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Summary 47 
Background 48 
The COVID-19 pandemic led to major disruptions in healthcare services at the hospital and community 49 
levels. The resulting impact on antibiotic resistance (ABR) in hospitals is difficult to predict. 50 
 51 
Methods 52 
We exploited data from the French national surveillance system over four years (2019-2022) including 53 
414 hospitals across 12 French regions. We evaluated changes in annual antibiotic use compared to 2019 54 
using multiple comparison tests. We also compiled a large dataset of 692,551 incident isolates for five 55 
antibiotic-bacterium pairs. Using negative binomial regression models accounting for autocorrelation and 56 
antibiotic use, we evaluated associations between resistant isolates incidence and COVID-19 indicators 57 
(pandemic periods or intubated COVID-19 patient prevalence). We investigated how these associations 58 
varied specifically in ICUs (n=85) and across geographical regions.  59 
 60 
Findings 61 
The use of some antibiotics, including azithromycin, imipenem and meropenem, significantly increased 62 
between 2020 and 2022. Concomitantly, the incidence of methicillin-resistant Staphylococcus aureus (up 63 
to 37%, 95% CI: 18-53%) and ESBL-producing Escherichia coli (up to 33%, 95% CI: 16-46%) isolates 64 
significantly decreased in hospitals and ICUs during the pandemic. A transient decrease in ICUs was also 65 
observed for ESBL-producing Klebsiella pneumoniae during periods of strong anti-COVID-19 interventions 66 
in the community (24%, 95% CI: 6-38%). No significant changes for ESBL-producing Enterobacter cloacae 67 
complex were observed. Very interestingly, the incidence of carbapenem-resistant Pseudomonas 68 
aeruginosa isolates was associated with COVID-19 intubation prevalence in hospitals (p<0.001) and ICUs 69 
(p<0.001), notably in the regions most affected by the pandemic. 70 
 71 
Interpretation 72 
Our results highlight strong modifications of antibiotic use and pathogen-specific global impacts of the 73 
COVID-19 pandemic on ABR in hospitals. Even though the biological mechanisms underlying between-74 
species differences remain unclear, these results provide important insights into the potential impacts of 75 
a viral pandemic on ABR and support the need for pandemic preparedness in healthcare facilities.  76 
 77 
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Research in context 92 
Evidence before this study 93 
We searched PubMed for articles in English published between Jan 1, 2020, and August 31, 2024 exploring 94 
national-scale changes in antibiotic resistance (ABR) within healthcare settings during the COVID-19 95 
pandemic. Search terms for titles and abstracts were (“antibiotic resistance” OR “antimicrobial resistance” 96 
OR “bacterial resistance” OR “drug resistance” OR “MRSA” OR “ESBL” OR “carbapenem resistant”) AND 97 
(“hospital” OR “healthcare”) AND (“COVID-19” OR “SARS-CoV-2”) AND (“national” OR “nationwide”). The 98 
search yielded 94 results. We identified 12 relevant studies after filtering out articles referring to viruses, 99 
parasites, or fungi, focusing on a single hospital, evaluating changes in antibiotic use only, assessing 100 
healthcare workers’ practices, or using qualitative approaches. All studies used either national 101 
surveillance data on antibiotic resistance or large multi-center cohorts of inpatients. Five studies showed 102 
a significant increase in MRSA, at least during the first wave of the COVID-19 pandemic, while two studies 103 
did not find changes at the national level compared to 2019. Interestingly, one study showed that the 104 
abandonment of infection prevention and control strategies that specifically target hospital-acquired 105 
MRSA infections was associated with an increase of these infections, regardless of COVID-19 admission 106 
prevalence. One study in Spain showed decreased resistance of P. aeruginosa to all tested antibiotics in 107 
2022 compared to 2017, using point prevalence survey results. Conversely, one study focusing on US 108 
Veterans Affairs hospitals showed increased incidence and resistance of healthcare-associated 109 
carbapenem-resistant P. aeruginosa (CR-PA) infections during the pandemic. Most studies used univariate 110 
statistical approaches. Only two studies included COVID-19-related variables in their models; they found 111 
no association with MRSA or extended-spectrum cephalosporin-resistant E. coli and K. pneumoniae.  112 
 113 
Added value of this study 114 
Here, we provide the first evaluation of the impact of the pandemic on antibiotic consumption and 115 
resistance for five antibiotic-bacterium pairs (MRSA, CR-PA, ESBL-producing E. coli, ESBL-producing K. 116 
pneumoniae, and ESBL-producing E. cloacae complex) in hospitals, at the national and regional scales. By 117 
analyzing French surveillance data from the SPARES database including 414 hospitals that represent up to 118 
14% of French hospitals, we evaluated annual changes in antibiotic use and quantified the impacts at the 119 
weekly level of the COVID-19 pandemic on the incidence of five of the most prevalent resistant bacteria 120 
in France. Accounting for autocorrelation and antibiotic use, factors that were not considered in previous 121 
studies, we report a significant positive association between the weekly incidence of CR-PA isolates and 122 
the prevalence of intubated COVID-19 patients in the preceding weeks. Carbapenem use and intubation 123 
being risk factors of CR-PA infections, our results suggest a direct impact of the pandemic on CR-PA 124 
epidemiology. Inversely, we show that the incidence of ESBL-producing E. coli and MRSA isolates 125 
decreased after the start of the first pandemic wave at the hospital level but also in ICUs. The fine grain 126 
analysis across 12 French administrative regions revealed regional heterogeneities, but highlighted 127 
consistent associations in the regions most affected by the COVID-19 pandemic. 128 
 129 
Implications of all the available evidence 130 
Pandemics not only destabilize healthcare systems by adding pressure and changing healthcare worker 131 
behaviors, but also influence the epidemiology of other infectious diseases as shown in our study. We 132 
specifically highlight the contrasting effects of the COVID-19 pandemic on ABR in French hospitals, 133 
associated with an increase in CR-PA isolate incidence but a general decrease in ESBL-producing E. coli 134 
and MRSA. This work highlights how national-scale hospital surveillance systems such as SPARES that 135 
collect data at the weekly level are key to capture the evolving impacts of pandemics. They also allow to 136 
generate hypotheses on the potential mechanisms of action of the pandemic on ABR epidemiology, as 137 
showcased by the analysis of CR-PA isolates incidence, and thereby participate in the improvement of 138 
