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Abstract

Major Depressive Disorder (MDD) is a highly prevalent, severe mental health condition that

constitutes one of the leading causes of disability worldwide. While recent animal studies

suggest a causal role of the gut microbiome in the pathophysiology of MDD models, evidence in

humans is still unclear due to small sample sizes, inconsistent clinical assessment of MDD

diagnosis, and methodological limitations regarding causal inference in cross-sectional data.

Here, we explicitly address these shortcomings to investigate the potential causal link between

the gut microbiome and MDD: First, we replicate previous findings using one of the largest

multicenter MDD cohorts for which microbiome data and in-depth diagnostic assessment are

available (N=1,269 MDD patients and controls). We find a significant difference between healthy

controls and MDD patients for the relative abundance of the four taxa Eggerthella, Hungatella,

Coprobacillus, and Lachnospiraceae FCS020. Second, we employ state-of-the-art, fully

data-driven causal inference tools within Judea Pearl's framework, allowing us to derive model

constraints from the data rather than relying on potentially strong, unrealistic assumptions.

Using this approach, we found data-driven evidence for Eggerthella and Hungatella as causal

contributors to MDD. Furthermore, we show that Eggerthella and Hungatella abundances are

associated with MDD beyond the influence of body mass index, identifying two distinct

pathways linking MDD to the gut microbiome. Finally, the difference in relative abundance of

these taxa between healthy and MDD patients was independent of antidepressant medication.

Our study provides the first evidence for a potential causal role of gut-microbiota in the

pathophysiology of depression in humans.
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Introduction

Major Depressive Disorder (MDD) is a highly prevalent mental health condition and a leading

cause of disability worldwide.1 However, the underlying pathophysiology remains poorly

understood, and over 30% of patients are unresponsive to current treatments. As neuroimaging

research has shown only minimal differences between healthy individuals and MDD patients, a

solely neurocentric perspective is challenged.2–4 This has shifted attention toward the interplay

between the brain and peripheral systems, including the gut microbiome, immune function,

endocrine pathways, and metabolism, which may influence neuroinflammation, neurotransmitter

synthesis, and stress response.5 Understanding these interactions could reveal new

pathophysiological insights and therapeutic targets for MDD.

Focusing on the gut microbiome, evidence for a possible role in MDD comes from animal

studies employing fecal transplants from depressed patients to microbiota-deficient rats. In this

work, rats which had received an MDD fecal transplant consequently showed a depressive

phenotype with anhedonia-like (impaired reward response) and anxiety-like behavior.6 Rodent

studies further indicated that the link between gut-microbiome composition and depression is

potentially mediated by modulating neurotransmitter synthesis, peripheral or central

inflammation, hypothalamus-pituitary activation and neuronal signaling (see 7 for a review). In

this context, increased gut permeability with enhanced passage of endotoxins and a

dysregulated secretion of pro- and inflammatory metabolites (e.g., short chain fatty acids) by the

gut microbiome might play a critical role.

In humans, correlational studies have also linked MDD to the microbiome composition: The

systematic review of correlational studies investigating the link between depression and

gut-microbiome composition reported reduced abundance of Faecalibacterium and increased

abundance of Eggerthella, Atopium and Bifidobacterium. This was corroborated by a recent

meta-analysis that found depleted levels of the anti-inflammatory genera Butyricicoccus,

Coprococcus, Faecalibacterium, Fusicatenibacter, Romboutsia while levels of the

pro-inflammatory genera Eggerthella, Enterococcus, Flavonifractor, Holdemania, Streptococcus

were enriched in MDD patients.8,9 While the evidence is encouraging, these investigations solely

establish correlations and fail to provide any insight on the causal contribution of microbial taxa

to MDD.10 Hence, it remains unclear if alterations in the gut-microbiome are the cause or the

consequence or an epiphenomen of MDD.
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The high prevalence of overweight and obesity, as well as metabolic syndrome in MDD further

complicates the relationship, as both conditions are associated with alterations in gut

microbiome composition. Such alterations may represent a shared pathway underlying this

comorbidity. Notably, fecal transplants from high-fat diet obese mice to lean mice have induced

depressive-like behaviors, indicating that gut microbiome changes contribute to the

depression-obesity link.11 Previous research either ignored the impact of body mass index (BMI)

or included it as a covariate in the study without further examining its differential impact on MDD

and gut microbiota composition.

From a methodological point of view, causally contributing microbial genera as therapeutic

targets for MDD has faced three main challenges: (1) most human studies have small samples

(n<70; see 8 for a systematic review), limiting statistical power, increasing false positives, and

reducing generalizability, (2) inconsistent clinical assessments of MDD, often based on

self-reported questionnaires rather than clinician-led interviews, result in unreliable diagnoses

and varied patient samples12, (3) most studies are only cross-sectional but not longitudinal,

hampering the establishment of causal relationships (4) causality inferred from genetic

instrumental variable techniques, such as Mendelian randomization13,14 and certain machine

learning-based causal inference methods15 may rely on unrealistic assumptions concerning the

roles of hidden confounders (see, e.g.,16,17).

To overcome these limitations, we replicated previous findings using one of the largest

multicenter MDD cohorts for which microbiome data and in-depth diagnostic clinical assessment

is available (N=1,269 MDD patients and controls). Methodological heterogeneity was minimized

in this well-curated, harmonized sample18. We employed state-of-the-art computational

approaches for causal inference within Judea Pearl's structural framework of causation19,20. This

framework represents a seminal advancement in data analysis, enabling us to move beyond

detecting mere statistical associations to identifying causal relationships directly from

observational data. Although based on data-driven statistical associations and independencies,

the notion of causality inferred by this framework aligns with the interpretation derived from

randomized controlled experiments: a variable X is considered a cause of another variable Y if

an intervention on X leads to an expected change in Y. While randomized experiments rely on

perfect randomization of treatment assignment to minimize confounding effects, this framework

infers causality by systematically identifying and adjusting for the potential influence of

confounders, including those that may be unobserved. Note that, as with randomized controlled

4

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 6, 2024. ; https://doi.org/10.1101/2024.12.05.24318549doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.05.24318549


experiments, determining that X causes Y does not imply that X is the sole cause of Y or that

the effect is not mediated by other unobserved causal factors.

In our causal data analysis, we specifically employ causal discovery algorithms to effectively

learn a class of graphical causal models that fit the observed data while accounting for potential

unobserved confounders20. We then apply effect identification and estimation tools to infer

unbiased causal effects, free from the influence of (observed and unobserved) confounders,

based on the learned causal structure, in a fully data-driven manner21,22. Notably, our approach

offers significant advantages over causal inference methods that rely on strong, often unrealistic

assumptions, such as unconfoundedness (i.e., the set of observed covariates suffices for

confounding adjustment) in most causal machine learning-based approaches15 or valid

instruments in Mendelian Randomization. Due to numerous issues such as unobserved

confounders, bias-amplifying variables, M-bias23,24, and horizontal pleiotropy16,17, these

assumptions are very likely to be violated in practice, making reliable causal inferences

challenging without rigorous methods.

Methods

Study Design and Participants

Study participants are part of the Marburg-Münster Affective Disorders Cohort Study (MACS).13

Data were collected at two sites (Marburg and Münster, Germany) using identical study

protocols. N=2,035 healthy participants and patients with MDD were recruited as part of the

MACS cohort from September 11, 2014, to September 26, 2018. MDD diagnosis was assessed

using the Structured Clinical Interview for DSM-IV, axis 1 disorders (SCID-I)25. Patients either

fulfilled the DSM-IV criteria for an acute major depressive episode or had a lifetime history of a

major depressive episode. Individuals with any history of neurological or medical conditions

were excluded, resulting in a sample of N=1,802. Fecal samples were available for N=1,313

individuals. From these, 44 samples were excluded because of missing values for BMI, resulting

in a sample size of N=1,269 samples (644 HC, 625 MDD). For further details on the exclusion

criteria see supplementary materials.

The FOR2107 cohort project was approved by the Ethics Committees of the Medical Faculties,

University of Marburg (AZ: 07/14) and University of Münster (AZ: 2014-422-b-S). Participants

received financial compensation and gave written and informed consent.
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Assessment of Symptom Severity:

Hamilton Depression Score (HAM-D): A widely employed clinician-administered tool to assess

depression severity. The scale consists of 21 items, each rated on a scale from 0 to 4 or 0 to 2,

depending on the item. Higher scores indicate a greater severity of depressive symptoms.

Beck Depression Inventory (BDI-I): This is a questionnaire to assess self-reported depressive

symptoms. The 21-item questionnaire is designed to capture the intensity of depressive

symptoms based on the respondent's experiences over the past week. Each item is rated on a

scale from 0 to 3, with higher scores reflecting greater severity of depressive symptoms. The

total score is calculated by summing the responses, with higher scores indicating a higher level

of depressive symptomatology.

Fecal Sample Collection

The dataset consists of 1,269 standardized human stool samples of which 16S rRNA has been

sequenced. For homogeneity, all samples were collected following a standardized protocol for

sampling and analysis.

