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Abstract 15 

Significance: Colorectal cancer (CRC) remains one of the most frequent cancers and a leading contributor to cancer-16 
associated mortality globally. CRCs are often diagnosed at an advanced stage, which leads to high mortality and 17 
morbidity. This outcome is exacerbated by high rates of recurrence and postoperative complications that contribute 18 
substantially to poor prognosis. Advancements in endoscopic assessment have improved CRC prevention, early 19 
detection, and surveillance over the years. Yet, CRC remains one of the most significant health challenges of the 21st 20 
century. Label-free optical spectroscopy methods have long been explored as potential partners to endoscopy, not only 21 
to enhance diagnostic accuracy but also to confer predictive capabilities to endoscopic evaluations.   22 

Aim: We investigated the potential of time-resolved autofluorescence measurements excited at 375 nm and 445 nm 23 
to correctly classify benign and malignant tissues in CRC surgical specimens from 117 patients. 24 

Approach: Multiparametric autofluorescence lifetime data were collected in two distinct datasets, which were used 25 
for training (n = 73) and testing (n = 44) a supervised ensemble learning classification model, with standard 26 
histopathology assessment serving as ground truth. 27 

Results: Using 5-fold cross-validation, we achieved 82.6 ± 0.02% sensitivity, 90.4 ± 0.01% specificity, 87.4 ± 0.01% 28 
accuracy, and 0.941 ± 0.004 area under the curve (AUC) for training data. Evaluation on unseen test data yielded 29 
similar results, with 85.2% sensitivity, 84.5% specificity, 84.8% accuracy, and 0.915 AUC. 30 

Conclusions: While preliminary, our findings underscore the potential impact of AI-assisted autofluorescence lifetime 31 
measurements in advancing CRC prevention, early detection, and surveillance efforts. 32 

 33 
Keywords: autofluorescence lifetime, colorectal cancer, machine learning, phasors, label-free, diagnosis, disease 34 
monitoring. 35 
 36 
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 38 

1 Introduction 39 

Colorectal cancer (CRC) is the third most common cancer worldwide and ranks second in 40 

cancer-related mortality. This sobering statistic is largely attributed to nearly 70% of patients being 41 
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diagnosed at an advanced stage of the disease, when treatment options are more restricted and less 42 

effective. Despite some encouraging trends indicating an overall decrease in incidence and 43 

mortality in recent years, there has been a steady rise in the incidence of CRC among younger 44 

individuals under 50 years of age 1. Currently, this demographic accounts for 13% of colon cancers 45 

and 16% of rectal cancers, and these figures are expected to nearly double by 2030, as screening 46 

remains particularly low among younger individuals 2. As CRC stands as a significant health 47 

challenge for the foreseeable future, it is imperative to improve prevention and early detection of 48 

precursor lesions that can become malignant over time and, in this way, decrease CRC-associated 49 

mortality.  50 

Endoscopic assessment is the cornerstone of CRC prevention, early detection, and 51 

surveillance, enabling detection of pre-malignant lesions and early-stage cancer across the anus, 52 

rectum, and the entire length of the colon 3. Despite its effectiveness, the information obtained 53 

from the standard endoscopic evaluation is limited and may not fully characterize the structural, 54 

molecular, and metabolic features of detected lesions. This limitation can hinder the ability to 55 

accurately predict which polyps will progress to cancer, leading to challenges in determining the 56 

optimal surveillance strategy for patients. Chromoendoscopy and other advanced imaging 57 

techniques such as Narrow Band Imaging (NBI) or Flexible Spectral Imaging Color Enhancement 58 

(FICE) can enhance the discriminatory potential of standard endoscopy 4. Yet, characterization of 59 

lesions is still challenging and often correlated to the endoscopist’s training and experience 5. 60 

To overcome these limitations, advanced label-free optical spectroscopy methods have 61 

emerged as promising partners to standard white light endoscopy, owing to their increased 62 

sensitivity to molecular, structural, and metabolic alterations in tissues, without requiring the 63 

introduction of potentially toxic exogenous labels. Among them, multispectral autofluorescence 64 
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lifetime imaging and spectroscopy have been widely exploited with demonstrated success in a 65 

broad range of clinical applications, with particular emphasis on cancer detection and margin 66 

assessment 6–10. Moreover, multiple studies have shown that autofluorescence lifetime 67 

measurements can provide substantial diagnostic information that goes beyond classification of 68 

benign and malignant tissues 11. In recent years, translation of this technique into clinical practice 69 

has been accelerated by the flourishing of Artificial Intelligence (AI) systems and the development 70 

of increasingly sophisticated machine learning and deep learning models. AI models have been 71 

employed in data processing to outperform traditional methods 12, tissue classification 13,14, 72 

delineation of margins 15,16, or determination of metabolic phenotypes 17. 73 

Clearly, AI-assisted autofluorescence lifetime measurements can have tremendous impact in 74 

clinical decision-making, by enabling rapid tissue assessment, precise delineation of margins, or 75 

categorization of lesions, beyond what conventional systems can offer. In a previous study, we 76 

characterized the tissue-level autofluorescence signatures of normal, adenoma, and tumor tissues 77 

