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Abstract

Introduction: The epidemiology and clinical characteristics of COVID-19
evolved due to new SARS-CoV-2 variants of concern (VOCs). The Omicron
VOC’s higher transmissibility increased pediatric COVID-19 cases and hospital
admissions. Most research during the Omicron period has focused on hospital-
ized cases, leaving a gap in understanding the disease’s evolution in community
settings. This study targets children with mild to moderate COVID-19 during
pre-Omicron and Omicron periods. It aims to identify patterns in COVID-19
morbidity by clustering individuals based on symptom similarities and duration

§Co-last authors
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of symptoms and develop a machine-learning tool to classify new cases into risk
groups.
Methods: We propose a data-driven approach to explore changes in COVID-19
characteristics analyzing data collected within a pediatric cohort at the Uni-
versity Hospital of Padua. First, we apply an unsupervised machine-learning
algorithm to cluster individuals into different groups. Second, we classify new
patient risk groups using a Random-Forest classifier model based on sociodemo-
graphic information, pre-existing medical conditions, vaccination status, and the
VOC as predictive variables. Third, we explore the key features influencing the
classification.
Results: The unsupervised clustering identified three severity risk profile groups.
The classification model effectively distinguished these groups, with age, gender,
COVID-19 vaccination, VOC, and presence of comorbidities as top predictive
features. A high number and longer duration of symptoms were associated
with younger age groups, males, unvaccinated individuals, Omicron infections,
and those with comorbidities. These results are consistent with evidence of
severe COVID-19 in infants, older children with comorbidities, and unvaccinated
children.
Conclusion: Our classification model has the potential to provide clinicians with
insights into the children’s risk profile of COVID-19 using readily available data.
This approach can support public health efforts by clarifying disease burden and
improving patient care strategies. Furthermore, it underscores the importance of
integrating risk classification models to monitor and manage infectious diseases.

Keywords: children, COVID-19, symptoms, morbidity, unsupervised clustering,
prepardness

1 Introduction

The epidemiology and clinical characteristics of COVID-19 evolved during the pan-
demic, largely due to the emergence of new SARS-CoV-2 variants of concern (VOCs)
with different virulence and transmissibility. These changes in VOCs contributed
to shifts in COVID-19 clinical manifestations and morbidity. The emergence of the
B.1.1.529 (Omicron) VOC has been marked by a predominance of upper respiratory
tract symptoms, such as rhinitis, cough, and sore throat, resulting in a lower inci-
dence of severe outcomes among adults. However, the higher transmissibility of the
Omicron VOC, combined with school reopenings [1], has led to a rise in pediatric
COVID-19 cases [2–4], significantly increasing hospital admissions among children [5]
and, consequently, severe outcomes in absolute terms.

Although the World Health Organization has declared an end to COVID-19 as a
public health emergency [6], SARS-CoV-2 continues to persist and mutate. Coupled
with a significant decline in global vaccination uptake and coverage, the risk remains
of new VOCs emerging, potentially causing new surges in cases and deaths.

Given that the clinical characteristics of COVID-19 vary with different viral strains,
understanding and early recognition of SARS-CoV-2 infection in the pediatric popula-
tion is crucial to reducing the global burden of the pandemic [7, 8]. With the decline in
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testing, providing evidence on the clinical patterns of pediatric COVID-19 is essential
for facilitating early recognition and prompt management of cases.

To date, most research describing the changing symptomatology of COVID-19
during the Omicron period has concentrated on hospitalized cases, focusing on more
severe cases and limiting our understanding of the disease’s evolution in community
settings, which represent the majority of cases [4, 9, 10].

This research focuses on the youngest population infected with mild to moder-
ate COVID-19, covering pre-Omicron and Omicron infections from April 2020 to
December 2022 in the Veneto region of Italy. The analyzed data consists of records
of children aged 0-20 years seeking care from family pediatricians. The study aims
to achieve two primary objectives: i) uncovering patterns in COVID-19 morbidity by
clustering individuals according to the number and duration of symptoms experienced;
ii) developing a machine-learning tool to classify new cases based on demographic
data, treatments, and co-existing medical conditions, and vaccination status, using
the classes of infection identified in the previous step.