DNA Extraction, PCR, and Sequencing

The procedure for DNA extraction and sequencing has been described previously.26,27 DNA was

extracted from fecal samples using the QIAamp DNA fast stool mini kit automated on the

QIAcube (Qiagen, Hilden, Germany). Therefore, material was transferred to 0.70 mm Garnet

Bead tubes (Dianova, Hamburg, Germany) filled with InhibitEx lysis buffer. Bead beating1. 1

was performed using a SpeedMill PLUS (Analytik Jena, Jena, Germany) for 45 s at 50 Hz.

Samples were then heated to 95°C for 5 min with subsequent continuation of the manufacturer's

protocol. Extracted DNA was stored at −20°C prior to PCR amplification. Blank extraction

controls were included during extraction of samples.

For sequencing, variable regions V1 and V2 of the 16S rRNA gene within the DNA samples

were amplified using the primer pair 27F-338R in a dual-barcoding approach according to

Caporaso et al. (PMID: 22402401).28 stool DNA were used for amplification. PCR-products3 µ

were verified using the electrophoresis in agarose gel. PCR products were normalized using the

SequalPrep Normalization Plate Kit (Thermo Fisher Scientific, Waltham, MA, USA), pooled

equimolarity and sequenced on the Illumina MiSeq v3 2x300bp (Illumina Inc., San Diego, CA,

USA). Demultiplexing after sequencing was based on 0 mismatches in the barcode sequences.
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Preprocessing of Sequencing Data

To process raw sequencing data, identify operational taxonomic units (OTU’s) in the 16S rRNA

data and find the abundances of corresponding taxonomies, we used the amplicon read

processing pipeline Natrix.29 Natrix combines quality control, read assembly, primer removal,

dereplication, chimera detection, abundance filtering, OTU generation, and assignment of

taxonomic information into a single workflow using the rule-based Snakemake workflow

management engine.30 Low-quality reads were filtered using PRINSEQ31 (v0.20.4) at a PHRED

score threshold of 30. The primer removal and assembly of forward- and reverse-reads were

carried out using the PANDAseq paired-end assembler.32 CD-HIT-EST33 was used for the

dereplication, by clustering sequences with 100% identity. Chimera detection and removal was

carried out via the uchime3_denovo algorithm of the VSEARCH34 framework. The SWARM

clustering algorithm35 was used to identify OTUs, and the assignment of taxonomic information

to the OTUs was carried out using BLAST36 with the curated SILVA rRNA database.37

Microbiome association analysis

We used Natrix to generate the taxonomic profiles as described above. OTUs for which Natrix

could not assign taxonomy on genus level as well as samples lacking relevant metadata were

filtered out. Furthermore, the data was updated to use current scientific naming used by NCBI

and formatted to fit the broad applicability in subsequent general statistical analysis and

differential abundance analysis (DAA). These statistical evaluations were conducted utilizing the

R programming language, specifically employing the microbiome analysis package mia (v.

1.10.0) for data loading. Prior to the DAA, genera with a prevalence of less than 10% (i.e., with

non-zero values in less than 10% of the samples) were removed from the data.

Alpha and Beta Diversity

Alpha and beta diversity are metrics describing the difference of diversity within samples (alpha)

and between samples (beta) and are typically reported in microbiome related studies. Logistic

regression analysis was carried out to examine the association between MDD and various

descriptive variables. In this analysis, MDD served as the target variable, while sex, age, body

mass index (BMI), library size (the sum of all read counts in a sample), site (which declares

whether the data was collected in Marburg or Muenster) and alpha diversity, represented by the

Shannon index, were used as predictors.
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To cover beta diversity a Permutational Multivariate Analysis of Variance (PERMANOVA) was

conducted on Bray-Curtis dissimilarity using the dissimilarity as the target and MDD, along with

sex, age, BMI, site and library size as predictors, to assess the connection between beta

diversity and MDD. This was done using the adonis3 function from the GUniFrac package (v.

1.8).

Differential Abundance Analysis

We carried out a DAA to gain insights into the roles of various taxa within the human gut

microbiome in relation to MDD. To this end, OTUs were grouped at the genus level and

counted. The analyses were carried out on genus level due to the known limitations of amplicon

sequencing methods, particularly the 16S gene sequencing used in this study, which does not

provide species-level resolution.38 The top 3 percentiles of each genus’ values were identified as

outliers.

Since microbiome data typically exhibits high variance in read counts, compositional effects, and

zero-inflation, specialized models are required to analyze taxa. Therefore, we employed two

different models, namely ZicoSeq39 and LinDA40, implemented in the GUniFrac (v. 1.8) and

MicrobiomeStat (v. 1.1) packages, respectively. ZicoSeq utilizes a linear regression approach on

log-transformed taxa abundance values against specific covariates, correcting for compositional

effects using a reference-based strategy and an empirical Bayes method to handle

zero-inflation. LinDA similarly fits a linear regression model on log2-ratio-transformed taxonomic

abundance data, also accounting for covariates, but addresses compositional effects and

zero-inflation through sample library size adjustments. Both models apply winsorization to

manage outliers in taxonomic abundance data.

These analyses produced p-values indicating the significance of the relationship between each

genus and MDD. Within the statistical models, we controlled for age, sex, BMI, site and library

size as covariates. To adjust for multiple testing, we used false discovery rate (FDR) correction.

Specifically, ZicoSeq employed a permutation-based FDR control, whereas LinDA utilized the

Benjamini-Hochberg (BH) procedure. Genera that remained significant at a significance level of

0.05 were then subjected to further downstream analyses investigating the causal relationship

between genera and MDD.
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Causal Analyses

Identifying Potential Causal Relationships between Microbial Taxa and MDD

To uncover causal relationships between MDD and microbial taxa significantly associated with

MDD, we run a causal discovery analysis using Fast Causal Inference (FCI)41. FCI is

distinguished by its rigorous foundational principles and minimal reliance on assumptions

compared to other causal discovery methods. When integrated with Zhang’s20 orientation rules,

FCI can provide reliable and complete results, even in the presence of unobserved confounding

and selection bias. Additionally, the FCI is sound and complete even when feedback loops are

present (i.e., the underlying model is a dynamical system in equilibrium)42. This ensures that,

whenever statistical associations are accurately inferred, the FCI output reliably estimates both

the presence and absence of ancestral (causal) relationships, as well as the absence of

confounders and cycles. The FCI algorithm is available in the pcalg R package.43 The covariates

sex, age, library size, BMI, and site are integrated into the analysis.

For detailed information on the FCI algorithm, see the supplementary materials. In short, the FCI

algorithm starts with an adjacency phase, where multiple conditional independence tests are

performed to learn the skeleton of the underlying causal model – an undirected graph

representing potentially direct associations among the observed variables. Then, it proceeds to

the orientation phase, where a set of rules are applied to determine the directionality of edges.

These rules identify all causal relationships (arrow tails) and non-causal associations (arrow

heads) that can be inferred from observational data. This results in a Partial Ancestral Graph

(PAG) representing the class of statistically equivalent models known as Markov Equivalence

Class (MEC). In a PAG, relationships that are not uniquely determined due to equivalent

structures are represented by circle edge marks.

As our dataset includes both binary and continuous variables, we use the symmetric conditional

independence test for mixed data proposed by Tsagris et al.44, available in the MXM R

package45. For testing conditional independencies involving microbial taxa, we extended Tsagris

et al.'s44 approach to use LinDA and ZicoSeq.

To ensure reliability, we implement several robustness assessments. First, we evaluate marginal

causal consistency following the methodology outlined by Roumpelaki et al.46. This involves

applying the FCI algorithm to every possible subset of our selected variables, aiming to evaluate

the consistency of inferred causal relationships across all marginal analyses. Additionally, we
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validate each inferred PAG to ensure it conforms to the expected characterization and implies

only conditional dependencies and independencies consistent with our observed data.

Instances revealing violations or inconsistencies are systematically excluded from our analysis.

Finally, we compare all PAGs that passed our validity and robustness tests with those obtained

using the conservative variant of the FCI algorithm47. This variant employs additional tests to

identify ambiguous triplets and adopts a conservative approach to edge orientations, relying

exclusively on triplets previously identified as unambiguous.

Causal Effect Estimation

A PAG offers a qualitative representation of the class of all causal models compatible with the

observed data, with directed edges denoting causal relationships. To quantitatively assess the

causal effect that one variable has on another, it is essential to conduct an effect identification

analysis. The identification of a causal effect is contingent upon its uniqueness -- it is identifiable

if and only if it is uniquely computable among all models within the equivalence class

represented by the PAG, and utilizing the same expression solely based on observational

(conditional) probabilities.

Several methods and algorithms exist for effect identification in PAGs. These include the

generalized backdoor criterion48, the generalized adjustment criterion21, and the IDP and CIDP

algorithms for identifying (conditional) causal effects22. Notably, IDP and CIDP are the only

complete effect identification algorithms for PAGs. This means they can identify every

(conditional) causal effect that is possible to be identifiable, possibly through methods distinct

from backdoor or adjustment criteria. This makes them particularly powerful tools in causal

analysis. Additional details on the identification and estimation of the causal effects can be

found in the supplementary materials.