considering the underlying clinicopathological features 18. While we reported significant 78 

differences between tissues in various characteristics, there was considerable overlap in the data 79 

owing to a large intra- and interpatient variability. Moreover, in a selected number of cases, we 80 

observed opposite autofluorescence patterns that we could not explain, making the interpretation 81 

of the data and its categorization quite challenging with the naked eye. Here, we continued our 82 

work towards practical clinical implementation, focusing on quantifying the differences previously 83 

observed and demonstrating that fiber-based autofluorescence lifetime measurements can provide 84 

rapid diagnostic information with high accuracy. To that end, a supervised ensemble learning 85 

model was applied to multiparametric autofluorescence lifetime data obtained from CRC surgical 86 

specimens for classification of colorectal tissues and identification of malignant lesions, using 87 
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histopathologic assessment as ground truth. Data were collected from two distinct datasets (total 88 

of 117 patients), which were used independently for training (n = 73 patients) and testing (n = 44 89 

patients) of the supervised model. We tested and evaluated various predictive classification 90 

models, each based on different sets of spectroscopic features derived from phasor analysis of 91 

autofluorescence decay data. The results presented here, while preliminary, are indicative of the 92 

potential of AI-assisted autofluorescence lifetime measurements for classification of colorectal 93 

lesions and identification of malignancies. 94 

2 Methods 95 

2.1 Autofluorescence lifetime setup 96 

The optical instrument used for collection of autofluorescence data consisted of a time and 97 

spectrally resolved autofluorescence macro-imaging system with multiplexed excitation at 375 nm 98 

and 445 nm. A complete description of this system is provided elsewhere 18,19. Briefly, two ps-99 

pulsed laser sources (BDS-SM-375 and BDS-SM-445, Becker and Hickl GmbH, Germany) 100 

operating at 20 MHz repetition rate were multiplexed at 50 Hz, so that each wavelength excited 101 

the sample alternately in 20 ms periods. Excitation light was delivered to the sample via a custom 102 

optical fiber bundle (FiberTech Optica, Canada) with a single 300 µm fiber for excitation 103 

(NA=0.22). The resulting autofluorescence signal was collected by a set of 200 µm optical fibers 104 

(NA=0.22) circularly arranged around the excitation fiber and subsequently delivered to the 105 

detection system consisting of a wavelength selection module and three photon-counting hybrid 106 

detectors (HPM-100-40-CMOUNT, Becker and Hickl GmbH). The wavelength selection module 107 

included of a set of mirrors and filters that divided the autofluorescence signal in three spectral 108 

bands of interest, selected to isolate the autofluorescence from key endogenous fluorophores: 380 109 
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± 20 nm, 472 ± 14 nm, and 525 ± 25 nm. This excitation-collection geometry provides a total of 110 

five detection channels, see Supplementary Table 1. The hybrid detectors were connected to a 111 

single router (HRT-41, Becker and Hickl GmbH) that serialized photon events to a time-correlated 112 

single photon counting (TCSPC) acquisition card (SPC-130 EM, Becker and Hickl GmbH) that 113 

recorded the fluorescence decay curve for each detection channel. 114 

A key feature of this system is the ability to record TCSPC autofluorescence lifetime data in 115 

bright conditions, owing to the synchronization of the fluorescence acquisition with an external 116 

light source that provides periodic white illumination to the sample at 50 Hz 19,20. A USB color 117 

camera (FFY-U3-16S2C-C, FLIR, USA) was also used to record and provide spatial feedback of 118 

the measurements. The spatial resolution of the system is primarily determined by the geometry 119 

of the fiber arrangement, NA of the fibers, and probe-to-target distance. Variations in probe-to-120 

target distance can cause fluctuations in the excitation spot size and collection efficiency, while 121 

inconsistent scanning speed may lead to spatial undersampling and reduced signal quality 20. While 122 

it is challenging to accurately determine the spatial resolution of our system, we estimate it to be 123 

~1 mm, under ideal conditions. 124 

It is noteworthy that throughout this study we used two slightly different fiber bundles, 125 

consisting of either six or seven collection fibers. We used this difference as basis for splitting the 126 

data into training and test sets, as described in detail below. 127 

2.2 Sample collection and data acquisition 128 

Colorectal surgical specimens were collected under the Champalimaud Foundation Biobank 129 

Informed Consent, clinical protocol 2021020203 approved by the Champalimaud Foundation 130 

Ethics Committee. Following surgical resection, samples were immediately transported to the 131 

