAS loci that colocalize with caQTL but not eQTLs (caQTL-only) are more difficult to interpret. 470 
Yet, this category was the largest colocalization category of all, and greatly increased the number 471 
of explained GWAS loci from an average of 32.9%, when considering eQTLs alone, to 57.3% 472 
when adding caQTLs (Fig. 5a). These findings mirror results from recent studies5,6,49, which also 473 
found that many GWAS loci are associated with changes in chromatin-level phenotypes but not 474 
mRNA levels. This led us to wonder how GWAS loci that colocalizes with a caQTL but not an 475 
eQTL might function. 476 
 477 
To nominate causal genes at caQTL-only GWAS loci, we focused on cPeaks overlapping with 478 
TSS. In total, 220 (15.3%) GWAS-caQTL loci mapped to promoter regions, which allowed us to 479 
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nominate a putative causal gene. For example, we identified a peak ~100 bp upstream of the 480 
gene ZFP36L1. In CD4 T cells, the same caQTL colocalized with multiple GWAS including CD, 481 
ulcerative colitis (UC), RA and MS, suggesting it may affect a common mechanism underlying 482 
multiple autoimmune diseases. ZFP36L1 is an RNA-binding protein that is differentially expressed 483 
in osteoarthritis and coeliac disease and has been shown to regulate T cell and B cell 484 
development50–52, although its exact mechanism in other autoimmune diseases remains unknown 485 
(Supplementary Fig. 5d). In another case, the promoter peak (chr22:37256806-37257306) for 486 
gene NCF4 has a caQTL colocalizing with an RA GWAS locus in NK and CD8 T cells 487 
(Supplementary Fig. 5e). NCF4 has been identified as a risk gene for RA by genetic associations 488 
previously; it might be linked to NADPH metabolism in RA and can also regulate NK/CD8 T cell 489 
frequencies53–55. However, previous eQTL studies did not nominate this gene for RA. These cases 490 
suggest that caQTL-GWAS colocalization can, in a limited number of cases, find putative disease 491 
genes. The 220 caQTL-only colocalizations gene promoters can be found in Supplementary 492 
Table 12. 493 
 494 
We also asked whether cell-type specific caQTLs or dynamic caQTLs across our defined topic 495 
trajectories could explain GWAS hits. On the one hand, we found that cell-type specific caQTLs 496 
are less likely to colocalize with GWAS hits compared to shared caQTLs or all caQTLs combined. 497 
On the other hand, dynamic caQTLs were more likely to colocalize with GWAS hits than other 498 
types of caQTLs, suggesting that caQTLs with dynamic effects tend to capture trait-relevant 499 
regulatory elements (Fig. 5b). Using the RA GWAS as an example, we found that 24 out 69 500 
(34.8%) GWAS loci that colocalized with a caQTL have an underlying dynamic effect on chromatin 501 
accessibility, significantly more than expected by chance (OR=2.27, p-value=1.70e-05; Fisher’s 502 
exact test). These results suggest that identifying caQTLs with dynamic effects may help interpret 503 
GWAS hits. Still, dynamic caQTLs contributed to very few colocalization with GWAS in absolute 504 
numbers because the vast majority of caQTLs do not exhibit dynamic effects, at least at current 505 
sample sizes (Fig. 5c). 506 
 507 
Limited convergence of caQTL and eQTL signals prevents functional interpretation of 508 
most trait-associated loci 509 
 510 
We have shown that most GWAS-caQTL colocalizations do not have a corresponding 511 
colocalization with an eQTL, and that only a small number of these colocalizations are likely to 512 
help with causal gene identification because they impact a gene promoter. We next turned to the 513 
GWAS loci that colocalized with both an eQTL and a caQTL and show improved identification of 514 
causal disease genes only when both caQTL and eQTL colocalize in the same cellular context.  515 
 516 
We first examined the cell-type contexts that were implicated by GWAS loci with both a caQTL 517 
and an eQTL colocalization (caQTL+eQTL loci). To allow comparisons between our eQTL and 518 
caQTL contexts, we assigned the 15 DICE cell-types to one of the five common immune cell-type 519 
contexts defined in our scATAC-seq data (Extended Data Fig. 5a). We found that a substantial 520 
fraction (375/1,532, 25.4%) of the caQTL+eQTL loci colocalized with the caQTL and eQTL in 521 
distinct cell-types (Fig. 5d). We also observed that GWAS loci that colocalize with a caQTL or 522 
eQTL in multiple contexts tend to colocalize with multiple distinct peaks and eGenes, respectively 523 
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(Extended Data Fig. 6a,b). These observations suggest pleiotropic genetic effects for a 524 
substantial fraction of GWAS loci, which hinders our ability to identify which gene or cell context 525 
is likely causal for the trait of interest. 526 
 527 
We found that 24.4% of caQTL-GWAS colocalizations also colocalize with an eQTL in the same 528 
contexts. We hypothesized that eQTLs at these GWAS loci more likely pinpoint the causal 529 
disease gene as both caQTL and eQTL converge in the same context. To test this, we leveraged 530 
the SNP-to-gene pairs database (S2G)56 as a ground truth for causal SNP-to-gene effects. We 531 
tested the enrichment of SNP-to-gene links inferred from our QTL data among S2G pairs, using 532 
the closest gene as baseline (Fig. 5e). We found that caQTL+eQTL S2G pairs in overlapping 533 
contexts are significantly enriched for S2G links (log2OR = 0.70, p-value = 7.64e-8; Fisher’s exact 534 
test), whereas caQTL+eQTL pairs in different contexts were depleted with S2G links (log2OR=-535 
0.35, p-value=7.95e-3) (Fig. 5f). Furthermore, we found no enrichment in S2G pairs when using 536 
the eGene to link SNPs to genes at GWAS loci colocalized only with an eQTL (log2OR=-0.31, p-537 
value=1.89e-2), or when using the nearest TSS to the cPeak at caQTL-only GWAS loci (log2OR=-538 
0.02, p-value=0.89) (Fig. 5f). Thus, GWAS colocalization with a caQTL and an eQTL in the same 539 
cell context is helpful for determining causal genes. Conversely and notably, colocalization with a 540 
caQTL or eQTL alone or in non-overlapping contexts does not help identify causal genes, at least 541 
compared to simply using the nearest gene. 542 
 543 
Using GWAS loci that colocalized with a caQTL and eQTL in the same contexts, we were able to 544 
narrow down the possible causal genes to no more than two genes and two contexts for hundreds 545 
of loci. Many of the candidate genes and cellular contexts have known roles in disease etiology. 546 
For instance, one inflammatory bowel disease (IBD) GWAS locus 9:139269198 colocalized with 547 
eQTLs of CARD9 and SDCCAG3 in monocytes, and that of DNLZ in TH1-17 cells. The same IBD 548 
locus is also colocalized with two caQTLs in monocytes and NK cells. Thus, we nominated 549 
