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Abstract 
In the early stages of atrial fibrillation (AF), most cases are paroxysmal (pAF), making identification only possible with 

continuous and prolonged monitoring. With the advent of wearables, smartwatches equipped with 

photoplethysmographic (PPG) sensors are an ideal approach for continuous monitoring of pAF.  There have been 

numerous studies demonstrating successful capture of pAF events, especially using deep learning.  However, deep 

learning requires a large amount of data and independent testing on diverse datasets, to ensure the generalizability 

of the model, and most prior studies did not meet these requirements.  Moreover, most prior studies using wearable-

based PPG sensor data collection were limited either to controlled environments, to minimize motion artifacts, or 

to short duration data collection. Most importantly, frequent premature atrial and ventricular contractions (PAC/PVC) 

can confound most AF detection algorithms. This has not been well studied, largely due to limited datasets 

containing these rhythms. Note that the recent deep learning models show 97% AF detection accuracy, and the 

sensitivity of the current state-of-the-art technique for PAC/PVC detection is only 75% on minimally motion artifact 

corrupted PPG data. Our study aims to address the above limitations using a recently completed NIH-funded 

Pulsewatch clinical trial which collected smartwatch PPG data over two weeks from 106 subjects. For our approach, 

we used multi-modal data which included 1D PPG, accelerometer, and heart rate data. We used a computationally 

efficient 1D bi-directional Gated Recurrent Unit (1D-Bi-GRU) deep learning model to detect three classes: normal 

sinus rhythm, AF, and PAC/PVC. Our proposed 1D-Bi-GRU model’s performance was compared with two other deep 

learning models that have reported some of the highest performance metrics, in prior work.  For three-arrhythmia-

classification, testing data for all deep learning models consisted of using independent data and subjects from the 

training data, and further evaluations were performed using two independent datasets that were not part of the 

training dataset.  Our multimodal model achieved an unprecedented 83% sensitivity for PAC/PVC detection while 

maintaining a high accuracy of 97.31% for AF detection. Our model was computationally more efficient (14 times 

more efficient and 2.7 times faster) and outperformed the best state-of-the-art model by 20.81% for PAC/PVC 

sensitivity and 2.55% for AF accuracy. We also tested our models on two independent PPG datasets collected with 

a different smartwatch and a fingertip PPG sensor. Our three-arrhythmia-classification results show high macro-

averaged area under the receiver operating characteristic curve values of 96.22%, and 94.17% for two independent 

datasets, demonstrating better generalizability of the proposed model. 

Introduction 
Atrial fibrillation (AF) is the most common serious 

cardiac dysrhythmia, and the incidence and 

prevalence of AF are increasing worldwide1. Long-

term monitoring for AF is usually effective for incident 

AF detection, even though most early cases of AF are 

brief, asymptomatic, and intermittent2 (hence known 

as paroxysmal AF (pAF)). While detection of pAF 

requires long term monitoring, the electrocardiogram 

(ECG) devices developed for long term monitoring 

have poor patient acceptability, low adherence due 
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to discomfort, and electrodes that cause skin 

irritation in most people. Non-invasive wearable 

devices with automated photoplethysmography (PPG) 

acquisition could provide a convenient solution for 

accurate AF detection3,4. However, previous studies 

focused on short duration pulse oximetry data5,6 

recorded in  clinical environments5–8, and accounted 

for neither the significant motion artifacts to be 

expected in real-world environments nor the 

inclusion of premature atrial and ventricular 

contractions (PAC/PVC), which can degrade the 

accuracy of AF detection. 

While it is relatively easy to detect PAC/PVC in ECG 

signals9,10, it is rather difficult to detect these rhythms 

in PPG as they do not provide a distinct waveform 

morphology from the normal sinus rhythm11. Another 

challenge with PPG for arrhythmia detection is that 

motion noise artifacts are a significant issue in 

smartwatch PPG data, as they can distort the PPG 

waveforms and mimic irregular dynamics seen in AF 

and PAC/PVC4, thereby, degrading the accuracy of 

arrhythmia detection.  

Addressing the above-noted challenges requires large, 

diverse datasets collected in real life for long 

durations using smartwatches. However, long 

duration recordings of smartwatch PPG data require 

time-consuming adjudication of AF and PAC/PVC 

rhythms, aided by simultaneous recordings of ECG 

signals as the reference.  

In this study, we addressed the above issues by using 

a large real-world smartwatch PPG dataset collected 

from our NIH-funded “Pulsewatch” clinical trial12.  

Two major novelties of our work are: (1) use of 

multimodal time-series data (PPG signal plus PPG-

derived heart rates (HR), and accelerometer signal) 

combined with a simple 1D-Bi-GRU (bidirectional 

gated recurrent unit) network architecture that is 

computationally efficient for real-time assessment of 

multiclass cardiac arrhythmia detection; and (2) 

validation of the model on diverse PPG datasets from 

lab-controlled and real-life environments, thereby 

fully accounting for the effects of motion artifacts, 

long-duration recording, accuracy of PAC/PVC 

detection, and independent testing of the model to 

address the important issue of the generalizability of 

the model.  

We employed a two-fold cross-validation approach, 

ensuring robust model evaluation by conducting large 

 

Fig. 1 1D-Bi-GRU model’s input and architecture. The model with four inputs (PPG, PPG HR, ACC, and magnified 

HR) has the best subject-independent performance on the Pulsewatch dataset, and the model with only HRs (HR 

and magnified HR) has the best testing performance on external datasets that used different sensors and data 

collection locations than the Pulsewatch dataset. 
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subject-independent testing on our Pulsewatch 

dataset. This method allowed us to assess the model’s 

performance across unseen participants, enhancing 

the generalizability of our findings. We also tested the 

generalizability of our models using two external 

datasets—the University of Massachusetts Medical 

Center (UMMC) Simband dataset, and the MIMIC III 

dataset—without using any of these datasets for 

training the model.  

