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Synopsis 

An epigenetic biomarker (EB) model demonstrated high sensitivity and accuracy for 

early lung cancer detection in 806 patients with pulmonary nodules. It performed well 

across imaging types and stages, including small nodules, reducing false negatives in 

minimally invasive surgery. 
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ABSTRACT  

Background: Accurate non-invasive tests to improve the early detection and diagnosis 

of lung cancer are urgently needed, given that large tumors may metastasize or be 

resistant to treatment. However, no regulatory-approved blood tests are available for 

the early detection of lung cancer. We aimed to improve the classification of pulmonary 

nodules to identify malignant ones in a high-prevalence patient group. 

Methods: A study involving 806 participants with undiagnosed nodules larger than 5 

mm, identified via CT imaging, focused on assessing nucleosome levels and histone 

modifications in circulating blood. Nodules were classified as malignant or benign. A 

logistic regression analysis was performed. For model development, the data were 

randomly divided into training (n = 483) and validation (n = 121) datasets. The model's 

performance was then evaluated using a separate testing dataset (n = 202). 

Results: Among patients, 755 (93.7%) had a tissue diagnosis. The overall malignancy 

rate in the cohort was 80.4%. For all datasets, the AUCs were as follows: training, 0.74; 

validation, 0.86; and test, 0.79 (accuracy range: 0.80–0.88). Sensitivity showed 

consistent results across all datasets (0.91, 0.95, and 0.93, respectively), whereas 

specificity ranged from 0.37 to 0.64. For smaller nodules (5–10 mm), the model 

recorded accuracy values of 0.76, 0.88, and 0.85. Sensitivity values of 0.91, 1.00, and 

0.94 further highlight the robust diagnostic capability of the model. The performance 

of the model across the RADS categories was evaluated, and it demonstrated consistent 

accuracy. 

Conclusion: Our EB panel detected non-small cell lung cancer early in a high-risk 

patient group with high sensitivity and accuracy. The EB model was particularly 

effective in identifying high-risk lung nodules, including small, part-solid, and non-

solid nodules, and provided further evidence for external validation. 
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INTRODUCTION 

Lung cancer remains the leading cause of cancer-related mortality worldwide.1 Early 

detection using low-dose computed tomography (LDCT) reduces death rates, as 

evidenced in pivotal trials such as the National Lung Screening Trial (NLST)2 and the 

Dutch-Belgian Lung Cancer Screening Trial(NELSON).3 NLST reported a 20% 

reduction in lung cancer mortality with the implementation of LDCT screening.2 

Despite these outcomes, indeterminate pulmonary nodules, which comprise 50–76% of 

the nodules identified in the LDCT, present a significant challenge.4, 5 The likelihood 

of malignancy increases with nodule size, with those measuring 7–29 mm exhibiting a 

malignancy risk ranging from 1.7% to 22%.6 Lung nodules detected using LDCT 

screening are often <20 mm, complicating the biopsy process.6-8 Consequently, while 

close monitoring is the primary strategy, larger tumors may develop resistance or 

metastasize during observation. 

Efforts have been made to develop robust, sensitive, and non-invasive tests to diagnose 

pulmonary nodules.9 Despite advancements, there is currently no regulatory body-

approved and widely adopted blood test for early detection of lung cancer.4 Tumor cells 

release various biomolecules such as cell-free DNA (cfDNA), circulating tumor DNA 

(ctDNA), exosomes, micro-RNA, circular RNA, circulating tumor cells (CTCs), and 

DNA-methylated fragments. However, while these biomarkers are effective diagnostic 

biomarkers, some experts remain skeptical of liquid biopsies. The detection of 

molecular changes in evolving tumor cells requires highly sensitive and specific assays 

for ctDNA mutations.10, 11 The diagnostic sensitivity of liquid biopsy tests is hampered 

by very low levels of somatic molecular alterations in patients with early-stage cancer, 

who constitute the majority of the population after LDCT screening.12, 13 

Changes in DNA methylation in specific regions, such as promoter CpG islands, may 

signify early molecular events in tumor initiation.14 Patients with cancer have distinct 
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histone post-translational modifications (PTMs) in circulating nucleosomes, indicating 

their potential as cancer biomarkers.15, 16 

We aimed to develop an epigenetic biomarker (EB) model based on circulating 

nucleosomes, including histone variant and histone methylation, to evaluate the risk of 

malignancy in pulmonary nodules and to achieve a more accurate classification of 

pulmonary nodules, particularly through focusing on identifying malignant nodules in 

thoracic surgery scenarios. 