CARD9 and monocytes as the likely causal gene and context for this GWAS locus. In support of 550 
this, CARD9 (but not SDCAG3) is one of the well-established causal genes in IBD57–59, and it is 551 
the only gene linked to the GWAS SNP 9:139269198 in the S2G database (S2G score=1, the 552 
largest possible score in S2G). Furthermore, the colocalized peak is predicted to be connected to 553 
CARD9 TSS in monocytes in the ABC model, whereas no enhancer-TSS links were found in T 554 
cells. CARD9 is highly expressed in classical and non-classical monocytes, whereas DNLZ is 555 
lowly expressed in TH1-17 cells. The identified peak (chr9:139271584-139272084, ~13.3Kb 556 
upstream of CARD9 TSS) is also monocyte-specific and harbors fine-mapped IBD GWAS SNPs 557 
(Fig. 5g). This example highlights the need to consider multiple lines of molecular information to 558 
obtain a set of high-confidence targets, and supports our interpretation that caQTL or eQTL 559 
colocalization can be misleading. 560 
 561 
In conclusion, GWAS colocalization with both a caQTL and an eQTL gives us the best chance at 562 
identifying the causal genes and contexts underlying trait association. However, most caQTL-563 
GWAS colocalization identified in our study did not colocalize with an eQTL in any context. Thus, 564 
although genetic effects on chromatin accessibility across multiple immune cell-types and 565 
contexts drastically increase GWAS loci colocalization rates to a molecular QTL, our work suggest 566 
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that they should be interpreted with caution as their effects on gene expression levels are yet 567 
unidentified. 568 
 569 
Discussion 570 
 571 
In this study, we constructed a harmonized map of single-cell chromatin accessibility 572 
accompanied with high-quality genotype information. Unlike single cell eQTLs studies which have 573 
become streamlined with the development of new approaches and best practice60,61, there exists 574 
few studies and approaches for caQTLs mapping in single cells. We show that by applying both 575 
allelic-imbalance modeling in RASQUAL and the sc-PME model, we can identify a set of high-576 
confidence caQTLs whose summary statistics can be used for state-of-the-art downstream 577 
analyses. In total, we were able to identify 37,390 caQTLs from our integrated scATAC-seq 578 
dataset, which quadrupled the number of caQTLs from that reported in a recent, smaller study36. 579 
We also utilized the continuous nature of cell loadings in topic analysis to map dynamic caQTLs. 580 
We find that topics are more straightforward to interpret compared to principal components36. 581 
 582 
Remarkably, we found that adding caQTLs increases colocalized GWAS loci by an average of 583 
~50% compared to eQTLs alone, suggesting that mapping caQTLs in single cells may be a 584 
promising paradigm for studying and biologically interpreting disease associated variants. As such, 585 
our work corroborates similar findings reported from recent bulk caQTL studies42. 586 
 587 
Still, there has been no straightforward explanation as to why, in any given cell-type context, many 588 
GWAS loci only have effects on chromatin, but not on gene expression level. We found that the 589 
sharing of caQTLs across immune cell-types is widespread, but their impact on gene expression 590 
levels is much more restricted owing to cell-type specific gene expression and/or cell-type specific 591 
enhancer-promoter interaction. Thus, we interpret novel caQTL-GWAS colocalization results with 592 
caution. We posit that many – if not most – caQTL-GWAS colocalizations do not reflect meaningful 593 
regulatory effects in a causal cell-type context. Thus, finding the gene and cell-type context that 594 
causally mediates genetic effects on complex traits may be difficult even when a caQTL-GWAS 595 
colocalization has been found. Our findings that caQTLs are widely shared across immune cell-596 
types and states indicate that most of these caQTLs may impact gene expression levels in 597 
immune contexts for which eQTLs are unavailable. Thus, increasing the cell context coverage 598 
maps of eQTLs will help in finding more cell-type contexts in which caQTL, eQTL, and GWAS 599 
signals all align, but this will also lead to uncertainty in which context is most relevant for the trait. 600 
 601 
Our findings are consistent with the existence of poised or primed enhancers, which are 602 
accessible in many cell-types and states, but affect expression level of nearby genes only when 603 
context specific transcription factors are activated (e.g. upon immune stimuli or during 604 
differentiation)45. However, the concept of primed enhancer does not generalize well across very 605 
different immune cell-types such as B cells and monocytes, in which many open chromatin 606 
regions are shared, but their impact on gene regulation may differ. Of note, a recent multi-modal 607 
study shows that open chromatin states are shared among various RA-associated cell-states, 608 
whereas the gene expression profiles are distinct62. More work is required to figure out how the 609 
same cis-regulatory region can impact different genes in different cell-types. But what is clear is 610 
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that these effects appear prevalent and complicates fine-mapping of causal genes at disease 611 
GWAS loci.  612 
 613 
In conclusion, we demonstrate the utility of chromatin accessibility data in the functional study of 614 
regulatory elements, but we argue that caQTL data — especially those without clear effects on 615 
gene expression levels — often do not have any downstream regulatory impact. Thus, we 616 
highlight the need for integrating additional and orthogonal information such as eQTL data, 617 
enhancer-promoter links (e.g. ABC score), and other functional data to elucidate mechanisms of 618 
GWAS loci. Our findings suggest that population-scale studies using multi-omic single cell assays 619 
in disease-relevant contexts will be instrumental in improving our ability to uncover the molecular 620 
mechanisms through which individual non-coding variants impact disease risk. More 621 
challengingly, our results suggest that we have yet to identify many of the causal cell-types for 622 
GWAS traits. Mapping eQTLs in relevant cell populations from disease patients1,63,64 or from 623 
organoids65,66 subject to diverse treatments may be a fruitful approach in this direction. 624 

Methods 625 

Clinical sample collection. 626 
We collected PBMCs from 20 COVID-19 patients hospitalized in Montréal, Canada with COVID-627 
19 between April 2020 and December 2021 who initially presented with symptomatic, primary 628 
infection. All acute phase samples were collected from unvaccinated patients within 20 days of 629 