Pathology Service laboratory, where they were opened and cleaned for autofluorescence 132 
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measurements, which were typically carried out within 1 hour of the final vascular ligation and 15 133 

minutes of complete resection 18. The autofluorescence acquisition consisted of hand-scanning a 134 

large region of the specimen using the fiber optic probe (areas as large as 25 cm2 were measured), 135 

including the suspicious malignant lesion and the surrounding normal tissue. The position of the 136 

fiber was determined for each TCSPC measurement using the images captured with the color 137 

camera, thus permitting autofluorescence maps to be generated, as illustrated in Fig. 1. Following 138 

measurements, specimens were routinely processed for diagnosis. A total of 118 colorectal 139 

samples were collected from 117 patients. 140 

2.3 Data preprocessing 141 

Pre-processing of data encompassed three crucial steps. First, raw single-point 142 

autofluorescence lifetime data were analyzed and the corresponding autofluorescence maps 143 

generated. Second, regions of interest (ROI) were defined in each specimen in both lesional and 144 

non-lesional areas, guided by histopathology diagnosis. Finally, pixel-wise autofluorescence data 145 

were averaged within each ROI (feature extraction). 146 

2.3.1 Analysis of autofluorescence data 147 

Autofluorescence intensity decays were processed according to the phasor transformation 21 148 

using the instrument response function (IRF) as reference (τref = 0 ns). In detail, each 149 

autofluorescence decay I(t) was transformed from the time-domain to the Fourier space and the 150 

corresponding phasor coordinates g and s were calculated according to Eq. 1 and 2, where T is the 151 

period of the laser repetition (T = 50 ns). 152 

𝑔 = ∫ 𝐼(𝑡) cos(2𝜋𝑡 𝑇⁄ )𝑑𝑡

𝑇

0

∫𝐼(𝑡)𝑑𝑡

𝑇

0

⁄  (1) 
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𝑠 = ∫ 𝐼(𝑡) sin(2𝜋𝑡 𝑇⁄ ) 𝑑𝑡

𝑇

0

∫𝐼(𝑡)𝑑𝑡

𝑇

0

⁄  (2) 

 153 

From the coordinates g and s, characteristic phase and modulation lifetimes (τp and τm, 154 

respectively) were obtained from the following relations: 155 

𝜏𝑝 =
𝑇

2𝜋

𝑠

𝑔
 (3) 

𝜏𝑚 =
𝑇

2𝜋
√

1

𝑔2 + 𝑠2
− 1 (4) 

 156 

All fluorescence decays were processed for background correction prior to the phasor 157 

transformation. Measurements containing fewer than 50 photons and 10 peak counts were 158 

excluded from the analysis to guarantee the accuracy and precision of lifetime estimation 21. The 159 

IRF was measured for all channels (by removing band-pass filters) using excitation light scattered 160 

off a reflective surface. Fluorescence lifetime measurements of the system were validated using 161 

POPOP (τ = 1.36 ns in ethanol 22) and Coumarin 6 (τ = 2.72 ns in ethanol 23), for 375 nm and 445 162 

nm excitation, respectively. 163 

 In addition to the fluorescence lifetime analysis, we calculated the fractional autofluorescence 164 

intensity F measured in each detection channel with respect to the total autofluorescence signal for 165 

each excitation wavelength. Hence, we extracted five parameters representative of the 166 

autofluorescence decay curve in each channel (g, s, τp, τm, F), i.e. a total of 25 parameters for five 167 

detection channels. The feature pool was completed by the normalized optical redox ratio (RR), 168 

calculated as follows, 169 

𝑅𝑅 =
𝐼2

𝐼2 + 𝐼5
≡

𝑁𝐴𝐷(𝑃)𝐻

𝑁𝐴𝐷(𝑃)𝐻 + 𝐹𝐴𝐷
 (5) 

 170 
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where I2 and I5 denote the absolute autofluorescence intensity in detection channels 2 and 5, 171 

respectively. 172 

2.3.2 Diagnosis and data labelling 173 

Following optical measurements, surgical specimens were sent for routine histological 174 

processing and diagnosis, which established the ground truth for the supervised learning model. 175 

The process of obtaining ground truth data (labelling) from fresh surgical specimens and 176 

subsequent feature extraction is depicted in Fig. 1. Because specimens were sectioned vertically 177 

and perpendicular to the surface of measurements (i.e. to the optical map) according to the bread 178 

loaf technique, it was impossible to obtain a one-to-one correlation of histological and optical 179 

features. Accordingly, the exact origin of each slice on the measured specimen, i.e. prior to fixation 180 

in formalin, could not be determined either. These limitations cannot be easily circumvented 181 

without causing major disruptions to the histopathology workflow; thus, our analysis relied on the 182 

macroscopic assessment of the lesions by experienced pathologists and subsequent confirmation 183 

by microscopic examination of the most representative histology slide. Based on this assessment, 184 

we traced and identified the lesions as accurately as possible in the white light image captured 185 

during optical measurements from which we selected ROIs, as illustrated in Figure 1. To mitigate 186 

the limitations, ROIs were drawn conservatively within the lesion, following simple guidelines: 1) 187 

ROIs were kept small (~20×20 pixels); 2) in case the borders of the lesion were ill-defined, ROIs 188 

were drawn closer to the center of the lesion; 3) ROIs in normal tissues were drawn as remotely 189 

as possible from any visible lesion. Where possible, a maximum of three ROIs were drawn per 190 

sample and tissue type, as sparsely distributed as possible. This was to capture the spatial 191 

heterogeneity of the tissue. Optical data were averaged within in each ROI. ROIs were labelled as 192 

benign or malignant according to histopathological diagnosis, where benign included benign 193 
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lesions (i.e. adenomas) and normal tissues. We opted for a binary rather than a multiclass 194 

classification model given the low number of adenoma lesions in our dataset. The number of 195 

patients and ROIs included in our analysis is indicated in Table 1. 196 

 197 
 198 

Figure 1. Study workflow for every collected sample. The surgical specimen is transported to the optical laboratory 199 

immediately after resection and typically within 1 hour of the last vascular ligation. Optical measurements are 200 

carried out in fresh tissue before histopathological processing and assessment. Following diagnosis, benign and 201 

malignant lesions are identified in the white light image, and regions of interest (ROI) are demarcated. 202 