healthcare systems in pandemic context. 139 
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 140 
 141 
Introduction 142 
 143 
Antibiotic resistance (ABR) is a leading health problem worldwide associated with an estimated 1⸱14 (1⸱00-144 
1⸱28) million deaths in 2021.1 Exceptional health events, such as pandemics, lead to major changes in care 145 
and hygiene practices in both the community and hospitals, which may modify ABR epidemiology. For 146 
instance, during the COVID-19 pandemic, social distancing measures2 and reduced outpatient antibiotic 147 
prescription3,4 might have reduced ABR burden in hospitals. Healthcare workers (HCWs) also reported 148 
greater hand hygiene compliance and availability of alcohol-based hand rub.5,6 On the other hand, 149 
inpatient antibiotic use increased in France,7 probably related to the high proportion of COVID-19 patients 150 
receiving antibiotics as reported in several meta-analyses.8,9 In parallel, surges in COVID-19 patients in 151 
hospitals often exceeded bed capacity with a sicker patient-case mix.5 This generated higher workload 152 
and decreased the time that HCWs could allocate to antibiotic stewardship and infection prevention and 153 
control (IPC).5 A striking example is the increase of MRSA incidence in US Veterans Affairs hospitals with 154 
interrupted IPC during the pandemic.10 The combined impact of all these effects, at the community and 155 
hospital levels, is difficult to predict11 and may have changed throughout the pandemic, which was notably 156 
marked by the improvement of COVID-19 patient management and treatment (e.g. reduction in antibiotic 157 
prescribing12,13 and mechanical ventilation14).  158 
 159 
Several studies have attempted to quantify the impacts of the pandemic on ABR in hospitals, but the 160 
evidence remains conflicting.10,15,16 A meta-analysis estimated that MRSA incidence did not change during 161 
the pandemic, whereas there was a statistically insignificant trend for increased incidence of extended-162 
spectrum β-lactamase (ESBL)-producing Enterobacterales and CR-PA.15 Heterogeneity in terms of settings, 163 
study design, and health outcomes, as well as heterogeneity in baseline epidemiological situations and 164 
local practices, might have undermined the statistical power of this meta-regression. A recent 165 
comprehensive study on antibiotic-resistant healthcare-associated infections in US Veterans Affairs 166 
hospitals also highlighted varying trends across antibiotic-bacterium combinations during the pandemic.16  167 
 168 
Here, we aimed to assess the impacts of the pandemic on antibiotic use and antibiotic-resistant bacteria 169 
in French hospitals using large-scale surveillance data over 2019-2022. We evaluated changes in antibiotic 170 
use in hospitals compared to 2019 as a potential key mechanism of pandemic action on ABR epidemiology 171 
in hospitals. For five antibiotic-resistant bacteria of major importance in French hospitals (ESBL-producing 172 
E. coli - ESBL-EC, ESBL-producing K. pneumoniae - ESBL-KP, ESBL-producing E. cloacae complex - ESBL-ECC, 173 
MRSA, and CR-PA), we quantified the association between their incidence and the burden of severe 174 
COVID-19 patients, we investigated whether these associations were similar in the specific context of 175 
intensive care units (ICUs), and we evaluated how associations with the pandemic varied across 176 
geographical regions. 177 
 178 
 179 
Methods 180 
 181 
Data sources  182 
 183 
Antibiotic resistance and antibiotic consumption in hospitals  184 
 185 
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We obtained ABR and antibiotic use data from the French National Surveillance Database on Antibiotic 186 
Resistance in hospitals (SPARES). SPARES compiles data reported by participating hospitals on (i) 187 
microbiological test results from clinical samples and (ii) annual antibiotic consumption by anatomical 188 
therapeutic chemicals (ATC) class (Figure 1A).7 Consolidated data are only available from 2019 on. SPARES 189 
provided us with microbiological test results and antibiotic use data from the 1st of January 2019 to the 190 
31st of December 2022. 191 
 192 
Clinical tests reported in SPARES encompass infection and colonization events. No information about the 193 
source of acquisition (community or healthcare) is available. Clinical test results are interpreted according 194 
to the EUCAST guidelines by participating hospitals.  195 
 196 
Hospitals report their annual antibiotic consumption by ATC class in number of defined daily doses (DDD) 197 
for 1,000 bed-days.  198 
  199 
Hospital stays 200 
 201 
We obtained data on occupied bed-days from the National Hospital Discharge Database (PMSI), a 202 
database dedicated to hospital activity evaluation for budget allocation. As such, it documents for all 203 
hospital stays their type, duration, associated diagnoses and medical procedures. We exploited this 204 
database to extract the weekly number of occupied bed-days in acute care facilities between the 1st of 205 
January 2019 and the 31st of December 2022. We also extracted the weekly number of intubated COVID-206 
19 patients’ bed-days (appendix pp 6-7).  207 
  208 
Data selection procedure 209 
 210 
We explored ESBL-EC, ESBL-ECC, ESBL-KP, MRSA, and CR-PA dynamics since they are on the WHO priority 211 
list17 and amongst the resistant bacteria with highest incidence in France.18 Of all available isolates in 212 
SPARES (n=2,370,650), we selected the ones corresponding to the studied bacterial species that are tested 213 
for the resistance of interest. Importantly, when multiple samples potentially corresponded to the same 214 
acquisition episode and were performed within a 30-day period, we kept only the first sample as we were 215 
interested in incident episodes (Figure 1B). Our selection procedure led to the inclusion of 692,551 216 
episodes, 74,387 of which were resistant. Concerning antibiotics, only ATC-J01 antibiotics reported over 217 
the four years of the study period were included (appendix pp 2-3). 218 
 219 
Hospitals report their data to SPARES on a voluntary basis leading to non-exhaustive and possibly non 220 
representative data collection. To ensure our analysis is based on a temporally stable database, we 221 
restricted our analyses to hospitals that systematically reported their antibiotic consumption and clinical 222 
tests results over the four years of the study period. Other exclusion criteria are listed in Figure 1C. 223 
Selected hospitals (n=414) are distributed over the 12 administrative regions of hexagonal France (Figure 224 
1D). We assessed the representativeness of our cohort in appendix pp 3-6.  225 
  226 
Outcomes 227 
 228 
We investigated the dynamics of the following outcomes at the national and/or regional levels and at the 229 
hospital and/or ICU levels over the study period: 230 