Results 

Multiclass arrhythmia classification 

results on real-world smartwatch PPG 
Fig. 1 shows two different multimodal input data 

configurations using three different databases along 

with our 1D-Bi-GRU network architecture. Fig. 2 

shows that the Pulsewatch dataset was divided into 

three equally-sized subsets. Two of the subsets 

(which included AF, PAC/PVC, and NSR) served as the 

two-fold cross-validation and the last subset, which 

included only NSR subjects, was used for testing. The 

data folds were split to ensure independent subjects, 

thus, subjects in the testing dataset were not 

represented in the training dataset. Table 1 provides 

a detailed breakdown of the 166,904 segments 

collected from 106 subjects collected during the 

Pulsewatch trial, including the distribution of normal 

sinus rhythm (NSR), atrial fibrillation (AF), premature 

atrial contractions and premature ventricular 

contractions (PAC/PVC). These PPG segments were 

automatically detected as clean or relatively clean (if 

there was fewer than 5 seconds of motion noise 

artifact in a given 30-sec segment) by our previously 

developed motion artifact detection algorithms13 and 

the types of rhythms were adjudicated based on the 

rhythm shown in the reference ECG14. 

Table 2 shows a comparison of our method, the 1D-

Bi-GRU model, to two state-of-the art methods. We 

implemented two other state-of-the-art deep 

learning models5,6 and trained them using the same 

two fold cross-validation strategy on the Pulsewatch 

data so that we can directly compare these methods 

against our 1D-Bi-GRU model.  Our method was also 

compared using various input signals, as noted in 

Table 2, to examine which combinations of the input 

signal provided the best arrhythmia classification 

results. Results of these comparisons using the 

 

Figure 2. Workflow diagram for the subject-independent testing on Pulsewatch dataset.  
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Pulsewatch data are shown in Table 3. The best model 

is achieved by using all four modalities of input 

(model #12 using PPG, HR, ACC, and magnified HR, 

shown in Table 3). It showed the highest ever 

reported sensitivity of PAC/PVC detection at 83.52%. 

The previously highest reported PAC/PVC sensitivity 

on PPG data was 75.4%6 by the 1D-VGG-16 model.  

However, this result is based on the use of a fingertip 

PPG, which has a higher signal-to-noise ratio (SNR) 

than the smartwatch PPG we used, and the study was 

conducted to minimize motion artifacts. For fair 

comparison, we retrained the 1D-VGG-16 model6 

with two types of input: (1) PPG waveforms as the 

sole input, and (2) the same four input signals (PPG, 

HR, ACC, and magnified HR (magHR)) from our 

Pulsewatch dataset that gave us the best 

performance for our deep learning model. When 

using only the PPG waveform as the input data, the 

1D-VGG-16 model achieved a sensitivity of only 63.34% 

for PAC/PVC detection and an AF detection accuracy 

Table 2. Input time series used by different models during the model development for multiclass arrhythmia 

classification. 

Index Model name Model 
architecture 

Model input Notes 

1D 2D 

PPG HR ACC Magnified 
HR 

TFS 

1 1D-VGG-166 
(PPG only) 

1D VGG-16 
model 

√     Retrained Liu et al. model6 on the 
same data we used. 

2 1D-VGG-166 

(four channels) 

√ √ √ √  

3 2D DenseNet8 
(2D TFS) 

2D DenseNet 
model 

    √ Retrained Chen et al.8 model on the 
same data we used. 

4 PPG only 

Our 1D-Bi-
GRU model 

√      

5 PPG + ACC √  √   Added accelerometer (ACC) signal. 

6 HR only  √    Heart rate (HR) was calculated from 
the PPG peaks with WEPD 

algorithm25 and was normalized 
with fixed range [30, 220] BPM. 

7 HR + ACC  √ √   

8 HR + magHR  √  √  Magnified HR was normalized with 
each 30-sec segment’s minimum 
and maximum HR. 

9 HR + magHR + 
ACC 

 √ √ √  

10 PPG + HR √ √     

11 PPG + HR + ACC √ √ √    

12 PPG + HR + ACC 
+ magHR (best 
model) 

√ √ √ √  The model with the best 
performance on our Pulsewatch 
dataset. 

 

Table 1. Subject and segment information for model development dataset (Pulsewatch) and independent 

testing datasets (Simband and MIMIC III). 

Datasets Data 
segmentation 

Num. of data Segments Subjects 

Total NSR AF PAC/PVC Total NSR AF PAC/PVC 

Pulsewatch 
(training & testing data) 

Total 166,904 129,310 24,555 13,039 106 70 35 38 

Fold 1 58,318 39,356 12,265 6,697 36 18 17 19 

Fold 2 57,995 39,363 12,290 6,342 36 18 18 19 

Other NSR 50,591 50,591 0 0 34 34 0 0 

UMMC Simband 
(independent test data) 

Total 292 196 42 54 37 24 9 6 

MIMIC-III 
(independent test data) 

Total 5,074 2,180 1,721 1,173 13 6 5 6 
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of 94.76%. These values are 20.18% and 2.55% lower, 

respectively, than those of our best model. With all 

four input signals, the 1D-VGG-16 model provided 

similar performance metrics for NSR and AF 

classification compared to our best model with the 

same four input signals. However, the sensitivity of 

PAC/PVC detection was only 71.32%, which is still 

lower than our result (83.52%) and their previously 

reported value of 75.4% with higher SNR data.   

As most previous works11,15,16 only reported binary 

AF/non-AF classification results on PPG data, we 

merged the PAC/PVC class into the NSR class. We 

provide the performance metrics on binary AF 

classification in Table S2 in supplementary material. 

Our best model, as well as 1D-VGG-166, have the 

highest binary AF classification results of >97% 

accuracy and >99% macro-averaged area under the 

receiver operating curve (AUROC). The two best 

models (ours and 1D VGG-166) also achieved the 

highest macro-averaged AUROC of 99%, as shown in 

Table S2 in the supplementary materials. However, it 

should be noted that our model, 1D-Bi-GRU, has 93% 

fewer network parameters and is 3 times more 

computationally efficient than the 1D-VGG-16 model6 

is, as detailed in Table 4.   