Autofluorescence parameters are averaged within each ROI and mean values are taken as characteristic features. 203 

Each ROI is labelled as benign or malignant according to histopathological diagnosis. Scale bars 10 mm. 204 

2.4 Tissue classification 205 

2.4.1 Training and test datasets 206 

To ensure validity and reliability of the results, data were divided into two independent groups, 207 

as indicated in Table 1. Data were assigned to either training or test group according to the fiber 208 
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bundle used during the acquisition: training data were acquired with a fiber bundle consisting of 209 

seven collection fibers and test data were acquired with an identical fiber bundle, but with six 210 

collection fibers only. As expected, difference between fibers had no impact in the measured 211 

fluorescence lifetimes (see Fig. 2A) given the ratiometric nature of the fluorescence lifetime 212 

measurement. A total of 672 observations (ROIs) were included in this study (see Table 1 for 213 

details). The training dataset included 428 observations (63.7%) of which 167 (39.0%) were 214 

labelled as malignant. The test dataset consisted of 244 observations (36.3%), including 108 215 

(44.2%) labeled as malignant. The number of observations in both datasets was relatively well-216 

balanced between the two classes (benign and malignant), thus requiring no additional balancing 217 

corrections. The raw data from the training dataset served as basis for a recent study on optical 218 

characterization of CRC 18. 219 

Table 1. Patient numbers and observations in training and test datasets. 220 

 Training data Test data 

 N % N % 

Number of patients 73 - 44 - 

Number of samples measured 74 - 44 - 

Number of observations (ROIs) 428 (63.7%) 244 (36.3%) 

Normal 237 (55.4%) 128 (52.5%) 

Adenoma 24 (5.6%) 8 (3.3%) 

Adenocarcinoma 167 (39.0%) 108 (44.2%) 

Benign 261 (61.0%) 136 (55.8%) 

Malignant 167 (39.0%) 108 (44.2%) 

 221 

2.4.2 Hyperparameter optimization and training 222 

An Adaptive Boosting algorithm (AdaBoostM1) was evaluated for binary classification of 223 

autofluorescence data in CRC samples 24. Boosting is an ensemble learning method that 224 
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sequentially combines the prediction of multiple weak learners (decision trees) to obtain a strong 225 

classifier. The model was implemented in Matlab 2022a (Mathworks, USA) using the fitcensemble 226 

function. The machine learning pipeline is illustrated in Fig. 2B. The model was first explored 227 

with training data for various combinations of hyperparameters using 5-fold cross validation. 228 

Model hyperparameters (learning rate, number of weak learners, and maximum nodes per weak 229 

learner) were tuned iteratively using Bayesian optimization to minimize the cross-validation loss 230 

function over 60 evaluation cycles. A range of values was specified for each hyperparameter with 231 

the aim of overcoming underfitting and overfitting (see Table S2). The optimal hyperparameter 232 

vector was found at the minimum cross-validation loss and used to estimate performance of the 233 

model. The model was then trained using the complete training dataset, i.e. without partitioning 234 

data for cross-validation. Supplementary Fig. S1 shows the variation of the objective function over 235 

60 optimization cycles. 236 

 237 

Figure 2. A) Phasor plots (top row) and phase lifetime (bottom) distribution in benign and malignant tissues for 238 

training and test dataset, measured in CH2 (left) and CH5 (right), respectively. B) Machine learning pipeline. A 239 

dataset consisting of 428 observations is used to train a boosting algorithm. The best hyperparameter vector was 240 

found through Bayesian optimization with 5-fold cross-validation. Final model performance was evaluated against 241 

an independent test set consisting of 244 observations. 242 
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2.4.3 Model evaluation and performance metrics 243 

Performance of the model was first estimated on training data using the optimal set of 244 

hyperparameters with 5-fold cross validation. The model was trained 20 times and performance 245 

metrics were averaged out. Independent evaluation of the model was conducted on the test dataset. 246 