- Annual proportion of resistant episodes for each antibiotic-bacterium pair: annual number of 231 
resistant episodes divided by annual number of total episodes. 232 
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- Weekly incidence of resistant bacterial isolates: weekly number of incident resistant episodes 233 
divided by weekly number of occupied bed-days (from the PMSI) times 1,000. 234 

- Annual consumption of antibiotics in DDD for 1,000 bed-days. 235 
 236 
The hospital level included rehabilitation care, general medicine, surgery, gynecology-obstetrics, and ICU.  237 
 238 
Statistical analyses 239 
 240 
Antibiotic consumption dynamics 241 
 242 
For each antibiotic class, we evaluated whether its consumption had changed over the study period by 243 
comparing annual consumption distributions using Friedman tests (non-parametric alternative of the one-244 
way ANOVA for repeated measures). We then explored the evolution of antibiotic consumption using 245 
2019 as a reference year by performing three pairwise Wilcoxon signed-rank tests. We applied a 246 
Bonferroni correction for multiple testing, and reported adjusted p-values and 98⸱3% confidence intervals 247 
(CIs) to account for the correction.  248 
 249 
Antibiotic-resistant episodes dynamics 250 
 251 
For each antibiotic-bacterium pair, we evaluated whether there was a linear trend in the annual 252 
proportion of resistance in hospitals at the national level using the χ2 test for trend in proportions. When 253 
resistance proportions exhibited a significant increase or decrease between 2019 and 2022, we estimated 254 
the slope of the linear trend using linear regression minimizing weighted least squares. 255 
 256 
Then, for each bacterium pair, we investigated ABR and COVID-19 association using multivariate count 257 
regression models. We modeled the incident number of resistant isolates of a bacterial species  during 258 
week  in hospitals or ICUs as a negative binomial distribution to account for overdispersion. The 259 
equations of the models are as follows: 260 
 261 

 262 
 263 

 264 
 265 
With  the overdispersion parameter,  the intercept,  the number of occupied bed-days at week , 266 

 the occupied bed-days permillage at week   (offset),  the incidence of resistant 267 
bacterial isolates per 1,000 bed-days in the preceding week ( ) to account for autocorrelation, and 268 

