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Abstract:  16 

Up to 40% of elite athletes experience bone stress injuries (BSIs), with 20-30% facing reinjury. 17 

Early identification of runners at high risk of subsequent BSI could improve prevention strategies. 18 

However, the complex etiology and multifactorial risk factors of BSIs makes identifying predictive 19 

risk factors challenging. In a study of 30 female recreational athletes with tibial BSIs, 10 20 

experienced additional BSIs over a 1-year period, prompting investigation of systemic biomarkers 21 

of subsequent BSIs using aptamer-based proteomic technology. We hypothesized that early 22 

proteomic signatures could discriminate runners who experienced subsequent BSIs. 1,500 proteins 23 

related to metabolic, immune, and bone healing pathways were examined. Using supervised 24 

machine learning and genetic programming methods, we analyzed serum protein signatures over 25 

the 1-year monitoring period. Models were also created with clinical metrics, including standard-26 

of-care blood analysis, bone density measures, and health histories.  Protein signatures collected 27 

within three weeks of BSI diagnosis achieved the greatest separation by sparse partial least squares 28 

discriminant analysis (sPLS-DA), clustering single and recurrent BSI individuals with a mean 29 

accuracy of 96 ± 0.02%. Genetic programming models independently verified the presence of 30 

candidate biomarkers, including fumarylacetoacetase, osteopontin, and trypsin-2, which 31 

significantly outperformed clinical metrics. Time-course differential expression analysis 32 

highlighted 112 differentially expressed proteins in individuals with additional BSIs. Gene set 33 

enrichment analysis mapped these proteins to pathways indicating increased fibrin clot formation 34 

and decreased immune signaling in recurrent BSI individuals. These findings provide new insights 35 

into biomarkers and dysregulated protein pathways associated with recurrent BSI and may lead to 36 

new preventative or therapeutic intervention strategies. 37 

One Sentence Summary: Our study identified candidate serum biomarkers to predict subsequent 38 

bone stress injuries in female runners, offering new insights for clinical monitoring and 39 

interventions. 40 

 41 
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Main Text: 43 

INTRODUCTION 44 

Bone stress injuries (BSIs) are common in active individuals, affecting professional and 45 

amateur athletes (1 in 20 individuals) (1, 2) and military personnel undergoing initial military 46 

training (as high as 1 in 10 individuals) (1, 3, 4). For  athletes, BSIs are one of the most burdensome 47 

injuries, with 20-40% of athletes experiencing BSIs during training (5, 6). While BSIs can range 48 

in severity, they may have an outsized financial and psychological impact due to high rates of 49 

additional BSIs and extended absences from sport (7). Methods to improve BSI healing, enhance 50 

early detection, and inform preventative strategies would remove an obstacle to training and 51 

improve athlete well-being. Yet the etiology and pathogenesis of BSIs are multifactorial and 52 

complex, making identification of a single factor leading to subsequent BSIs (new BSI at the same 53 

or different location) and ultimately the prevention of new BSIs challenging. 54 

A history of a prior BSI is one of the strongest risk factors for a recurrent BSI (2, 6). 55 

Diagnosis of these injuries is accomplished through magnetic resonance imaging (MRI), x-ray 56 

based imaging, or clinical symptoms.  The standard of care for return to play is based off absence 57 

of pain with progressive physical activity after an initial period of rest/unloading. For high-risk 58 

BSIs, repeat MRI may also be ordered to ensure healing. However, current biomarkers (8), clinical 59 

assessments [MRI, dual-energy x-ray absorptiometry (DXA), and computed tomography (CT)] (9) 60 

lack reliable sensitivity and specificity in identifying individuals at risk of subsequent BSIs. Return 61 

to sport is highly individualized based on the patient specific risk factors and pain levels with 62 

loading (10). Together, variability in diagnostics, prognostics, risk factors, and treatment regimens 63 

has made the identification of individuals at risk of subsequent BSIs challenging.  64 