METHODS 

Study design and patients 

This prospective blood specimen collection and retrospective evaluation study was 

approved by the Institutional Review Boards (201905009RIFC) of the participating 

hospitals and researchregistry-10711. In guidelines for Asia, it is recommended that 

nodules with a diameter of ≥5 mm undergo clinical management.17 We recruited 806 

participants with undiagnosed nodules larger than 5 mm, identified on computed 

tomography (CT) scans and classified as high risk by the attending physician. Adult 

patients of either sex aged ≥18 years were eligible for inclusion if they met the 

following criteria: pulmonary nodules >5 mm detected using standard- or low-dose CT 

(LDCT) screening, and with nodules categorized as solid nodules, part-solid nodules 

(mixed ground-glass nodules), or pure non-solid nodules. Participants were recruited 

from the outpatient clinics of the National Taiwan University Hospital and the National 

Taiwan University Cancer Center, both teaching hospitals. The study was conducted 

from August 2019 to July 2021. Exclusion criteria included patients exhibiting 

metastatic symptoms such as pleural effusion, patients unwilling to undergo blood 

sampling, patients without a confirmed pathological diagnosis post-surgery, or patients 

with cancer confirmed pathologically within two years prior to enrollment. Written 

informed consent was obtained from the patient for blood sampling.  
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Blood sampling  

All chest blood samples were prospectively collected before surgery, either during the 

initial nodule check or during the admission period. Blood (10 mL) was collected in 

K2-EDTA blood tubes (Sarstedt, Nümbrecht, Germany) within two weeks prior to the 

initiation of surgery. Blood collection and CT-based response evaluations were 

conducted for patients undergoing observation at 1–2 weeks intervals. Blood samples 

were centrifuged at 3000 g for 10 min at 15-30°C. The plasma was then stored at -80 

°C until the nucleosome analysis was conducted.  

Quantification of circulating nucleosomes using immunoassays 

All samples were tested using Nu.Q® assays (Belgian Volition SRL, Isnes, Belgium). 

two nucleosome structures were measured using Nu.Q® H3.1 and Nu.Q® H3K27Me3 

immunoassays, according to the manufacturer’s instructions. These sandwich 

immunoassays, based on chemiluminescence technology, were performed using the 

IDS-i10 automated analyzer system (Immunodiagnostic System Ltd., Boldon, UK). 

Briefly, 50 µL of K2-EDTA plasma was incubated with acridinium ester labeled anti-

nucleosome detection antibody. Magnetic particle beads coated with the corresponding 

monoclonal anti-histone variant H3.1, or anti-histone modification H3K27Me3 capture 

antibody, were added. After washing, trigger solutions were added, and the light emitted 

by the acridinium ester was measured using a luminometer. The results were expressed 

in relative light units, and concentration (expressed in ng/mL) was extrapolated using 

four-parameter logistic regression of a reference standard curve. All samples were 

analyzed in duplicate. If the sample concentration was higher than the lowest 

concentration and the %CV of the determined concentration was >20%, the analysis 

was repeated. 
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Chest CT imaging and radiological analysis 

For each participant who underwent a chest CT scan, the lung and mediastinal image 

series were reconstructed with a slice thickness of 1.000–1.250 mm if the scans were 

performed at the National Taiwan University Hospital and National Taiwan University 

Cancer Center. The slice thickness was at least 5.000 mm. The chest CT images were 

initially evaluated before drawing blood to confirm inclusion. Diagnosis of the nodules 

was based on the pathological outcomes. If a nodule disappeared on subsequent 

imaging and a radiologist confirmed this, it was classified as benign. 

Imaging analysis was overseen by Jin-Shing Chen, a senior thoracic surgeon with 

extensive experience exceeding three decades. Additional team members, Pei-Hsing 

Chen, and Tung-Ming Tsai, with 10 and 17 years of experience, respectively, interpreted 

the scans and delineated the regions of interest. For subgroup analysis, Lung-imaging, 

reporting, and data system (Lung-RADS) version 1.1 guidelines were used.18 In the 

external validation of the model, Hsiao-Hung Lu performed a blinded assessment, 

categorizing the nodules as malignant or benign based on their spiculation 

characteristics. 

Tumor size was determined preoperatively based on thin-section CT findings. All 

tumors were subsequently evaluated to estimate the extent of ground-glass opacity 

(GGO) using a thin-section CT scan with a 5.000 mm collimation. The solid component, 

part-solid component, and GGO were defined as areas of increased opacification that 

completely obscured the underlying vascular markings, as described in previous 

studies.19, 20 GGO was defined as an area of slight, homogeneous increase in density 

that did not obscure the underlying vascular markings. 
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Operation policy and pathology evaluation  

The operation policy followed the American College of Chest Physicians or American 

Association for Thoracic Surgery recommendations21 to evaluate and treat nodules >5 

mm.17 Malignant and benign tumors were defined based on the 2021 WHO 

Classification of Lung Tumors.22 The subcategories of adenocarcinoma included in the 

malignant group were atypical adenomatous hyperplasia (AAH), adenocarcinoma in 

situ, minimally invasive adenocarcinoma, and invasive adenocarcinoma.23  

 

Theory/calculation 

EB model development for benign-malignant predictions 

To advance the prediction of benign and malignant states in lung cancer, we developed 

an EB model specifically focusing on nucleosome levels and histone modifications in 

circulating blood. For model building, we employed a logistic regression approach to 

predict benign and malignant states. For model development, we randomly allocated 

25% of the data to the test dataset (n = 202). The remaining 75% was further divided, 

with 80% (n = 483) used for training and 20% (n = 121) for validation. (Figure 1.) 
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Figure 1. Flowchart of participant enrollment and model development. A total of 806 

patients with nodules >5 mm were enrolled. The Epigenetic Biomarker (EB) model was trained 

on 483 samples, validated on 121 samples, and independently tested on 202 samples. The model 

was built based on the training dataset, with the cutoff determined using the validation dataset, 

and its performance evaluated on the test dataset. 