symptom onset. None received plasma transfer therapy. We also prospectively sample a subset 630 
of the same patients during convalescent phase COVID-19 (n = 11), and healthy controls (n = 5). 631 
The respective institutional IRBs approved multicentric protocol: MP-02-2020-8929. Written, 632 
informed consent was obtained from all participants or, when incapacitated, their legal guardian 633 
before enrollment and sample collection. 634 
 635 
scATAC-seq sample processing. 636 
Initial preparation. Cryopreserved samples were thawed and cultured in RPMI 1640 without 637 
glutamine (Fisher) supplemented with 10% fetal bovine serum (Corning), 1% L-glutamine (Fisher), 638 
and 0.01% gentamicin from 10 mg/mL stock (Fisher) overnight. After incubation, samples were 639 
washed with PBS, passed through a 40μm filter, and manually counted with trypan blue staining 640 
by brightfield hemocytometer. 641 
 642 
Nuclei isolation. As in the demonstrated protocol CG000169, Rev. E, from 10X genomics, we 643 
lysed each batch of 1 million cells with a IGEPAL 630 / digitonin based lysis buffer for 3 minutes 644 
on ice. Nuclei were then washed once and resuspended in 7.5uL of 10X Genomics Nuclei Buffer. 645 
Finally, 2.5uL of nuclei were counted by trypan blue staining on a hemocytometer.  646 
 647 
Single-cell ATAC library preparation and sequencing. 648 
Single-cell ATAC capture. We followed the 10X Genomics Chromium Next GEM Single Cell 649 
ATAC Reagent kit with version #1.1. Nuclei were transposed by isothermal incubation at 37°C 650 
and Post Gel Bead-in-Emulsion (GEMs) were generated by the 10X Controller and subjected to 651 
PCR as described in the 10X User Guide, and post-incubation products were stored at -20°C until 652 
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downstream processing. Each sample was captured individually (i.e. without pooling) aiming for 653 
5,000 nuclei from each sample to be captured.  654 
 655 
Single-cell ATAC library preparation. Post GEM incubation cleanup and sequencing library 656 
preparation were performed as described in the Single Cell ATAC Reagent Kits v1.1 User Guide 657 
(10X Genomics). Briefly, we cleaned up post-incubation GEMs first with DynaBeads MyOne 658 
SILANE beads (ThermoFisher Scientific) and then with SPRIselect reagent (Beckman Coulter). 659 
Libraries were constructed by performing sample index PCR (98 °C for 45 s, 9 or 10 cycles of 660 
98°C for 20 s, 67°C for 30 s, 72°C for 20 s, and 72°C 1 min) followed by SPRIselect size selection.  661 
 662 
Next-generation sequencing. Prior to sequencing, all multiplexed single-cell libraries were 663 
quantified using the KAPA Library Quantification Kit for Illumina Platforms (Roche) and pooled in 664 
an equimolar ratio. Libraries were sequenced by 100 base pairs (read1: 50, i7: 8, i5: 16, read2: 665 
50) on an Illumina NovaSeq 6000. 666 
 667 
Preprocessing of in-house and public scATAC-seq data. 668 
We processed data in all three studies from FASTQ files using the following pipeline. Reads were 669 
processed using cellranger-atac v2.1.0 with an in-house GRCh37 reference genome generated 670 
using scripts from 10X Genomic documentations (https://support.10xgenomics.com/single-cell-671 
atac/software/release-notes/references#GRCh38-2020-A-2.0.0). We removed reads that were 672 
unmapped, did not have primary alignment, failed platform/vendor quality checks, and had 673 
duplicated or supplementary alignment; we only kept reads that were paired and mapped in 674 
proper pairs (‘samtools view -f 3 -F 3844’). We then removed allelic-biased reads using the 675 
WASP67 workflow implemented in Hornet. We converted the resulting BAM file from each library 676 
into a fragment file using sinto v0.7.5 and loaded into an ArchR project separately. We then 677 
analyzed each library separately to identify high-quality barcodes and remove doublets. As a first 678 
pass, we excluded cell barcodes with fewer than 1,000 and more than 50,000 unique fragments, 679 
with a TSS enrichment score lower than six for all libraries and excluded those with high ratios of 680 
reads mapping to nucleosomes, mitochondrial genome or ENCODE blacklist regions in a library-681 
specific manner (Extended Data Fig. 1b). We also used AMULET68 on BAM files to flag and 682 
remove potential doublets (AMULET q-value < 0.1). 683 
 684 
Preprocessing and cell-type annotation of public scRNA-seq data. 685 
We re-analyzed previously published PBMC scRNA-seq data from COVID-19 patients67. Count 686 
matrix was downloaded from Human Cell Atlas webpage and converted to a Seurat object. As a 687 
first pass, we ran Azimuth with PBMC reference to annotate all the cells. We compared Azimuth 688 
L1 annotation (B, CD4 T, CD8 T, dendritic cells (DC), monocytes, natural killer cells (NK), other 689 
T cells) with original cell type labels provided by the author, and only kept cells with consistent 690 
labels. 691 
 692 
Basic analysis of scATAC-seq data 693 
Through the processing steps above, we identified a list of barcodes that represent high-quality 694 
single cells with individual ID for each library. We then loaded the fragment files containing these 695 
barcodes from all libraries to one ArchR project for integrated analysis. Dimension reduction on 696 
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this full dataset was performed on the binary tile matrix, selecting the top 30,000 variable tiles and 697 
outputting 50 reduced dimensions with 'addIterativeLSI' function in ArchR. We then feed this LSI 698 
projection to the 'reducedMNN' function in R package 'batchelor' to remove batch effects across 699 
libraries69. We implemented a wrapper function to add MNN-adjusted dimensions to the ArchR 700 
project object, enabling downstream analysis within ArchR framework. Cell clusters were 701 
identified with a resolution of 0.8. For visualization, the reducedMNN-adjusted LSI was used to 702 
derive a UMAP embedding with ‘minDist=0.8’ and ‘spread=1’. 703 
 704 
To calculate gene activity scores (GA scores) from scATAC-seq profiles, we generated an in-705 
house gene reference set from the GENCODE v19 annotation. Basically, we started from all the 706 
gene symbols in the full GENCODE annotation and removed those whose ‘gene_type’ map to 707 
one of the following: snRNA, misc_RNA, snoRNA, rRNA, miRNA, pseudogene, 708 
polymorphic_pseudogene, IG_V_pseudogene, TR_V_pseudogene, IG_C_pseudogene, 709 
TR_J_pseudogene, IG_J_pseudogene, processed_transcript, sense_intronic, 710 
3prime_overlapping_ncrna and sense_overlapping, keeping 32,885 genes on chr1-22 and chrX. 711 
We then extracted the transcript start sites (TSS) and exons for these genes and constructed a 712 
gene annotation object that was added into our ArchR project. Our custom annotation includes 713 
