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Deep Chest: an artificial intelligence model for multi-disease diagnosis by chest x-rays 

 

Abstract 

Background: Artificial intelligence is increasingly being used for analyzing image data in 

medicine. 

Objectives: We aimed to develop a computer vision artificial intelligence (AI) application 

using limited training material to aid in the multi-label, multi-disease diagnosis of chest X-

rays.  

Methods: We trained an EfficientNetB0 pre-trained model, leveraging transfer learning and 

deep learning techniques. Six thoracic disease categories were defined, and the model was 

initially trained on images sourced online and chest X-rays from a hospital database for 

training and internal validation. Subsequently, the model underwent external validation.  

Results: In constructing and validating Deep Chest, we utilized 453 images, achieving an area 

under curve (AUC) of 0.98, sensitivity of 0.98, specificity of 0.80, and accuracy of 0.83. 

Notably, for diagnosing masses or nodules, the sensitivity, specificity, and accuracy were 

0.97, 0.81, and 0.83, respectively. We deployed Deep Chest as a free experimental web 

application.  

Conclusions: This tool demonstrated high accuracy in diagnosing both single and coexisting 

pulmonary pathologies, including pulmonary masses or nodules. Deep Chest thus represents 

a promising AI-based solution for enhancing diagnostic capabilities in thoracic radiology, 

with the potential to be utilized across various medical disciplines, especially in scenarios 

where expert support is limited. 
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Introduction 

Medical image classification has been one of the major triumphs in the field of AI. These image 

classification models have demonstrated success across various use cases, such as the 

utilization of magnetic resonance imaging (MRI) for identifying brain tumors, sorting images 

of blood leucocytes, diagnosing lung conditions through computed tomography (CT) scans, 

evaluating skin lesions, and performing differential diagnoses using histology images of breast 

cancer [1-7]. Pre-trained models have significantly streamlined the process of image 

classification by leveraging models already trained on general image classification tasks. Some 

prominent examples of these models include EfficientNet, Inception, ResNet, MobileNet, 

NasNet, and VGG, among others [8-13]. 

Transfer learning, a pivotal branch of AI, facilitates the application of knowledge gained from 

training a model in one specific domain to another domain, thereby reducing the time, effort, 

and resources needed [14]. Chest X-rays have been a staple in medical diagnostics for nearly a 

century and remain crucial for diagnosing common pulmonary pathologies [15]. However, 

accurately diagnosing or identifying multiple concurrent conditions using chest X-rays can be 

challenging and subjective, often requiring the expertise of seasoned radiologists who may not 

always be available. 

In this study, we set out to develop a deep learning model capable of assisting clinicians in 

diagnosing single or multiple concurrent pulmonary conditions using chest X-rays, despite 

having limited training material. By focusing on the practical implementation of transfer 

learning and pre-trained models, we aimed to create a robust diagnostic tool that could operate 

effectively even in settings where expert radiological support is scarce. Our goal was to 

enhance the diagnostic process, making it more efficient and accessible, thereby improving 

patient outcomes not only in pulmonary healthcare but also in various other fields of medicine. 

 

Methods 

Selection of Chest X-rays for Training and Validation: 

To obtain the necessary chest X-ray images for our study, we utilized several sources. For 

training and internal validation, we sourced images from a randomly selected NIH chest X-

ray dataset, various internet repositories, and real hospital chest X-rays from patients at the 

Oncology Department at Medical Park, Antalya. These patients were diagnosed with a range 

of health conditions [16]. We included chest X-rays from this oncology center only if the 

findings were confirmed by a thoracic CT scan within one week of the chest X-ray. To ensure 
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data quality, any chest X-rays with faulty labeling were identified and excluded. The image 

file types allowed were JPG, JPEG, and PNG. 

Development of the Deep Chest Model (Training) and Internal Validation:  

We evaluated several pre-trained models, including EfficientNetB0 through EfficientNetB7, 

Inception V3, ResNet V2, and MobileNet V2, to compare their accuracy and computational 

resource requirements during the model fitting process. Approximately 10% of the chest X-

ray images were reserved for internal validation. The model that exhibited the best 

performance with the least resource consumption was selected as the foundation for transfer 

learning. 