This study builds on prior research by Di Chiara et al. [11], which investigated
the epidemiological and clinical features of SARS-CoV-2 variants using descriptive
statistics. Our research aims to reinforce these findings by employing an unsuper-
vised machine-learning approach to analyze clinical manifestations in children. This
approach helps clinicians to understand the classes of SARS-CoV-2 infections, thus
the children’s risk profiles, and the possible burden of disease, facilitating better
decision-making and personalized treatment [9, 12, 13].

2 Methods

2.1 Dataset description

In this study, we rely on data collected within a prospective cohort of 715 participants
focusing on children and adolescents aged 0-21 years old attending the COVID-19
Family Cluster Follow-up Clinic (CovFC) from April 2020 to December 2022 [11].
The CovFC was instituted at the Department of Women’s and Children’s Health,
University Hospital of Padua, situated in the Veneto region, Italy. Families, including
children, older siblings, and parents, who had recovered from COVID-19 were referred
to the CovFC by their family pediatricians (FPs), and to be eligible for the enrollment
they had to meet two criteria: 1) have children under the age of 15, and 2) have one
or more family members with a confirmed history of laboratory-confirmed COVID-
19 infection. During enrollment, pediatricians and/or infectious diseases specialists
conducted clinical assessments, including the collection of demographic information,
medical history, SARS-CoV-2 virological test results from nasopharyngeal swabs, and
vaccination status [14]. Clinical assessments and data collection were conducted for
all individuals, including both parents and children, regardless of their laboratory-
confirmed COVID-19 history. Following this, individuals with confirmed COVID-19
cases underwent a 6-monthly clinical and serological follow-up for at least one year
after the initial infection, while subjects who were asymptomatic and had no analytical
evidence of SARS-CoV-2 infection were considered non-COVID-19 cases. Vaccination
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data were recorded as they became available for each age group. Two blinded pedi-
atricians determined the baseline infection date for each individual in the study, as
outlined in [11].

In the current study, we implement additional specific exclusion criteria. Specifi-
cally, individuals classified as non-COVID-19 cases, and those older than twenty years
were excluded from the analysis. Within the sample of 715 participants, 124 individ-
uals were classified as non-COVID-19 cases, and 15 individuals were aged more than
twenty years. Following the exclusion criteria, we discard those cases from the dataset,
resulting in a final dataset including 581 children and adolescents.

2.2 Variables definition

We analyze data on existing medical conditions, vaccination status, and reported
symptoms in the pediatric population, gathered through clinical assessments con-
ducted at the enrollment. In terms of existing medical conditions, we first check the
prevalence of each in the study sample, removing the ones without any represen-
tation in the dataset, and then we consider those among the list of comorbidities
associated with severe pediatric COVID-19: chronic pulmonary conditions (e.g., bron-
chopulmonary dysplasia and uncontrolled asthma); cardiovascular conditions, (e.g.,
congenital heart disease); immunocompromising conditions (e.g., malignancy, primary
immunodeficiency, and immunosuppression); neurologic conditions (e.g., epilepsy and
select chromosomal/genetic conditions); prematurity; feeding tube dependence and
other pre-existing technology dependence requirements; diabetes mellitus; obesity [15]
[16] [17] [18]. To include vaccination status information, we deal with missing values
reported in the dataset for the vaccination against COVID-19 due to the availability
of the vaccines in the study period. For this reason, we consider the approval releases
per age group: individuals older than 12 years old are considered vaccine-eligible from
31 May 2021 [19], while individuals aged 5-11 years old are vaccine-eligible from 01
December 2021 [20] and children younger than 4 years old were vaccine-ineligible when
the enrollment was open. The individuals infected before the approval date of the
vaccine were classified as non-vaccinated, and individuals aged 0-4 years old are all
considered not vaccinated. Within the symptom set, non-referable symptoms for the
younger age group, such as headache and small-taste alterations, have been excluded
from the analysis. However, symptoms recognizable by parents, including myalgia and
abdominal pain, have been retained. The final set includes fever, rhinitis, cough, dysp-
nea, myalgia, arthralgia, sore throat, conjunctivitis, asthenia, abdominal pain, nausea,
lack of appetite, skin rash, confusion, ear pain, and other symptoms.