important marker genes that are missed in the default hg19 annotation used by ArchR, such as 714 
gene LINC02446 (also known as RP11-291B21.2, Fig. 1f), a long non-coding RNA that marks 715 
activated CD8 T cells9. Using this custom gene annotation, we then calculated the GA score using 716 
‘addGeneScoreMatrix’ with default parameters in ArchR. 717 
 718 
To better annotate cell-types in our scATAC-seq data, we integrated it with our Azimuth-annotated 719 
scRNA-seq data and transferred the annotation labels to scATAC-seq cells. We first performed 720 
unconstrained integration using the ‘addGeneIntegrationMatrix’ function in ArchR. We then 721 
examined the confusion matrix between cell clusters and annotated cell-types. Several clusters 722 
contained mixed cell-types from the reference dataset. Upon further speculation, we found these 723 
clusters tend to have higher rates of mitochondrial DNA and lie between well-defined cell-types 724 
in the UMAP, suggesting these cells are of lower quality or are potential unremoved doublets. We 725 
excluded these cells from the dataset and performed constrained integration by restricting cells 726 
within four groups: T/NK cells, monocytes/DC, B cells and other (platelet and HSPC). After this 727 
round of constrained integration, we found several T/NK cell subtypes in L2 have very low cell 728 
numbers in scATAC-seq data, we therefore only kept labels with sufficient cell numbers (CD14 729 
Mono, CD16 Mono, NK, NK_CD56bright, NK Proliferating, pDC, cDC2, Platelet, B naïve, B 730 
intermediate, B memory, Plasmablast, gdT, MAIT, CD4 Naïve, CD4 TCM, Treg, CD8 Naïve, CD8 731 
TEM, CD8 TCM, HSPC) and performed another iteration of constrained integration. Finally, we 732 
re-calculataed the LSI, MNN-adjusted dimensions and the UMAP embedding and Leiden 733 
clustering on the remaining cells. 734 
 735 
To identify candidate peaks, we first produced pseudo-bulk group coverages in each Leiden 736 
cluster and used the three studies as sample labels in 737 
‘addGroupCoverages(sampleLabels=“Sample”)’. We then called reproducible peak set by setting 738 
‘reproducibility=2’ in ‘addReproduciblePeakSet’. In this way, we were able to identify peaks that 739 
are called in at least two of the three studies in our data. 740 
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 741 
Genotype imputation from aggregated scATAC-seq data. 742 
Read coverage across the genome was visualized using 'plotCoverage' from deepTools70, 743 
excluding blacklist regions from ENCODE. Genotype likelihood calculation and imputation were 744 
performed following GLIMPSE documentation69. Briefly, we first inferred genotype likelihoods 745 
across all SNPs in the 1000 Genome Project from filtered BAM files from scATAC data with 746 
'bcftools mpileup'. In this step, we only included sites with sequencing depth below 15 (“bcftools 747 
view -i 'FORMAT/DP<=15'”) to avoid regions with unreasonably high read coverage. Next, we 748 
merged genotype likelihood from all individuals from the three studies and performed GLIMPSE 749 
genotype imputation jointly. Imputed genotypes were phased with eagle v2.4.171. 750 
 751 
To confirm GLIMPSE-imputed genotypes from scATAC-seq reads are of high quality and are not 752 
biased by strong allele-specific signals in accessible chromatin regions, we compared Minimac4 753 
imputation from microarray with GLIMPSE results in the 13 individuals with microarray data from 754 
Benaglio et al7. We first imputed the microarray genotype data from the original study using the 755 
pipeline documented in Michigan Imputation Server72 756 
(https://imputationserver.readthedocs.io/en/latest/pipeline). We used the same reference panel 757 
as in our GLIMPSE pipeline. We then calculated mean imputation quality score (INFO score) for 758 
SNPs stratified by reference MAF bins. We also calculated correlation between genotype dosages 759 
for SNPs imputed using GLIMPSE and Minimac4 and derived mean correlation across the 13 760 
individuals in each reference MAF bin using ‘vcf-stats’. 761 
 762 
Topic modeling on scATAC count data. 763 
Fitting the topic model. Topic modeling was performed using the R package ‘fastTopics’71. We 764 
retrieved the cell-by-peak count matrix from the ArchR object. In practice, we considered two 765 
aspects in fitting Poisson NMF to our count data. First, fitting the topic model on the full data is 766 
computationally expensive. Second, the NMF problem is non-convex, meaning that each model 767 
fit returns slightly different results, making it difficult to compare the output using different 768 
parameters even on the same data. To speed up the model fitting process, we randomly down 769 
sampled 10,000 cells. For peaks that have zero counts in these 10,000 sampled cells, instead of 770 
removing them from the matrix, we further sampled cells where they have non-zero counts. This 771 
ensures that we can project the fitted model to the full count matrix. In total, 10,711 cells were 772 
used for the initial model fitting. To make sure we can easily compare multiple model fits on the 773 
same data, we first performed NMF using a small number of total topics (k), and then fit NMF with 774 
more topics conditioning on the previous model fit. We started by fitting the topic model with k=6 775 
using the ‘fit_topic_model’ function, using 100 main iterations and 200 refining iterations 776 
(‘numiter.main=100, numiter.refine=200’). This returned a multinomial topic model fitting, which 777 
was then projected to the full count data using the ‘predict’ function implemented in ‘fastTopics’. 778 
To fit a model with eight topics (k=8), we propagated the loading matrix and the factor matrix from 779 
k=6 with two more columns of uniformly distributed values (1/k for loading matrix and 1/[number 780 
of peaks] for score matrix). We then applied the fitting steps adapted from the ‘fit_topic_model’ 781 
function. Breifly, the expanded loading matrix and factor matrix were passed into 782 
‘init_poisson_nmf’ together with the down sampled count matrix to initialize a new Poisson model. 783 
Then, the model was fitted with EM algorithm for 100 iterations (main fitting) and updated with 784 
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SCD algorithm for 200 iterations in two consecutive runs of the ‘fit_poisson_nmf’ function. The 785 
fitted Poisson model was converted to a multinomial NMF model with ‘poisson2multinom’ function. 786 
The output of this final step is a cell-by-eight-topic loading matrix. We iterated this process with 787 
10, 12, 14, 16, 18 and 20 topics. This framework allowed us to keep the order of topics constant, 788 
making it possible to compare across model fits, while updating them when more topics are added. 789 