Diagnostic categories were initially defined across 14 categories, but after observing that 

some categories did not yield accurate results, we consolidated them into 8, and ultimately 6 

categories, which provided the highest internal validation accuracy. These final categories 

were “edema,” “mass or nodule,” “pneumonia,” “other pathologies,” “normal,” and “not a 

chest X-ray.” 

To construct the AI model, we employed a sequential dense neural network structure from 

the Keras library for training and fitting the model. In addition to Keras, TensorFlow and 

NumPy libraries were utilized to develop the neural network structure, resulting in the Deep 

Chest model [17-19]. The entire project was implemented in Python, using the Google Colab 

Pro development environment. The model file was saved as an h5 file. During the later stages 

of development, hyperparameters were optimized to achieve the highest accuracy levels. The 

number of epochs used during training was determined based on validation AUC figures and 

the loss value obtained with each additional epoch. 

External Validation Stage:  

For external validation, an experienced radiologist from a teaching academic center (Poyraz 

N. from the Radiology Department of Necmettin Erbakan University, Konya) provided a set 

of 26 chest X-ray images from random cancer patients, along with their labels detailing 

thoracic diagnoses. Cancer patients were specifically chosen to include cases with likely 

concurrent pulmonary conditions. Additionally, we included a mini-set of 5 black and white 

and colored images of non-chest X-ray origin from the web to enrich the external cases, 

making the total number of images used in the external validation stage 31. Deep Chest was 

used to infer diagnoses from these images, and the results were compared with the labels 
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provided by the radiologist or sourced from the web. We then calculated the accuracy, 

sensitivity, specificity, and AUC figures for both the internal and external validation cohorts. 

Development of Web Application: 

To enable chest X-ray uploading for inference, we developed a web application using the 

Streamlit library for Python [20]. The source code is hosted on a private repository on 

GitHub, and the web application is available online for free use [21]. This application allows 

users to upload chest X-rays and obtain diagnostic inferences from the Deep Chest model, 

thereby making our AI tool accessible for experimental use and further validation in clinical 

settings. 

Results 

Chest x-rays, pre-trained model, and hyperparameters: 

A total of 383 images for training, and 39 images for internal validation (9.2% of the total of 

422) and 31 images for external validation are selected for building and validating the Deep 

Chest AI model. The total experience of inferencing with the Deep Chest model thus 

involved 453 images, and a total of 70 images were used to (internally and externally) 

validate the model. Among the pre-trained models tested, EfficientNetB1 to B7, Inception 

V3, ResNet V2, and MobileNet V2 yielded inferior accuracy scores or were more computing-

resource-intensive compared to EfficientNetB0 (data not shown). So, EfficientNetB0 was 

selected for this study as the optimal pre-trained model, and the feature extractor function for 

EfficientNetB0 was set to “trainable”, to be able to adjust the model weights of the pretrained 

model with reference to the chest x-rays it was further trained with. For viewing the 

architecture of EfficientNetB0, see Figure 1. 
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Figure 1. Architecture of EfficientNetB0. 

 

A learning rate of 0.0001, epochs of 12, an activation function of sigmoid nature, batch size 

of 16, an optimizer function of Adam, and a loss type of “categorical_crossentropy” were 

selected as the optimal hyperparameters of the model. 

Model performance and clinical utility: 

During the training process, the Deep Chest model effectively learnt from the training 

material provided, as reflected in the significant decrease in both training and (internal) 

validation loss figures. The loss figure decreased by 74% in the training group, and by 47% in 

the validation group. See Figure 2 for the related plot. In parallel, the AUC figures increased 

from 0.66 to 0.98 in the training cohort, and from 0.70 to 0.92 in the validation cohort. Refer 

to Figure 3, to visualize how the model efficacy improved during training by viewing the 

change of AUC figures over epochs.  

 . CC-BY-NC 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 9, 2024. ; https://doi.org/10.1101/2024.12.05.24318531doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.05.24318531
http://creativecommons.org/licenses/by-nc/4.0/


  

Figure 2. Loss during training and validation.    Figure 3. AUC during training and validation. 

 

At the training and internal validation stage, the overall model had an accuracy figure of 0.84. 

See Table 1 for a selection of efficacy metrics in different image cohorts; firstly, the training 

and internal validation combined, secondly, external validation, and thirdly, training, internal 

validation and external validation combined. With respect to the disease categories, accuracy 

figures ranged from 1.00 for the “not a chest x-ray” group, to 0.50 for the “pneumonia” group. 