Starting from the available data, we extract additional information including the
total number of symptoms reported during infection, the total number of comor-
bidities, the length of each symptom, the median duration of symptoms, the variant
of infection, and the hexavalent vaccination (Diphtheria-tetanus-acellular pertussis,
Polio, Hib, Hepatitis B). Specifically, we define an infection category for each individ-
ual, considering three types of infection: asymptomatic (duration of symptoms = 0
days), short (duration of symptoms ≤ 5 days), and long infection (duration of symp-
toms: > 5 days). These categories were defined in consultation with pediatricians
who participated in the enrollment process. To identify specific variants of infections,
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we consider that from a clinical and immunovirological point of view, the Parental
and Delta variants exhibited striking similarities. With the emergence of the Omi-
cron variant, marked by substantial mutations in the S-RBD, a notable shift in the
clinical, immunological, and epidemiological aspects of COVID-19 occurred. For these
reasons, we classified cases into two groups based on the reported baseline date of
infection onset: pre-Omicron and Omicron, defining any SARS-CoV-2 infection occur-
ring before November 15, 2021, as pre-Omicron, and infections occurring after that
day as Omicron. Finally, to include information on vaccination history, we combine
available information on individual vaccinations and the hexavalent vaccination vari-
able to determine whether an individual has received multiple vaccines intended to
protect against several diseases (DTP, IPV/OPV, HBV, Hib).

2.3 Study Population

This study examines 581 children and adolescents who tested positive for SARS-
CoV-2 (COVID-19 cases, symptomatic), aged 0-20 years old. The dataset includes
socio-demographic and health-related information. The 66.5% of the study population
(386 individuals) infected by SARS-CoV-2 were older than five years old, while the
gender was balanced. Most of the subjects do not show previous underlying disease:
only 23% of the entire study population exhibit at least one medical condition among
the ones associated with severe pediatric COVID-19. During the pre-Omicron phase,
almost all individuals haven’t done the COVID-19 vaccination yet, probably due to
the vaccine-eligibility. At the same time, during the Omicron variant, the number of
vaccinated children and adolescents increased (47 individuals out of 139 individuals
infected during Omicron). As regards symptoms, only 7% of the infected people during
the Omicron variant report no symptoms, while more than 65% present at least two
symptoms. On the contrary, during the pre-Omicron period, nearly 35% of the individ-
uals reported no symptoms, and less than 36% of the infected presented two or more
symptoms. We provide a summary of clinical and sociodemographic characteristics
(Table 1), including counts, percentages, medians, and interquartile ranges (IQR), as
applicable. The stratification is based on the distinct phases considered, pre-Omicron
and Omicron. We check the prevalence of each comorbidity and each symptom, to
better characterize the cohort (Fig. 1 and Fig. 2). More than 75% do not exhibit any
comorbidities, followed by individuals with other comorbidities, asthma, prematurity,
and congenital heart disease (among the ”others” category are all comorbidities not
included in the listed ones). Lots of comorbidities included during the reporting phase
do not show any representation in the dataset. For this reason, we remove them from
the analysis, together with comorbidities not associated with severe COVID-19 in the
pediatric age, that emerge to also have a low prevalence in the dataset (chronic hepati-
tis, rheumatic disease, nephropathy, hematological disease). We finally consider nine
comorbidities: asthma, prematurity, congenital heart disease, neurological disease, dia-
betes, chronic respiratory disease, obesity, and others. The most common symptoms
are fever and rhinitis, followed by headache, asthenia, and cough. As mentioned before,
we do not consider both headache and smell and taste alterations for the analysis
to avoid biases as they are non-referable symptoms for the youngest population. The
most rare symptoms are confusion, polyadenopathy, and ear pain.
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pre-Omicron Omicron Total
(N = 442) (N = 139) (N = 581)