To visualize topic modeling results in a Structure plot, we performed PCA on the loading matrix 790 
(after centering and scaling) and used the rotated data matrix for K-means clustering (K=30). To 791 
avoid over-plotting, we randomly selected 2.5% of cells from each cluster, resulting in a subset of 792 
~5,500 cells for visualization. 793 
 794 
Calculation of gene-level scores from peak-level scores. To define a molecular program 795 
underlying each topic, we relied on the factor matrix. We selected the top 10% of peaks with the 796 
highest score in each topic. To calculate gene-level scores from peak-level scores, we applied 797 
ArchR’s exponential-weighting strategy to calculate gene activity scores. Briefly, scores of peaks 798 
within the gene body are directly summed up, and scores of peaks up to 5 Kb upstream of the 799 
gene TSS are weighted by distance-based power-law. We then calculated the Z score of each 800 
gene across all the topics. 801 
 802 
Stratified-LDSC analysis on top peaks in each topic. For s-LDSC analysis, we selected top 803 
10% peaks with the highest scores from each topic. Each peak was extended to 1,500 bp around 804 
its center. We used GWAS summary statistics for 50 phenotypes (11 immune-related diseases 805 
and 36 blood cell-type traits, and height as a negative control) (Supplementary Table 13). GWAS 806 
summary statistics were munged by ‘munge_sumstats.py’. LD score calculation and s-LDSC 807 
analysis were carried out according to LDSC documentation conditioning on default baseline 808 
annotations. 809 
 810 
Association between topic k17 loadings and COVID-19 status. To test whether k17 loadings 811 
are associated with COVID-19 status, we first calculated average donor-level k17 loadings for 812 
each sample. We only included cells from healthy controls or active COVID-19 at the time of 813 
sample collection and with k17 loading larger than 0.01, as cells below this cutoff largely represent 814 
estimation noise. We then fitted two mixed-effects logistic regression models: 815 

(1)		𝑙𝑜𝑔𝑖𝑡(𝐶𝑂𝑉𝐼𝐷 − 19)	~	𝑙𝑜𝑎𝑑𝑖𝑛𝑔!"# +𝑀𝑇𝑟𝑎𝑡𝑖𝑜 + 𝑛𝐹𝑟𝑎𝑔𝑠 + (1|𝑑𝑜𝑛𝑜𝑟)	816 
(2)		𝑙𝑜𝑔𝑖𝑡(𝐶𝑂𝑉𝐼𝐷 − 19)	~	𝑀𝑇𝑟𝑎𝑡𝑖𝑜 + 𝑛𝐹𝑟𝑎𝑔𝑠 + (1|𝑑𝑜𝑛𝑜𝑟)	817 

 818 
Formula (1) is the full model and (2) is the null model. We then performed a likelihood ratio test 819 
(LRT) with ‘anova’ function in R to test whether k17 loadings significantly predicts donor COVID-820 
19 status. 821 
 822 
Trajectory analysis in topic model. We defined the cell trajectory directly from topic loadings 823 
with slight modifications to accommodate the analysis workflow of the ArchR package. As a proof-824 
of-concept, we first scrutinized the B cell trajectory. Since k2 represents naive B cells, its loadings 825 
are the highest in naive B cells and decreases in memory B cells and plasmablast. To construct 826 
a trajectory that represents B cell maturation, we used the reverse order of k2 loadings, such that 827 
the trajectory value increases as naive B cells transit into memory B cells. The trajectory was 828 
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restricted to L1-annotated B cells, and we set the value of all other cell-types to ‘NA’, so that 829 
ArchR does not use these cells in the analysis. The trajectory values were then scaled to the 830 
range of 0-100 for downstream analysis. To study the change in the proportion of memory B cells 831 
or plasmablasts along the trajectory, the trajectory was divided into percentiles, and we calculated 832 
the proportion of non-naive B cells in each percentile according to L1 annotation. When building 833 
a trajectory for k9, we removed cells whose k9 loadings are below 0.1, as these likely represent 834 
background noise rather than biologically meaningful variations. 835 
 836 
After deriving the trajectory values from cell loadings, we added the trajectories to the ArchR 837 
project as a metadata column. To visualize the changes of gene activity scores along the 838 
trajectory, we used the ‘getTrajectory’ function, followed by ‘plotTrajectoryHeatmap’ functions with 839 
options ‘varCutOff=0.8, returnMatrix=TRUE’. The heatmap was visualized using 840 
ComplexHeatmap73. 841 
 842 
To assess the relevance of k17 trajectory to COVID-19, we first asked in a cluster-based analysis, 843 
how many differentially active genes can be found between healthy and COVID-19 cells. To do 844 
so, we compared all COVID-19cells with all healthy cells in k17 trajectory regardless of k17 845 
loadings using the ‘getMarkerFeatures’ function. We then grouped cells into quintiles according 846 
to their k17 loadings, where higher quintiles were enriched for more COVID-19 cells. We next 847 
tested for differential gene activity between all cells in the first quintiles and COVID-19 cells in the 848 
higher quintiles (second and above). Note in this test we used healthy and COVID-19 cells in the 849 
first quintile as control, following the idea that COVID-19 cells in the first quintile are epigenetically 850 
similar to healthy cells. 851 
 852 
Chromatin accessibility QTL mapping. 853 
RASQUAL caQTL mapping. Chromatin accessibility QTL (caQTL) were first mapped using 854 
RASQUAL on three grouping levels, whole blood-like (WB-like), L1 and L2 annotations. We 855 
generated pseudobulk counts by summing single-cell counts across cell barcodes within each 856 
group. For the WB-like group, we included all peaks and all individuals. For caQTL mapping in L1 857 
and L2 cell-types, we only included cell-types with at least 50 cells in at least 10 individuals. From 858 
the pseudobulk count table, we calculated library sizes and phenotype PCs (after scaling and 859 
centering; using 'prcomp' function in R). To get allelic-specific read counts, we extracted reads 860 
from each group using 'filterbarcodes' command from sinto v0.7.5 and counted allelic-specific 861 
reads using 'createASVCF.sh' from RASQUAL. We only kept bi-allelic SNPs with at least four 862 
minor allele counts across tested individuals. We included library size as offsets and five genotype 863 
PCs, the number of cells, and the GC content for each peak as covariates. RASQUAL was run in 864 
nominal mode and permutation mode. We extracted the lead SNP for each tested peak and used 865 
nominal and permuted log10(q-value) from RASQUAL to calculate empirical p-values with 866 
‘empPvals’ function from the ‘qvalue’ R package, and then derived q-values from the empirical p-867 
values. We used q-value below 0.1 as the cutoff for significant caQTLs. 868 
 869 
Enrichment of RASQUAL caQTLs in bulk LCL caQTLs. To test the enrichment of RASQUAL 870 
caQTLs from WB in bulk caQTLs from LCL, we obtained summary statistics from a previous 871 
study28. We extracted lead SNP for each peak in the LCL dataset and ranked them by their 872 