Common metrics such as accuracy, sensitivity, specificity, positive predictive value (PPV), 247 

negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC-248 

ROC) were computed. In addition, we measured the Mathews correlation coefficient (MCC), 249 

which has been shown to be more informative than other metrics for evaluation of binary 250 

classification models 25. Since our aim was to identify malignant lesions from surrounding normal 251 

tissues and benign lesions, such as adenomatous polyps, the following definitions were used: true 252 

positive (TP) rate was defined as the percentage of correctly classified malignant lesions; true 253 

negative (TN) rate was defined as the percentage of correctly classified normal tissues or benign 254 

lesions; false positive (FP) rate was defined as the percentage of normal tissue classified as 255 

malignant; and false negative (FN) rates were defined as the percentage of malignant tissues 256 

classified as normal. 257 

3 Results 258 

3.1 Class separation 259 

We first investigated the autofluorescence lifetime signatures of benign and malignant tissues 260 

obtained from test data. Fig. 3A shows the distribution of data in phasor coordinates for all 261 

detection channels, where each observation corresponds to a single point in the phasor cloud. The 262 

corresponding phase and modulation lifetimes are plotted in Fig. 3B. Redox ratio and normalized 263 

fluorescence intensity data are provided in Supplementary Fig. S2. These data are consistent and 264 
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support our previous results on the training data 18. Specifically, malignant tumors exhibit shorter 265 

lifetimes in channels 1 and 5, whereas lifetime differences in the remaining channels are more 266 

subtle. Likewise, the autofluorescence signals emanating from NAD(P)H do not appear to offer a 267 

relevant source of contrast between tissues. Rather, in detection channels 2 and 3, results depict a 268 

wider distribution of data originating from malignant tissues. Such findings suggest increased 269 

heterogeneity, potentially associated to diverse metabolic phenotypes harbored in the tumors. This 270 

heterogeneity is best illustrated in the phasor plots but also evident in Fig. 3B. 271 

 272 

Figure 3. A) Phasor distribution of test data in all detection channels. B) Average phase and modulation lifetimes 273 

measured in benign (B) and malignant (M) ROIs. Panels C and D show confusion matrices for training (cross 274 

validated) and test sets, respectively. TP, TN, FP, and FN values are rounded to the closest integer following an 275 

averaging of 20 iterations. Percentage values are calculated using the original “unrounded” values. Values in 276 

parenthesis represent SD. E) ROC curves for cross validation (in cyan) and test (in orange) sets. Solid lines indicate 277 
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the average ROC curves for 20 iterations of the model. Shaded lines in blue represent the ROC curve for each 278 

iteration. 279 

3.2 Tissue classification and model performance 280 

Table 2. Performance metrics for training and test datasets. Metrics on training data were obtained by averaging over 281 
20 iterations of cross validation. 282 

 Training data Test data 

Number of observations 428 244 

Sensitivity 0.826 ± 0.020 0.852 

Specificity 0.904 ± 0.014 0.845 

Accuracy 0.874 ± 0.008 0.848 

PPV 0.847 ± 0.019 0.814 

NPV 0.891 ± 0.011 0.878 

MCC 0.733 ± 0.022 0.695 

AUC-ROC 0.941 ± 0.004 0.915 

 283 

Following initial characterization of the test dataset and confirmation of the trends previously 284 

obtained with the training dataset, we evaluated the ability of our autofluorescence lifetime system 285 

to predict malignancy from single point measurements using the supervised ensemble learning 286 

model. Performance of the model was first estimated on training data using the optimal set of 287 

hyperparameters with 5-fold cross-validation, as previously described in 2.4.2. The results 288 

presented in Fig. 3C and Table 2 indicate the model performs well on the training dataset, 289 

achieving an accuracy of 87.4% ± 0.01%, AUC of 0.941 ± 0.004, and MCC of 0.733 ± 0.022. It 290 

excels particularly in the classification of benign tissues, with NPV ranging from 88.0% to 91.2% 291 

and specificity ranging from 89.0% to 91.8%. The estimated performance is slightly lower in the 292 

classification of malignancies, with PPV ranging from 82.8% to 86.6% and sensitivity ranging 293 

from 80.6% to 84.6%. The model performed equally well on the test data (Fig. 3D and Table 2), 294 

indicating good generalization to new and unseen data. The model correctly predicted 84.8% of 295 

the new observations, with higher sensitivity (85.2%) compared to that estimated with training 296 
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data. The AUC and MCC on test data were 0.915 and 0.695, respectively, indicating a strong 297 

positive correlation between the predicted and true classes. 298 

 299 

Figure 4. Investigation of ensemble learning model-based probability of malignancy in tissue. A) White light image 300 

at time zero of normal and tumor specimens. Dotted lines delineate malignant lesions. B) Probability of malignancy 301 

estimated from single point measurements. C) Probability of malignancy for every fluorescence measurement during 302 

an entire specimen acquisition. D) Probability and E) fluorescence lifetime maps. Scale bar 10 mm. 303 

After evaluating the model’s performance on the independent dataset, we next investigated its 304 

applicability to individual single point measurements, as opposed to ROIs, while maintaining 305 

comparable performance. This investigation aimed to explore the applicability of the model in a 306 

scenario that more closely mimics the real-world application (e.g. single-point endoscopic 307 

navigation for identification of adenomas) and the generation of probability maps of malignancy 308 

from which resection margins can be objectively determined. Figure 4 illustrates representative 309 

results, showcasing one sample with no malignancy in the top row, contrasted with three samples 310 

exhibiting malignancy. Measurements report higher probability of malignancy as the fiber probe 311 

is moved over the tumoral regions, as depicted in Fig. 4B. As the fiber moves away from the tumor, 312 
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the probability of malignancy decreases accordingly. In regions devoid of malignant tumor (as in 313 

the top row), the model fails the prediction in several measurements, as depicted in Fig. 4C. This 314 

is because the model is not 100% accurate. Irrespective of that, the averaging of sequential single-315 

point measurements mitigates these inaccuracies, resulting in relatively smooth probability maps 316 

of malignancy, from which regions of tumor can be clearly identified. 317 

3.3 Towards simplification of the optical setup 318 

We next investigated the impact of specific sets of features on model performance. 319 