Medication Effects

For the taxa identified as causal contributors to MDD, we further tested whether the use of

psychopharmacological medication could account for differences in their relative abundance

between MDD patients and healthy controls. For this purpose, we stratified the patient group by

medication status. Patients taking at least one psychopharmacological medication (e.g.

antidepressants, antipsychotics, anti-epileptics, see Supplementary Methods 4 for detailed

information) were categorized as medicated, while patients without any psychopharmacological
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medication were classified as unmedicated. We performed logistic regression to test for

differences in CLR-transformed relative abundance between the medication groups, as well as

between each of the stratified patients groups and the unaffected controls. All models were

adjusted for age, sex, BMI, collection site, and library size. We performed Benjamini-Hochberg

(BH) procedure on the p-values to correct for multiple comparisons.

Results

We present a comprehensive analysis investigating the role of the gut microbiome in MDD.

First, aiming to replicate findings reported in the literature, we explore the associations of alpha

and beta diversity with MDD, followed by a differential abundance analysis to identify specific

microbial taxa linked to the disorder. Based on the taxa significantly associated with MDD, we

subsequently utilize causal inference methods to identify and quantify the causal relationships

between microbial taxa and MDD, further assessing the causal effect of microbial taxa on MDD

across BMI categories.

Sample Characteristics

Table 1 provides key descriptive statistics for the MACS cohort, encompassing a total of 1,269

individuals. Of these, 644 are healthy controls (HC) (213 male; 412 female), and 625 are

patients with MDD (217 male patients; 427 female patients). Our logistic regression analyses

revealed no significant differences between the two groups in terms of male/female ratio

(p=0.7394), age (p=0.0728), library size (p=0.5901), and alpha diversity (Shannon Index)

(p=0.3474). However, significant differences were observed between the two groups for BMI

and site (p<0.001). For the full results of this analysis see Supplementary Table 1.
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Table 1: Descriptive statistics for all samples used in the analysis divided into the groups MDD
and HC

Healthy controls MDD patients P-values

Total Number of
Samples

644 625

Sex (Number of
Samples)

Male: 217; Female:
427

Male: 213; Female:
412

0.739

Site (Number of
Samples)

Münster: 366;
Marburg: 278

Münster: 427;
Marburg: 198

<0.001

Age (Mean ± SD) 35.73 ± 13.32 36.98 ± 13.24 0.073

BMI (Mean ± SD) 24.36 ± 4.65 26.13 ± 5.86 <0.001

Library Size (Mean ±
SD)

19,968.79 ± 7,538.20 20,958.16 ± 9,184.63 0.590

Shannon Index
(Mean ± SD)

2.77 ± 0.329 2.745 ± 0.336 0.347

BDI 4.10 ± 4.30 16.89 ± 11.04 <0.001

HAMD 1.60 ± 2.33 9.28 ± 7.27 <0.001

Remission status Acute: 417;
Remitted: 208

Psychopharmacologi
cal Medication

Unmedicated: 246;
Medicated: 379

Main Results

No difference in alpha and beta-diversity between MDD patients and healthy controls

To understand the overall composition and diversity of the gut microbiome in relation to MDD,

we conducted analyses of both alpha and beta diversity. Testing significance in alpha diversity

with a logistic regression based on individual Shannon index values did not indicate a significant

difference between MDD and HC samples (p=0.3570). Similarly, beta diversity assessed via

PERMANOVA on individual Bray-Curtis dissimilarity values did not reveal significant differences

between the two groups (R²<0.001, p=0.122).
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Differential Abundance Analysis revealed four taxa that differed between MDD patients

and healthy controls

To identify specific microbial genera associated with MDD, we conducted a Differential

Abundance Analysis (DAA). Following data preprocessing, our dataset included 28,461

Operational Taxonomic Units (OTUs) across all samples. For the DAA, we filtered these OTUs

based on their prevalence at the genus level, resulting in 172 distinct genera.

For the genus-level DAA, we used two models: ZicoSeq and LinDA. The ZicoSeq model

identified four genera that significantly differed between MDD and HC individuals: Eggerthella,

Hungatella, Lachnospiraceae FCS020 group, and Coprobacillus (see Supplementary Figure 1).

The LinDA model identified seven significantly different genera: Eggerthella, Hungatella,

Clostridium sensu stricto 1, Faecalibacterium, Coprobacillus, Lachnospiraceae FCS020 group,

and Subdoligranulum (see Supplementary Figure 2).

We focused further causal analysis on the set of seven genera identified by LinDA, with special

emphasis on Eggerthella, Hungatella, Coprobacillus, and Lachnospiraceae FCS020 group, as

these were consistently identified by both the ZicoSeq and LinDA models. Adjusted p-values for

these four genera in both models are provided in the Supplementary Table 3.

Causal Analyses identified Eggerthella and Hungatella as causal contributors to MDD

The set of genera found significantly associated with MDD by both ZicoSeq and LinDA, namely

Eggerthella, Hungatella, Coprobacillus, and Lachnospiraceae FCS020 group, underwent further

causal analysis. Our goal was to uncover causal relationships among MDD and these four

genera, while also considering the influence of the observed potential confounders. Our strategy

involved employing the FCI algorithm to recover the graphical model over these 5 variables,

alongside BMI and site. Furthermore, to ensure that all relationships are controlled for age, sex,

and library size, these crucial known confounders were incorporated as a fixed component of

the conditioning set for all conducted conditional independence tests.

As detailed in the methods section, to ensure reliability of our findings, we systematically ran the

FCI across all feasible subsets of the selected variables, each consisting of a minimum of 3

variables, resulting in a total of 31 PAGs. We exclusively focused on the resulting PAGs that

passed our validity and robustness tests, i.e., those with no conflicting orientations across

marginals, no inconsistencies in the implied conditional independencies, and no violations of the
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inherent PAG properties. Then, we assessed the orientations within those PAGs that were

inferred identically by both the FCI and its conservative variant. We executed this approach

twice, once using ZicoSeq and again using LinDA to test for conditional independencies

involving microbial taxa variables. Supplementary Table 4 summarizes the orientations

consistently inferred using both the FCI and conservative FCI algorithms while using LinDA, and

Supplementary Table 5 summarizes those obtained using ZicoSeq.

Figure 1: FCI's resulting PAG over MDD, BMI, Site and all microbial taxa robustly identified as causes of
MDD, namely Eggertella, Hungatella, and Copobracillus. Conditional independence tests for taxa
variables rely on LinDA and consistently include age, sex, and library size as part of the conditioning set.
A directed edge indicates an ancestral (causal) relationship. A bidirected edge indicates a non-causal
relationship, due to only latent confounders. Circles indicate non-definite (uncertain) relationships.

While using conditional independence tests based on LinDA, the following definite relationships

were robustly identified, with no ambiguity or conflicting orientations: Eggerthella and Hungatella

both cause MDD (2 PAGs), Coprobacillus causes Eggerthella (8 PAGs), the Lachnospiraceae

FCS020 group is only spuriously associated with both Coprobacillus and Eggerthella (2 PAGs),

and Hungatella is also only spuriously associated with both Coprobacillus and Eggerthella (6

PAGs). Moreover, the following definite non-ancestral relationships were obtained: MDD is not

an ancestor (cause) of BMI (20 PAGs), Site (18 PAGs), Lachnospiraceae FCS020 group (12

PAGs). Note that a definite non-ancestral relationship leaves open the possibility of causality in

the opposite direction or purely spurious associations, as they could not be conclusively
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confirmed with the current data. The remaining valid PAGs identified consistent, although less

informative orientations. While using ZicoSeq, only definite non-ancestral relationships were

obtained robustly, including that MDD is not an ancestor (cause) of BMI (11 PAGs), Site (10

PAGs), Coprobacillus (4 PAGs), and Eggerthella (4 PAGs). Significantly, while less informative,

those and all other PAGs inferred using conditional independence tests based on ZicoSeq are

consistent with those obtained using those based on LinDA.

The PAG in Figure 1 shows all robustly identified causal relationships between taxa variables

and MDD. It indicates that Hungatella and Eggerthella are causes of MDD, and that

Coprobacillus causes MDD through Eggerthella. Importantly, these causal relationships are

identified as unconfounded by latent variables and have no cycles. BMI is identified as a

confounder of the relationships among the microbial taxa variables and MDD. The PAG

obtained by the conservative FCI, shown in the Supplementary Material, supports these causal

and confounded relationships but shows uncertainty in the causal link between BMI and MDD

due to ambiguity in the Coprobacillus-BMI-MDD triplet. None of the valid PAGs identified a

definite relationship between the Lachnospiraceae FCS020 group and MDD.

The causal effect of Eggathella and Hungatella on MDD was strong across all BMI groups

Figure 2 illustrates the causal effect of Eggerthella and Hungatella on MDD, expressed as the

probability of experiencing MDD given a specific abundance level "e" of Eggerthella set by

intervention (P(MDD=1|do(Eggerthella=e))), and abundance level "h" of Hungatella set by

intervention (P(MDD=1|do(Hungatella=h))), respectively. The probability of MDD significantly

increases with higher levels of Eggerthella or Hungatella. For example, when the abundance of

Eggerthella is set to 0, the probability of MDD is 47.2% (95% CI: 42.6% to 52.0%). This

probability rises to 60.8% (95% CI: 52.2% to 68.8%) when the abundance is set to 70. When

Hungatella abundance is 0, the probability of MDD is 47.4% (95% CI: 42.8% to 52.1%),

increasing to 53.9% (95% CI: 53.9% to 70.2%) when the abundance is set to 11. These effects

were identified also by controlling for both BMI and Hungatella and BMI and Eggerthella,

respectively. Further details on the identification and estimation procedures are provided in the

Supplementary Material.
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Figure 2: Estimated post-interventional probabilities of MDD and respective 95% confidence intervals
given (left) Eggerthella abundance levels (counts) "e", P(MDD=1∣do(Eggerthella=e)), and (right)
Hungatella abundance levels (counts) "h", P(MDD=1∣do(Hungatella=h)).