Improvement of multiclass arrhythmia 

classification using multimodal input 
Table 3 shows the importance of including heart rate 

(HR) as one of the input signals, especially for 

increasing the sensitivity of PAC/PVC detection. With 

only HR (model #6 in Table 3), most of the multiclass 

classification results were comparable to those 

achieved by using only PPG signals as the input 

(model #4 in Table 3). However, the AF classification 

accuracy at 94.76%, is higher than the 93.03% AF 

classification accuracy with the PPG-only model. In 

addition, the sensitivity of PAC/PVC detection is 6% 

greater with HR only versus the PPG-only model.  This 

highlights the importance of including heart rate 

derived features for arrhythmia detection. When 

both HR and PPG signals are included (model #10 in 

Table 3), the accuracy of NSR, AF, and PAC/PVC 

classification are 92.25%, 95.38%, and 90.38%, 

respectively, which are 0.29%, 2.35%, and 0.3% 

higher than they are for the model using only PPG 

(model #4 in Table 3), respectively.   

In addition to HR, when adding the accelerometer 

(ACC) signal to the input, the multiclass classification 

performance metrics further improved. Comparing 

models #5 to #4, models #7 to #6, models #9 to #8, 

and models #11 to #10 in Table 3, by adding ACC to 

the input signals, the sensitivity values of AF and 

PAC/PVC increased on an average of 4% and 6%, 

 

Figure 3. Example signal traces from (a) NSR, (b) AF, and (c) PAC/PVC with noisy section (≤5 sec of noise) 

highlighted in red. The (a) NSR segment contains less than three PAC/PVC beats. The (c) PAC/PVC segment 

contains bigeminy PAC beats (every other beat), therefore, the HR in the panel (3) has a zig-zag shape.  
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respectively. This suggests the value of adding 

additional accelerometer information to further 

differentiate whether the change in PPG waveforms 

and the variations in HR were due to motion artifacts 

or cardiac arrhythmia. For example, in Fig. 3 (c), 

without the accelerometer information, the network 

model would have difficulty in knowing that the HR 

variations at around 24 to 26 seconds were caused by 

motion artifacts and were not due to premature beats. 

The notable amplitude changes in the ACC signal 

informed the network model to acknowledge that the 

corresponding PPG data are due to motion artifacts, 

hence, to override any dynamics that it might have 

otherwise concluded were reflective of either AF or 

PAC/PVC.  

Lastly, we highlight the importance of proper 

normalization of HR dynamic range.  The overall HR 

range (30-220 BPM) normalization reflects the mean 

HR in a 30-sec segment, but this approach depresses 

the local variations in HR, for example, seen in 

Table 3. Subject-independent testing results for the multiclass classification of all models on the Pulsewatch 

dataset. 
 

In
d
e
x 

Model name Rhythm Sensiti
vity 

Specifi
city 

Precisi
on 

NPV Accur
acy 

Macro-
AUROC 

P
re

vi
o

u
s 

(r
et

ra
in

ed
) 1 1D-VGG-166 (PPG only) NSR 97.40 91.25 95.83 91.65 94.48 95.82 

AF 90.21 97.67 85.73 97.34 94.76 95.82 

PAC/PVC 63.34 98.09 71.27 95.44 93.03 95.82 

2 1D-VGG-166 (four 
channels) 

NSR 96.06 91.87 96.02 87.49 93.12 98.09 

AF 97.61 98.25 89.43 99.34 97.06 98.09 

PAC/PVC 71.32 97.77 73.37 96.39 93.88 98.09 

3 2D DenseNet8 (2D TFS) NSR 95.31 91.33 95.73 85.97 92.38 95.86 

AF 89.21 97.86 86.70 97.09 94.83 95.86 

PAC/PVC 59.43 95.83 52.82 94.80 89.50 95.86 

O
u

rs
 (

1
D

-B
i-

G
R

U
) 4 PPG only NSR 92.45 95.66 97.75 82.33 91.96 95.84 

AF 89.65 95.83 79.81 97.14 93.03 95.84 

PAC/PVC 67.47 94.96 54.64 95.77 90.08 95.84 

5 PPG + ACC NSR 89.65 94.61 97.10 76.50 88.86 95.91 

AF 93.63 96.84 82.80 98.23 94.55 95.91 

PAC/PVC 71.03 92.56 49.47 96.13 88.62 95.91 

6 HR only NSR 91.01 93.16 96.42 78.91 89.74 95.29 

AF 90.16 97.25 85.76 97.33 94.76 95.29 

PAC/PVC 73.47 93.35 51.60 96.46 89.30 95.29 

7 HR + ACC 
 

NSR 90.52 95.15 97.40 77.68 89.60 97.03 

AF 97.03 97.90 88.58 99.18 96.73 97.03 

PAC/PVC 80.90 93.31 55.09 97.44 90.46 97.03 

8 HR + magHR NSR 92.11 93.40 96.61 81.64 91.08 96.35 

AF 93.74 97.23 87.37 98.29 95.82 96.35 

PAC/PVC 71.99 94.56 56.35 96.34 90.61 96.35 

9 HR + magHR + ACC NSR 89.56 95.80 97.72 76.39 89.07 97.18 

 AF 95.91 97.99 89.00 98.88 96.63 97.18 

 PAC/PVC 81.98 92.22 51.69 97.54 89.39 97.18 

1
0 

PPG + HR NSR 93.15 94.38 97.14 83.73 92.25 95.15 

AF 91.49 97.6 87.24 97.69 95.38 95.15 

PAC/PVC 70.85 94.56 55.57 96.19 90.38 95.15 

1
1 

PPG + HR + ACC NSR 90.02 95.68 97.66 76.74 89.23 96.29 

AF 95.26 98.07 87.57 98.7 96.14 96.29 

PAC/PVC 76.43 92.12 49.43 96.8 88.59 96.29 

1
2 

PPG + HR + ACC + magHR 
(best model) 

NSR 91.30 96.18 97.98 79.62 90.81 97.68 

AF 97.52 98.30 90.47 99.32 97.31 97.68 

PAC/PVC 83.52 93.60 57.48 97.79 91.23 97.68 
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seconds 5-10 in panel 5 of Fig. 3 (a).  Thus, we 

examined comparison of the overall versus local HR in 

arrhythmia classification performance.  As shown in 

Table 3, we observe better overall performance with 

a local heart rate approach which we call magnified 

HR (magHR).  The most notable improvement is the 

sensitivity of PAC/PVC detection with the use of 

magHR.  For example, comparing models #12 to #11, 

with the input of magHR, the sensitivity of PAC/PVC 

improved from 76.43% to 83.52%. The magnified HR 

input provides to the deep learning model important 

details of local HR variations, such as the zig-zag 

shape visualized in Fig. 3 (c). This level of detail 

regarding a large and sudden change in HR (e.g., 15-

20 BPM) is lost in the fixed range normalization, as it 

compresses the HR to nearly a flat line, as shown in 

panel 4 of Fig. 3 (c).  