Age - Median (IQR 25-75) 8.0 (4.0-11.0) 8.0 (5.0-10.5) 8.0 (4.0-11.0)

Age 0-2 years - Num (%) 78 (17.65) 18 (12.95) 96 (16.52)

Age 3-5 years - Num (%) 74 (16.74) 25 (17.99) 99 (17.04)

Age 6-10 years - Num (%) 146 (33.03) 61 (43.88) 207 (35.63)

Age 11-13 years - Num (%) 101 (22.85) 28 (20.14) 129 (22.20)

Age 14-20 years - Num (%) 43 (8.49) 7 (5.04) 50 (8.61)

Gender Male - Num. (%) 204 (46.16) 63 (45.32) 266 (45.95)

Gender Female - Num. (%) 238 (53.85) 76 (54.68) 314 (54.05)

Comorbidities - Median (IRQ 25-75) 0.0 (0.0-0.0) 0.0 (0.0-0.1) 0.0 (0.0-0.0)

Comorbidities 0 - Num. (%) 353 (79.86) 95 (68.34) 448 (77.11)

Comorbidities At least 1 - Num. (%) 89 (20.14) 44 (31.66) 133 (22.89)

COVID-19 vaccination Done - Num. (%) 6 (1.36) 47 (33.81) 53 (9.12)

COVID-19 vaccination Not done - Num. (%) 436 (98.64) 92 (66.19) 528 (90.88)

Num. Symptoms - Median (IRQ 25-75) 1.0 (0.0-2.0) 2.0 (1.0-3.0) 1.0 (0.0-2.0)

Num. Symptoms 0 - Num (%) 153 (34.61) 10 (7.19) 163 (23.45)

Num. Symptoms 1 - Num (%) 132 (29.86) 39 (28.06) 171 (30.66)

Num. Symptoms 2 - Num (%) 83 (18.78) 39 (28.06) 122 (23.00)

Num. Symptoms More than 2 - Num (%) 74 (16.74) 51 (36.69) 125 (21.52)

Median Duration Infection - Median (IRQ 25-75) 0.0 (0.0-2.0) 0.0 (0.0-2.0) 0.0 (0.0-2.0)

Infection Category: Asymptomatic - Num. (%) 300 (67.87) 87 (62.59) 387 (66.61)

Infection Category: Short Infection - Num. (%) 87 (19.68) 39 (28.06) 166 (21.69)

Infection Category: Long Infection - Num. (%) 55 (12.44) 13 (9.35) 68 (11.71)

Table 1 Overview of sociodemographic and clinical characteristics in the study population (N =
581), stratified by Omicron-infected and pre-Omicron group based on the SARS-CoV-2 variant.

2.4 Unsupervised clustering

To uncover underlying patterns and structures within this dataset, we apply a cluster-
ing approach. Clustering is an unsupervised learning technique that categorizes data
elements into groups based on inherent patterns, without requiring prior knowledge
of the group definitions [21]. This method can be used to cluster the input data in
classes based on their statistical properties. We aim to provide insights on the risk

6

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 6, 2024. ; https://doi.org/10.1101/2024.12.04.24318465doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.04.24318465
http://creativecommons.org/licenses/by-nd/4.0/


Fig. 1 Characterization of study population: histogram of the prevalence of comorbidities in the
dataset. A log-scaled y-axis has been used for readability.