We further analyzed the causal effect of Eggerthella and Hungatella on MDD across BMI

groups. BMI values were categorized into three groups: "Non-Obese" (BMI 14-25), "Overweight"

(BMI 25-30), and "Obese" (BMI >30). The dataset includes 746 non-obese individuals, 334 in

overweight, and 189 obese. Subsequently, we assessed the causal effects of Eggerthella and

Hungatella on MDD within each of these BMI categories.

Figure 3 shows the causal effect of Eggerthella on MDD in each category of BMI "c", expressed

as the post-interventional probability distribution P(MDD=1|do(Eggerthella=e), catBMI=c),

alongside the corresponding 95% confidence region. The analysis reveals a significant increase

in the probability of MDD with increased Eggerthella abundance levels, regardless of the

individual's BMI category. Similarly, Figure 4 illustrates the causal effect of Hungatella on MDD,

conditional on BMI category "c", expressed as P(MDD=1|do(Hungatella=h), catBMI=c), with the

corresponding 95% confidence region. Again, there is a significant increase in the probability of

MDD with higher Hungatella abundance levels, regardless of the individual's BMI category.
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Figure 3: Estimated values of P(MDD=1|do(Eggerthella=e), catBMI=c), i.e., the post-interventional
probabilities of MDD given that Eggerthella abundance values "e" are set by intervention, for each
category of BMI "c", along with the respective 95% confidence regions.

Figure 4: Estimated values of P(MDD=1|do(Hungatella=h), catBMI=c)), i.e. the post-interventional
probabilities of MDD given that Hungatella abundance values "h" are set by intervention, for each
category of BMI "c", along with the respective 95% confidence regions.
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The contribution of Eggerthella and Hungatella to MDD is independent of
psychopharmacological medication

Finally, we tested whether the relative abundance of Eggerthella and Hungatella depended on

medication. We distinguished participants that were completely unmedicated (N=244) and

participants that were on any kind of psychopharmacological medication (N=360, please find

detailed information in Supplementary Method 4). Compared to the healthy controls (N=626),

both unmedicated and medicated MDD patients had a higher relative abundance of Eggerthella

(q=0.04 and q=0.001) and Hungatella (q=0.002 and q<0.001), while there was no significant

difference between unmedicated and medicated MDD patients (q=0.248 and q=0.282,

respectively), indicating that the association between MDD diagnosis and relative abundances

of Eggerthella and Hungatella was independent of medication use (see also Supplementary

Table 2).

Discussion

Our study provides evidence for a potential causal role of the gut microbiome in the

pathophysiology of major depressive disorder (MDD) using one of the largest multicenter

cohorts of clinically well-characterized MDD patients and healthy controls to date. We identified

significant differences in the relative abundance of four bacterial taxa—Eggerthella, Hungatella,

Coprobacillus, and Lachnospiraceae FCS020—between MDD patients and healthy controls.

Notably, Eggerthella and Hungatella were identified as causal contributors to MDD using

state-of-the-art, fully data-driven causal inference tools within Judea Pearl's Structural Causal

Model framework. These findings were consistent when accounting for the influence of body

mass index (BMI), medication indicating that the relationship between these microbial taxa and

MDD go beyond obesity-related factors.

Gut microbiota causally contribute to depression

Our findings extend previous association studies reporting a clear link between depression and

gut-microbiome composition. While in line with our findings most of the studies could not find

differences on indices of alpha- or beta-diversity between MDD-patients and healthy controls8,

differences were observed on the levels of bacterial genera. Particularly depleted levels of the

anti-inflammatory genera Butyricicoccus, Coprococcus, Faecalibacterium, Fusicatenibacter,

Romboutsia and increased levels of the pro-inflammatory genera Eggerthella, Enterococcus,

Flavonifractor, Holdemania, Streptococcus were found in MDD patients in recent
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meta-analyses.8,9 While the evidence is encouraging, these studies were largely based on small

sample sizes (according to 8, the mean number of included MDD patients was 48) or quantified

depression by self report questionnaires in population based cohorts not requiring a clinical

diagnosis.10 Hence, the contribution of gut microbiota alterations to clinically diagnosed MDD

remained unclear and it is largely unexplored whether alterations in the gut-microbiota are the

cause of MDD or merely a consequence, potentially due the secondary effects of

antidepressants or comorbid obesity.

Using state-of-the art inference tools, we addressed this limitation, and demonstrate that among

the four bacterial genera - Eggerthella, Hungatella, Coprobacillus, and Lachnospiraceae

FCS020 - differing in their relative abundance between MDD patients and healthy controls in our

sample, Eggerthela and Hungatella were causal contributors to MDD. These findings extends

previous fecal transplant studies, where rats receiving fecal transplants from MDD patients

developed a depressive phenotype6, while the symptoms were alleviated after fecal transplants

from healthy donors indicating a causal role of the microbiome, while the contribution of single

taxa remained unclear.49 Notably, a recent Mendelian randomization analysis in the population

based Rotterdam cohort, identified a causal contribution of Eggerthella to depressive symptoms

in humans. It is important to acknowledge, however, that depressive symptoms in this cohort

were identified by a self-report questionnaire and did not require a clinical diagnosis.12

The use of modern, data-driven causal inference tools within Judea Pearl's structural framework

represents a significant methodological advancement in this study. Unlike other methods that

rely on predefined causal models with potentially restrictive assumptions, the methods

employed here derive all model constraints directly from data using causal discovery

techniques. This shift towards data-driven causal inference not only enhances transparency of

the underlying causal structure but also ensures the robustness and interpretability needed to

identify potential therapeutic targets.

The relevance of Eggerthella and Hungatella in the pathophysiology of depression

Both Eggerthella and Hungatella are pro-inflammatory taxa that are only present in low levels in

the gut-microbiota of healthy adults and adolescents (see Supplementary Figure 1). Eggerthella

lenta, a gram-positive, anaerobic species, has been repeatedly associated with MDD, as well as

other chronic (auto-immune) conditions such as multiple sclerosis50, rheumatoid arthritis, and

asthma bronchiale51 highlighting its potential contribution to systemic inflammations.

Interestingly, a recent study using a humanized rodent model of rheumatoid arthritis
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demonstrated that colonization with Eggerthella induced a change in the gut-microbiota

composition with a pro-inflammatory metabolic-shift with reduced fecal levels of the short-chain

fatty acid butyrate, increased levels of acetate and elevated serum cytokine levels.52 This finding

is highly relevant given increasing evidence, that butyrate is reduced in MDD53,54 and chronic

low-grade inflammation plays a relevant role in the pathophysiology of depression at least in a

subgroup of patients termed “immuno-metabolic depression”.55 Moreover, Eggerthella gavage in

rodents reduced the serum levels of tryptophan52, that is the precursor of serotonin, the key

neurotransmitter targeted by antidepressant medication Notably, a recent transdiagnostic

meta-analysis across multiple psychiatric conditions, including anxiety disorder, major

depressive disorder (MDD), bipolar disorder, psychosis, and schizophrenia provided most

consistent evidence for the increased relative abundance of Eggerthella (reported in 10 out of 11

studies) suggesting that elevated Eggerthella levels may be part of a shared pathophysiological

pathway that increases vulnerability to mental health impairments.9 Hungatella has also been

linked to MDD in previous studies, though the evidence is less robust compared to the

association with Eggerthella.12 Interestingly, in our study the effect of Hungatella on MDD was

higher than for Eggerthella (19.84% vs 16.83%). Hungatella hathewayi are gram-positive,

anaerobic bacteria.56 Increased relative abundance of Hungatella has been associated with

different disorders including eczema in children57 and different cancer entities.58 Hungatella was

also associated with impaired cognitive performance and increased gut-permeability quantified

by zonulin levels in a sample of Schizophrenia patients.59 These findings clearly underscore the

relevance of Hungatella and Eggerthella in the pathophysiology of MDD, while future studies

need to elucidate the exact mechanisms.

Exploring the association of changes in gut-microbiota and depression it is important to account

for the impact of BMI. Obesity is one of the most common somatic comorbidities60 and is linked

to changes in the the gut-microbiota.61 Considering BMI and overweight/obesity categories, we

could demonstrate that the causal contribution of relative Eggerthella and Hungatella

abundance to MDD extends beyond their impact on BMI.

Increased abundance of Hungatella and Eggerthela in MDD is independent of psychiatric

medication use

Another key factor influencing the gut microbiota is medication, with antidepressants in

particular shown to affect its balance and diversity.62,63 Interestingly, previous meta-analyses

comparing medicated and unmedicated patient groups did not find a significant impact of
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antidepressants on Eggerthella or Hungathella. This aligns with our findings, which show no

differences in the relative abundance of these taxa between medicated and unmedicated

patients, while both MDD groups significantly differed from healthy controls.