Specifically, we aimed to understand how each channel impacted the results and whether we could 320 

achieve comparable performance with a less complex optical system. We first estimated the 321 

importance of each feature on the optimized model, over 20 iterations of cross-validation, as 322 

described in section 2.4. This was achieved by summing estimate predictor importances over all 323 

weak learners in the ensemble. Model predictors are ranked by their importance score in Fig. 5A 324 

and averaged out by channel in Fig. 5B. As hinted by our data presented in Fig. 3, channels 1 and 325 

5 are the most relevant contributors to the binary classification, except for RR. NAD(P)H 326 

autofluorescence signals (channels 2 and 3) were found to be the least important contributors to 327 

the classification. 328 
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 329 

Figure 5. A) Predictor importance on the optimized model, estimated over 20 iterations of cross validation. B) 330 

Average prediction importance in each detection channel of the optical setup and redox ratio. C) ROC curves 331 

illustrating performance of classification models for different sets of features. Performance of the classifiers was 332 

measured on test data. 333 

To evaluate the impact of each subset of features in the classification performance, the model 334 

was retrained with different feature pools. Since our aim is to simplify the optical system, we 335 

selected groups of features that would reduce the number of optical components, detectors, or 336 

excitation sources. For example, we investigated whether an optical system that only probes 337 

NAD(P)H and flavins could achieve similar performance compared to a 5-channel system. The 338 

different groups of features are listed in Table 3, together with the performance metrics on training 339 

and test datasets. The best performance is achieved when the autofluorescence signals from key 340 

endogenous molecules (collagens, NAD(P)H, and flavins) are all taken into consideration. Indeed, 341 

our data indicates that channels 1, 2 or 3, and 5 can achieve similar classification performance 342 

compared to a system with five detection channels. This is also clearly evidenced in the ROC 343 

curves presented in Fig. 5C. If data from one of these channels is not included, the performance 344 

drops considerably. In this context, it is also worth pointing out that two excitation wavelengths 345 
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perform considerably better than excitation with a single wavelength. This is because dual 346 

excitation at 375 nm and 445 nm enables optimal excitation of key endogenous fluorophores, 347 

which cannot be achieved with single excitation wavelength, whether that is at 375 or 445 nm. 348 

Table 3. Classifier performance for different feature pools averaged over 20 training iterations. The ensemble was 349 
optimized for each feature pool, within the range of hyperparameters investigated. 350 

Feature pool Nfeatures 

Training data Test data 

Accuracy AUC-ROC MCC Accuracy 

AUC-

ROC MCC 

Intensity parameters only 

(all channels and RR) 
6 0.797 ± 0.008 0.836 ± 0.009 0.567 ± 0.018 0.725 0.825 0.467 

Lifetime parameters only 

(all channels) 
20 0.826 ± 0.009 0.904 ± 0.006 0.630 ± 0.018 0.824 0.923 0.646 

375 nm excitation only 

(CH1, CH2, CH3) 
15 0.809 ± 0.012 0.875 ± 0.009 0.594 ± 0.026 0.660 0.753 0.334 

445 nm excitation only 

(CH4, CH5) 
10 0.764 ± 0.014 0.832 ± 0.009 0.500 ± 0.031 0.762 0.822 0.520 

Collagen, NAD(P)H and flavins 

(CH1, CH2, CH5, and RR) 
16 0.866 ± 0.009 0.935 ± 0.006 0.716 ± 0.020 0.853 0.924 0.700 

NAD(P)H and flavins 

(CH2, CH5, and RR) 
11 0.833 ± 0.010 0.903 ± 0.006 0.646 ± 0.022 0.816 0.883 0.626 

Collagen, NAD(P)H and flavins 

(CH1, CH3, CH5, and RR) 
16 0.864 ± 0.012 0.933 ± 0.005 0.713 ± 0.013 0.848 0.920 0.694 

NAD(P)H and flavins 

(CH3, CH5, and RR) 
11 0.864 ± 0.008 0.915 ± 0.006 0.713± 0.017 0.800 0.865 0.593 