 

The training dataset was used for model development and the calculation of its 

coefficients. Key biomarkers included histone isoform nucleosome levels (Nu.Q® H3.1) 

and methylated lysine 27 of histone H3 (Nu.Q H3K27Me3). A validation dataset was 

used to fine-tune the model and ensure its predictive capability. 

Given the benefits of video-assisted thoracoscopic surgery, such as reduced 

invasiveness, accurate localization, and quick recovery, 21,24, 25 the main challenge for 

thoracic surgeons is to accurately identify malignant lung nodules and minimize the 

risk of delayed diagnosis in high-risk populations identified through CT/LDCT 

screening. This necessitates decreasing the false-negative rate while maintaining an 

adequate PPV. Achieving this requires a sensitivity of >80% while maintaining an 

adequately high PPV to confidently identify lung cancer in high-prevalence populations. 

To this end, the probability cutoff for cancer diagnosis was determined by maintaining 

the model's sensitivity at >0.80 and then selecting the optimal threshold using the 
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Youden index. Finally, this cutoff was applied to the test dataset, and the diagnostic 

performance was calculated. 

 

Comparison with the Mayo Clinic and Veteran Affairs (VA) models 

The Mayo Clinic model for malignancy in pulmonary nodules calculates the probability 

of malignancy using three clinical and three radiographic variables. The formula is as 

follows: 

     probability of malignancy = ex/(1 + ex), 

  

where x = –6.8272 + (0.0391 × age) + (0.7917 × smoking) + (1.3388 × cancer) + 

(0.1274 × nodule diameter) + (1.0407 × spiculation) + (0.7838 × upper lobe), e is 

Euler’s number, a mathematical constant approximately equal to 2.71828.26 

 

The VA model for malignancy in pulmonary nodules calculates the probability of 

malignancy using three clinical variables and one radiographic variable. The formula 

is:  

 

 probability of malignancy = 100 × (ex/[1 + ex]), where x = −8.404 + 2.061 × smoke 

+ 0.779 × age/10 + 0.112 × diameter + 0.567 × yearsquit/10,  

 

where smoking is 1 if the patient is a current or former smoker (otherwise 0); age 

divided by 10 is the age in years divided by 10; diameter is the largest diameter of the 

nodule in millimeters; yearsquit/10 is the number of years since quitting smoking 

divided by 10; and e is the Euler’s number.27 
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Statistics 

All statistical analyses were conducted using R software (version 4.4.1). Statistical 

analyses were conducted as outlined in each figure legend with sample sizes provided 

accordingly. Categorical variables such as sex and nodule sub-type were compared 

using Fisher’s exact test. The sensitivities of the different Lung-RADS for malignant 

nodules were compared using Fisher’s exact test. Continuous variables such as age were 

compared using Student’s t-test, and 95% confidence intervals (CIs) were calculated 

based on Wald confidence intervals for proportions.  

The sensitivity, specificity, accuracy, PPV, and negative PV (NPV) of the model and 

other models for differentiating malignant nodules were assessed by comparing the 

pathological outcomes and imaging studies (for those with vanished nodules only). 

Receiver operating characteristic (ROC) and area under the curve (AUC) were 

calculated using pROC R package (version 1.15.3) software.  

RESULTS  

Patient demographics and clinicopathologic features 

In total, 806 patients who were CT-positive/LDCT-positive were recruited from the 

thoracic surgery departments of the National Taiwan University Hospital and the 

National Taiwan University Cancer Center. Of these, 755 (93.7%) were tissue-

diagnosed. The remaining 51 (6.3%) patients had nodules that disappeared on 

subsequent imaging, confirmed by a radiologist, and defined as benign. The malignancy 

rate in the entire cohort was 80.4% (158 benign, 648 malignant). An overview of the 

study design is provided in Figure 1, and the demographic characteristics of the 806 

patients are detailed in Table 1. The diagnoses in the cohort were predominantly early-

stage lung cancer (AAH, stage 0, stage I, or stage II), comprising 84.3% (546/648) of 
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all cancer patients in the cohort. The mean nodule size in the entire cohort was 25 mm. 

Additionally, 78.6% (630/806) of the patients had never smoked. Adenocarcinoma and 

its subcategories constituted the majority of malignant cases (92.6%, 600/648). No 

statistically significant differences in the distribution of malignancy, age, sex, tumor 

components, tumor size, Lung-RADS scores, or smoking history (p > 0·05) were 

observed among the three datasets. The demographic and clinical characteristics of the 

participants are presented in Table 1. 