 the consumption level (in DDD for 1,000 bed-days) of the main antibiotic class targeted by 269 
the resistance during year  that includes week . Target antibiotic classes correspond to 270 
imipenem+meropenem for P. aeruginosa, 3GC for Enterobacterales, and penicillins for S. aureus. We 271 
considered antibiotic consumption as a confusion factor, and investigated its impact in a sensitivity 272 
analysis (appendix pp 22-25). We compared this baseline model to 6 distinct models accounting for 273 
COVID-19-related variables (appendix p10-11). These variables were either the period of the pandemic (a 274 
categorical variable indicating the pre-pandemic period, the first wave and periods marked by three levels 275 
of anti-COVID-19 restrictions in the community), or COVID-19 intubation prevalence. The levels of anti-276 
COVID-19 restrictions in the community were based on Paireau and colleagues,2 but we considered the 277 
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first wave separately as it was marked by a very specific context of care disorganization in hospitals. The 278 
prevalence of intubated COVID-19 patients (weekly number of intubated COVID-19 patients’ bed-days 279 
divided by the weekly number of bed-days times 1,000) represented the burden of severe COVID-19 280 
patients. For both COVID-19-related variables, we tested variables at week , , and . 281 
Continuous explanatory variables (prevalence of COVID-19 intubation, antibiotic consumption, resistant 282 
isolate incidence at week ) were on very different scales, so we standardized them to facilitate the 283 
comparison of regression coefficients across explanatory variables, models and bacterial species. 284 
 285 
We calculated the 95% CIs for the regression coefficients using a normal approximation to the distribution 286 
of the maximum likelihood estimators. For each antibiotic-bacterium pair, we selected the model with the 287 
lowest Akaike Information Criterion (AIC). Models were fitted by maximum likelihood using the glm.nb 288 
function of the R package MASS (appendix pp 10-19).19  289 
 290 
When the best model included COVID-19-related variables, we further explored how associations varied 291 
across the 12 administrative regions by fitting the model selected in the national analysis to regional 292 
hospital data separately for each region and accounting for overdispersion when necessary. We did not 293 
investigate regional ICU data alone due to the limited number of episodes and absence of ICUs in some 294 
regions (Figure 1D). 295 
 296 
All statistical analyses were done with R, version 4.3.0. This study adheres to the Strengthening the 297 
Reporting of Observational studies in Epidemiology (STROBE) reporting guideline. 298 
 299 
Role of the funding source 300 
 301 
The funders had no role in study design, data analysis, data interpretation, or writing of the paper. 302 
 303 
 304 
Results 305 
 306 
Evolution of antibiotic use in hospitals during the pandemic in France 307 
 308 
Annual antibiotic consumption strongly varied across hospitals (n=414, gray lines) of our cohort and across 309 
antibiotic classes, penicillins and quinolones being the most used (appendix p20 and Table 1). Overall, a 310 
median increase in total consumption of 7⸱5 DDD per 1,000 bed-days (98⸱3% CI: 2⸱7, 12⸱5) was found in 311 
2020 compared to 2019 but it did not persist. For all antibiotic classes explored, significant changes in 312 
annual consumption were found, with strong variations across classes (Table 1). Carbapenem 313 
consumption, and more specifically imipenem and meropenem, showed a significant increase in 2020 and 314 
2021, while cephalosporins increased until 2022. Interestingly, macrolide consumption significantly 315 
increased only in 2020 (+1⸱71 DDD/1,000 bed-days, 98⸱3% CI: +0⸱9 to +2⸱6), while azithromycin 316 
consumption significantly increased during the whole pandemic period.  317 
  318 
Antibiotic use dynamics varied across regions (Figure 2A and appendix p 21). A significant increase of total 319 
antibiotic use was observed in 2020 in Île-de-France (IDF), Grand-Est (GES) and Auvergne-Rhône-Alpes 320 
(ARA). Interestingly, macrolide consumption significantly increased in four regions in 2020, especially 321 
azithromycin whose consumption increased in seven regions (Figure 2B). Importantly, the increase of 322 
azithromycin use persisted until 2022 in Hauts-de-France (HDF), Occitanie (OCC), and Provence-Alpes-323 
Côte d’Azur (PAC).  324 
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 325 
In ICUs (n=85), we observed higher antibiotic consumption levels (appendix p20) and changes of larger 326 
magnitude compared to the overall hospital level (Table 2). Although we did not find a significant change 327 
in total antibiotic consumption in these wards, we observed a significantly increased use of carbapenems, 328 
cephalosporins, and macrolides in 2020. Imipenem and meropenem consumption remained significantly 329 
higher until 2022 (+12⸱42 DDD/1,000 bed-days, 98⸱3% CI: +1⸱9 to +22⸱4), while carbapenem use decreased 330 
to its 2019 level in 2022. Macrolide (+17⸱41 DDD/1,000 bed-days, 98⸱3% CI: +7⸱7 to +28⸱9) and 331 
azithromycin (+12⸱69 DDD/1,000 bed-days, 98⸱3% CI: +5⸱8 to +20⸱5) consumption significantly increased 332 
but only during the first year of the pandemic, contrary to the hospital level. Finally, penicillin consumption 333 
significantly decreased in 2020 and 2021 compared to 2019.  334 
 335 
Contrasting impacts of the pandemic on ABR in French hospitals 336 
 337 
Among the 692,551 included isolates, E. coli was the most represented bacteria in our dataset with 338 
376,685 isolates (Figure 3A). The evolution of annual resistance rates over 2019-2022 varied across 339 
antibiotic-bacterium pairs. We found a significantly decreasing trend for MRSA (p<0.001), ESBL-EC 340 
(p<0.001), ESBL-KP (p<0.001), and ESBL-ECC (p=0.031), but a significantly increasing trend for CR-PA 341 
(p<0.001, Figures 3B-C). No clear variation of resistance proportion at the weekly level was observed 342 
(appendix p 8).  343 
 344 
In contrast, the analysis of weekly incidence of resistant isolates revealed interesting dynamics (Figure 345 
3D). Comparing regression models that included or not COVID-19-related variables at the country level 346 
led to the selection of distinct models depending on the antibiotic-bacterium pair. For ESBL-EC and MRSA, 347 
the selected model included the pandemic periods. For CR-PA, the prevalence of intubated COVID-19 348 
patients two weeks prior was selected. Incidence significantly decreased for ESBL-EC (up to 15% decrease, 349 
95% CI: 11-19%) and MRSA (up to 26% decrease, 95% CI: 22-30%) after the first pandemic wave, while the 350 
prevalence of intubated COVID-19 patients was significantly associated with higher incidence of CR-PA 351 
isolates (p<0.001, Figure 4A).  352 
 353 
Focusing on ICUs, we observed similar patterns with slight differences (Figure 4A). Notably, MRSA isolates 354 
incidence significantly decreased from the first pandemic wave onwards (up to 37% decrease, 95% CI: 18-355 
53%) and the best model for ESBL-KP included the pandemic periods with a significant decrease in 356 
incidence during the periods of strong anti-COVID-19 interventions (24% decrease, 95% CI: 6-38%).  357 
 358 
At the regional level, we estimated that COVID-19 intubation prevalence was significantly associated with 359 
an increased incidence of CR-PA isolates in IDF (p=0.005), GES (p=0.006), ARA (p=0.008), and PAC 360 
(p=0.004, Figure 4C). Interestingly, these regions were amongst the most affected by the pandemic (Figure 361 
4E). These results strengthen the evidence that the pandemic may have led to an increase in CR-PA isolate 362 
incidence. For ESBL-EC and MRSA, associations between incidence and pandemic periods are highly 363 
heterogeneous across administrative regions with evidence of a significant decrease in incidence after the 364 