All features 26 0.874 ± 0.008 0.941 ± 0.004 0.733 ± 0.022 0.848 0.915 0.695 

 351 

4 Discussion and Conclusions 352 

The potential of multiparametric time-resolved autofluorescence imaging and spectroscopy 353 

has been extensively showcased across various clinical applications, offering label-free tissue 354 

characterization and the ability to discriminate between benign and malignant lesions. 355 
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Undoubtedly, this technique - assisted by AI - is well positioned to address various gaps in current 356 

clinical and surgical practice, providing a quantitative readout that can make the clinical decision 357 

more informed and objective. The work presented here provides yet another demonstration of the 358 

clinical utility and versatility of this technology. We can clearly envisage the application of this 359 

work across various scenarios and levels: integrating the technology into the surgery-to-pathology 360 

workflow to complement the efforts of pathologists, providing rapid identification of positive 361 

margins ex vivo; delineating surgical margins in vivo; and swiftly identifying and characterizing 362 

lesions during endoscopic evaluations. Our model was developed having the latter in mind, i.e. to 363 

use AI-enabled autofluorescence lifetime measurements to rapidly determine the probability of 364 

malignancy of colorectal lesions during colonoscopy, not only at the diagnostic stage, but also 365 

during treatment follow up, integrated in surveillance protocols. 366 

The diagnosis of CRC traditionally relies on endoscopic evaluation followed by 367 

histopathological analysis of biopsied tissue samples. However, obtaining adequate samples, 368 

especially from large or extensive lesions, can pose challenges. Multiple biopsies are often needed, 369 

which can be time and resource consuming, and may strain pathology laboratory resources even 370 

further. Moreover, these biopsies may not fully represent the entire lesion. To address these critical 371 

limitations and enhance the speed and accuracy of diagnostic assessments during endoscopy, the 372 

application of machine learning algorithms has been explored, either on endoscopic images alone 373 

26 or in combination with optical spectroscopy techniques. Among the latter, hyperspectral imaging 374 

and diffuse reflectance spectroscopy have been the preferred methods, with reported accuracy of 375 

over 90% in the classification of cancerous tissues obtained from CRC specimens 27,28 and in vivo 376 

29. It is however overly simplistic to view optical spectroscopic techniques solely as tools for 377 

identifying cancerous tissues. These systems offer a significant advantage by harnessing 378 
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spectroscopic data, offering insights that extend beyond mere tissue classification and delve into 379 

specific clinicopathological features such as staging, microsatellite instability, or depth of invasion 380 

18,30,31, which can potentially offer clues regarding oncological outcomes and response to therapy. 381 

Access to this information during endoscopic evaluation would not only streamline downstream 382 

processes, saving time and resources, but would also enable earlier and more personalized 383 

treatment decisions. This would in turn enhance the likelihood of a favorable clinical outcome.  384 

In this context, we consider our study to be preliminary, with the primary objective of 385 

evaluating the potential of label-free autofluorescence lifetime measurements in distinguishing 386 

between benign and malignant colorectal lesions.  387 

Real-time differentiation of benign and malignant adenomas during endoscopy is critical to 388 

improve diagnosis and treatment, as malignant adenomas signal cancer progression with risks of 389 

invasion or metastasis. Real-time detection would allow for immediate and precise intervention, 390 

reducing the need for additional procedures and preventing cancer progression. Label-free 391 

autofluorescence lifetime spectroscopy could enhance diagnostic accuracy, guide targeted polyp 392 

removal and optimize follow-up strategies, ultimately improving patient outcomes. The results of 393 

this study demonstrate that cancer tissues can be identified with high accuracy (90.4% ± 1.4% 394 

specificity and 82.6% ± 2.0% sensitivity on training data; 84.5% specificity and 85.2% sensitivity 395 

on test data; see Table 2) using an optimized ensemble learning model on 26 spectroscopic 396 

parameters obtained from multidimensional autofluorescence lifetime measurements. This 397 

performance is comparable to that reported in similar studies on CRC surgical specimens 27,28,32,33, 398 

even though our study was conducted on a larger cohort. Moreover, our findings were tested on 399 

an independent and previously unseen data set, further validating the reliability of the results. As 400 

we continue to gather more data and expand the database, we expect to achieve higher performance 401 
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and better generalization of the model, as suggested by the results obtained when training and test 402 

data are combined into a single dataset (see Fig. S3). This will also permit further stratification of 403 

malignant data considering cancer subtype, staging, microsatellite instability, and other 404 

characteristics. Increasing the number of adenoma lesions is also clinically significant, since it was 405 

notably lower compared to the count of normal and malignant tissues (see Table 1). Consequently, 406 

we opted to group normal tissues and adenoma lesions in a single “benign” class to avoid 407 

significant imbalance of classes. We note however that adenomas have slightly different 408 

autofluorescence signatures compared to normal and malignant tissues 18 and this can be a 409 

confounding factor that limits the performance of the model. Notwithstanding, our model 410 

performed remarkably well in the identification of benign tissues (NPVtraining = 88.0 – 89.2%; 411 

NPVtest = 87.8%). Therefore, we will conduct ex vivo measurements in biopsy specimens collected 412 

during index and surveillance endoscopies in order to increase the count of adenomas included in 413 

the model, as there is an increased likelihood of obtaining them from these procedures. 414 

The findings of this study further validate earlier observations regarding the limitations of 415 

single wavelength excitation in capturing the full autofluorescence signature of colorectal tissues. 416 