Generalizability on external testing 

datasets 
Two external independent datasets, the UMMC 

Simband dataset and MIMIC-III dataset, were used in 

this paper to illustrate the generalizability of our 

models. In other words, these two datasets were not 

used to train but they are solely used to test the 

network models.  Table 1 shows the details of the 

UMMC Simband dataset and MIMIC-III dataset. Both 

datasets used different sensors than the smartwatch 

used in our Pulsewatch dataset, and the pulse 

oximetry data in the MIMIC-III dataset were recorded 

from a fingertip instead of wrist. Therefore, the PPG 

waveform of MIMIC-III was distinctly different and 

has a greater signal-to-noise ratio than the PPG 

waveforms recorded from a smartwatch (Fig. 4).  

Fig. 5 shows the macro-averaged AUROC of the 

Pulsewatch dataset (Fig. 5 (a)) along with subject-

independent testing results from the UMMC Simband 

(Fig. 5 (b)) and MIMIC-III (Fig. 5 (c)) datasets. The best-

performing model (#12 in Fig. 5 (a)) in the Pulsewatch 

dataset maintained superior performance on the 

UMMC Simband dataset (#12 in Fig. 5 (b)), 

demonstrating our network model’s robustness on 

data from untrained subjects. However, the model’s 

performance diminished slightly on the MIMIC-III 

dataset, likely due to the differences in the sensor 

modality. For the MIMIC-III dataset, the model using 

HR and magnified HR (#8 in Fig. 5 (c)) performed the 

best, and it also had consistent performance over 

Pulsewatch, UMMC Simband, and MIMIC-III datasets, 

with macro-averaged AUROC of 96.35%, 96.22%, and 

94.17%, respectively (#8 in Table S3 in the 

supplementary materials). Our best model from the 

Pulsewatch dataset performed most accurately on 

the Simband dataset because the wrist PPG 

waveforms are similar in both datasets. However, this 

model’s performance deteriorated moderately on the 

MIMIC-III dataset, as the differences in the PPG 

waveforms in the development dataset and 

independent dataset were considerable (Fig. 4 row (3) 

for MIMIC-III vs. rows (1) and (2) for Pulsewatch and 

Simband, respectively). It is important to highlight 

that 1D-VGG-16 with four input data types—which 

was found to have only slightly less sensitivity on 

PAC/PVC detection when compared to our best 

model (#12) with the same number of input data 

types—had significantly smaller macro-averaged 

AUROC values for both Simband and MIMIC III 

databases, with the latter having only 87%.  Note that 

for the Pulsewatch data, the macro-averaged AUROC 

value was 98% but this value decreased to less than 

94% and 87% for Simband and MIMIC III datasets, 

respectively. However, our models maintained 

greater than 92% macro-averaged AUROC for all 

three datasets. Thus, our models show better 

generalizability than the 1D-VGG-16 approach does.  
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Computational efficiency of using 

multimodal input signal 
In addition to achieving the highest sensitivity in 

PAC/PVC detection as well as the best performance 

metrics in AF classification, our multimodal 1D-Bi-

GRU model has significantly fewer parameters (93% 

fewer) and has less computational cost (3 times less) 

than 1D VGG-166. Table 4 shows the computational 

cost of all models. Our best model (#12) uses only 

120,224 parameters, representing a 13.5-fold 

reduction in complexity compared to the 1D-VGG-16 

structure6 (#1). While achieving superior 

performance, our model is more computationally 

efficient, enabling the potential for real-time 

processing on wearable devices. Our best model (#12) 

also requires only 0.89 Giga float-point operations per 

second (GFLOPs) to run a single instance, which is ~3 

times faster than the best comparison model6 (#1) 

and 21.7 times faster than 2D DenseNet model8 (#2) 

which uses 2D time-frequency spectrogram (TFS) as 

the input signal. Adding additional input signals to our 

model did not significantly increase the network’s 

parameters nor the computational costs. 

Discussion 

Real-world dataset using a smartwatch 
This is the one of the first studies to perform 

multiclass cardiac arrhythmia classification on 

smartwatch PPG data collected for 14 days from 

stroke survivors’ daily life settings12,17. Our work 

differs from other prior work involving wearable PPG 

for the combined AF and PAC/PVC classifications, as 

they used fingertip PPG data5,6 and/or data were 

recorded in an in-hospital environment which 

minimized motion artifacts5–7. Adjudication is a labor-

intensive task, and the labeling of AF/non-AF in one 

of the first publicly available smartwatch PPG 

datasets published along with the DeepBeat model15, 

may contain incorrect information. A study has found 

 

Figure 4. Example of PPG (foreground) and reference ECG (background) segments from (1) Pulsewatch, (2) 

UMMC Simband, and (3) MIMIC-III datasets. 

 

Table 4. Computational Costs of all models. 