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significance. We then tested the enrichment of RASQUAL lead SNPs in the top 1%, 5%, and 10% 873 
of the most significant LCL caQTL lead SNPs using Fisher’s exact test. 874 
 875 
Enrichment of RASQUAL caQTLs in DICE bulk eQTLs. To test the enrichment of RASQUAL 876 
caQTLs from common immune cell types in bulk eQTLs from DICE, we first extracted the genomic 877 
locations of lead eQTL SNPs and extended it by 500 bp on each side and converted it to bed 878 
format. These eQTL regions form the genomic annotation in which caQTL enrichment is tested. 879 
We then converted RASQUAL lead caQTL SNP positions to bed format, and tested their 880 
enrichment in eQTL regions using QTLtools ‘fenrich’ command74, while feeding our peak set into 881 
the ‘--tss’ argument to adjust for the fact that RASQUAL caQTLs are enriched in the cPeaks 882 
themselves. The odd ratios from ‘fenrich’ were visualized after being normalized to the maximum 883 
odd ratio in each caQTL cell type. 884 
 885 
Single-cell Poisson mixed-effect model (sc-PME) caQTL mapping. Single-cell caQTL 886 
mapping with the sc-PME model was first performed in three studies separately. For continuous 887 
covariates, we included top five genotype PCs, top five LSI dimensions, TSS enrichment scores, 888 
fraction of mitochondrial reads, log10 of number of unique fragments, all of which are scaled and 889 
fitted as fixed effects. We also included libraries and donors as random effects. The Poisson 890 
mixed effect model was fitted using the ‘glmer’ function (‘family=poisson’) in the lme4 R package. 891 
We set the additional options as ‘nAGQ=0, control=glmerControl(optimizer="bobyqa", 892 
calc.derivs=F)’ to save computational time for model fitting. We performed meta-analysis using 893 
effect sizes and standard errors from all SNPs in the three datasets and ran Metasoft without 894 
genomic control. For downstream analysis, we used effect sizes and standard errors from the 895 
random effects model and p-values from the Han and Eskin's Random Effects model (RE2)34. To 896 
call significant caQTL in the meta-analyzed sc-PME results, we first applied Bonferroni correction 897 
for all SNPs in a given peak, extracted the lead SNP for each peak, and then calculated q-values 898 
from the Bonferroni-adjusted p-values across all lead SNPs. We used a q-value below 0.1 as a 899 
cutoff for significant lead caQTL. 900 
 901 
Dynamic caQTL mapping with sc-PME. To identify dynamic effects of lead caQTL SNPs along 902 
cell trajectories defined by topic modeling, we tested for interaction between genotype dosages 903 
and topic loadings. To avoid confounding dynamic caQTL with cell-type specific caQTL, we (1) 904 
mapped dynamic caQTLs separately in each common cell-type and (2) only included topics that 905 
are present in each cell-type as follows: B (k1, k11), CD4 T (k6, k7, k17), CD8 T (k3, k6, k7, k14, 906 
k17, k18, k19), NK (k3, k17), monocyte (k10, k12, k15, DC (k4, k10, k12, k15), other T cell (k3, 907 
k6, k8, k14, k17, k18, k19). For each SNP, we fitted a model with genotype-by-loading interaction 908 
term and a reduced model without the interaction term. We then use R function ‘anova’ to perform 909 
a likelihood-ratio test (LRT) comparing the two models, and used p-values from LRT to call 910 
significant dynamic caQTLs. Because we only tested the top caQTL SNP for every cPeak, we 911 
calculated q-values from LRT p-values in each topic separately, and then multiplexed the q-value 912 
by the number of topics in which a given SNP was tested for; this is equivalent to a Bonferroni 913 
adjustment on the number of topics tested for each SNP, thus caQTL SNPs from cells with more 914 
topics (e.g. CD8 T cells) were subjected to more stringent significant level cutoff. We reported 915 
adjusted q-value below 0.01 as significant dynamic caQTLs. 916 
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 917 
Colocalization of caQTLs with bulk eQTLs and GWAS. 918 
To perform colocalization between caQTLs and eQTLs, we used the eQTL summary statistics 919 
from the DICE study we re-processed and published before1. We tested for colocalization 920 
between a caQTL and an eQTL when there are more than 150 overlapping SNPs and their 921 
corresponding lead SNPs are among the overlapping SNPs. 922 
 923 
To perform colocalization between our caQTL and in-sample COVID-19 eQTLs, we used the list 924 
of significant eGenes defined as mashr34 local false sign rate (lfsr) below 0.1 in the accompanying 925 
manuscript (Randolph et al.). We tested for colocalization between a caQTL and an eQTL when 926 
there are more than 150 overlapping SNPs and their corresponding lead SNPs are among the 927 
overlapping SNPs. 928 
 929 
To perform colocalization between caQTL and GWAS, we used GWAS summary statistics of 11 930 
immune-related diseases and 36 blood cell-type GWAS that we accessed previously1. Briefly, we 931 
defined a GWAS locus as a 1 Mb window centered around a SNP with a p-value below 1e-7, 932 
starting from the SNP with the smallest p-value, removing all SNP lies within 1 Mb, and iteratively 933 
identified all GWAS loci until no SNPs with p-value below 1e-7 remained. Like eQTL, we tested 934 
for colocalization between a caQTL and a GWAS locus when their corresponding lead SNPs are 935 
among the overlapping SNPs and there are more than 150 overlapping SNPs. All colocalization 936 
analyses were performed with the ‘coloc.abf’ function from R package ‘coloc’ v5.2.130. 937 
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 960 
Fig. 1. An integrated map of scATAC-seq of PBMC from 20 donors with active COVID-19, 961 
19 COVID-19 convalescent donors and 20 healthy controls. a, Schematic representation of 962 
sample collection, data integration and analysis workflow. (Some icons are from bioicons.com). 963 
b, A UMAP embedding of all cells from three integrated studies, colored by Azimuth L1 annotation 964 
of seven common immune cell-types. c, The same UMAP embedding as in b, colored by 21 965 
immune cell-types and subtypes in Azimuth L2 annotation. d, Gene activity scores of marker 966 
genes in the seven common immune cell-types. Scores were imputed with MAGIC for 967 
visualization purposes. e, Heatmap for marker genes for cell subtypes in L2 annotation. f, Color-968 
coded genome browser tracks of aggregated scATAC-seq reads in genomic loci around marker 969 
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genes. Shaded regions highlight cell-type-specific chromatin accessibility regions. g, Estimates 970 
of cell-type compositions in L1 annotation for all samples. Samples are clustered by distances in 971 
scaled cell-type compositions. h, Comparison of imputation quality (INFO) score from low-pass 972 
WGS using GLIMPSE, aggregated scATAC-seq reads using GLIMPSE, and DNA microarray 973 