Previously, we demonstrated that dual excitation at 375 nm and 445 nm enhances the specificity 417 

of the autofluorescence signal related to clinicopathological features 18. This observation is 418 

consistent with the reduced performance of the model when relying solely on features obtained 419 

from excitation at either 375 nm or 445 nm (see Table 3). As expected, the classification accuracy 420 

increases when spectroscopic features linked to collagens, NAD(P)H, and flavins are all integrated 421 

into the model. In our system, this corresponds to detection channels 1, 2 or 3, and 5. However, 422 

when utilizing solely NAD(P)H and flavins spectroscopic features, including RR, we observe a 423 

slight decrease in performance, while the accuracy remains above 80% in both training and test 424 
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datasets. This result suggests that, if the goal is merely the identification of malignant tissues, the 425 

system could be substantially simplified without compromising the performance, thereby 426 

improving its commercial viability. 427 

One limitation of this work is the inability to obtain histology images that precisely correspond 428 

to the autofluorescence maps. This is due to the sample processing technique which aligns with 429 

the bread loaf method, where tumors are sliced vertically to the horizontal plane of the specimen, 430 

resulting histological slides are perpendicular to the autofluorescence map plane. Consequently, it 431 

is nearly impossible to trace features in the autofluorescence maps back to the histology section. 432 

As a result, our ROIs cannot be entirely validated as absolute ground truth. They are, nonetheless, 433 

the most approximate representation of the ground truth to the best of our expertise and experience. 434 

This limitation was mitigated by drawing conservative ROIs away from the borders of the lesions. 435 

Yet, finding a solution remains challenging, as it necessitates deviating from the standard 436 

workflow and adding further strain to the already stressed pathology service. 437 

To conclude, in this study we demonstrate the potential of multiparametric time-resolved 438 

autofluorescence measurements in combination with ensemble learning to classify benign and 439 

malignant colorectal lesions obtained from a total of 117 patients. The classification model, 440 

leveraging spectroscopic features derived from phasor analysis across five detection channels, 441 

achieved high tumor classification accuracy (84.8%), sensitivity (84.5%), and specificity (85.2%). 442 

Additionally, the AUC-ROC of 0.915 and MCC of 0.695 further underscore its excellent 443 

performance. We envisage application of this method not only in vivo during endoscopic 444 

evaluations, but also in the rapid identification of positive margins ex vivo, thereby complementing 445 

the work of pathologists. Future work will focus on collecting more data and expanding our 446 
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database to enable further stratification, extending the range of our investigation beyond binary 447 

classification benign vs. malignant. 448 
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Caption List 558 

 559 

Fig. 1 Study workflow for every collected sample. The surgical specimen is transported to the 560 

optical laboratory immediately after resection and typically within 1 hour of the last vascular 561 

ligation. Optical measurements are carried out in fresh tissue before histopathological processing 562 

and assessment. Following diagnosis, benign and malignant lesions are identified in the white light 563 

image, and regions of interest (ROI) are demarcated. Autofluorescence parameters are averaged 564 

within each ROI and mean values are taken as characteristic features. Each ROI is labelled as 565 

benign or malignant according to histopathological diagnosis. Scale bars 10 mm. 566 

Fig. 2 A) Phasor plots (top row) and phase lifetime (bottom) distribution in benign and malignant 567 

tissues for training and test dataset, measured in CH2 (left) and CH5 (right), respectively. B) 568 

Machine learning pipeline. A dataset consisting of 428 observations is used to train a boosting 569 
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algorithm. The best hyperparameter vector was found through Bayesian optimization with 5-fold 570 

cross-validation. Final model performance was evaluated against an independent test set consisting 571 

of 244 observations. 572 

Fig. 3 A) Phasor distribution of test data in all detection channels. B) Average phase and 573 

modulation lifetimes measured in benign (B) and malignant (M) ROIs. Panels C and D show 574 

confusion matrices for training (cross validated) and test sets, respectively. TP, TN, FP, and FN 575 

values are rounded to the closest integer following an averaging of 20 iterations. Percentage values 576 

are calculated using the original “unrounded” values. Values in parenthesis represent SD. E) ROC 577 

curves for cross validation (in cyan) and test (in orange) sets. Solid lines indicate the average ROC 578 

curves for 20 iterations of the model. Shaded lines in blue represent the ROC curve for each 579 

iteration. 580 

Fig. 4 Investigation of machine learning model-based probability of malignancy in tissue. A) 581 

White light image at time zero of normal and tumor specimens. Dotted lines delineate malignant 582 

lesions. B) Probability of malignancy estimated from single point measurements. C) Probability 583 

of malignancy for every fluorescence measurement during an entire specimen acquisition. D) 584 

Probability and E) fluorescence lifetime maps. Scale bar 10 mm. 585 

Fig. 5 A) Predictor importance on the optimized model, estimated over 20 iterations of cross 586 

validation. B) Average prediction importance in each detection channel of the optical setup and 587 

redox ratio. C) ROC curves illustrating performance of classification models for different sets of 588 

features. Performance of the classifiers was measured on test data. 589 

Table 1 Patient numbers and observations in training and test datasets. 590 

Table 2 Performance metrics for training and test datasets. Metrics on training data were obtained 591 

by averaging over 20 iterations of cross validation. 592 
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Table 3 Classifier performance for different feature pools averaged over 20 training iterations. 593 

The ensemble was optimized for each feature pool, within the range of hyperparameters 594 

investigated. 595 

 596 
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