 Index Methods Num. of parameters GFLOPs 

Previous 1 1D-VGG-166 (PPG only) 1,626,403 2.36G 

2 1D-VGG-166 (four channels) 1,626,691 2.38G 

3 2D DenseNet8 (2D TFS) 221,303 19.33G 

O
u

rs
 (

1
D

-B
i-

G
R

U
) 

5 PPG only 
110,696 0.75G 

4 HR only 

6 PPG + ACC 

113,832 0.77G 
7 HR + ACC 

9 HR + magHR 

8 PPG + HR 

10 HR + magHR + ACC 117,008 0.83G 

11 PPG + HR + ACC 

12 PPG + HR + ACC + magHR (best model) 120,224 0.89G 
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that while the DeepBeat model reported exceptional 

performance on the testing dataset (sensitivity: 0.98, 

specificity: 0.99, F1-score: 0.96), the performance 

was not satisfactory on the validation (sensitivity: 

0.59, specificity: 0.995, F1 score: 0.69) and training 

datasets (sensitivity: 0.59, specificity: 0.998, F1 score: 

0.74)18. Inaccurate ground truth labelling  confuses 

any deep learning models, thereby degrading 

performance metrics when the models are 

confronted with non-trained testing datasets and 

other independent datasets generated from other 

studies18. Furthermore, the reference ECG data were 

not provided in DeepBeat, which precludes other 

studies, including our own, to benchmark against 

DeepBeat dataset’s performance metrics. In this 

study, we have painstakingly labelled 166,904 30-sec 

segments of Pulsewatch PPG data along with the 

corresponding reference ECG data, which we will 

provide to the public so that other investigators can 

use it to develop and benchmark their own algorithms’ 

performance. Another salient feature of our 

Pulsewatch dataset is that, because it was collected 

in a real-life environment over 14 days, the 

smartwatch PPG data contain diverse motion artifacts 

and provide many different characteristics of PPG 

waveforms that are representative of pAF and 

PAC/PVC.  Note that there are not many databases 

with well-labelled PAC/PVC waveforms that are 

publicly available.  Hence, our Pulsewatch along with 

Simband and labelled MIMIC-III PPG datasets will 

provide ample training data for other investigators 

working on this research topic. 

Multiclass classification on real-world 

smartwatch data 
Despite the presence of challenging low-to-moderate 

motion corruption in the smartwatch PPG data (up to 

5 seconds of noise per segment), our computationally 

efficient deep learning model achieved an 

unprecedented 83.52% sensitivity for PAC/PVC 

classification while maintaining high 97.31% accuracy 

for AF detection. Our study differs from previous 

work11,15,16, as their focus was on binary AF 

classification, while we performed a more challenging 

three-class classification for PAC/PVC, AF, and NSR.  

This approach provides better granularity for 

arrhythmia classification and may also lead to better 

AF detection. Although frequent PAC/PVC episodes 

have not been proven to directly cause AF19, an 

increased number of PAC/PVC episodes has shown 

positive correlation with a higher AF risk20. Therefore, 

accurately detecting PAC/PVC events provides finer 

details regarding cardiac arrhythmias.  In addition, 

many previous studies have shown that frequent 

occurrences of PAC/PVC were one of the best 

features that can be used to predict AF using machine 

and deep learning approaches20–23.   

Heart rate as input to assist the training 

process 
Another important finding is that using multimodal 

input signals, such as including HR calculated from the 

PPG as well as simultaneously recorded ACC,  greatly 

increased deep learning model performance metrics 

compared to using only PPG. A previous study24 

showed that a single-layer LSTM model with a 

sequence of 35 consecutive heartbeat periods 

resulted in inferior AF detection performance 
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compared to a convolutional-recurrent neural 

network that used 30 seconds of PPG waveform data. 

In contrast, our HR-only model had compatible AF 

classification performance compared to our PPG-only 

model (see results of models #6 and #4 in Table 3).  

The HR information we used was not a simple linear 

interpolation between two consecutive heartbeats, 

but the heart rates were represented with a 

rectangular interpolation to better accentuate abrupt 

changes in heart rates.  This transformation of HR is 

seen in panels 4 and 6 of Fig. 3. It should also be noted 

that the PPG peak detection algorithm we used to 

calculate HR was optimized to account for not only 

NSR but also AF and PAC/PVC, consequently, was 

proven to be one of the best algorithms for 

smartwatch PPG25, which resulted in the good 

performance of our model. This may explain why the 

previous study24 had a contradictory finding to ours, 

as most previous PPG peak detection algorithms were 

developed for NSR. 

Although deep learning models using raw PPG 

waveforms as the input signal claim that they do not 

require extensive signal pre-processing and feature 

engineering24, these models often do require fine-

tuning to account for the domain-shift problem when 

PPG signals are recorded from different anatomical 

sites11 and with different sensors.  In contrast, our HR 

and magnified HR model (model #8) showed 

reliability and generalizability among different testing 

datasets, as shown in Fig. 5, suggesting that using HR 

instead of raw PPG waveforms may be a solution to 

address the domain-shift problem, especially as 

millions of raw PPG segments are not available to 

pretrain large deep learning models26. Furthermore, 

using HR as the input signal reduces the complexity of 

the network which further reduces computational 

costs, thereby enabling embedding of the algorithms 

into a smartwatch and other wearable form factors 

for real-time arrythmia detection.  

Accurate AF and PAC/PVC detection 

requires relatively clean PPG signals 
Non-sudden motion-induced artifacts can introduce 

dynamic characteristics that are similar to AF, 

whereas sudden motion artifacts can mimic PAC/PVC 

patterns in PPG waveforms.  In real-life recordings, 

fully clean PPG segments are difficult to obtain and if 

we only used completely clean segments, we would 

be left with only a small portion of the data. This is 

why the criterion for using a 30-sec segment was less 

than or equal to 5 seconds of artifacts in it.  

Consequently, allowing segments with a low-to-

moderate amount of motion corruption explains the 

lower sensitivity of the NSR classification with our 

proposed models, as some segments were falsely 

 

Figure 5. Macro-AUROC with 95% confidence interval of the subject independent testing results from (a) 

Pulsewatch, (b) Simband, and (c) MIMIC III. 
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classified as PAC/PVC.  Hence, this issue is a trade-off 

between PAC/PVC sensitivity and NSR sensitivity.  

However, our approach, which resulted in 91% 

sensitivity for NSR, is sufficient since the primary aim 

is to better detect AF and PAC/PVC. 