Fig. 2 Characterization of study population: histogram of the prevalence of symptoms in the dataset.

group of the SARS-CoV-2 infections in children based on the presence and/or absence
of symptoms and the duration of the infection. The clustering output is a class label
that characterize individuals based on the similarity of their reported symptoms (six-
teen distinct types of symptoms represented as binary variables are involved), as well
as the category related to the duration of the infection (three infection category are
involved). We employ the K-modes algorithm [22], an extension of the well-established
K-Means algorithm. K-means is well known for its efficiency in clustering large data

7

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 6, 2024. ; https://doi.org/10.1101/2024.12.04.24318465doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.04.24318465
http://creativecommons.org/licenses/by-nd/4.0/


sets. However, its limitation to numeric data restricts its applicability in fields such as
data mining, where extensive categorical datasets are commonly encountered. Address-
ing the challenge of clustering large categorical datasets in data mining, Huang (1998)
introduced the K-modes algorithm. This algorithm is a modification of the K-means
and employs a simple matching dissimilarity measure tailored for categorical variables
instead of the Euclidean distance. Unlike K-means, K-modes utilize modes instead of
means for clusters and incorporate a frequency-based approach to update modes dur-
ing the clustering process [23, 24]. The clustering procedure requires the definition
of the number of groups to divide individuals, thus, to find the optimal number of
clusters we implement the Elbow method. The Elbow method relies on the observa-
tion that as the number of clusters increases, the total cluster variance for a dataset
decreases rapidly. However, when plotting total cluster variance against the number
of clusters, beyond a certain point, this decrease slows down, resulting in a graph that
resembles a bent elbow. The optimal number of clusters is determined by identifying
the point at the elbow, where the decrease in cluster variance becomes stagnant [25].
More in detail, we consider different values for the number of clusters and compute
the total within-cluster variance (WCSS) for each value. By plotting WCSS against
the number of clusters, we look for a point where the graph sharply changes direction,
forming an elbow. Beyond this point, the graph becomes almost parallel to the X-axis,
indicating that adding more clusters yields diminishing returns in reducing variance.
The K value at the elbow is considered the optimal number of clusters.

2.5 Classification model

The second research objective involves the development of a classification model to
predict in which risk group a newly diagnosed individual should be assigned. This
approach can help provide better-individualized treatments for COVID-19 patients in
the future.

The risk groups are identified and defined by the output of the clustering. The
predictive variables have been defined in consultation with pediatricians and include
socio-demographic, vaccination status, comorbidities, and variant of infection infor-
mation. In the following, we report the extensive list: age, gender, ethnicity, asthma,
prematurity, obesity, diabetes, chronic respiratory disease, congenital heart disease,
neurological disease, presence of at least one comorbidity, COVID-19 vaccination and
hexavalent vaccination, pre-Omicron/Omicron period of infection.

We use the Random Forest classifier, a versatile and powerful supervised machine-
learning algorithm. The Random Forest is an ensemble of tree-based classifiers, where
each tree in the forest contributes a unit vote to predict the most probable class label
for a given input [26]. This ensemble method is known for its speed, robustness to
noise, and success in identifying non-linear patterns in data. Also, it can effectively
handle both numerical and categorical data, and it is resistant to overfitting [27].

2.6 Explainability

The final goal of the analysis is to understand which are the features that drive the clas-
sification in different classes. Machine learning approaches are often perceived as black
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boxes, offering recommendations without revealing the underlying processes. There-
fore, interpret the results, understanding the hidden patterns, and comprehend the
reasoning behind the model’s conclusion play a key role, especially when model out-
puts are used to support decision-making. To interpret the prediction model’s output,
we use the SHAP (SHapley Additive exPlanations) framework [28]. SHAP provides
a unified measure of feature importance, aiming to understand each instance’s pre-
diction by quantifying the contribution of each feature. Originating from cooperative
game theory, the Shapley value addresses the issue of determining each player’s impor-
tance to the overall cooperation. Since features contribute to the model’s output as
players with varying magnitudes and signs, Shapley values consider both the magni-
tude and direction of their contributions [29] and enable the visualization of the range
and distribution of impacts on the model’s output [30].