Implication for future studies and clinical practice

While our study extends on previous results suggesting that increased relative abundance of

Eggerthella and Hungathella as obtained by 16S rDNA sequencing plays a role in the

pathophysiology of depression, further research is needed to unravel the underlying biological

mechanisms. To characterize potential functional and metabolic shifts, deeper sequencing

approaches such as shotgun metagenomic or metatranscriptomic sequencing will be essential.9

The gold standard to infer causal relationship is a randomized-controlled intervention. In rodent

models, the transplantation of specific taxa for example through oral gavage - as performed

elegantly with Eggerthella in a rodent model for rheumatoid arthritis by Balakrishnan et al. - can

be utilized to investigate subsequent change in behavior, and systemic and central nervous

changes in metabolites and inflammatory markers.52

Our findings have significant implications for clinical practice. The identification of specific gut

microbiota as potential causal factors in MDD suggests that microbiome-targeted therapies,

such as dietary interventions, probiotics, or fecal microbiota transplants, could offer novel

treatment strategies at least in those share of patients where microbiome-induced inflammatory

phenomena play a role. While these interventions are limited in their specificity, functional

characterization of these taxa could identify systemic metabolites that could be targeted or

replaced if depleted. Given the challenge of treatment-resistant depression, such

microbiome-based therapies could provide significant benefits where traditional pharmacological

approaches are insufficient.

Limitations

The observational nature of the data, while enhanced by advanced causal inference techniques,

still limits the ability to definitively establish causality. As outlined above, randomized controlled

experiments are needed to confirm causality and explore the dynamic interactions between diet,

microbiome, and mental health. Additionally, while our sample size is large and clinically

well-characterized, further replication in diverse populations will enhance the generalizability of

our findings, particularly since regional differences are known to contribute to impact

gut-microbiome composition.
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Conclusions

In conclusion, our study provides robust evidence that specific gut microbiota, particularly

Eggerthella and Hungatella, play an important role in the pathophysiology of MDD. These

findings enhance our understanding of the biological underpinnings of depression and suggest

potential avenues for innovative treatment approaches. Future research should focus on

longitudinal and randomized controlled interventional studies to validate these causal

relationships and develop effective microbiome-based therapies for depression. By integrating

insights from the gut microbiome with existing psychiatric and metabolic research, we can move

towards a more holistic understanding and treatment of MDD.
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Supplementary Material

Supplementary Methods

sMethods 1. Study information and sample exclusion criteria

The ethics committees of the medical faculties of the University of Marburg, Germany, and the
University of Münster, Germany, approved the study. Participants received financial
compensation and gave written and informed consent. Patients were recruited from local in- and
outpatient services and either fulfilled the DSM-IV criteria for an acute major depressive episode
or had a lifetime history of a major depressive episode. Participants with a history of
neurological (e.g., concussion, stroke, tumor, neuro-inflammatory diseases) or medical
conditions (e.g., cancer, chronic inflammatory or autoimmune diseases, heart diseases,
diabetes mellitus, infections), as well as those who self-identified as non-Caucasian, were
excluded from the analysis. Non-Caucasian participants were excluded since the FOR2107
MACS cohort was originally focused on genetic and neuroimaging analyses, thus providing
greater genetic homogeneity. The exclusion criteria were the same for both the healthy and
depressive participants. Additionally, healthy participants were further excluded if they had a
current or past history of psychiatric illness. A sample of 1,801 participants remained for the
analyses.

sMethods 2. Causal Discovery Analysis

The FCI algorithm starts with the adjacency phase, conducting multiple conditional
independence tests to infer the skeleton of the underlying causal model – an undirected graph
encoding the conditional independencies observed in the data. Initially, a complete graph is
created, where vertices represent observed variables, and each distinct pair of vertices is
connected by an edge. Then, considering each pair {V_i, V_j} of observed variables, the
algorithm traverses through all potential subsets of other observed variables aiming to identify a
set S_ij such that V_i becomes conditionally independent of V_j given S_ij. If such a subset
exists, the edge between V_i and V_j is removed. In our analysis, we used the stable version of
the algorithm, which produces a fully order-independent final skeleton, as shown by Colombo
and Maathuis64.

As our dataset includes both binary and continuous variables, we use the symmetric conditional
independence test for mixed data proposed by Tsagris et al.44, available in the MXM R
package45. This test evaluates the conditional independence of two variables, V_i and V_j, given
a set of variables S_ij, by testing two null hypotheses: H0_1: P(V_i| S_ij) = P(V_i|V_j, S_ij) and
H0_2: P(V_j| S_ij) = P(V_j|V_i, S_ij). The null hypothesis H0_1 is tested using a nested
likelihood-ratio test comparing a reduced model (where V_i is regressed on S_ij) against a full
model (where V_i is regressed on both S_ij and V_j). Similarly, H0_2 is tested by reversing the
roles of V_i and V_j. In general, the p-values p1 and p2 from the tests for H0_1 and H0_2,
respectively, tend to be identical only asymptotically. To correct any asymmetry in limited data
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scenarios, we follow the authors' technique of merging dependent p-values. Such method
calculates the combined p-value as min(2 * min(p1, p2), max(p1, p2)) and has demonstrated
superior learning accuracy when compared to alternative methods.

Tsagris et al.'s44 test relies on linear or generalized linear functions, depending on the nature of
the outcome variable. For instance, a test involving a binary outcome relies on a logistic
regression, while a test involving a continuous outcome relies on a Gaussian linear regression.
To address deviations from normality when BMI is the outcome, we transformed it using a
rank-based inverse normal transformation. For cases where a microbial taxa acts as an
outcome variable, we implemented two additional likelihood-ratio tests, one based on LinDA and
another based on ZicoSeq. Importantly, to ensure thorough adjustment for the influence of sex,
age, and library size, even when minor, we enforce their inclusion in the conditioning set for all
conditional independence tests. Age and sex stand as unique covariates, as they are known for
not being caused by any other variables, and therefore, conditioning on them can never
introduce biases such as collider bias. Additionally, library size reflects inherent artifacts of the
sequencing platform, making it crucial to adjust for it to correct potential compositional biases.

After constructing the underlying model's skeleton, the FCI algorithm advances to the orientation
phase, where a set of 10 orientation rules20,41 are iteratively applied until no further edge marks
can be identified. In general, however, not all edge marks can be established due to the
existence of multiple graphical models that can entail the same set of conditional
independencies. This results in a class of statistically equivalent models termed Markov
equivalent class (MEC). As a result, FCI constructs a Partial Ancestral Graph (PAG)
representing all ancestral (causal) and non-ancestral relationships common to models within the
most plausible MEC. In a PAG, arrowheads represent definite non-ancestral (non-causal)
relationships, while tails represent definite ancestral (causal) relationships. A circle ("o") denotes
non-invariant edge marks, indicating the existence within the MEC of both a model where the
edge mark is a tail and another model where the same edge mark is an arrowhead.

A PAG represents a class of the most probable models based on the available data.
Remarkably, all models in this class fit the data equally well, as they entail the same set of
observed conditional independencies, rendering them statistically indistinguishable. Whenever
ancestral and non-ancestral relationships are shared across all models within this equivalence
class, they are represented as non-circle edges in the PAG.

The process of learning a PAG through causal discovery algorithms is intricate. Most algorithms,
including the FCI, rely on an assumption known as faithfulness to ensure that the inferred PAG
accurately represents the MEC of the true underlying causal model. Such an assumption
asserts that the set of conditional independence relations inferred during the learning process is
truly satisfied by the underlying model. This premise, however, is often violated in real-world
scenarios, especially when dealing with datasets of finite sample size, where statistical tests
may lack the power to draw accurate conclusions. Misidentified independencies or those
established under an inaccurate conditioning set can lead not only to potentially multiple wrong
edge orientations65,66, but also to violations of the inherent PAG properties and inconsistencies in
the set of implied conditional independencies through m-separation22. Remarkably, this issue
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greatly intensifies when dealing with larger graphs due to both the higher number of conditional
independence tests and the substantial decrease in statistical power as the conditioning set size
grows.

To ensure the reliability of our analysis, we employ different approaches. First, we evaluate
marginal causal consistency following the approach by Roumpelaki et al.46. Specifically, we
apply the FCI algorithm considering all possible subsets of the selected variables and verify the
degree of agreement of causal relations among the all marginals. As FCI's soundness holds
despite latent confounding, if there is no statistical error, then every definite ancestral (causal) or
non-ancestral (non-causal) relationship established in a PAG over a particular subset of
variables should hold true in the full underlying model and must consistently align with any other
definite relationships established across different subsets of variables. Consequently, if
conflicting edge orientations arise, conclusions should be approached cautiously as they might
solely stem from statistical inaccuracies. To further enhance reliability, we also implemented
extensive tests to verify whether each inferred PAG aligns with its characterization of a class of
Maximal Ancestral Graphs20 and only implies conditional independencies that are consistent
with the observed data. Any instances revealing violations or inconsistencies are excluded from
our analysis. Finally, we compare all PAGs that passed our validity and robustness tests with the
ones obtained by the conservative variant of the FCI algorithm47, which performs additional tests
to identify ambiguous triplets and then selectively applies the orientation rules only when
supported by unambiguous triplets.

sMethods 3. Causal Effect Identification and Estimation

As previously discussed, a PAG provides a qualitative description of the ancestral and
non-ancestral relationships among variables, common across all models consistent with
observed data. To quantitatively analyze causal effects, it is crucial to assess their identifiability.
Specifically, a causal effect can be inferred from a PAG if it is uniquely computable within its
equivalence class using expressions based solely on observational (conditional) probabilities.