using Minimac4 stratified by reference MAF bins.  974 
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 975 
Fig. 2. Topic modeling helps interpretation of inter-cellular and inter-individual variation in 976 
scATAC-seq profiles. a, Structure plots of topic loadings in 2,000 randomly selected cells when 977 
fitting 6, 10, 14 and 20 topics. Cells were grouped by seven common immune cell-types to 978 
highlight coarse-grained differences in topic loading among cell-types. b, Heatmap showing the 979 
average loading for each topic in each cell-type in L2 annotation. c, Heatmap of Z-score 980 
normalized gene-level scores calculated from peak-level scores in each topic. d, Top, smoothed 981 
percentage of non-naive B cells in trajectory percentile. Heatmap on the left shows the Spearman 982 
correlation between gene-activity (GA) scores and memory B cell trajectory; heatmap on the right 983 
shows row-normalized GA score changing along the trajectory. e, Heritability enrichment of 50 984 
GWAS using peaks with the highest 10% of scores in each topic. Dashed boxes highlight specific 985 
enrichment results discussed in the main text. f, Similar to d, showing the trajectory and relevant 986 
genes in COVID19-associated topic k17. g, Genome browser tracks of the genomic region around 987 
three genes (PRG4, CCL3 and CCR2) that progressively gained or lost accessibility along k17 988 
trajectory. Cells are grouped by disease status and k17 quintiles. 989 
  990 
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 991 
Fig. 3. Mapping of caQTL with RASQUAL and sc-PME model. a, Scatter plot comparing the 992 
number of RASQUAL caQTL as a function of cell number and sample size in this study and two 993 
other published scATAC-seq caQTL studies. b, RASQUAL effect sizes in our merged data and 994 
Benaglio et al. data are highly correlated. Novel caQTLs found in merged data show allelic 995 
imbalance in Benaglio et al., albeit with smaller effect sizes. c, RASQUAL caQTLs in whole blood 996 
are enriched in bulk caQTLs from LCL for all significant ones (left) and only novel ones found in 997 
our merged data (right). d, Heatmap showing cell-type-specific enrichment of caQTLs in DICE 998 
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eQTLs. Odd ratios are normalized by the maximum value in each row. e, QQ-plot of RASQUAL 999 
caQTLs in DICE eQTLs. Top: caQTLs in B cells show elevated signals only in eQTLs from B cells 1000 
in DICE; bottom: caQTLs in monocytes show elevated signals only in eQTLs from classical and 1001 
non-classical monocytes in DICE. All other DICE cell-types were colored grey. f, RASQUAL and 1002 
sc-PME caQTLs have highly correlated and concordance effect sizes. Results from monocytes 1003 
are used as an example here. g, Replication of RASQUAL caQTL in sc-PME model in seven 1004 
common immune cell-types. Barplot shows the number of RASQUAL caQTLs that are replicated 1005 
or not in sc-PME model; line chart shows the percentage of RASQUAL caQTLs replicated. h, An 1006 
example of a DICE eQTL to gene ANTXRLP1 in monocytes colocalizing with sc-PME caQTL but 1007 
is different from the RASQUAL lead SNP. Vertical dashed lines highlight the genomic 1008 
coordinations of lead SNPs in RASQUAL, sc-PME and DICE. The shaded region highlights the 1009 
mapping window of RASQUAL and its position relative to the mapping window of sc-PME. SNPs 1010 
are colored by LD to the lead SNP. i, Number of dynamic caQTLs in each cell-type along relevant 1011 
trajectories defined by topic loadings. j, left: Z scores of dynamic and non-dynamic caQTLs from 1012 
CD8 T cells in rolling windows along topic k17 trajectory. Dynamic caQTLs were further 1013 
categorized by whether they are consistently active along k17 trajectory or only in part of the 1014 
trajectory. The most significant 50 caQTLs from each category were plotted. Right: effect sizes of 1015 
one representative dynamic caQTL. 1016 
  1017 
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 1018 
Fig. 4. caQTL-eQTL colocalization and dynamic caQTL mapping. a, Sharing of caQTLs in sc-1019 
PME model in five common immune cell-types. b, Comparison of caQTL sharing of caQTLs in 1020 
seven immune cell-types for RASQUAL and sc-PME model. Top: bar plot of number of caQTLs 1021 
shared in a given number of contexts. Bottom: log2 fold-change in the number of caQTLs between 1022 
sc-PME and RASQUAL, highlighting the increased level of sharing for sc-PME caQTLs. c, Barplot 1023 
for the number (top) and proportion (bottom) of caQTLs that colocalize with eQTL from DICE and 1024 
our in-sample accompanying eQTL data. d, Logistic regression coefficients and 95% confidence 1025 
intervals for variables that predict caQTL-eQTL colocalization. Model includes all caQTL-eQTL 1026 
pairs that colocalize in at least one cell-type. e, Top: heatmap for COLOC PP4 of shared caQTLs 1027 
between CD8 T cells and monocytes. Bottom: example Manhattan plots for shared caQTL 1028 
colocalizing with cell-type specific eQTLs in monocytes and CD8 T cells, respectively. f, TF motif 1029 
enrichment in peaks whose caQTL colocalize with eQTL in CD8 T cells and monocytes 1030 
specifically, or in both cell-types. Colored points represent TFs with adjusted enrichment p-values 1031 
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below 0.05. g, TF motifs enriched in non-COLOC peaks in CD8 T cells specifically show higher 1032 
deviation Z scores in CD8 TEM in our scATAC data. 1033 
  1034 
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 1035 
Fig. 5. Widespread sharing of caQTLs impedes functional interpretation of disease GWAS. 1036 
a, Scatter plot for the percentage of colocalized GWAS loci with eQTL in DICE and caQTL. b, 1037 
The proportion of caQTL peaks colocalizing with GWAS, categorized by all peaks, dynamic, cell-1038 
type specific and shared peaks in each of the five cell-types. c, The number of caQTL peaks 1039 
colocalizing with GWAS, categorized by all peaks, dynamic, cell-type specific and shared peaks 1040 
in each of the five cell-types. Schematic showing that restricting eQTL-GWAS COLOC by caQTL-1041 
GWAS COLOC in the same context to better nominate causal genes and contexts. d, 1042 
Characterization of colocalized GWAS loci by the number of contexts in which they colocalize 1043 
with either eQTL, caQTL or both. f, Forest plot showing that restricting eQTL-GWAS pairs to 1044 
contexts also supported by caQTL-GWAS COLOC increases enrichment in causal S2G (cS2G) 1045 
links. Error bars represent 95% confidence intervals of log2(OR) estimates. g, An example 1046 
showing that eQTL- and caQTL-GWAS COLOC together narrows down CARD9 gene in 1047 
monocytes as the causal gene and context for an IBD locus. Top: genome browser tracks showing 1048 