first pandemic wave in multiple regions (Figure 4D).  365 
 366 
 367 
Discussion  368 
 369 
Using national surveillance data in French hospitals between 2019 and 2022, we showed changes in 370 
antibiotic use over the course of the pandemic, highlighting increasing use of azithromycin, imipenem, 371 
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and meropenem. We also found that the pandemic had contrasting impacts on ABR, that varied across 372 
antibiotic-bacterium pairs and administrative regions, which could be due to differences in the modes of 373 
transmission, spatiotemporal dynamics, and drivers of the five studied antibiotic-bacterium pairs. These 374 
differences across pairs stress that ABR should not be regarded as a one-solution problem.  375 
 376 
We estimated overall reductions in use of penicillins in hospitals over the study period, as observed in 377 
2020 in the community in France,4 probably due to the reduction of common infections generally treated 378 
with penicillins. They were probably replaced by cephalosporins and carbapenems for which we showed 379 
an increased use. We also showed an increased use of macrolides, among which azithromycin, as 380 
observed in the community.3,4 These changes are certainly due to the management of COVID-19 patients, 381 
at least at the start of the pandemic, when COVID-19 patients represented most of the hospitalizations. 382 
Indeed, cephalosporins, carbapenems, and azithromycin were the antibiotics most commonly prescribed 383 
to COVID-19 patients.8,12,13 Importantly, we showed that azithromycin use in hospitals and imipenem and 384 
meropenem use in ICUs remained high until 2022. These increases are concomitant with higher 385 
carbapenem resistance in P. aeruginosa as shown here, and could have led to the increase of azithromycin 386 
resistance,20 or even other resistances.20 Unfortunately, we could not evaluate azithromycin resistance 387 
given the very limited number of bacterial isolates tested for this antibiotic. All these dynamics may have 388 
changed selective pressures in hospitals and require careful attention. It is important to stress that we did 389 
not assess antibiotic use dynamics in the community, which can also impact the selective pressure in 390 
hospitals.  391 
 392 
To the best of our knowledge, this is the first study evaluating the association between ABR and COVID-393 
19-related variables in hospitals using weekly level national surveillance data that also include antibiotic 394 
use or autocorrelation terms.10,21 The results from our regression analysis suggest that CR-PA isolate 395 
incidence increased with COVID-19 intubation prevalence, an association that we also quantified at the 396 
regional level and that is certainly driven by ICUs (appendix p 26). We further confirmed this association 397 
in a sensitivity analysis where likelihood ratio tests always selected the model with COVID-19 intubation 398 
at  rather than COVID-19 intubation in the following weeks ( , , and , appendix 399 
pp 26-27). These results are in agreement with previous studies.15,16,22 A possible mechanism explaining 400 
this association pertains to the increase of known risk factors of CR-PA infections, notably more frequent 401 
intubation,23 longer hospitalizations, and higher antibiotic use in COVID-19 patients.23,24 Interestingly, 402 
when we did not account for imipenem and meropenem use in the hospital regression model, the AICs of 403 
the models including the pandemic periods at week  or the prevalence of intubated COVID-19 404 
patients at week  were equivalent. Still, we estimated an increased incidence compared to the pre-405 
pandemic period in the model with the pandemic periods at week  (appendix pp 22-25).  406 
 407 
In contrast, our analysis shows that MRSA and ESBL-EC isolates incidence significantly decreased during 408 
the pandemic. Previous reports have highlighted a steady decrease of MRSA incidence since 2003 in 409 
France,25 as well as a recent decrease of ESBL-EC between 2016 and 2018.26 Thus, it is difficult to assess 410 
whether the decrease that we observe is due to long-term trends only or whether the pandemic has 411 
accelerated the decrease, for instance through higher adherence to hand hygiene,5 a known factor of 412 
MRSA prevention.27 Concerning ESBL-EC, we estimated a decrease in incidence after the first wave, but 413 
our regression model does not explain incidence dynamics well during the first wave (appendix p 19). 414 
According to a study in French ICUs during the first wave, COVID-19 patients were more frequently co-415 
infected with ESBL-EC than non-COVID-19 patients28 and a meta-analysis highlighted a higher incidence 416 
of ESBL-EC during the first year of the pandemic.15 It is therefore possible that the impacts of the pandemic 417 
on ESBL-EC changed first with conditions that favored ESBL-EC infections, later followed by conditions that 418 
prevented these infections. Again, our model did not account for the community and we also cannot rule 419 
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out the contribution of the evolution of ABR in the community on these dynamics. However, there is 420 
scarce evidence of changes in ESBL-EC29 and MRSA in the French community.  421 
 422 
In parallel, our regression analysis suggests that there is transient association between COVID-19 and 423 
ESBL-KP and no association between COVID-19 and ESBL-ECC. In our sensitivity analysis, we estimated 424 
stronger changes in ESBL-KP isolate incidence at the start of the pandemic, but they did not persist and 425 
concerned only ICUs (appendix pp 18-19). This is consistent with the literature that showed an 426 
insignificant increase in the incidence of ESBL-producing Enterobacterales.15,16  427 
 428 
Several limitations of our study should be mentioned. As in any ecological study, we quantified changes 429 
using data aggregated at the national or regional level, which hides hospital heterogeneity in terms of 430 
size, hospital type, local practices, or degree to which they were affected by the COVID-19 pandemic. This 431 
also prevents generalization to every French hospital. Secondly, the analyses were carried out on a 432 
subsample of French hospitals, representing about 14% of all French hospitals (3,008 in 2019). While this 433 
cohort is relatively representative in terms of healthcare-associated infections prevalence across regions, 434 
it is not representative of the regional distribution of hospital activity or hospital number in France. 435 
Besides, hospitals report their data on a voluntary basis. Consequently, we cannot rule out that there is a 436 
selection bias in our cohort. For instance, the observed regional differences in antibiotic consumption and 437 
CR-PA incidence may be due to missing university hospitals in some regions. Thirdly, the source of 438 
acquisition, i.e. whether bacteria were acquired in the community or in the hospital, was not available. 439 
Analyzed data thereby result from dynamics of both settings. Fourth, we did not stratify incidence by 440 
specimen type (e.g. bloodstream, genital tract, respiratory tract, skin, body fluids, feces, and urine). We 441 
might expect different temporal patterns over the year, notably for lower respiratory tract specimens. 442 
Fifth, hospitals only report their antibiotic consumption annually, preventing us from exploring weekly 443 
level associations with ABR incidence. Indeed, antibiotic use may display seasonal patterns as observed in 444 
the community.30 Finally, the national surveillance system of ABR changed in 2018, making it impossible 445 
to have weekly time series of ABR prior to 2019. Due to this short history, we could not include seasonality 446 
in the regression model or account for long-term trends, as previously discussed.  447 
 448 
In conclusion, hospital antibiotic use and ABR epidemiology strongly varied during the COVID-19 pandemic 449 