Although most runners with BSIs are able to return to activity after rest, the frequency of 65 

subsequent BSIs ranges from 20-30% (11, 12). Recurrence of BSIs at the same or different 66 

locations, are ~3 times greater in women compared to men (5). Recovery from a BSI can range 67 

from 4 weeks to 6 months (9, 12, 13), causing extended removal from sport. While thus far elusive, 68 

identification of a reliable biomarker or biomarker panel, would dramatically improve clinical 69 

decision making for return to activity and post-injury management as well as prevention and 70 

treatment of BSIs. 71 

In our previously reported study, female recreational runners who experienced a 72 

subsequent BSI were younger, more likely to have a history of prior skeletal fracture, and had later 73 

onset of menses and lower serum parathyroid hormone (PTH) levels than female athletes who did 74 

not experience a subsequent BSI (11). Notably, bone density and microarchitecture was largely 75 

similar between athletes who did and did not suffer a recurrent BSI, though women who had a 76 

reinjury had lower cortical bone tissue mineral density (TMD) and estimated stiffness at the distal 77 

tibia (11). Altogether, there was no set of clinical or performance-related factors that distinguished 78 

between individuals who would sustain a subsequent BSI during the one year follow up and those 79 

who would heal uneventfully. This informed our current study with the objective to identify protein 80 

signatures in individuals who experience subsequent BSIs to address these clinical challenges.   81 

 The identification of biomarkers in bone healing is an emerging field, supported by the 82 

development of sophisticated machine learning (ML) models designed to navigate the 83 

complexities of high-dimensional datasets characterized by limited sample sizes, multi-omic 84 

integration, and biological noise (14). Genetic programming-based ML approaches have proven 85 

effective in extracting critical insights from such datasets. Additionally, high-throughput 86 
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proteomic technologies, such as the SOMAscan assay (15–17), enable simultaneous quantification 87 

of over 1,500 proteins from human serum with exceptional precision, enhancing the detection of 88 

biological signals. However, these advancements also amplify the challenge of “small n” datasets, 89 

where the number of variables vastly exceeds the sample size, increasing the risk of overfitting 90 

(18). Despite this, when strong signals exist, it is possible to identify highly informative feature 91 

sets which are predictive in the clinical context. 92 

Our study leverages established machine learning and genetic programming models to 93 

interrogate both linear and non-linear relationships within high-resolution proteomic data. By 94 

combining advanced proteomic profiling with ML, we provide critical insights into diagnostics, 95 

early intervention, and personalized risk assessment in sports medicine. Furthermore, our dataset 96 

represents the most comprehensive serum proteomic analysis for BSI studies to date, illuminating 97 

dysregulated biological pathways in an underexplored population of female athletes. 98 

RESULTS  99 

Study Cohort 100 

Utilizing samples serum from our previous study (11), we sought to characterize the 101 

proteomic signatures of individuals with and without additional BSI’s over a one-year recovery 102 

period. The original study enrolled female recreational athletes (n=30) (Fig. 1) from the local 103 

community who were diagnosed with a tibial BSI with MRI Grading of 2-4/4 by Fredericson 104 

Criteria (11). Patients were enrolled within 3 weeks of initial BSI MRI diagnosis. At enrollment, 105 

areal bone mineral density (aBMD) of the hip and spine were assessed by DXA, while volumetric 106 

bone mineral density (vBMD) and bone microarchitecture at the distal tibia were measured via 107 

high-resolution peripheral quantitative computed tomography (HR-pQCT). HR-pQCT scans were 108 

also collected at each follow up visit, including 6, 12, 24, and 52 weeks after the initial enrollment. 109 

Additionally, clinical metrics were collected, including laboratory blood values, pain assessments, 110 

physical activity assessments, menstrual status, and health and fracture history (full list in Data 111 

File S1, data previously reported (11)). Of the 30-runner cohort, 10 experienced additional BSIs 112 

at times ranging from 6-52 weeks after initial diagnosis (11). The majority occurred between weeks 113 

12 and 52 (9 out of 10 additional BSIs) (Table 1). One individual had a third BSI event in the 24-114 

to-52-week period. Only one additional BSI was in the same location as the first BSI. For all 115 

individuals, serum was analyzed retrospectively for protein signatures of additional BSI (full list 116 

in Data file S2). 117 

Table 1. Summary of additional BSI events during the 52 weeks of monitoring. A total 118 

of 10 of 30 participants experienced a 2nd BSI, with one individual experiencing a 3rd BSI. 119 

Only one BSI was at the same location as the original BSI. Data previously reported in 120 