Refer to Figure 4 for the breakdown of the efficacy metrics with respect to the categories in the 

training and internal validation combined cohort.  

 

 
Table 1. Efficacy metrics in different cohorts. 
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Figure 4. Efficacy metrics with respect to categories for the training and internal validation 

combined cohort. 

 

For the external validation cohort, the accuracy measure was 0.70. When the categories were 

individually evaluated, again “not a chest x-ray” group had an accuracy of 1.00, whereas the 

lowest value was 0.42 for the “mass or nodule” group. Visit again Table 1 for the distribution 

of efficacy metrics in the external validation and other cohorts, and Figure 5 for the efficacy 

metrics in different categories for the external validation group.  

 

 
Figure 5. Efficacy metrics with respect to categories for the external validation cohort.  
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Lastly, when the whole Deep Chest experience is considered by combining the information 

from 3 cohorts (training, internal and external validation cohorts), resulting in a pool of 453 

images, the accuracy value was 0.83. When the 6 categories were separately evaluated, the 

highest and the lowest accuracy figures were 1.00 and 0.50, again belonging to the “not a chest 

x-ray” and “pneumonia” categories. Go to Table 1 to see the efficacy details in the training, 

internal and external validation, and other cohorts. Figure 6 details efficacy details for this 

cohort of images. 

 

 
Figure 6. Efficacy metrics with respect to categories for the training, internal and external 

validation combined cohort. 

 

When the AUC figures were considered, the overall model yielded 0.99, 0.78 and 0.98 in the 

training and internal validation combined, external validation, and training and internal 

validation and external validation combined cohorts. See Table 1 for the details of AUC figure, 

as well as other efficacy measures in various cohorts for the overall model. The distribution of 

AUC figures with respect to 6 disease categories is given in Figure 7 for the training and 

internal validation combined cohort, in Figure 8 for the external validation cohort, and in Figure 

9 for the training, internal validation and external validation combined cohort, respectively. 
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Figure 7. AUC figures with respect to categories for the training and internal validation 

combined cohort. 

 

 
Figure 8. AUC figures with respect to categories for the external validation combined cohort. 
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Figure 9. AUC figures with respect to categories for the training, internal validation and 

external validation combined cohort. 

Conclusions 

Deep Chest achieved a good accuracy figure of 83% in the combination of 3 cohorts of 

images examined. This fact shows that Deep Chest has the potential to adequately predict the 

category of chest x-ray images. The model is perhaps more sensitive (98%) than it is specific 

(80%) as shown in the 3 cohorts combined. For the multilabel chest x-ray classification with 

deep learning, Pillai, et al. achieved an accuracy figure of 83% with the Inception model in 

2022 [22]. Similarly, Rahmat, et al. used fast Region-based Convolutional Neural Network 

(R-CNN) architecture for chest x-ray image classification in 2019, and achieved an accuracy 

of 60% [23]. For the external validation cohort in our study, however, the accuracy by Deep 

Chest decreased to 70%. Therefore, Deep Chest appears to be more accurate than the model 

by Rahmat, et al, whereas, when compared to the model by Pillai, et al., Deep Chest looks to 

be as accurate, if our accuracy result in the 3 cohorts combined is considered, and less 

accurate, if only our external validation cohort with limited data is taken into account.  In the 

literature, in addition to these multilabel models, chest x-ray classification has also been used 

for single label models, i.e., the case of distinguishing pulmonary nodules on chest x-rays, as 

shown by Nam, et al. in 2023 [24]. In their work, the identification of actionable pulmonary 
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nodules has been increased by AI, with an odds ratio of 2.4. Thus, a number of AI models 

have already proven effective in chest x-ray diagnosis of multilabel or single label disease 

categories, and Deep Chest as shown with this work appears to be at least similarly effective 

as these models, while we employ a multilabel multiclass approach to chest x-ray 

classification, as we know the presence of coexisting diagnoses on chest x-rays is a common 

finding. 