in France. The biological mechanisms underpinning the changes in ABR epidemiology likely vary across 450 
the investigated antibiotic-bacterium pairs and remain to be elucidated. Continued surveillance efforts in 451 
hospitals is pivotal and will help build healthcare facilities that are more resilient in pandemic contexts.  452 
 453 
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 609 
Figure 1. Data sources and selection. (A) Hospitals report their antibiotic resistance data in SPARES using either 610 
their geographical identifier or their legal identifier, the latter generally grouping multiple geographical entities. We 611 
excluded all hospitals that use their legal identifier, except for teaching hospitals that often host the most severe cases. 612 
For teaching hospitals that report their data under their legal identifier, we retrieved occupied bed-days data from the 613 
PMSI using the geographical identifiers of all relevant entities (see appendix pp 3-6 for more details). (B) Flow 614 
diagram of sample selection. We focused our investigations on meticillin-resistant S. aureus, ESBL-producing E. coli, 615 
K. pneumoniae, and E. cloacae complex, and carbapenem-resistant P. aeruginosa. E. cloacae complex include 616 
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Enterobacter cloacae, Enterobacter absuriae, Enterobacter hormaechei, Enterobacter kobei, Enterobacter ludwigii, 617 
and Enterobacter nimipressuralis. Among the duplicated samples with different phenotypes, we excluded the least 618 
resistant phenotypes, meaning phenotypes S if R or I, and phenotypes I if R (2,219/4,442, 50%). In total, we selected 619 
34% of isolates from the global database and 36% of samples isolated in intensive care units (ICUs). (C) Flow diagram 620 
of hospitals and ICUs selection. Hospitals located in French overseas territories and Corsica were removed due to 621 
specific epidemiological situations as well as low numbers that would decrease the statistical power of the regional 622 
analyses. (D) Geographical distribution of hospitals and ICUs across the 12 regions of mainland France.  623 
GPH: general public hospital; PPH: private for profit hospital; PNPH: private not-for-profit hospital; RH: 624 
rehabilitation hospital; UH: university hospital. 625 
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 667 
Figure 2. Regional heterogeneity in antibiotic consumption in French hospitals, 2019-2022. (A) Changes of 668 
antibiotic consumption across French regions between 2019 and 2020. Colors indicate the median percentage change 669 
of antibiotic consumption between 2019 and 2020. We excluded hospitals reporting no consumption in 2019 to 670 
calculate this metric. Dark blue colors indicate increased consumption and dark orange colors indicate decreased 671 
consumption. We also performed paired Wilcoxon signed-rank tests to compare regional distributions of antibiotic 672 
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consumption in 2019 and 2020. Circle size indicates the level of significance of the paired Wilcoxon signed-rank tests 673 
when the p-value is ≤0⸱05. (B) Dynamics of azithromycin consumption across French regions during the study period. 674 
Each panel represents a French region whose geographical location is shown on the right. Gray lines correspond to 675 
the trajectories of individual hospitals and colored circles to the average regional antibiotic consumption in defined 676 
daily doses (DDD) for 1,000 occupied bed-days. Colors indicate the level of significance of the Friedman test which 677 
is the non-parametric equivalent of one-way repeated measures ANOVA tests. We also indicate the corrected p-values 678 
of the paired Wilcoxon signed-rank tests between 2019 and the other years of the study period when corrected p-679 
values are ≤0⸱05. We used a Bonferroni correction.  680 
n.s. : p-value>0.05; *: p-value≤0.05;  **: p-value≤0.01; ***: p-value≤0.001. 681 
ARA: Auvergne-Rhône-Alpes; BFC: Bourgogne-Franche-Comté; BRE: Bretagne; CVL: Centre-Val de Loire; GES: 682 
Grand-Est; HDF: Hauts-de-France; IDF: Île-de-France ; NAQ: Nouvelle-Aquitaine; NOR: Normandie; OCC: 683 
Occitanie; PAC: Provence-Alpes-Côte d’Azur; PDL: Pays de la Loire. 684 
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 728 
 729 
Figure 3. Antibiotic resistance in hospitals in France, 2019-2022. (A) Annual number of samples isolated in our 730 
hospital cohort (n=414 hospitals) between 2019 and 2022 and stratified by bacterial species. (B) Annual proportion 731 
of resistant bacterial isolates from 2019 to 2022 in our hospital cohort. Intervals indicate the 95% Wilson CIs. (C) 732 
Temporal trend of resistance proportions between 2019 and 2022. Stars indicate the level of significance of the 𝜒2 733 
trend test for proportions. (D) Weekly incidence of resistant infections for 1,000 bed-days over the study period in 734 
hospitals and intensive care units (ICUs). The strips indicate the level of anti-COVID-19 interventions in the 735 
community.2  736 
*: p-value≤0.05;  **: p-value≤0.01; ***: p-value≤0.001. 737 
ESBL E. cloacae: ESBL-producing Enterobacter cloacae complex; ESBL E. coli: ESBL-producing Escherichia coli; 738 
ESBL K. pneumoniae: ESBL-producing Klebsiella pneumoniae; CR P. aeruginosa: carbapenem-resistant 739 
Pseudomonas aeruginosa; MRSA: methicillin-resistant Staphylococcus aureus.  740 
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 757 
Figure 4. Results from the count regression analysis of resistant infections in French hospitals and intensive 758 
care units (ICUs). (A) Incidence rate ratios (IRRs) of COVID-19-related variables for the best selected regression 759 
models. For ESBL-producing E. cloacae in ICUs and hospitals and K. pneumoniae in hospitals, the best models did 760 
not include COVID-19-related variables, thus they do not appear on the forest plots. For the other cases, the best 761 
models included either the COVID-19-related periods at week w, or the COVID-19 intubation prevalence at week w-762 
2. IRR estimates for the COVID-19-related periods are relative to the pre-pandemic period. (B) IRRs of best regression 763 
models for the autocorrelation term and antibiotic consumption. Here, “target antibiotic” refers to the antibiotic class 764 
targeted by the resistance of the pathogen considered, namely broad-spectrum penicillins for ESBL-producing 765 
Enterobacterales, imipenem+meropenem for CR-PA, and narrow spectrum penicillins for MRSA. (C) IRRs by 766 
administrative region using the best model selected at the national level on carbapenem-resistant P. aeruginosa (CR-767 
PA) isolate incidence including the prevalence of COVID-19 intubated patients. (D) IRRs by administrative region 768 
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using the best model at the national level on ESBL-producing E. coli (ESBL E. coli) and methicillin-resistant S. aureus 769 
(MRSA) isolate incidence including the pandemic periods at week w. Shaded IRRs have a p-value > 0⸱05. Intervals 770 
correspond to the 95% CIs of the point estimates. (E) Annual prevalence of intubated COVID-19 patients for 1,000 771 
bed-days by region. Île-de-France (IDF), Grand-Est (GES), Provence-Alpes-Côte d’Azur (PAC), and Auvergne-772 
Rhône-Alpes (ARA) were the most affected regions during the first two years of the pandemic.  773 
ESBL E. cloacae: ESBL-producing Enterobacter cloacae complex; ESBL E. coli: ESBL-producing Escherichia coli; 774 
ESBL K. pneumoniae: ESBL-producing Klebsiella pneumoniae; CR P. aeruginosa: carbapenem-resistant 775 
Pseudomonas aeruginosa; MRSA: methicillin-resistant Staphylococcus aureus.  776 
ARA: Auvergne-Rhône-Alpes; BFC: Bourgogne-Franche-Comté; BRE: Bretagne; CVL: Centre-Val de Loire; GES: 777 
Grand-Est; HDF: Hauts-de-France; IDF: Île-de-France ; NAQ: Nouvelle-Aquitaine; NOR: Normandie; OCC: 778 
Occitanie; PAC: Provence-Alpes-Côte d’Azur; PDL: Pays de la Loire. 779 
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      2019 vs 2020 2019 vs 2021 2019 vs 2022 