Sound and complete tools have been developed for causal effect identification from PAGs.
These include the generalized backdoor criterion48, adjustment criterion21, as well as causal
calculus and (conditional) effect identification algorithms22.

The generalized backdoor criterion helps us determine the causal effect of an exposure variable
X on an outcome variable Y from a PAG P. It searches for a set Z of variables that are not
descendants of X and that block (in the sense of d-separation) all potential confounding paths
between X and Y in P. If this set Z is identified, we can compute the causal effect of X on Y
through an adjustment formula that incorporates Z. When analyzing the causal effect of X on Y
conditioned on another set S, the adjustment set Z must include S. For further details, refer to
Pearl19. The estimation of these causal effects is facilitated by the marginal effects R package
(Arel-Bundock et al.), typically modeling relationships among variables with (generalized) linear
regression models and computing average estimates through Monte Carlo methods.
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sMethods 4. Summary table of psychopharmacological medication. Participants taking any of these
medications were considered “medicated”.

Substance N (% of MDD patients)

Antidepressant n=358 (57.3%)

Agomelatin n=29 (4.6%)

Tricyclic antidepressants n=29 (4.6%)

Noradrenalin reuptake inhibitor n=1 (0.2%)

Noradrenalin-dopamine reuptake inhibitor n=23 (3.7%)

Selective serotonin reuptake inhibitor n=154 (24.6%)

Serotonin-noradrenaline reuptake inhibitor n=152 (24.3%)

Noradrenergic and specific serotonergic antidepressant n=52 (8.3%)

Monoamine oxidase inhibitors n=4 (0.6%)

SRE n=4 (0.6%)

St. John's wort n=7 (1.1%)

Neuroleptics n=111 (17.8%)

1st generation neuroleptics n=34 (5.4%)

2nd generation neuroleptics n=84 (13.4%)

Lithium n=13 (2.1%)

Anticonvulsant n=13 (2.1%)

Stimulants n=4 (0.6%)

Benzodiazepine n=2 (0.3%)

Z-substances n=5 (0.8%)
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Supplementary Results

sTable 1: Results of the logistic regression for descriptive statistics

Estimate Std. Error z value Pr(>|z|)

(Intercept) -2.792 0.688 -4.056 4.99e-05

Shannon
Index

-0.165 0.179 -0.921 0.357

Age 0.86e-02 0.48e -02 1.794 0.073

Sex 0.041 0.122 0.333 0.739

BMI 0.068 0.0121 5.664 1.48e-08

Library Size 0.39e-05 0.72e-05 0.539 0.590

Site 0.638 0.131 4.863 1.16e-06

sFigure 1: Results of the ZicoSeq abundance analysis

sFigure 1: Adjusted p-values given by ZicoSeq for each genus with color intensity indicating prevalence
and bubble size mean abundance. Significant (p<0.05) genera lie above the horizontal dashed line and
are named. R² values indicate whether the genus was more abundant in the MDD group (right of the
vertical dashed line) or in the HC group (left of the vertical dashed line). Eggerthella mean relative
abundance in healthy controls was ~0.00054 with a prevalence of ~0.56832, while in the MDD group the
mean relatiive abundance was ~0.00087 with a prevalence of 0.63040; Hungatella mean relative
abundance in healthy controls was ~0.00006 with a prevalence of ~0.24068, while in the MDD group the
mean relatiive abundance was ~0.00012 with a prevalence of 0.33600
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sFigure 2: Results of the LinDA analysis

sFigure 2: Adjusted p-values given by LinDA for each genus with color intensity indicating prevalence
and bubble size mean abundance. Significant (p<0.05) genera lie above the horizontal dashed line and
are named. Z-values indicate whether the genus was more abundant in the MDD group (right of the
vertical dashed line) or in the HC group (left of the vertical dashed line).

sTable 2: Results of medication analysis of Eggerthella and Hungatella. The data was divided into three
groups, the medicated group (N=360), the unmedicated group (N=244) and the unaffected controls
(N=626). Only participants with complete information on age, sex, BMI, and medication index were
included in this analysis. The group mentioned first on the comparison column was the reference group. A
positive estimate indicates higher abundance in the non-reference group while a negative estimate
indicates higher abundance in the reference group. The estimates and the respective confidence intervals
were obtained from logistic regression models, while q-values were obtained through FDR correction. The
models were adjusted for age, sex, BMI and collection site.

Genus Comparison Mean clr
abundance
group 1

Mean clr
abundance
group 2

Estimate 95% CI p value q value

Eggerthella Unaffected –
Unmedicated

-0.413 -0.013 0.168 0.020 0.316 0.026 0.040

Unaffected –
Medicated

-0.413 0.032 0.243 0.108 0.378 < 0.001 0.001

Unmedicated
– medicated

-0.013 0.032 0.110 -0.06
1

0.280 0.207 0.248

Hungatella Unaffected
Unmedicated

-1.190 -0.986 0.238 0.094 0.382 0.001 0.002

Unaffected –
Medicated

-1.190 -0.911 0.322 0.183 0.460 < 0.001 < 0.001

Unmedicated
– medicated

-0.986 -0.911 0.094 -0.07
7

0.265 0.282 0.282
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sTable 3: Results of the Differential Abundance Analysis using the LiNDA and ZicoSeq tools

36

Adjusted p-values

Genus LinDA ZicoSeq

Hungatella 0.0002 0.0071

Eggerthella 0.0063 0.0071

Clostridium sensu stricto 1 0.0063 0.1680

Lachnospiraceae FCS020
group

0.0063 0.0110

Coprobacillus 0.0070 0.0071

Subdoligranulum 0.0103 0.1355

Faecalibacterium 0.0164 0.1680
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sFigure 3: Conservative FCI's resulting PAG

sFigure 3: Conservative FCI's resulting PAG over MDD, BMI, Site and all microbial taxa robustly
identified as causes of MDD, namely Eggertella, Hungatella, and Copobracillus. Conditional
independence tests for taxa variables rely on LinDA and consistently include age, sex, and library size as
part of the conditioning set.
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sTable4: Relationships from PAGs that successfully passed our validity and robustness tests, and were
identically inferred by both FCI and its conservative variant, while using a conditional independence test
for microbial taxa variables based on LinDA. The column "0" indicates no edge. The column "sum"
indicates the total number of PAGs that passed our tests, out of the 31 constructed ones.

relation 0 o-o <-o -o o-> <-> -> o- <- - sum

MDD,BMI 0 7 20 0 0 0 0 0 0 0 27

MDD,Site 0 9 18 0 0 0 0 0 0 0 27

BMI,Site 29 0 0 0 0 0 0 0 0 0 29

MDD,Lachnospiraceae_FCS020_group 0 12 12 0 0 0 0 0 0 0 24

BMI,Lachnospiraceae_FCS020_group 27 0 0 0 0 0 0 0 0 0 27

MDD,Coprobacillus 2 18 4 0 0 0 0 0 0 0 24

BMI,Coprobacillus 0 7 0 0 20 0 0 0 0 0 27

MDD,Eggerthella 0 22 0 0 0 0 0 0 2 0 24

BMI,Eggerthella 12 15 0 0 0 0 0 0 0 0 27

MDD,Hungatella 0 25 0 0 0 0 0 0 2 0 27

BMI,Hungatella 29 0 0 0 0 0 0 0 0 0 29

Site,Lachnospiraceae_FCS020_group 27 0 0 0 0 0 0 0 0 0 27

Site,Coprobacillus 27 0 0 0 0 0 0 0 0 0 27

Site,Eggerthella 27 0 0 0 0 0 0 0 0 0 27

Site,Hungatella 29 0 0 0 0 0 0 0 0 0 29

Lachnospiraceae_FCS020_group,Coprobacillus 0 14 0 0 8 2 0 0 0 0 24

Lachnospiraceae_FCS020_group,Eggerthella 1 21 0 0 0 2 0 0 0 0 24

Lachnospiraceae_FCS020_group,Hungatella 0 27 0 0 0 0 0 0 0 0 27

Coprobacillus,Eggerthella 0 16 0 0 0 0 8 0 0 0 24

Coprobacillus,Hungatella 0 13 8 0 0 6 0 0 0 0 27

Eggerthella,Hungatella 0 21 0 0 0 6 0 0 0 0 27
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sTable 5: Relationships from PAGs that successfully passed our validity and robustness tests, and were
identically inferred by both FCI and its conservative variant, while using a conditional independence test
for microbial taxa variables based on ZicoSeq. The column "0" indicates no edge. The column "sum"
indicates the total number of PAGs that passed our tests, out of the 31 constructed ones.