3 Results

3.1 Characterization of clusters attributes

The clustering method aims to group individuals based on the similarity of types of
symptoms and the infection category related to the duration of the symptoms. The
Elbow method identifies three clusters as the optimal number, as shown in Fig. 3. Once
obtained three groups of individuals, we perform statistical analyses to understand the
underlying patterns, structures, similarities within the groups, and differences among
them. The results reveal that the three clusters characterize individuals according to
distinct levels of the total number of symptoms and median infection duration. Inter-
estingly, this information was not used during the clustering process, but comes as a
result and highlights the relevance of the machine-learning approach in distinguishing
meaningful patterns in the data. The clusters can be characterized as follows: Cluster
0 represents individuals exhibiting few or no symptoms, suggesting a higher likelihood
of asymptomatic infection; Cluster 1 and Cluster 2 include individuals with a higher
number of symptoms; Cluster 2 includes COVID-19 cases with a longer likely duration
of symptoms than people belonging to Cluster 1. Table 2 shows the descriptive statis-
tics per cluster, together with the ANOVA one-way analysis to find which variables
had a statistically different mean value between (at least two of those) the clusters.
Cluster 1 and Cluster 2 differ in the similarity of reported symptoms, in particular
for fever, rhinitis, and cough, and for the duration of the first two symptoms. Cluster
0 differs from the other two clusters because it captures the asymptomatic COVID-
19 cases. Fig. 4 shows the histogram of the percentage of individuals per number of
symtpoms. We find distinct patterns: within Cluster 0, there is a notable prevalence of
individuals reporting no symptoms or a limited number of symptoms, while Cluster 1
and Cluster 2 show no representation among individuals reporting no symptoms; con-
versely, the behavior reverses for the occurrence of a high number of symptoms, where
Cluster 1 and Cluster 2 are prominent, while Cluster 0 displays an opposing trend.
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Fig. 3 Clustering process settings: select the optimal number of clusters. A visual representation of
the Elbow Method, in which the elbow point corresponds to three clusters.

Clinical characteristics Cluster 0 Cluster 1 Cluster 2 ANOVA
(N = 290) (N = 227) (N = 64) p-value

Infection Category Asymptomatic (Num. (%)) 225 (77.59) 155 (68.28) 7 (10.94) 0.000

Infection Category Short Infection (Num. (%)) 42 (14.48) 39 (17.18) 45 (70.31) 0.000

Infection Category Long Infection (Num. (%)) 23 (7.93) 33 (14.54) 12 (18.75) 0.000

Median Duration Infection (Mean (std.)) 1.64 (8.38) 2.71 (10.19) 3.45 (2.78) 0.219

Number of symptoms (Mean (std.)) 0.67 (0.92) 2.09 (1.25) 3.19 (1.07) 0.000

Table 2 Clustering process results: an overview of cluster characteristics in the study population (N
= 581). Individuals are grouped based on the similarity of reported symptoms, and duration of
symptoms category.

3.2 Classification process

We use socio-demographic and clinical data to inform a Random Forest classifier
and predict the risk group to which a new individual should be assigned. Given the
dataset’s imbalance, we employed oversampling techniques using SMOTE to ensure
reliable results [31]. In this work, 10-fold cross-validation is used to increase the models’
training effectiveness and lower the bias. Also, a grid search optimization approach
is applied to choose the optimal parameters for the model, starting from a list of
parameter alternatives.

The results of the model yield a Receiver Operating Characteristic (ROC) score of
0.73, indicating a 73% level of model performance in effectively distinguishing between
the defined classes. Fig. 5 shows the confusion matrix, a visual representation of the
actual versus predicted values, that measures the performance of the classification
model. We report the raw confusion matrix and the row-wise normalized version, to
better understand the percentage of correct classifications and errors across classes.
The diagonal represents correctly classified instances, and off-diagonal elements repre-
sent misclassifications. Specifically, people with few or no symptoms (Cluster 0) were
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Fig. 4 Clustering process results: histogram of the prevalence of the number of symptoms reported
by individuals within different clusters. We observe different patterns: all the individuals reporting
no symptoms are assigned to Cluster 0, while people reporting a higher number of symptoms belong
to Cluster 1 and Cluster 2.