    Friedma
n test p-

value 

Estimate 
(98⸱3% CI) 

p-value1 Estimate 
(98⸱3% CI) 

p-value1 Estimate 
(98⸱3% CI) 

p-
value1 

Aminoglycosid
es 

  <0⸱001 0 
(-0⸱2, 0⸱2) 

1 -0⸱3 
(-0⸱6, -0⸱1) 

0⸱004 -0⸱7 
(-1⸱0, -0⸱4) 

<0⸱001 

Carbapenems   <0⸱001 0⸱6 
(0⸱3, 0⸱8) 

<0⸱001 0⸱4 
(0⸱2, 0⸱8) 

<0⸱001 0⸱2 
(-0⸱1, 0⸱5) 

0⸱288 

  Imipenem + 
Meropenem 

<0⸱001 0⸱5 
(0⸱2, 0⸱7) 

<0⸱001 0⸱4 
(0⸱2, 0⸱7) 

<0⸱001 0⸱2 
(0, 0⸱5) 

0⸱139 

Cephalosporins   <0⸱001 3⸱7 
(2⸱5, 5⸱2) 

<0⸱001 3⸱4 
(2⸱0, 4⸱9) 

<0⸱001 2⸱6 
(0⸱9, 4⸱4) 

<0⸱001 

Fosfomycin   <0⸱001 0⸱2 
(0⸱1, 0⸱3) 

<0⸱001 0⸱3 
(0⸱2, 0⸱4) 

<0⸱001 0⸱4 
(0⸱3, 0⸱5) 

<0⸱001 

Glycopeptides   <0⸱001 0⸱1 
(-0⸱1, 0⸱4) 

0⸱864 -0⸱3 
(-0⸱6, 0) 

0⸱014 -1⸱0 
(-1⸱4, -0⸱6) 

<0⸱001 

  Vancomyci
n 

<0⸱001 0⸱1 
(-0⸱1, 0⸱3) 

0⸱348 -0⸱2 
(-0⸱4, 0) 

0⸱074 -0⸱8 
(-1⸱1, -0⸱5) 

<0⸱001 

Lipopeptides   <0⸱001 1⸱6 
(1⸱1, 2⸱1) 

<0⸱001 2⸱4 
(1⸱8, 3⸱2) 

<0⸱001 4⸱3 
(3⸱3, 5⸱5) 

<0⸱001 

Macrolides   <0⸱001 1⸱7 
(0⸱9, 2⸱6) 

<0⸱001 -0⸱5 
(-1⸱3, 0⸱4) 

0⸱609 -0⸱8 
(-1⸱7, 0) 

0⸱062 

  Azithromyci
n 

<0⸱001 1⸱3 
(1⸱0, 1⸱7) 

<0⸱001 0⸱6 
(0⸱4, 0⸱8) 

<0⸱001 0⸱5 
(0⸱3, 0⸱8) 

<0⸱001 

Monobactams   <0⸱001 0⸱1 
(0, 0⸱2) 

<0⸱001 0⸱2 
(0⸱1, 0⸱3) 

<0⸱001 0⸱2 
(0⸱1, 0⸱3) 

<0⸱001 

Oxazolidinone
s 

  <0⸱001 0⸱4 
(0⸱2, 0⸱6) 

<0⸱001 0⸱4 
(0⸱2, 0⸱6) 

<0⸱001 0⸱7 
(0⸱4, 0⸱9) 

<0⸱001 

Penicillins   <0⸱001 -2⸱5 
(-5⸱2, 0⸱2) 

0⸱075 -6⸱4 
(-9⸱3, -3⸱4) 

<0⸱001 -0⸱8 
(-4⸱2, 2⸱5) 

1 

Polymyxins   0⸱002 0⸱1 
(0⸱1, 0⸱2) 

<0⸱001 0⸱2 
(0⸱1, 0⸱3) 

<0⸱001 0 
(0, 0⸱1) 

0⸱816 

Quinolones   <0⸱001 0⸱2 
(-0⸱9, 1⸱4) 

1 -1⸱3 
(-2⸱7, 0⸱1) 

0⸱068 -1⸱6 
(-3⸱0, -0⸱1) 

0⸱030 

Tetracyclines   0⸱002 0⸱3 
(-0⸱1, 0⸱7) 

0⸱214 0⸱4 
(0, 0⸱8) 

0⸱057 0⸱5 
(0, 0⸱9) 

0⸱040 

Trimethoprim2   0⸱001 0⸱4 
(0, 0⸱9) 

0⸱031 0⸱4 
(-0⸱1, 0⸱9) 

0⸱146 0⸱7 
(0⸱2, 1⸱2) 

0⸱003 

Total   0⸱001 7⸱5 
(2⸱7, 12⸱5) 

<0⸱001 -0⸱3 
(-5⸱9, 5⸱3) 

1 5⸱3 
(-0⸱8, 11⸱4) 

0⸱107 

1Adjusted p-value with Bonferroni correction 
2Corresponds to trimethoprim and combinations of sulfanomides 

 818 
Table 1. Changes in annual antibiotic consumption in French hospitals, 2019-2022. We report absolute 819 
differences in consumption at the hospital level for every antibiotic class, as well as imipenem and meropenem, 820 
vancomycin, and azithromycin specifically. Estimates correspond to the median of the differences of antibiotic 821 
consumption (in DDD per 1,000 bed-days) between two years of the study period, using 2019 as a reference year. 822 
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Positive values thereby indicate an increased consumption compared to 2019 and negative values indicate a reduced 823 
consumption compared to 2019. For every pairwise comparison, we report the adjusted p-value of the paired Wilcoxon 824 
signed-rank test using a Bonferroni correction and the associated 98⸱3% CI. Finally, we report Friedman tests p-values 825 
that are the non-parametric equivalent of one-way repeated measures ANOVA tests to evaluate whether there are 826 
changes in antibiotic use over the study period.  827 
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      2019 vs 2020 2019 vs 2021 2019 vs 2022 