chromatin accessibility around CARD9 locus. Bottom: Manhattan plots for IBD GWAS, colocalized 1049 
caQTL and eQTLs in various cell-types. Dashed lines highlight the position of lead SNPs in GWAS 1050 
and the QTL data. Colored box highlights the nominated causal eQTL.  1051 
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 1052 
Extended Data Fig. 1. Quality control on scATAC-seq data and genotyping. a, UMAP of 1053 
integrated 36 samples collected in this study. b, Violin plots showing the distribution of common 1054 
quality control metrics for all cells in the three datasets. c, Confusion matrix comparing Azimuth 1055 
L2 annotation and cell clusters. Heatmap is colored by row normalized proportions, such that the 1056 
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cell-type compositions sum up to one on each row. d, Bar plots showing expansion of memory B 1057 
cells and plasmablasts (highlighted in border) in a group of COVID-19 samples. e, The three 1058 
scATAC-seq data sets used in this study have very similar read coverages at 10,000 randomly 1059 
sampled positions genome-wide. f, Number of 1000G SNPs covered by at least one, two or three 1060 
reads in each single cell as a function of the number of unique fragments. Dashed line indicates 1061 
1,000 unique fragments, the cutoff we used for filtering low-quality cells. g, Mean correlation 1062 
between GLIMPSE-imputed genotype dosages from aggregated scATAC-seq reads and those 1063 
imputed from microarray data using Minimac4. h, PCA analysis of all individuals in this study with 1064 
1000G samples.  1065 
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 1066 
Extended Data Fig. 2. Visualization of cell loadings for the 20 topics in UMAP embedding. 1067 
UMAP plots showing the distribution and quantity of loadings for the 20 topics. Loading scores 1068 
are normalized by min-max for each topic, and loading scores below 0.05 in a cell were set to 0 1069 
for visualization purposes (gray).  1070 
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 1071 
Extended Data Fig. 3. Topic modeling analysis. a, Scatter plot showing the correlation between 1072 
k2 loadings and TSS Enrichment scores. b, Bar plot showing the genomic annotation of the top 1073 
3,000 peaks in each topic, compared to all peaks, highlighting the over-representation of 1074 
promoters in k2. c, Top: schematic showing the four strategies to calculate gene-level score from 1075 
peak-level scores in topic analysis. Bottom: gene-level scores calculated from the four strategies 1076 
for peaks in topic k7, which is a naive T cell topic. d, GO Biological Process pathways enriched 1077 
in top 1,500 scored genes for each topic. e, Heatmap of adjusted p-values for TF motif enrichment 1078 
in top 3,000 peaks in each topic. -log10(P adj.) values are normalized relative to maximum for each 1079 
TF across all topics. Top five enriched TFs are shown for each topic. f, The number of differentially 1080 
active genes in COVID-19 cells in the top 4 k17 quintiles compared to all cells in the first k17 1081 
quintiles, plotted together with the number of differentially active genes when all COVID-19 cells 1082 
in k17 were tested against all healthy cells in k17. g, GO Biological Process pathways enriched 1083 
in up-regulated genes from groups in f. Only groups with significantly enriched GO terms were 1084 
plotted. 1085 
  1086 
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 1087 
Extended Data Fig. 4. CaQTL mapping using RASQUAL and sc-PME model in harmonized 1088 
data. a, Principal component analysis (PCA) on pseudobulk count data for WB and six cell-types 1089 
in which caQTL mapping was conducted. Each sample is colored by study. b, QQ-plot showing 1090 
the enrichment of caQTLs in our accompanying COVID-19 eQTLs for all eQTLs (left) and 1091 
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conditioning on only significant eQTLs (right). For each cell type in our study, we extracted and 1092 
plotted eQTLs p-values from all cell types, highlighting matched cell types in colored dots; eQTL 1093 
p-values from the remaining cell types were colored grey. When all genes are used, caQTLs tend 1094 
not to have the highest enrichment in eQTLs in corresponding cell types, except for CD4 T and 1095 
monocyte, due to lower power in the eQTL data (left). We therefore conditioned on only significant 1096 
eGenes in each cell type to mitigate the differences in power between cell types, and observed 1097 
larger enrichment of caQTL in eQTLs for matched cell types (right). c, Histogram showing 1098 
distances from peak centers to significant lead caQTL in monocytes from RASQUAL (top) and 1099 
sc-PME (bottom). Green shaded region highlights peak size (500 bp); blue shaded region 1100 
highlights RASQUAL mapping window (10 Kb) relative to sc-PME mapping window (250 Kb). d, 1101 
Scatter plots comparing RASQUAL effect sizes (Pi) with sc-lme effect sizes (left) and sc-PME 1102 
effect sizes (right). Only significant RASQUAL caQTLs on chromosome 1 in monocytes were 1103 
plotted. e, Top pathways enriched in genes linked to peaks with k17-interacting dynamic caQTLs 1104 
in CD8 T cells. 1105 

  1106 
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 1107 
Extended Data Fig. 5. a, Table summarizing the mapping of 15 immune cell-types in DICE data 1108 
to the seven common cell-types used in caQTL mapping. b, Manhattan plots for RA GWAS locus 1109 
(7:99893148) and colocalized caQTLs (chr7:99818835−99819335) and eQTLs (PVRIG), with 1110 
genome browser tracks for scATAC data in CD4 T cells. c, Manhattan plots for an RA GWAS 1111 
locus near TSS of RPS26; the GWAS locus colocalized with RPS26 eQTLs in DICE. The TSS 1112 
peak is accessible and has caQTL in all five cell types, but the caQTLs do not colocalize with the 1113 
RA GWAS. d, Manhattan plots for RA, CD, UC, MS GWAS loci and colocalized cPeak 1114 
(chr14:69262828−69263328). Genome browser track shows promoter region of ZFP36L1 near 1115 
the colocalized peak and scATAC data in CD4 T cells. e, Manhattan plots for RA GWAS locus 1116 
(22:37316259) and colocalized cPeak (chr22:37256806-37257306) in NK cells in the NCF4 locus. 1117 
Genome browser track shows scATAC data in NK cells in the same region.  1118 
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 1119 
Extended Data Fig. 6. a, Boxplot showing the number of colocalized peaks for each GWAS locus 1120 
as a function of the number of contexts where colocalization is detected. b, Boxplot showing the 1121 
number of colocalized genes in DICE for each GWAS locus as a function of the number of 1122 
contexts where colocalization is detected. The 15 DICE cell-types and subtypes were mapped to 1123 
5 common immune cell-types. 1124 
  1125 
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