Popp, et al., 2019. 121 
     

 
Time Window 2nd BSI 3rd BSI 

 
 Enrollment - 6 weeks 1    
 6 - 12 weeks 0    
 12-24 weeks 5    
 24-52 weeks 4 1  

 Total: 

10 Additional 

BSIs       
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 122 

Figure 1: Study design and patient attrition. (A) Female recreational athletes were 123 

recruited to participate in an observational study following bone stress injury (BSI) diagnosis 124 

with an MRI Fredericson grade 2-4/4. Patient attrition and visit completion are noted. Figure 125 

adapted from Popp, et al. 2019. (B) All patients were enrolled within 3 weeks of diagnosis 126 

of a tibial BSI and monitored for metrics such as bone morphometry changes, physical 127 

activity, and pain. Serum was collected and originally analyzed for standard of care 128 

laboratory values. This study re-analyzed the serum for 1,500 proteins across all individuals 129 

and times. Of the 30 individuals, 20 went on to recover without additional injury. 10 130 

individuals experienced a second BSI, with one individual experiencing a third BSI over the 131 

one year follow up (Table 1). Created in  https://BioRender.com 132 

 133 
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Additional and single BSI groups can be identified based on early protein signatures at time 135 

of enrollment and before any additional BSI events. 136 

The sparse partial least squares discriminant analysis sPLS-DA model was chosen to 137 

identify key features from the enrollment visit (visit 1, < 3 weeks after initial BSI diagnosis), 138 

separating additional BSI individuals from single BSI individuals. Models were first applied to the 139 

clinical outcomes (11). Separation was not clear for the clinical data, with the top-ten features 140 

identified as age at menses onset, cortical TMD (Ct. TMD), compressive stiffness (Comp. Stiff.), 141 

age, failure load (F. Load), and prior number of fractures (Prior FX) (Fig. 2A&D), all of which 142 

were previously reported (11) to be different between additional and single BSI groups. Serum 143 

procollagen type I N-propeptide (P1NP) and serum osteocalcin were also included in the top-ten 144 

features (Fig. 2D, Data File S3). These serum metrics were measured using standard-of-care 145 

clinical laboratory assays in the previous study (11), and are different than the aptamer based serum 146 

proteomic data. Due to the small sample size, feature importance estimation via bootstrapping was 147 

conducted on the sPLS-DA models. The bootstrapping method included repeated removal of one 148 

participant and recording of the top model features. Stable features, identified as those appearing 149 

in at least 80% of models following bootstrapping (Data File S4), were then evaluated for 150 

predictive performance via Receiver Operating Characteristic (ROC) analysis. Due to the small 151 

sample size and class imbalance in the data, leave one out cross validation (LOOCV) was applied. 152 

For the clinical data, the features selected were medical history (age, age at menses onset, prior 153 

history of fracture), tibia morphology via HR-pQCT (CtTMD, stiffness and strength), and serum 154 

markers of bone metabolism (P1NP, tartrate-resistant acid phosphatase 5b (TRAP5b)). The area 155 

under the curve (AUC) for mean ROC curve indicated an average accuracy of 79% ± 0.08 across 156 

various predictive models including Logistic Regression, Random Forest, and CatBoost (Fig. 2G). 157 

The average sensitivity was 63.3% and average specificity was 76.7% (Fig. S1A). The positive 158 

predictive value was 57.6% and negative predictive value was 80.7% (Fig. S1A). 159 

Similar models were generated for the serum proteomic data. sPLS-DA was performed on 160 

serum proteomic data from the enrollment visit. Ten proteins were identified which segregated the 161 

single vs. additional BSI groups (Fig. 2B). Of these, fumarylacetoacetase (FAAA), trypsin-2, and 162 

adiponectin were identified with the highest coefficients and greatest influence on the models to 163 

discriminate between single and additional BSIs (Fig. 2E). Less influential, but still important 164 

features included soluble vascular endothelial growth factor receptor 2 (VEGF sR2), tumor 165 

necrosis factor (TNF) receptor superfamily member 1B (TNF sR-II), osteopontin (OPN), telomeric 166 

repeat binding factor 1 (TERF1), Hsp70-binding protein 1 (HPBPI), Bcl2-associated agonist of 167 

cell death (BAD), and Interferon-induced helicase C domain-containing protein 1 (IFIH1) (Data 168 