The EB model and lung cancer diagnostic accuracy 

The cohort data were divided into an independent test dataset (n = 202, 25%) and the 

EB model development subset (75%). The training dataset (n = 483) comprised 80% of 

the EB model development subset and was used for the model development. The 

validation dataset (n = 121) comprised 20% of the model development subset and was 

used for the optimal threshold selection. 

We developed the EB model by screening multiple combination models from five 

quantitative epigenetic features (Supplementary Table 1) derived from blood tests 

during the pre-training model tuning. For feature selection, we analyzed the relationship 

between the AUC values and the number of primary features. The AUC plateaued when 

the number of primary features reached two, indicating that adding more features did 

not significantly improve the AUC. Therefore, we identified two independent predictors 

of malignancy using multivariate logistic regression analysis. This was then applied to 

the training dataset using Nu.Q® H3.1 and Nu.Q® H3K27Me3. Other potential 

predictors not associated with malignancy were excluded from the final model. The 

prediction model was calculated as follows:  

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 9, 2024. ; https://doi.org/10.1101/2024.12.05.24318548doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.05.24318548
http://creativecommons.org/licenses/by-nd/4.0/


 15 

Probability of malignant SPN=ex/1+ex 

X=1.78668 + 0.07821×H3.1 -0.15885×H3K27Me3, 

where H3.1 is the level of the histone variant H3.1, and H3K27Me3 is the histone 

modification H3K27Me3. Analysis of the relationship between the AUC values, 

detailed in Figure 2A and 2B, provided AUC values for all the datasets. Positive and 

negative classifications for the model were determined using a cutoff value (0.755). 

We validated the performance of the EB model using an independent test set that 

showed consistently good performance.  
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When comparing the model performance across all cohorts, specifically for small 

nodules (5–10 mm), the results indicated that the model remained robust even for 

smaller nodules. In the overall dataset, the AUCs for the EB model were 0.74, 0.86, 

 

 

Figure 2. (EB) model. (A) A representative ROC curve illustrates the classification 

performance of the Epigenetic Biomarker across the training, validation, and test 

datasets. 

(B) The left panel shows predicted probabilities for malignant (red) and benign (blue) 

nodules. The right panel presents the confusion matrix of test dataset at a cutoff value 

of 0.755, yielding an accuracy of 85%. 
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and 0.79 for the training, validation, and test datasets, respectively, with accuracies 

ranging from 0.80 to 0.88. Sensitivity was high across all datasets, with values of 

0.91, 0.95, and 0.93, respectively, while specificity ranged from 0.37 to 0.64. The 

PPV and NPV were consistent, indicating the reliability of the model for predicting 

true positives and negatives. 

The model maintained strong performance for small nodules (5–10 mm). The AUCs 

of the training, validation, and test datasets were 0.70, 0.89, and 0.80, respectively, 

with accuracies of 0.76, 0.88, and 0.85, respectively, indicating that the diagnostic 

accuracy of the model remained high for smaller nodules. The sensitivities were 0.91, 

1.00, and 0.94, respectively, indicating that the model correctly identified the majority 

of malignant cases. Although lower than sensitivity, specificity was sufficient in most 

of the subgroups to complement high sensitivity, with values of 0.27, 0.62, and 0.54, 

respectively.  

Lung-RADS score analysis in the test dataset 

The model's performance across different RADS categories was evaluated using a test 

dataset. In RADS 2 (n = 73), the model achieved an AUC of 0.84, an accuracy of 0.84, 

a sensitivity of 0.90, and a specificity of 0.57. In RADS 3 (n = 19), the AUC was 0.84, 

with an accuracy of 0.84, sensitivity of 1.00, and specificity of 0.40. In RADS 4A+4B 

(n = 81), the AUC was 0.82, with an accuracy of 0.82, sensitivity of 0.92, and specificity 

of 0.44. In RADS 4X (n = 29), the model performed best, with an AUC of 0.97, 

accuracy of 0.97, sensitivity of 0.96, and specificity of 1.00. These results show high 

diagnostic accuracy, especially in the higher RADS categories, indicating the clinical 

utility of the model for assessing pulmonary nodules. 
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EB model performance in different nodule types 

The model demonstrated the detection of lung cancer with accuracy independent of the 

tumor components; 0.84 for solid and part-solid nodules and 0.86 for GGO nodules in 

the test dataset. Both GGO and part-solid nodules showed higher PPV when 

maintaining a similar threshold. The PPVs were 0.86 (95% CI 0.76–0.92) for solid 

nodules, 0.914 (95% CI 0.76–0.98) for part-solid nodules, and 0.91 (95% CI 0.80–0.97) 

for GGO nodules. These results highlight the high diagnostic accuracy of the model 

across different tumor components, indicating its potential utility in the assessment of 

pulmonary nodules. 