correctly classified for 55% of cases, and misclassified as belonging to Cluster 1 for
31% of cases. Individuals belonging to Cluster 1 were correctly classified for 48% of
cases and misclassified as belonging to Cluster 0 for 32% of cases. Finally, COVID-19
cases in Cluster 2 were correctly classified for 72% of cases. Notably, when the model
makes errors, it tends to misclassify individuals into the adjacent severity group rather
than the more distant one. This pattern indicates that the model retains some dis-
criminatory power, as it rarely assigns individuals from Cluster 0 directly to Cluster 2
or vice versa. Instead, misclassifications are more likely to occur between neighboring
clusters, reflecting the severity levels. The cluster with the lowest correct classification
rate is Cluster 1, representing a moderate level of symptoms. This cluster is the most
challenging for the classifier, as it often misclassifies these individuals into extreme
clusters (Cluster 0 or Cluster 2).

Fig. 5 Multiclass classification model results: confusion matrices. On the left, the raw confusion
matrix is shown, while on the right the row-wise normalized version.
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3.3 Explanation of predicted values

To understand which predictive variables drive the Random Forest classifier outcome,
we use SHAP (SHapley Additive exPlanation) values. Fig. 6A reports the SHAP sum-
mary plot, where features are first sorted by their global impact, and dots represent the
shape values, colored by the value of that feature, from low (blue) to high (red). Age
appears to be the most important factor, and the coloring shows a smooth decrease
in the model’s output as age increases. Notably, we have similar results for gender,
COVID-19 vaccination, and hexavalent vaccination, meaning that a lower risk profile
characterizes females, and people with COVID-19 vaccination and hexavalent vacci-
nation. On the contrary, a higher risk profile characterizes people infected during the
Omicron variant, as shown by the opposite dot color distribution. Fig. 6B reports the
mean absolute SHAP value of the features for the three classes, providing a general
overview of the most influential features for the model (on the top) and their impact
on the classification of each class. The top five predominant factors identified as crucial
for the classification task are age, gender, the variant of concern (VoC), the presence
of COVID-19 vaccination, and the presence of at least one comorbidity.

Fig. 6 Model Explainability: a visual representation of the importance ranking of the risk factors
with stability and interpretation: on the left (A), instance-individual SHAP values showing the impact
on model output, with importance ranking of the top variables; on the right (B), global features
importance based on the mean absolute magnitude of the SHAP values per class.

3.4 Discussion

The study presents a data-driven approach to exploring the characteristics of COVID-
19 in children and adolescents during pre-Omicron and Omicron periods. We apply
an unsupervised machine-learning approach to cluster individuals into different risk
profile classes based on the similarity of types of symptoms and duration of symptoms
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category. Next, we classify the class in which a new patient should be assigned through
a Random-Forest classifier model, using sociodemographic information, pre-existing
medical conditions, vaccination status, and the VOC as predictive variables.

The unsupervised clustering approach identifies three risk profile groups, that
result in different average numbers of symptoms and duration of symptoms: Cluster
1, characterizing individuals with fewer symptoms and most asymptomatic infec-
tions; Cluster 2, characterizing medium levels of number of symptoms and duration
of symptoms; Cluster 3, including the most symptomatic cases.

Our analysis confirms the findings reported by Di Chiara et al. [11], where sta-
tistical and clinical descriptive approaches were employed. Clinical manifestations of
COVID-19 in the youngest population vary according to the SARS-CoV-2 VOCs.
Before the Omicron VOC emerged, 92% of identified infections in the community
belonged to the lower risk groups (Cluster 0 and Cluster 1), with only 8% falling
into the more severe symptom category (Cluster 2). However, during the Omicron
period, this proportion increased to 22%, indicating higher symptomaticity in indi-
viduals seeking care, which may be partially explained by increased underreporting of
SARS-CoV-2 infections during the brisk upsurge of Omicron cases.