relation 0 o-o <-o -o o-> <-> -> o- <- - sum

MDD,BMI 0 6 11 0 0 0 0 0 0 0 17

MDD,Site 0 10 10 0 0 0 0 0 0 0 20

BMI,Site 21 0 0 0 0 0 0 0 0 0 21

MDD,Lachnospiraceae_FCS020_group 0 8 11 0 0 0 0 0 0 0 19

BMI,Lachnospiraceae_FCS020_group 20 0 0 0 0 0 0 0 0 0 20

MDD,Coprobacillus 0 16 4 0 0 0 0 0 0 0 20

BMI,Coprobacillus 0 12 0 0 9 0 0 0 0 0 21

MDD,Eggerthella 0 12 4 0 0 0 0 0 0 0 16

BMI,Eggerthella 3 13 0 0 0 0 0 0 0 0 16

MDD,Hungatella 0 20 0 0 0 0 0 0 0 0 20

BMI,Hungatella 21 0 0 0 0 0 0 0 0 0 21

Site,Lachnospiraceae_FCS020_group 22 0 0 0 0 0 0 0 0 0 22

Site,Coprobacillus 22 0 0 0 0 0 0 0 0 0 22

Site,Eggerthella 20 0 0 0 0 0 0 0 0 0 20

Site,Hungatella 22 0 0 0 0 0 0 0 0 0 22

Lachnospiraceae_FCS020_group,Coprobacillus 0 10 0 0 9 0 0 0 0 0 19

Lachnospiraceae_FCS020_group,Eggerthella 17 0 0 0 0 0 0 0 0 0 17

Lachnospiraceae_FCS020_group,Hungatella 0 13 0 0 6 0 0 0 0 0 19

Coprobacillus,Eggerthella 0 18 0 0 0 0 0 0 0 0 18

Coprobacillus,Hungatella 0 19 0 0 0 0 0 0 0 0 19

Eggerthella,Hungatella 6 6 0 0 6 0 0 0 0 0 18
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Effects of Continuous Abundances of Eggerthella and Hungatella on MDD

The estimated probabilities of experiencing MDD given a specific level "e" of Eggerthella
abundance set by an intervention, expressed as P(MDD=1|do(Eggerthela=e)), and given a
specific level "h" of Hungatella abundance set by an intervention, expressed as
P(MDD=1|do(Hungatella=h)), were based on a logistic regression of MDD on Eggerthella and
Hungatella abundances, and BMI. See Supplementary Table 6 for the coefficient estimates and
respective standard errors and p-values. Notably, all coefficients are statistically significant at
the 5% level. It is important to emphasize that Age, Sex, and Library Size, when included in the
model, do not reach statistical significance at the 5% threshold. In this model, the odds of MDD
increases by approximately 1.008 with a one unit increase in the Eggerthella abundance, 1.056
with a one unit increase in Hungatella abundance, and 1.068 with a one unit increase in BMI.

The estimation of P(MDD=1|do(Eggerthela=e), catBMI=c) is based on a logistic regression of
MDD on BMI Category as well as Eggerthella and Hungatella abundances. The coefficient
estimates and their respective p-values are detailed in Supplementary Table 7. In this model,
the odds of MDD still increases by approximately 1.008 with a one unit increase in the
Eggerthella abundance, and 1.056 with a one unit increase in Hungatella abundance. Moreover,
the odds of MDD increase by approximately 1.296 when moving from Non-Obese to Overweight
and by approximately 2.596 when moving from Overweight to Obese.

sTable 6: Coefficient estimates and their respective p-values of a logistic regression of MDD on
Eggerthella and Hungatella abundances, and BMI.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.850900 0.296310 -6.2464 4.2000e-10

BMI 0.007859 0.002529 3.1070 1.8898e-03

Eggerthella 0.065609 0.011529 5.6908 1.2647e-08

Hungatella 0.055294 0.015237 3.6289 2.8462e-04

sTable 7: Coefficient estimates and their respective p-values of a logistic regression of MDD on
Eggerthella and Hungatella abundances, and categorical BMI.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.40600 0.08100 -5.01 5.39e-07

Overweight
BMI (25,30]

0.25900 0.13400 1.94 5.29e-02

Obese
BMI (30,60]

0.95400 0.17300 5.50 3.72e-08

Eggerthella 0.00797 0.00253 3.15 1.64e-03

Hungatella 0.05420 0.01520 3.58 3.47e-04
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sTable 8: Causal effect of Eggerthella on MDD, expressed as the probability of experiencing MDD given
a specific abundance level "e" of Eggerthella set by intervention (denoted as
P(MDD=1|do(Eggerthella=e))), along with the corresponding 95% confidence interval.

Abundance of
Eggerthella

Mean 95% Confidence Interval

0 0.472 0.426 0.520

24 0.520 0.471 0.568

46 0.562 0.498 0.625

70 0.608 0.522 0.688

92 0.649 0.541 0.743

116 0.690 0.560 0.796

138 0.726 0.577 0.837

162 0.762 0.595 0.874

184 0.792 0.611 0.902

208 0.821 0.628 0.926

sTable 9: Causal effect of Eggerthella on MDD, conditional on each category of BMI, expressed as the
probability of experiencing MDD given a specific abundance level "e" of Eggerthella set by intervention
and a specific BMI category "c" (denoted as P(MDD=1|do(Eggerthella=e), catBMI=c), along with the
corresponding 95% confidence interval (C.I.).

Non- Obese Overweight Obese

Abundance of
Eggerthella

Mean 95% C. I Mean 95% C. I Mean 95% C. I

0 0.421 0.378 0.465 0.482 0.421 0.544 0.652 0.574 0.723

24 0.468 0.422 0.515 0.530 0.468 0.591 0.694 0.620 0.760

46 0.512 0.449 0.575 0.574 0.500 0.644 0.730 0.652 0.796

70 0.559 0.472 0.643 0.620 0.527 0.704 0.766 0.679 0.835

92 0.602 0.492 0.703 0.660 0.549 0.756 0.796 0.700 0.867

116 0.647 0.512 0.762 0.701 0.570 0.806 0.825 0.719 0.897

138 0.686 0.530 0.809 0.737 0.588 0.846 0.849 0.735 0.920

162 0.725 0.548 0.852 0.772 0.607 0.881 0.872 0.751 0.939

184 0.759 0.566 0.884 0.802 0.624 0.908 0.890 0.765 0.953

208 0.792 0.584 0.912 0.830 0.642 0.930 0.908 0.779 0.965
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sTable 10: Causal effect of Hungatella on MDD, expressed as the probability of experiencing MDD given
a specific abundance level "e" of Hungatella set by intervention (denoted as
P(MDD=1|do(Hungatella=e))), along with the corresponding 95% confidence interval.

Abundance of
Hungatella

Mean 95% Confidence Interval

0 0.474 0.428 0.521

6 0.557 0.499 0.614

11 0.624 0.539 0.702

17 0.698 0.581 0.794

22 0.753 0.614 0.854

28 0.809 0.651 0.906

33 0.848 0.68 0.936

39 0.886 0.713 0.961

44 0.911 0.739 0.974

50 0.935 0.767 0.984

sTable 11: Causal effect of Hungatella on MDD, conditional on each category of BMI, expressed as the
probability of experiencing MDD given a specific abundance level h" of Hungatella set by intervention and
a specific BMI category "c" (denoted as P(MDD=1|do(Hungatella=h), catBMI=c), along with the
corresponding 95% confidence interval (C.I.).

Non- Obese Overweight Obese

Abundance of
Hungatella

Mean 95% C. I Mean 95% C. I Mean 95% C. I

0 0.420 0.378 0.464 0.490 0.429 0.550 0.659 0.582 0.728

6 0.501 0.446 0.556 0.570 0.500 0.638 0.728 0.651 0.793

11 0.582 0.492 0.666 0.648 0.550 0.734 0.787 0.700 0.855

17 0.633 0.519 0.734 0.696 0.579 0.792 0.821 0.726 0.889

22 0.705 0.558 0.819 0.760 0.618 0.861 0.864 0.759 0.928

28 0.768 0.595 0.882 0.814 0.654 0.910 0.898 0.788 0.955

33 0.821 0.631 0.925 0.858 0.688 0.943 0.924 0.813 0.972

39 0.851 0.654 0.945 0.883 0.710 0.959 0.938 0.828 0.979

44 0.887 0.687 0.966 0.913 0.740 0.975 0.955 0.849 0.987

50 0.916 0.718 0.979 0.935 0.768 0.984 0.967 0.868 0.992
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Effects of Discrete Abundances of Eggerthella and Hungatella on MDD

To enhance interpretability, we categorized Eggerthella abundance into two groups: 'low' (up to
30) and 'high' (exceeding 30). These groups demonstrate statistical significance at the 5% level,
supported by a Pearson's Chi-squared test with Yates' continuity correction (X-squared =
19.458, df = 1, p-value = 1.028e-05). Similarly, Hungatella abundance was categorized into 'low'
(up to 10) and 'high' (exceeding 10), showing statistical significance at the 5% level (X-squared
= 11.09, df = 1, p-value = 0.0008678). These thresholds were chosen following an initial
inspection of Figures 3 and 4, respectively. Further investigation is required to determine the
optimal categorizations for both Eggerthella and Hungatella abundances.