 

Conventional cancer diagnostic model comparison 

For the external validation (Figure 3), the EB model achieved an AUC of 0.858 (95% 

CI 0.779–0.937), significantly outperforming the Mayo Clinic model (AUC, 0.570 

[95% CI 0.446–0.694]) and the VA model (AUC, 0.503 [95% CI 0.386–0.621]). The 

accuracy, sensitivity, and specificity of the EB model are detailed in Table 2. Its 

superior AUC indicates a higher overall performance compared with the Mayo Clinic 

and VA models. This finding indicates the potential effectiveness of the EB model in 

accurately predicting outcomes compared with established clinical models. 
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Figure 3: Confusion matrices for Epigenetic Biomarker (EB) model comparing the true class 

with the predicted class for benign and malignant nodule samples with the Mayo Clinic and 

Veteran Affairs (VA) models.  

 

DISCUSSION  

Early cancer detection is an effective method for reducing cancer-specific mortality. We 

analyzed the EB profiles of 806 patients with pulmonary nodules and developed an EB 

model for pulmonary nodule diagnosis, it showed high sensitivity and accuracy with 

good PPVs at moderate specificity across various imaging characteristics, nodule types, 

and stages of lung cancer. The EB model also maintained adequate performance, even 

for small nodules ranging from 5 to 10 mm, which would help decrease the false-

negative rate concerning minimally invasive surgery. In addition, sandwich nimmuo-

based assays are simple and relatively inexpensive. This is the first retrospective study 

to validate a blood-based EB model for diagnosing lung nodules. 

Previous studies have attempted to enhance lung cancer risk assessment using blood-

based biomarkers.28-30 Various biosources from liquid biopsy, including cfDNA, ctDNA, 

CTCs, exosomes, and tumor-educated platelets, have been extensively investigated for 

their role in lung cancer diagnosis. However, none of these tests has been implemented 

clinically because their sensitivities and specificities are typically insufficient for 
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clinical decision-making.12, 13, 30 Alterations in the epigenome, such as DNA 

methylation and histone modification, play pivotal roles in carcinogenesis. DNA 

methylation levels and global histone modification patterns may predict cancer 

recurrence and prognosis across a wide variety of cancer types.31, 32 In lung cancer, 

these changes affect significant signaling pathways, including the ERK family, NF-kB, 

and Hedgehog pathways. Additionally, epigenetic markers are potential biomarkers for 

early screening, monitoring, and therapeutic strategies in non-small cell lung cancer 

(NSCLC).16  

These PTMs can work together or independently to promote the activation or 

suppression of chromatin-mediated gene expression. These include regulation of 

inflammatory cytokines, cell cycle arrest, senescence, apoptosis, growth factors, 

antioxidants, and tumor suppressor genes associated with lung cancer.16 We focused on 

the histone variant H3.1 levels and the histone modification H3K27me3. Regarding the 

prognostic effect of H3K27me3 in various human cancers, H3K27me3 overexpression 

is linked to a more malignant behavior and worse prognosis in patients with prostate,33 

esophageal,34 nasopharyngeal,35 and hepatocellular36 carcinoma. Conversely, in breast, 

ovarian, and pancreatic cancers,31 and in renal cell carcinoma,37 reduced H3K27me3 

expression is associated with a worse prognosis. In lung cancer patients, a lower level 

of H3K27me3 in tissues has been associated with carcinogenesis 38, whereas a high 

level of circulating H3K27Me3-nucleosomes in blood has been associated with lung 

cancer at diagnosis and during treatment39. Our model focused on differentiating 

between benign and malignant nodules. The precise role of H3K27me3 in 

distinguishing between normal and malignant populations still requires further 

investigation. 

Beyond LDCT screening, liquid biopsies can identify various biomolecular markers, 

offering insights into the disease status. Integrating liquid biopsy with model training 
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shows great promise for early-stage diagnoses.40 However, many current liquid biopsy 

methods targeting early cancer detection lack the sensitivity to reliably identify early-

stage cancers or small nodules.41-44 The EB model showed satisfactory accuracy, PPV, 

and NPV for small nodules, specifically within the 5–10 mm range (Table 2). This 

simple epigenetic regression model had both strengths and limitations. The AUC and 

accuracy of the model improved significantly from the training to the validation dataset, 

indicating better predictive performance with new data. The sensitivity was particularly 

strong, with the validation dataset achieving a perfect score (1.000), emphasizing its 

effectiveness in detecting malignant nodules, which is essential for early cancer 

detection. However, specificity was sub-optimal, particularly in the training set. While 

specificity improved in the validation and test datasets, the risk of false positives 

remained an issue. Given the benefits of video-assisted thoracoscopic surgery, the main 

challenge for thoracic surgeons is to accurately identify malignant lung nodules and 

minimize the risk of delayed diagnosis in high-risk populations identified through 

CT/LDCT screening. 