    Friedman 
test p-
value 

Estimate  
(98⸱3% CI) 

p-
value1 

Estimate  
(98⸱3% CI) 

p-
value1 

Estimate  
(98⸱3% CI) 

p-value1 

Aminoglycosid
es 

  0⸱001 -4⸱0 
(-11⸱1, 3⸱4) 

0⸱639 -5⸱4 
(-15⸱2, 5⸱1) 

0⸱636 -11⸱3 
(-19⸱3, -3⸱0) 

0⸱004 

Carbapenems   <0⸱001 12⸱2 
(4⸱1, 19⸱4) 

0⸱001 14⸱4 
(4⸱5, 23⸱8) 

0⸱004 10⸱1 
(-0⸱9, 20⸱1) 

0⸱078 

  Imipenem + 
Meropenem 

<0⸱001 12⸱5 
(4⸱7, 19⸱8) 

<0⸱001 15⸱8 
(6⸱7, 25⸱1) 

<0⸱001 12⸱5 
(1⸱9, 22⸱4) 

0⸱018 

Cephalosporins   0⸱011 24⸱5 
(8⸱2, 38⸱9) 

<0⸱001 19⸱4 
(0⸱5, 37⸱6) 

0⸱042 25⸱5 
(6⸱8, 44⸱4) 

0⸱003 

Fosfomycin   0⸱351 0 
(-0⸱6, 0⸱5) 

1 0 
(-0⸱6, 0⸱4) 

1 -0⸱3 
(-0⸱9, 0⸱1) 

0⸱223 

Glycopeptides   0⸱002 1⸱1 
(-4, 5⸱3) 

1 -5 
(-10⸱6, 0⸱9) 

0⸱13 -4⸱7 
(-10⸱8, 0⸱7) 

0⸱106 

  Vancomyci
n 

0⸱002 0⸱7 
(-3⸱9, 5⸱1) 

1 -4⸱3 
(-9⸱9, 1⸱1) 

0⸱166 -4⸱6 
(-10⸱7, 0⸱8) 

0⸱115 

Lipopeptides   <0⸱001 8⸱8 
(2⸱4, 15⸱1) 

0⸱004 7⸱1 
(0⸱4, 14⸱1) 

0⸱033 16⸱9 
(10⸱2, 24⸱2) 

<0⸱001 

Macrolides   <0⸱001 17⸱4 
(7⸱7, 28⸱9) 

<0⸱001 -4⸱2 
(-14⸱0, 6⸱5) 

0⸱942 -5⸱6 
(-14⸱8, 3⸱9) 

0⸱447 

  Azithromyci
n 

<0⸱001 12⸱7 
(5⸱8, 20⸱5) 

<0⸱001 0⸱8 
(-0⸱5, 2⸱7) 

0⸱459 1⸱1 
(-0⸱3, 2⸱7) 

0⸱146 

Monobactams   0⸱008 1⸱0 
(0, 2⸱3) 

0⸱04 1⸱3 
(0, 3⸱0) 

0⸱059 1⸱3 
(0⸱4, 2⸱2) 

0⸱003 

Oxazolidinones   0⸱048 2⸱3 
(-2⸱3, 7⸱3) 

0⸱654 0⸱5 
(-4⸱6, 6⸱2) 

1 4⸱1 
(-1⸱1, 8⸱7) 

0⸱163 

Penicillins   <0⸱001 -51⸱2 
(-78⸱0, -27⸱1) 

<0⸱001 -69⸱1 
(-98⸱1, -39⸱9) 

<0⸱001 -10⸱1 
(-40⸱6, 19⸱6) 

1 

Polymyxins   0⸱009 1⸱3 
(0, 2⸱7) 

0⸱043 2⸱3 
(0⸱7, 4⸱7) 

0⸱003 0⸱3 
(-0⸱6, 1⸱6) 

1 

Quinolones   0⸱003 -14⸱9 
(-24⸱4, -5⸱7) 

<0⸱001 -12⸱7 
(-24⸱4, -1⸱6) 

0⸱024 -14⸱3 
(-26⸱5, -3⸱5) 

0⸱007 

Tetracyclines   0⸱619 -0⸱1 
(-2⸱4, 1⸱9) 

1 -0⸱1 
(-2⸱8, 2⸱4) 

1 0⸱9 
(-1⸱5, 3⸱6) 

0⸱987 

Trimethoprim2   0⸱065 -1⸱7 
(-6⸱4, 3⸱1) 

1 0⸱1 
(-5⸱7, 5⸱6) 

1 5⸱9 
(0⸱9, 11⸱9) 

0⸱017 

Total   0⸱058 4⸱1 
(-40⸱9, 49⸱4) 

1 -41⸱0 
(-105⸱5, 24⸱3) 

0⸱456 24⸱1 
(-29⸱7, 80⸱9) 

0⸱780 

1Adjusted p-value with Bonferroni correction 
2Corresponds to trimethoprim and combinations of sulfanomides 

 871 
Table 2. Changes in annual antibiotic consumption in French ICUs, 2019-2022. We report absolute differences 872 
in consumption at the ICU level for every antibiotic class, as well as imipenem and meropenem, vancomycin, and 873 
azithromycin specifically. Estimates correspond to the median of the differences of antibiotic consumption (in DDD 874 
per 1,000 bed-days) between two years of the study period, using 2019 as a reference year. Positive values thereby 875 
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indicate an increased consumption compared to 2019 and negative values indicate a reduced consumption compared 876 
to 2019. For every pairwise comparison, we report the adjusted p-value of the paired Wilcoxon signed-rank test using 877 
a Bonferroni correction and the associated 98⸱3% CI. Finally, we report Friedman tests p-values that are the non-878 
parametric equivalent of one-way repeated measures ANOVA tests to evaluate whether there are changes in antibiotic 879 
use over the study period.  880 
 881 
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