Effects of Discrete Abundances of Eggerthella on MDD

Based on the discrete variables for Eggerthella abundance and BMI category, we can easily
compute the post-interventional distributions of MDD for both levels of Eggerthella, and
respective 95% confidence intervals. Specifically, P(MDD=1|do(Eggerthella=Low) = 0.4696, with
95% CI [0.4399, 0.4994]. In addition, P(MDD=1|do(Eggerthella=High) = 0.6703, with 95% CI
[0.5911, 0.7408]. The Average Treatment Effect, expressed as ATE =
E[MDD=1|do(Eggerthella=High)] - E[MDD=1|do(Eggerthella=Low)] = 0.168 (std. error 0.042)
and a 95% Confidence Interval of (0.086, 0.250). Importantly, this difference is significantly
non-zero.

We can also compute the post-interventional distributions of MDD for both low and high levels of
Eggerthella, conditional on a specific value "c" of BMI category. Supplementary Table 12 shows
the estimates of P(MDD=1|do(Eggerthella=e), catBMI=c), for e = {Low, High}, while
Supplementary Figure 4 provides a visual representation of these probabilities. The causal
effect sizes of Eggerthella at each "c" category of BMI, represented by the difference
E(MDD=1|do(Eggerthella=High), catBMI=c) - E(MDD=1|do(Eggerthella=Low), catBMI=c), along
with their respective standard errors and 95% confidence intervals, are detailed in
Supplementary Table 13. Importantly, all effects are significantly distinct from zero.

These probabilities and effect sizes were all computed based on the estimates of
P(MDD=1|Eggerthela=e, Hungatella=h, catBMI=c), modeled through a logistic regression. The
coefficient estimates and their respective p-values are detailed in Supplementary Table 14.
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sTable 12: Estimates of P(MDD=1|do(Eggerthella=e), catBMI=c), for both levels of Eggerthella e (Low or
High), across the three categories of BMI, along with their respective 95% confidence intervals.

sFigure 4: Estimated conditional post-interventional probabilities of MDD
given Eggerthella levels

sFigure 4: Estimated conditional post-interventional probabilities of MDD, given low and high levels of
Eggerthella set by intervention, across the three categories of BMI, i.e., P(MDD=1|do(Eggerthella=Low),
catBMI=c) and P(MDD=1|do(Eggerthella=High), catBMI=c), for each category of BMI "c". Error bars
indicate the corresponding 95% confidence intervals.
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BMI Category Eggerthella Mean 95% CI

Non-Obese
BMI (14,25]

Low [0,30] 0.4215 0.3853 0.4586

High (30,209] 0.6122 0.5251 0.6926

Overweight
BMI (25,30]

Low [0,30] 0.4784 0.4234 0.5339

High (30,209] 0.6717 0.5826 0.7500

Obese
BMI (30,60]

Low [0,30] 0.6511 0.5781 0.7177

High (30,209] 0.8012 0.7211 0.8627
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sTable 13: Estimates of the causal effect sizes of Eggerthella at each category of BMI "c", represented by
the difference E(MDD=1|do(Eggerthella=High), catBMI=c) - E(MDD=1|do(Eggerthella=Low), catBMI=c),
along with their respective standard errors and 95% confidence intervals.

BMI Category Effect Size Std. Error 95% CI

No Obesity
BMI (14,25]

0.1742 0.0442 0.0875 0.2609

Overweight
BMI (25,30]

0.1712 0.0423 0.0883 0.2541

Obese
BMI (30,60]

0.1397 0.0330 0.0749 0.2045

sTable 14: Coefficient estimates and their respective p-values of a logistic regression of MDD on binary
variables for the binary variables representing the abundances of Eggerthella and Hungatella, along with
the variable indicating the category of BMI.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.3537 0.0777 -4.551 5.33e-06

Eggerthella -
High (30,191]

0.7099 0.1846 3.846 1.20e-04

Hungatella -
High (10,31]

0.8568 0.2860 2.996 2.74e-03

Overweight
BMI (25,30]

0.2372 0.1337 1.774 7.60e-02

Obese
BMI (30,60]

0.9458 0.1732 5.460 4.76e-08
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Effects of Discrete Abundances of Hungatella on MDD

Based on the discrete variables for Eggerthella abundance and BMI category, we also
computed the post-interventional distributions of MDD for both levels of Hungatella, and
respective 95% confidence intervals. Specifically, P(MDD=1|do(Hungatella=Low) = 0.4824, with
95% CI [0.4537, 0.5112]. In addition, P(MDD=1|do(Hungatella=High) = 0.7130, with 95% CI
[0.5897, 0.8111]. The ATE = E[MDD=1|do(Hungatella=High)] - E[MDD=1|do(Hungatella=Low)] =
0.1984 (std. error 0.0608) and a 95% confidence interval of (0.0792, 0.3176). Importantly, this
difference is also significantly different from zero.

We can also compute the post-interventional distributions of MDD for both low and high levels of
Hungatella, conditional on a specific category "c" of BMI. Supplementary Table 15 shows the
estimates of P(MDD=1|do(Hungatella=e), catBMI=c), for e = low, high, while Supplementary
Figure 5 provides a visual representation of these probabilities.

The causal effect sizes of Hungatella at each category "c" of BMI, represented by the difference
E(MDD=1|do(Hungatella=High), catBMI=c) - E(MDD=1|do(Hungatella=Low), catBMI=c), along
with their respective standard errors and 95% confidence intervals, are detailed in
Supplementary Table 16. Importantly, all the differences are significantly distinct from zero.

Once again, all these estimates were computed based on the estimates of
P(MDD=1|Eggerthela=e, Hungatella=h, catBMI=c), modeled through a logistic regression – see
Supplementary Table 14 for coefficient estimates and their respective p-values.

sTable 15: Estimates of P(MDD=1|do(Hungatella=h), catBMI=c), for both low and high levels of
Hungatella, across the three categories of BMI, along with their respective 95% confidence intervals.

BMI Category Hungatella

P(MDD=1|
do(Hungatella=h),

catBMI=c)
95% CI

Non-Obese
BMI (14,25]

Low [0,10] 0.4291 0.3932 0.4658

High (10,50] 0.6618 0.5297 0.7727

Overweight
BMI (25,30]

Low [0,10] 0.4944 0.4401 0.5488

High (10,50] 0.7374 0.6109 0.8340

Obese
BMI (30,60]

Low [0,10] 0.6661 0.5948 0.7306

High (10,50] 0.8436 0.7430 0.9097
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sFigure 5: Estimated conditional post-interventional probabilities of MDD
given Hungatella levels

sFigure 5: Estimated conditional post-interventional probabilities of MDD, given low and high levels of
Hungatella set by intervention, across the three categories of BMI, i.e., P(MDD=1|do(Hungatella=Low),
catBMI=c) and P(MDD=1|do(Hungatella=High), catBMI=c), for each category of BMI "c". Error bars
indicate the corresponding 95% confidence intervals.

sTable 16: Estimates of the causal effect sizes of Hungatella at each category of BMI "c" , represented
by the difference E(MDD=1|do(Hungatella=High), catBMI=c) - E(MDD=1|do(Hungatella=Low), catBMI=c),
along with their respective standard errors and 95% confidence intervals.

BMI Category Effect Size Std. Error 95% CI

Non-Obese
BMI (14,25]

0.2078 0.0657 0.0790 0.3366

Overweight
BMI (25,30]

0.2002 0.0605 0.0817 0.3188

Obese
BMI (30,60]

0.1577 0.0437 0.0720 0.2435
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Relative Risks of MDD Associated with High Eggerthella Levels

Supplementary Table 17 presents the relative risks of MDD associated with high Eggerthella
levels compared to low levels in each category of BMI. Additionally, it includes the respective
standard errors and 95% confidence intervals. Notably, all relative risks are significantly greater
than one. In particular, high levels of Eggerthella increase the risk of MDD by 42.6% (95% CI:
20.2 – 65.0%) among non-obese individuals, by 36.8% (95% CI: 18.0 – 55.5%) for individuals
with overweight, and by 22.1% (95% CI: 11.7 – 32.5%) for those with Obesity.

sTable 17: Relative risks of MDD associated with high Eggerthella abundance levels compared to low
abundance levels within each category of BMI.

BMI Category Relative Risk Std. Error 95% CI

Non-Obese
BMI (14,25]

1.426 0.11440 1.202 1.650

Overweight
BMI (25,30]

1.368 0.09569 1.180 1.555

Obese
BMI (30,60]

1.221 0.05289 1.117 1.325

Relative Risks of MDD Associated with High Hungatella Levels

Supplementary Table 18 presents the relative risks of MDD associated with high Hungatella
levels compared to low levels in each category of BMI. Additionally, it includes the respective
standard errors and 95% confidence intervals. All relative risks are significantly greater than
one. In particular, high levels of Hungatella increase the risk of MDD by 51.1% (95% CI: 18.1 –
84.1%) among non-obese individuals, by 43.8% (95% CI: 16.7 – 70.9%) for individuals with
overweight, and by 25.8% (95% CI: 11.5 – 40.0%) for those with Obesity..

sTable 18: Relative risks of MDD associated with high Hungatella abundance levels compared to low
abundance levels within each category of BMI.

BMI Category Relative Risk Std. Error 95% CI

Non-Obese
BMI (14,25]

1.511 0.16840 1.181 1.841

Overweight
BMI (25,30]

1.438 0.13820 1.167 1.709

Obese
BMI (30,60]

1.258 0.07267 1.115 1.400
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