We applied the updated Lung-RADS to retrospectively evaluate nodule 

characteristics.18 The Lung-RADS categorizes nodules based on their likelihood of 

being malignant, with classification depending on characteristics such as size, 

attenuation, growth pattern, and other features that may indicate a higher risk of 

cancer.18 Nodules classified under Lung-RADS categories 1 and 2 have an estimated 

malignancy risk of <1%, whereas those in category 3 have a 1–2% risk. Nodules in 

category 4A have a 5–15% risk, whereas those in category 4B or 4X have a risk of 

>15%.18 Most lung cancers identified through screening were observed in nodules 

categorized as Lung-RADS 3 or 4. 
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Table 3 shows that the model effectively maintained good accuracy, PPV, and 

sensitivity in Lung-RADS categories 2 and 3, which are often associated with a lower 

malignancy risk. The accuracy of both RADS 2 and RADS 3 was consistently high at 

0.84, indicating that the model was reliable for correctly classifying nodules as either 

malignant or benign within these groups. The PPV remained robust, with RADS 2 at 

0.90 and RADS 3 at 0.82, showing that when the model predicted a nodule as malignant, 

it was generally accurate and that the likelihood that these nodules were malignant was 

high. Furthermore, the sensitivity findings highlighted the model's reliability in 

correctly identifying malignant nodules, ensuring that few malignancies were missed. 

Overall, the model maintained strong performance across these metrics, demonstrating 

its reliability and effectiveness even in categories with a lower pre-test probability of 

malignancy, supporting its utility in lung cancer screening programs. 

In CT lung cancer screening, detected nodules are often part-solid or non-solid; these 

types of nodules are more likely to be malignant than solid nodules, even when their 

size is considered.45 Therefore, achieving high accuracy and PPV in non-solid and part-

solid nodules is crucial; our model performed very well in these categories. As shown 

in Table 4, the model's accuracy was consistent across all nodule types, with 0.84 for 

both solid and part-solid nodules, and slightly higher at 0.86 for non-solid GGO nodules. 

The sensitivity remained high, particularly for solid nodules at 0.96, followed by 0.91 

for non-solid nodules, and 0.89 for part-solid nodules. This indicates that the model 

effectively correctly identified malignant nodules across these types. Moreover, the 

PPV was consistently strong, with 0.86 for solid nodules, 0.91 for part-solid nodules, 

and 0.91 for non-solid nodules. This suggests that when the model predicts a nodule as 

malignant, there is a high probability that it will be malignant, regardless of the nodule 

type. The model showed excellent performance in identifying malignancies in both 

part-solid and non-solid nodules, which are more likely to be malignant than solid 
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nodules. This strong performance in terms of accuracy, sensitivity, and PPV underlines 

the reliability and effectiveness of the model for lung cancer screening, particularly for 

nodules that present a higher risk of malignancy. 

This study had some limitations. We only enrolled thoracic department participants with 

definitive pathological diagnoses, which may limit the generalizability of the findings. 

Additionally, the imaging sources were not standardized across the studies, leading to 

potential image quality and interpretation variability. There was also a lack of 

integration between the imaging and clinical characteristics of the model parameters, 

owing to the simplified methodology. Such integration would have provided a more 

comprehensive assessment. Moreover, the study enrolled a higher proportion of women 

than men, more never-smokers than smokers, and more patients with adenocarcinoma 

than those with squamous carcinoma. The study was conducted without using a central 

laboratory in Taiwan and involved a shipping process that may have introduced 

variability. We plan to establish an EB model test at a central laboratory-provided 

service in Taiwan to ensure consistency and reliability. Furthermore, this study was 

conducted retrospectively, which raises the possibility of overfitting during the model 

development. Lack of external validation further limitats in ensuring the findings' 

robustness. A prospective, multi-institutional study with a larger and more diverse 

patient cohort is required to confirm these observations and enhance the generalizability 

of the results. 

Our study showed that high sensitivity and accuracy in the early detection of NSCLC 

can be achieved using a panel of EBs in plasma. Concerning detecting high-risk lung 

cancer, the EB model performed well in detecting small, part-solid, and non-solid 

nodules, which are the majority in lung cancer screening. This model may reduce false-

negative results and facilitate early diagnosis. 
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Consent 

Written informed consent was obtained from the patient for publication of these cases. 

A copy of the written consent is available for review by the Editor-in Chief of this 

journal on request. 
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Tables 

 

Table 1. Participants’ baseline characteristics (n = 806) 

  Patient 

characteristics 

Whole 

cohort 

(n = 806) 

Training 

dataset  

(n = 483)  

n (%) 

Validation 

dataset 

(n =121)  

n (%) 

Test 

set 

(n = 202)  

n (%)  

p-value   

  Mean age (years) 

(range) 

59.44  

(23–89) 

59.04  

(26–88) 

60.03 

(33–89) 

60.02 

(23–85) 

.51   

  

Female 

 511 

(63.40%) 

306 

(63.35%)  

79 

(65.29%) 

126 

(62.38%) 

.87    

 

Non-smoker 

 630 

(78.16%) 

379 

(78.47%) 

92 

(76.03%) 

159 

(78.71%) 

 .88  

 History of alcohol 

consumption  

87 

(10.79%) 

53 

(10.97%) 