We also examine specific sub-groups of symptoms including those that characterize
an upper respiratory tract infection (i.e. cough, rhinitis, and sore throat). Among the
Omicron-infected individuals, 58% of individuals showed at least one upper respiratory
tract symptom, while among pre-Omicron infected 27%. This supports the evidence
that Omicron infections seeking care were more likely to be linked to upper respiratory
tract symptoms when compared to previous variants [2, 4, 11].

Irrespective of temporal changes in reporting rates, the classification model shows
prominent and interesting results, being able to correctly classify 72% of the time
individuals with more severe risk profiles, 55% individuals in the less severe group,
and 48% individuals in the medium severe group. The model demonstrates its ability
to distinguish between the three groups, with misclassifications typically occurring
between similar levels of morbidity.

Age, gender, COVID-19 vaccination, VOC, and the presence of at least one comor-
bidity emerge as the top five features driving the classification process. Specifically,
younger age groups among the age range (0-20 years old), male individuals, individ-
uals without COVID-19 vaccination, individuals infected during the Omicron period,
and individuals with at least one comorbidity tend to be associated with a higher
risk profile group. In particular, focusing on the younger population (range 0-20 years
old), COVID-19 symptoms still exhibit variation in clinical manifestations. Indeed,
age emerged as a significant confounder driving the classification process. This aligns
with previous evidence showing a higher risk of severe COVID-19 in infants, older
children with comorbidities, and unvaccinated children [32–37].

3.5 Implications and applications

Despite COVID-19 becoming endemic among other seasonal respiratory viruses, the
risk of new VOCs emerging with different virulence and transmissibility profiles,
potentially leading to more severe cases, still persists. This work aids public health pre-
paredness efforts and clinical decision-making. Furthermore, recent years have shown
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significant changes in the epidemiology and clinical presentation of seasonal respi-
ratory viruses, with more severe cases of influenza and RSV among older children
[38, 39]. In this context, a model that predicts infection type and progression based
on a patient’s profile can guide clinical decisions, improving patient management and
outcomes. As self-diagnosis becomes more common, it is crucial to recognize the lim-
itations of self-diagnosis in terms of specificity and sensitivity, which can lead to
misdiagnosis. Supplementing testing with clinical insights is essential to accurately
identifying severity and risk profiles. The rise of self-testing also brings the risk of
overtreatment, especially the overuse of antibiotics, which is a global health threat
due to antibiotic resistance. A precise risk profile model can support clinicians in dis-
tinguishing between infections, helping to reduce unnecessary antibiotic prescriptions
at the community level. Moreover, this model could be particularly beneficial in low-
and middle-income countries where resources are limited. The ability to classify risk
and predict disease progression using minimal resources can aid healthcare providers
in these regions, improving patient outcomes.

3.6 Strenghts and limitations

Using data from a prospective cohort ensured more accurate and consistent data collec-
tion, limiting reporting bias. However, the present work comes with some limitations.
The framework needs further testing on a substantially larger dataset, including the
integration of socioeconomic information and the most severe cases such as hospital-
ized patients with the need for medical care (e.g., oxygen, ventilatory support). Similar
to influenza, given the numerous variables that influence the risk of COVID-19, and
the severity of the resulting illness, confounding is a significant issue in studies exam-
ining risk factors for COVID-19. Key potential confounders in these studies include
socioeconomic variables such as household crowding, education level, and income [13].
Nonetheless, despite the limited size of our study population, the focus on mild and
moderate cases, and the missing information on more detailed socio-economic aspects,
we have identified differences in clinical manifestations among cases, highlighting
distinct infection classes.

4 Conclusion

This data-driven approach provided different risk profile classes of COVID-19 in chil-
dren using readily available information such as clinical history, VoC, vaccination
status, and socio-demographic factors. This helps predict the risk profile group for
a new patient. Overall, our findings highlight the importance of integrating risk-
classification models to improve the management of infectious diseases, not only for
COVID-19 but also for other respiratory infections. Further research is needed to pro-
file classes of COVID-19 severity in children. This approach can support public health
efforts by providing a clearer understanding of disease burden and facilitating better
resource allocation and patient care strategies.
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