Performance improvement with more 

PAC/PVC training data 
It is our opinion that even greater than 83.5% 

sensitivity of PAC/PVC detection can be obtained with 

more training data for our models.  The number of 

PAC/PVC events were far less than the number of AF 

events in our study, but this is typical.  Hence, various 

data augmentation strategies including SMOTE and 

generalized adversarial network techniques as well as 

shuffling time locations where PAC/PVC occur in a 

given time series may lead to better generalized 

performance of any deep learning model. In addition, 

including a self-attention mechanism in a deep 

learning model to accentuate the occurrences of 

PAC/PVC waveforms may lead to further 

performance improvements.  

Methods 

Study population 

Pulsewatch clinical and AF trials datasets 
We recently completed a 2-year NIH-funded clinical 

trial named “Pulsewatch” (NCT03761394) to evaluate 

the accuracy of AF detection and usability of 

smartwatches for stroke survivors in real life 

conditions12,17. Participants who were randomized 

into the intervention group of Phase 1 (n=90) of the 

Pulsewatch clinical trial continuously wore the 

smartwatch system (which also included a 

smartphone for data collection) with a reference ECG 

chest patch for 14 days during their everyday lives. 

Detailed demographic and medical history 

information of the recruited participants (aged ≥50 

with a history of ischemic stroke/TIA) can be found in 
12.  

As the Pulsewatch clinical trial progressed, only 11 

participants (12%) were identified as having AF by the 

reference ECG patch out of the 90 subjects, and only 

6 (6.7%) of them were confirmed as true AF subjects 

by cardiologists12. Although this ratio of AF is about 

the same as the 6.4% AF prevalence among the age 

group 65-6927, it would create a highly imbalanced 

dataset with a low number of AF subjects and 

segments for data analysis. Therefore, our co-authors 

at UMass Chan Medical School (UMCMS) conducted 

a separate AF trial simultaneously to enroll subjects 

with confirmed AF in clinic. For the first 30 enrolled 

participants, the experiment was conducted in-clinic, 

therefore, the recording duration was only about 20 

minutes and did not provide the needed segments for 

balancing the AF class. For the later-enrolled 23 

participants, the recording duration was extended to 

7 days of free-living conditions to ensure enough AF 

segments would be recorded. The cut-off time of 

recording was 7 days because the battery of a single 

ECG chest patch lasted only 7 days. 

The reference ECG was measured from the chest 

using a 2-lead rhythm patch device (Cardea SOLO, 

Cardiac Insight Inc., Bellevue, WA, USA) and wrist PPG 

data were collected using either Samsung Gear S3, or 

Galaxy Watch 3 (Samsung, San Jose, CA, USA). The 

patch ECG data, which were used as the reference for 

adjudicating PPG signals, consisted of one-channel 

ECG sampled at 250 Hz. The smartwatch data 

consisted of PPG signals and tri-axial accelerometer 

(ACC) signals which were converted to their 

magnitude values. The PPG sensor of the Samsung 

watch emitted a green light with a typical wavelength 

in the range of 520-535 nm. Smartwatch signals were 

all sampled at 50 Hz and were segmented into 30-sec 

lengths. The enrolled patients wore the ECG patch 

continuously and the smartwatch 23 hours a day with 

no restriction on their regular daily activities, for 14 

consecutive days during the clinical trial. Due to the 

7-day battery limitation, patients switched to a 

second new ECG patch on the 7th day of the trial. 

Smartwatches were charged daily for 1 h.  

Formal ethical approval for this study was obtained 

from the University of Massachusetts Medical School 

Institutional Review Board (approval number 

H00016067 for the clinical trial and H00009953 for 

the AF trial). Written informed consent was collected 

from all patient participants.  

Adjudication of Pulsewatch dataset 
The adjudication of PPG segments was only 

performed on segments that were detected as clean 

and relatively clean (≤5 seconds of motion noise) in 

the offline analysis using our previously developed 

motion artifact detection algorithms.13 This process 
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was necessary since severe motion artifacts masked 

underlying arrhythmia information in PPG segments28. 

We also included those segments with ≤5 sec of 

motion noise primarily to increase the number of 

usable PPG data segments for arrhythmia detection, 

as our previous study found that this amount of 

motion artifact did not result in many false positive AF 

alerts4,13. 

The adjudication criteria for a 30-sec PPG segment for 

determining the types of rhythms were as follows: 

1. AF segment: irregular rhythms (HR change 

≥  10 BPM3,29 and missing P-waves in the 

reference ECG) must span the entire 30-sec 

segment.  

2. PAC/PVC segment: needs to have three or 

more PAC/PVC beats7 in the reference ECG 

of a non-AF rhythm segment, and the 

definition of a single PAC/PVC beat is that it 

must have a heart rate (HR) change that is ≥ 

10 beats per minute (BPM)7,25 since an NSR 

beat typically does not vary more than 10 

BPM3,29.  

3. NSR segment: the remaining segments that 

were classified as neither AF nor PAC/PVC. It 

is possible that an NSR segment could 

contain one to two PAC/PVC beats. 

Among the clean and relatively clean segments, the 

three types of arrhythmias were adjudicated in each 

30-second segment by three experts14 using the 

aligned single-channel ECG as the reference. After 

applying our previously developed motion artifact 

detection algorithm followed by alignment of PPG 

and ECG signals, we found that 72 out of the 90 

subjects in the clinical trial and 34 subjects from the 

AF trial had at least one clean/relatively clean PPG 

segment. Details of subject exclusion criteria are 

provided in Figs. S1 and S2 in the supplementary 

materials for the clinical trial and AF trial, respectively. 

Table 5 lists the baseline characteristics of the 

population in the Pulsewatch clinical trial and 

Pulsewatch AF trial. It is clear that AF trial participants 

had higher AF burden (52.28%) among the confirmed 

AF subjects (AF burden was provided by the Cardea 

SOLO AF detection algorithm that was approved by 

the Food and Drug Administration (FDA)). The 

participants from the Pulsewatch clinical trial had a 

lower ratio of clean PPG segments. The average 

burden of PAC/PVC rhythm in the clean PPG segments 

among the participants in the Pulsewatch clinical trial 

was 11.60%, much higher than the 0.24% in the AF 

trial. The mean HR of each clean PPG segment from 

the AF subjects in the Pulsewatch clinical trial was 

82.57 BPM, which is 5 BPM faster than the AF subjects’ 

mean HR in the AF trial. The mean HR of the NSR and 

PAC/PVC segments was similar in both trials, ranging 

from 67 to 69 BPM.  