13 

(10.74%) 

21 

(10.40%) 

.97  

 Lung cancer 

family history 

280 

(34.74%) 

164 

(33.95%) 

41 

(33.88%) 

75 

(37.13%) 

.75  

 Nodule type     .28  

 

Solid 

357 

(44.29%) 

217 

(44.93%) 

51 

(42.15%) 

89 

(44.06%) 

  

 

Part-solid 

183 

(22.70%) 

114 

(23.60%) 

25 

(20.66%) 

44 

(21.78%) 

  

 

GGO 

266 

(33.00%) 

152 

(31.47%) 

45 

(37.19%) 

69 

(34.16%) 

  

 Lung-RADS      .30  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 9, 2024. ; https://doi.org/10.1101/2024.12.05.24318548doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.05.24318548
http://creativecommons.org/licenses/by-nd/4.0/


 26 

 

2 

284 

(35.24%) 

164 

(33.95%) 

47 

(38.84%) 

73 

(36.14%) 

  

 

3 

69 

(8.56%) 

40 

(8.28%) 

10 

(8.26%) 

19 

(9.41%) 

  

 

4A 

107 

(13.28%) 

71 

(14.70%) 

19 

(15.70%) 

17 

(8.42%) 

  

 

4B, 4X 

346 

(42.92%) 

208 

(43.06%) 

45 

(37.19%) 

93 

(46.04%) 

  

 Nodule size (cm)     .29   

 

 <1cm 

236 

(29.28%) 

136 

(28.16%) 

38 

(31.40%) 

62 

(30.69%) 

   

 

 1–2 cm 

274 

(34.00%) 

173 

(35.82%) 

44 

(36.36%) 

57 

(28.22%) 

  

 

 >2 cm 

296 

(36.72%) 

174 

(36.02%) 

39 

(32.23%) 

83 

(41.09%) 

  

 

Mean tumor size: 

cm (range) 

2.05 ± 1.70 

(0.3–10.2) 

 

2.00 ± 1.64 

(0.3–10.1) 

1.92 ± 1.63 

(0.5–9.6) 

2.24 ± 1.87 

(0.4–10.2) 

.15   

 Nodule location     .16  

 

Right upper lobe 

211 

(26.18%) 

125 

(25.88%) 

35 

(28.93%) 

51 

(25.25%) 

  

  Right middle 

lobe 

67 

(8.31%) 

49 

(10.14%) 

9 

(7.44%) 

9 

(4.45%) 

  

  Right lower 

lobe 

171 

(21.22%) 

98 

(20.29%) 

28 

(23.14%) 

45 

(22.28%) 
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Left upper lobe  

231 

(28.66%) 

137 

(28.36%) 

31 

(25.62%) 

63 

(31.19%) 

  

 

Left lower lobe  

113 

(14.12%) 

68 

(14.08%) 

18 

(14.88%) 

27 

(13.37%) 

  

 

Others* 

13 

(1.61%) 

6 

(1.24%) 

0 

(0.00%) 

7 

(3.47%) 

  

 

Malignancy 

648 

(80.40%) 

389 

(80.54%) 

96 

(79.34%) 

163 

(80.69%) 

.95  

  Nodule size (%) < 1 cm, 1–2 cm, > 2 cm 

*Patients with a pleural lesion, a hilum lesion, or an inter-fissure lesion 

Abbreviations: COPD, chronic obstructive pulmonary disease; FEV1, forced expiratory 

volume in 1 s; FVC, forced vital capacity; GGO, ground-glass opacity; IQR, interquartile 

range 

 

  

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 9, 2024. ; https://doi.org/10.1101/2024.12.05.24318548doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.05.24318548
http://creativecommons.org/licenses/by-nd/4.0/


 28 

Table 2. Performance metrics 

Epigenetic simple regression model 

 Training dataset  Validation dataset Test dataset 

All nodule sizes (n = 483)  (n =121)  (n = 202) 

AUC 0.74 0.86 0.79 

Accuracy 0.80  

(0.77–0.84) 

0.88  

(0.81–0.94) 

0.85  

(0.79–0.89) 

Sensitivity 

 

0.91  

(0.87–0.93) 

0.95  

(0.88–0.98) 

0.93  

(0.87–0.96) 

Specificity 0.37  

(0.28–0.48) 

0.64 

 (0.43–0.81) 

0.51  

(0.35–0.67) 

PPVᴬ 0.86 

 (0.82–0.89) 

0.91 

 (0.83–0.96) 

0.89 

 (0.83–0.93) 

NPVᴬ 0.49  

(0.37–0.61) 

0.76 

 (0.53–0.91) 

0.63  

(0.44–0.78) 

Nodules sized 5–10 

mm 

(n = 142) (n = 43) (n = 61) 

AUC 0.70 0.89 0.80 

Accuracy (95% CI) 0.76  

(0.68–0.83) 

0.88 

 (0.75–0.96) 

0.85  

(0.74–0.93) 

Sensitivity (95% CI) 

 