The types of AI methodology used for creating models for chest x-ray classification are 

various. For example, we and Pillai, et al. have used transfer learning, whereas Rahmat, et al. 

employed R-CNN [22,23]. Transfer learning, as we also used in our work, is a technique in 

machine learning, in which knowledge learned from a task is reused in order to boost 

performance on a related task. For the purpose of image classification, for example, 

knowledge gained while learning to recognize cars could be applied when trying to recognize 

trucks [25,26]. In our work, we used the knowledge gained while learning to recognize 

general objects in the ImageNet dataset, in the prediction of chest x-ray categories. To 

achieve that, we updated the weights in the pretrained EfficientNetB0 model, by using the 

information extracted from our collection of chest x-rays selected for training the AI model. 

Although our model is perhaps not convincingly more accurate than the currently available 

models, it is computationally “lighter”, since it requires much less training material to build 

the AI model. For Deep Chest, we only required 485 megabytes of training chest x-rays, as 

opposed to 11 gigabytes for the Pillai model, and 45 gigabytes for the Rahman model [22,23]. 

This is expected to lead to an improved training experience and a more efficient model 

building process. Some of the observed decrease in the magnitude of the training material 

required for building Deep Chest is partially attributable to the improved quality of the 

training material used, because, in addition to the images from the internet, we also employed 

carefully selected chest x-rays from our clinics; we used these chest x-rays in the model 

training process only if their findings were confirmed by the results of a chest CT scan within 

a week after an initial chest x-ray.  

Looking at the diagnostic categories in our model, the sensitivity figures vary between 0.67 

and 1.00 and the specificity figures are between 0.36 and 1.00. In detail, in the external 

validation cohort, “mass or nodule” category is associated with a sensitivity of 1.00 and a 

specifity figure of 0.36. In the training and validation cohort, the sensitivity and specifity 

measures are 0.97 and 0.85, respectively, indicating that the trained model is perhaps to some 

extent overfitted, and that in the external validation cohort, false positivity is prominent. 

Likewise, in the external validation cohort, “pneumonia” category is associated with the 
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figures of specifity of 0.38 and sensitivity of 1.00, again indicating overdiagnosis of 

pneumonia cases during external validation. Therefore, Deep Chest cannot detect with 

enough specifity “mass or nodule” or “pneumonia” categories according to external 

validation, but when all cohorts are grouped together, Deep Chest exhibits remarkable 

efficacy in all categories, including 'mass or nodule' and 'pneumonia,' enabling the early 

diagnosis of pulmonary malignancies. However, other imaging modalities must be used to 

confirm or rule out malignancy due to Deep Chest's high sensitivity but low specificity for 

that condition. These, taken together, imply that Deep Chest still has room for improvement 

at least for these 2 categories. This is potentially possible with providing further high-quality 

training material and experimenting with specific techniques to prevent model overfitting. 

Additional work, using similar or more accurate methodologies or neural network 

architectures, making better use of transfer learning, trying different pre-trained models, 

employing more correctly labeled and confirmed chest x-rays for training or validation, is 

expected to improve the accuracy and specifity obtainable with Deep Chest. 

Artificial intelligence (AI) is transforming the field of medicine in unprecedented ways [27]. 

Within AI, computer vision stands out for its vast potential to enhance the diagnostic work-up 

of patients. Chest X-rays, a frequently used and cost-effective diagnostic modality, can now be 

analyzed with our Deep Chest model. This advancement allows for more accurate and timely 

diagnoses of pulmonary pathologies, including malignancies, across various medical 

disciplines. By leveraging transfer learning principles, we developed Deep Chest using a 

comparatively limited amount of training chest X-ray image data. This approach not only 

reduces the amount of data required but also simplifies and shortens the training process. 

 

In short, we believe that AI models like Deep Chest will significantly aid clinicians in their 

routine work, providing valuable support in making diagnostic decisions. The model's ability 

to efficiently handle and interpret medical images paves the way for its application in diverse 

clinical settings, especially where quick and accurate diagnoses are critical. However, 

continued efforts are necessary to refine these systems further. Future research should focus on 

developing more precise and reliable medical AI systems with complementary diagnostic 

capabilities. By integrating additional high-quality training data and exploring new 

methodologies, we can enhance the accuracy and robustness of AI-driven diagnostic tools, such 

as Deep Chest from this study, ensuring they meet the evolving needs of healthcare 

professionals and improve patient outcomes across the board. 
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