Training and testing data segmentation for 

Pulsewatch dataset 
The number of segments with AF and PAC/PVC 

differed widely among subjects, with some having 

many instances of these rhythms while others had 

few to none (Table S4 in the supplementary 

Table 5. Baseline characteristics of the Pulsewatch clinical trial and AF trial participants.  

 Clinical Trial AF Trial 

Age (years) (SD) 65.33 (±9.08) 71.86 (±6.69) 

Female (%) 41.67% 38.10% 

Race, non-white (%) 11.67% 9.52% 

Mean ECG AF burden 
per subject (%) (SD) 

Confirmed AF 
subjects, burden 
reported by Cardea 
Solo ECG 

3.60% (±1.55%) 52.28% (±22.40%) 

Mean clean PPG ratio per subject (%) (SD) 16.17% (±13.10%) 31.71% (±12.69%) 

Mean PPG rhythm 
burden per subject on 
clean PPG (%) (SD) 

NSR 86.72% (±30.60%) 8.19% (±23.67%) 

AF 1.68% (±12.80%) 91.57% (±24.40%) 

PAC/PVC 11.60% (±28.46%) 0.24% (±0.74%) 

Mean ECG heart rate 
on clean PPG (BPM) 
(SD) 

NSR 69.59 (±13.79) 62.00 (±17.75) 

AF 82.57 (±7.29) 77.40 (±12.02) 

PAC/PVC 67.84 (±7.64) 77.77 (±12.32) 
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materials). Hence, how to determine which subjects 

to use for training and which for subject-independent 

testing became a challenging issue for addressing the 

generalizability of the algorithms. Therefore, given 

the imbalanced datasets (greater number of NSR than 

either AF or PAC/PVC), we used a two-fold cross-

validation (CV) strategy as shown in Fig. 2, which 

divided the Pulsewatch dataset into two equal halves 

with the same number of AF and PAC/PVC subjects in 

both folds. Since the two folds (each fold represented 

by 36 unique subjects) also included many NSR 

segments (3 and 5 times more than the AF and 

PAC/PVC segments as shown in Table 2), including 

more NSR subjects would only make the training data 

more imbalanced. Therefore, the other 34 unique 

NSR subjects were only used for testing the 

algorithms. Table 1 shows that each fold has nearly 

the same number of subjects and data segments for 

all arrhythmia classes.  

For each fold, we performed subject-based stratified 

random sampling to divide the data into 80% training, 

10% validation, and 10% subject-dependent testing, 

as shown in the workflow diagram in Fig. 2. To 

evaluate subject-independent test results, the data 

from the first fold were used to test the second fold’s 

trained network model, and vice versa. The confusion 

matrices from the two folds were combined, and the 

arrhythmia classification metrics were calculated 

from this merged confusion matrix. These metrics 

were then averaged with those from the NSR-only 

test subset. This approach allowed us to report 

subject-independent testing results across the entire 

Pulsewatch dataset.  

Independent testing database I: UMMC 

Simband dataset 
This database along with MIMIC-III is from a study 

which performed three-class arrhythmia detection on 

smartwatch PPG data using statistical signal 

processing approaches7. Since both datasets were 

carefully adjudicated with a reference ECG, we used 

both datasets for the purpose of subject-independent 

testing. The UMMC Simband dataset was recorded 

from Simband 2 smartwatches (Samsung Digital 

Health, San Jose, CA, USA (henceforth referred to 

simply as Simband)), a different smartwatch than 

other commercially available smartwatches that were 

used in our Pulsewatch clinical trial, and data were 

collected in-clinic for 14 minutes7,25. While this 

dataset contains only 37 subjects with 292 clean 

segments, the dataset is the first smartwatch PPG 

dataset that is publicly available and labeled with 

three types of arrhythmias. Details regarding the 

number of subjects and the segments associated with 

each of the three types of arrhythmias are listed in 

Table 1. The age group of the subjects was the same 

as Pulsewatch (≥50 years of age), and detailed 

demographic information about this dataset can be 

found in reference30.  

Both PPG signals and magnitudes of ACC signals from 

the UMMC Simband dataset were downsampled 

from 128 Hz to 50 Hz to match the Pulsewatch 

dataset’s sampling frequency. Only the green PPG 

channel was used for data analysis so that we are 

consistent with the green LED used for the 

Pulsewatch dataset7.  

Independent testing database II: MIMIC-III 

dataset 
We also used MIMIC-III’s PPG database as the second 

independent-subject test set to further evaluate 

algorithms. While ICU recordings for each subject in 

the MIMIC-III31 dataset contained hundreds of hours 

of data, we only used the subjects whose data had 

already been pre-processed and adjudicated for the 

AF study32. This subset of MIMIC-III consisted of 13 

patients with 5,074 ECG segments and corresponding 

PPG segments. Details of the numbers of the selected 

subjects are listed in Table S5 in the supplementary 

materials. 

Both ECG and PPG signals were segmented into 30-s 

lengths with no overlap. The ECG was used for PPG 

rhythm adjudication for each 30-sec segment. All 

signals were originally sampled at 125 Hz, but PPG 

signals were down-sampled to 50 Hz to be concordant 

with the Pulsewatch dataset.  

Signal Preprocessing of the Time-Series 

Data 

1D Time Series Data Preparation 
The left, middle, and right top rows of Fig. 3 show 

representative ECG signals for normal sinus rhythm 

(NSR), AF, and PAC/PVC, respectively. Row 2 of Fig. 1 

shows the corresponding and simultaneously 

measured PPG, filtered with a 6th-order Butterworth 
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bandpass infinite impulse response (IIR) filter (0.5 to 

20 Hz)25 to remove baseline wandering as well as high 

frequency noise. Each filtered PPG was then 

normalized to [0, 1] based on each segment’s 

minimum and maximum values, ensuring uniform 

scaling for subsequent processing. The third row 

shows HRs obtained via ECG and the corresponding 

PPG along with interpolated PPG HR (shown in orange 

lines), which better captures abrupt HR changes than 

simply connecting two consecutive HR points. The 

interpolation method used for extracting PPG HR are 

further described in the next section. 