0.91 

(0.83–0.95 ) 

1.000 

 (0.86–1.000) 

0.94 

(0.82–0.98 ) 

Specificity (95% CI) 0.27 

(0.14–0.46) 

0.62 

 (0.32–0.85) 

0.54 

(0.26–0.80) 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 9, 2024. ; https://doi.org/10.1101/2024.12.05.24318548doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.05.24318548
http://creativecommons.org/licenses/by-nd/4.0/


 29 

PPV (95% CI)B 0.81 

 (0.72–0.87) 

0.86 

 (0.69–0.95) 

0.88 

 (0.75–0.95) 

NPV (95% CI)B 0.47 

 (0.25–0.71) 

 1.000 

(0.60–1.000) 

0.70 

 (0.35–0.92) 

ᴬCancer prevalence, 80.4% in the current cohort  

BCancer prevalence, 76.0% in the current subgroup cohort 

Abbreviations: AUC, area under the receiver operating characteristic curve; CI, confidence interval; NPV, 

negative predictive value; PPV, positive predictive value 
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Table 3. Performance metrics in the test dataset according to Lung-RADS 

Lung-RADS 

 2 3 4A + 4B 4X 

 (n = 73)  (n = 19)  (n = 81) (n = 29) 

AUC     

Accuracy 0.84 

(0.73–0.91) 

0.84  

(0.60–0.97) 

0.82 

(0.71–0.89) 

0.97 

(0.82–1.00) 

Sensitivity 

 

0.90  

(0.79–0.96) 

1.00  

(0.73–1.00) 

0.92 

(0.82–0.97) 

0.96 

(0.79–1.00) 

Specificity 0.57  

(0.30–0.81) 

0.40  

(0.07–0.83) 

0.44 

(0.22–0.69) 

1.00 

(1.00–1.00) 

PPV 0.90 

(0.79–0.96) 

0.82  

(0.56–0.95) 

0.85 

(0.74–0.92) 

1.00 

(0.84–1.00) 

NPV 0.57  

(0.30–0.81) 

1.000  

(0.20–1.00) 

0.62 

(0.32–0.85) 

0.67 

(0.13–0.98) 

 

Abbreviations: AUC, area under the receiver operating characteristic curve; NPV, negative predictive value; PPV, 

positive predictive value; Lung-RADS, lung imaging reporting and data system 
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Table 4. Performance metrics in the test dataset according to tumor component 

Component  

 Solid Part-solid GGO 

All nodule sizes (n = 89)  (n =44)  (n = 69) 

Accuracy 0.84 

 (0.75–0.91) 

0.84 

 (0.70–0.93) 

0.86 

 (0.75–0.93) 

Sensitivity 

 

0.96 

 (0.87–0.99) 

0.89 

 (0.73–0.96) 

0.91 

 (0.80–0.97) 

Specificity 0.45 

 (0.24–0.68) 

0.63 

 (0.26–0.90) 

0.55 

 (0.25–0.82) 

PPV 0.86 

 (0.76–0.92) 

0.914 

 (0.76–0.98) 

0.91 

 (0.80–0.97) 

NPV 0.75 

 (0.43–0.93) 

0.56 

 (0.23–0.85) 

0.55 

 (0.25–0.82) 

 

Abbreviation: GGO, ground-glass opacity; NPV, negative predictive value; PPV, positive predictive value 
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Figure Legends 

Figure 1. Flowchart of participant enrollment and model development. A total of 806 

patients with nodules >5 mm were enrolled. The Epigenetic Biomarker (EB) model was trained 

on 483 samples, validated on 121 samples, and independently tested on 202 samples. The model 

was built based on the training dataset, with the cutoff determined using the validation dataset, 

and its performance evaluated on the test dataset. 

 

Figure 2. (EB) model. (A) A representative ROC curve illustrates the classification performance 

of the Epigenetic Biomarker across the training, validation, and test datasets. 

(B) The left panel shows predicted probabilities for malignant (red) and benign (blue) nodules. 

The right panel presents the confusion matrix of test dataset at a cutoff value of 0.755, yielding 

an accuracy of 85%. 

 

Figure 3: Confusion matrices for Epigenetic Biomarker (EB) model comparing the true class 

with the predicted class for benign and malignant nodule samples with the Mayo Clinic and 

Veteran Affairs (VA) models.  
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Supplementary Table S1.   

No. Abbreviation Full name 

1 H3.1 Nucleosome containing H3.1 variant (H3.1-nucleosome) 

2 H3K9Ac Nucleosome containing Histone H3 acetyl Lys9  (H3K9Ac-

nucleosome) 

3 H3K9Me3 Nucleosome containing Histone 3 lysine 9 trimethylation 

(H3K9Me3-nucleosome) 

4 H3K27Me3 Nucleosome containing Histone 3 lysine 27 trimethylation 

(H3K27Me3-nucleosome) 

5 H3K36Me3 Nucleosome containing Histone 3 lysine 36 trimethylation 

(H3K36Me3-nucleosome) 
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