We included HR as an input to the deep learning 

models, which has several advantages even when 

compared to using millions of PPG waveforms as the 

sole input26. Our prior work has shown that cardiac 

arrhythmias can be accurately discriminated using 

HR3.  As shown in Fig. 3, PPG waveform distortions 

seen especially for PAC/PVC and AF are better 

captured with changes in HR. We also included ACC as 

an input signal to the network models so that they can 

be trained to discriminate between true arrhythmia 

(e.g., AF and PAC/PVC) versus motion artifact induced 

“arrhythmia”.  

The fourth and fifth rows of Fig. 3 show normalized 

PPG heart rates and magnified PPG heart rates, 

respectively, where the fourth row was normalized 

within a [30, 220] BPM range to represent those with 

rapid ventricular response (RVR) (e.g., heart 

rates >100 BPM)25, such as in Fig. 3 (b). The fifth row 

represents each segment’s minimum and maximum 

HR values so that non-RVR rhythms can be 

represented with better dynamic ranges, such as the 

sudden drop of the PPG HR in the NSR segment in Fig. 

3 (a), and the zig-zag shaped HR in the PAC/PVC 

segment in Fig. 3 (b). The tri-axial accelerometers’ 

(ACC) magnitudes in the 0 to 20 m/s2 range (daily 

activity range) are shown in row 6 of Fig. 3.  

Since the accelerometer data in Simband data is in the 

numeric value of gravitational acceleration (e.g., 1 G 

if Simband remains stationary), we converted ACC 

signals of Simband data into the unit of m/s2 by 

multiplying them by 9.8. Since MIMIC-III did not 

record any accelerometer data, we used a constant 

9.8 m/s2 value for the ACC signal. 

Extraction of PPG Heart Rates (HR) 
The HR for each PPG segment was calculated using 

the waveform envelop peak detection (WEPD) 

algorithm, as this approach has been shown to be one 

of the most accurate and can account for various 

arrhythmias in PPG signals25.  

Machine Learning Model Design: 1D-Bi-

GRU Model 
While most prior works used complicated and large 

structured deep learning models for multiclass 

arrhythmia classification using PPG signals, such as 

1D-DenseNets5, 1D-VGG-166, and 2D-DenseNets8, we 

illustrate in this work that a simple and 

computationally lightweight model using 1D bi-

directional Gated Recurrent Unit (1D-bi-GRU)34 can 

reach similar classification performance. This time-

series based model has shown its ability to detect 

motion artifacts from PPG34, and it is also particularly 

well-suited for cardiac arrhythmia classification. GRU 

learns the long-term dependencies in the time series 

better than does the recurrent neural networks (RNN), 

and it also has fewer parameters to capture the 

dynamics of the data and is computationally faster 

than the long short-term memory (LSTM) structure 

due to having only one hidden state, compared to two 

states in LSTM35. The update gate in the GRU replaces 

the complicated forget and input gates of LSTM35.  

As described in 34 and shown in Fig. 1, our input time 

series has a dimension of (L, d) (L=1,500 samples in 

our case, while d is the number of input channels). 

The first layer is a 1D convolutional neural network 

(CNN) to embed the input time series with 4d filters 

with a kernel size of 5, a stride size of 1, and a padding 

size of 2, hence, the output dimension is (L, 4d). The 

second layer is a bi-GRU layer, which combines the 

outputs of two GRU networks (with 128 units each) 

that process the input-embedded information in 

opposite directions, allowing for each sample to 

consider both preceding and proceeding samples. A 

batch normalization is then applied, followed by a 

dropout of 20% to avoid overfitting. Lastly, a dense 

layer combines the output of the previous layers (L, 

256) into a dimension of (L, 3) for predicting three 

classes (0=NSR, 1=AF, and 2=PAC/PVC).  
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Machine Learning Model Training Process 
As shown in Table 1, the number of NSR segments is 

3 and 5 times more than AF and PAC/PVC segments, 

respectively. To prevent over-fitting, up-sampling of 

the minority PAC/PVC and AF classes to the same 

number of segments in the majority NSR class was 

implemented in the training and validation sets to 

ensure unbiased performance in the testing data.  

A batch size of 32 was used, as it showed a faster and 

more stable training validation process compared to 

a batch size of 512. The cross-entropy loss function 

was used for three-class classification. The Adam 

optimizer was used with the same parameters as 

described in reference34. We trained the models with 

a maximum of 200 epochs and selected the best 

model using the minimum validation loss. Early stop 

was used if the validation loss did not improve in 40 

consecutive epochs.  

Evaluation Metrics 
For the performance evaluation of the proposed and 

other compared methods, we calculated five key 

metrics: sensitivity, specificity, precision, negative 

predictive value (NPV), and accuracy in keeping with 

other publications 5–7. The micro-averaged area under 

the receiver operating characteristic (AUROC) curve 

cannot reflect the problem of imbalanced dataset5,6, 

hence, we chose macro-averaged AUROC instead to 

give equal importance to each class. However, we still 

included the micro-averaged AUROC value in Tables 

S1, S2, and S3 for completeness and comparison to 

other works which reported this metric.  

Data availability 
The Pulsewatch data (our segment-level adjudication 

and continuous recording of reference ECG, PPG, and 

ACC) used in this paper will be publicly available for 

downloading on 

https://www.synapse.org/Synapse:syn23565056/. 

The external testing datasets—UMMC Simband 

dataset and the MIMIC-III dataset—are already 

publicly available7. 

Code availability 
The code of our proposed 1D-Bi-GRU model and its 

trained version on different input time series, the 

code of the model training and evaluation on all three 

datasets, as well as our implemented version of the 

two comparison methods6,8 will be publicly available 

to download on https://github.com/Cassey2016. The 

code and documentation for loading Pulsewatch data 

will also be released. 
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