File S3). Features present in at least 80% of models were FAAA, tyrpsin-2, adiponectin, OPN, 169 

TNF sR-II, VEGF sR2 (Data File S4). These proteins were then evaluated with an ROC analysis 170 

and LOOCV. The AUC for the mean ROC curve indicated an average accuracy of 96% ± 0.02 171 

across various predictive models including Logistic Regression, Random Forest, and CatBoost 172 

(Fig. 2H). The average sensitivity was 80.0% and average specificity was 98.3% (Fig. S1B). The 173 

positive predictive value was 96.0% and negative predictive value was 90.8% Fig. S1B). The 174 

proteomic data models performed better (mean AUC ± S.E.) than clinical data (p = 0.012, one-175 

way ANOVA). 176 

To determine if combining datasets would improve accuracy of the models, we then 177 

repeated the sPLS-DA models with both the clinical and the proteomic datasets. Combined 178 

datasets slightly increased separation between the two patient populations (Fig. 2C). Yet, of the 179 
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top-10 variables, only one clinical metric (age at onset of menses) was included (Fig. 2F, Data File 180 

S3). Features present in at least 80% of models included FAAA, trypsin 2, age at menses onset, 181 

adiponectin, TNF sR-II, and OPN (Data File S4). These six features were then evaluated with a 182 

ROC analysis and LOOCV. The AUC for the mean ROC curve indicated an average accuracy of 183 

95% ± 0.02 across various predictive models including Logistic Regression, Random Forest, and 184 

CatBoost (Fig. 2I). The average sensitivity was 80.0% and average specificity was 93.3% (Fig. 185 

S1C). The positive predictive value was 85.7% and the negative predictive value was 90.3% (Fig. 186 

S1C). While the average accuracy was similar between the proteomic data model and the combined 187 

data model, the combined models had a small reduction in sensitivity with increased specificity. 188 

The combined models performed better (mean AUC ± S.E.) than clinical data (p = 0.017, one-way 189 

ANOVA), but not better than proteomic data (p = 0.97, one-way ANOVA).  190 

  191 
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Figure 2: Bone stress injury (BSI) reinjury classification can be identified from 192 

proteomic data within 3 weeks of initial BSI. (A) Clinical data were used to separate 193 

additional from single BSI individuals with a sparse partial least squares discriminant 194 

analysis (sPLS-DA) model but yielded no clear separation. (B) Proteomic signatures were 195 

then tested in a similar model, increasing separation. (C) Combining both clinical and 196 

proteomic data marginally improves separation. (D) The top latent variables for the sPLS-197 

DA model are shown for clinical data, (E) proteomic data, and (F) the combined clinical 198 

and proteomic data. (G) The most frequent variables identified by feature importance 199 

estimation via bootstrapping were input into the sPLS-DA models and tested in predictive 200 

models, including Logistic Regression, Random Forest, and CatBoost, each with leave 201 

one out cross validation (LOOCV). Receiver operating characteristic (ROC) curves are 202 

shown with a mean accuracy of 79% ± 0.08 for clinical data, (H) 96% ± 0.02 for proteomic 203 

data, and (I) 95% ± 0.02 for the combined data. Shaded regions (A-C) represent the 95% 204 

confidence interval. AUC values are mean ± S.E. 205 
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Genetic programming models further support identification of candidate biomarkers of 206 

subsequent BSIs. 207 

Genetic programming has become a useful tool to generate predictive models in biological 208 

datasets where both linear and non-linear relationships may occur simultaneously (19, 20). We 209 

thus explored if linear and non-linear models would improve the predictive accuracy of both the 210 

proteomic and clinical datasets using Evolved Analytics DataModeler software. Thousands of 211 

models are generated across at least 30 successive generations, in which “fit” models are 212 

selectively bred. Finally, models are rated based on accuracy and complexity, and those with 213 

optimal complexity/accuracy tradeoffs are aggregated into a model ensemble. Complexity refers 214 

to a measure of numerical operations required to fit the data into either the additional or single BSI 215 

group. Lower complexity is desirable, with a complexity score > 80 considered too complex for 216 

our dataset based on sample size. Therefore, we sought to evaluate the complexity and accuracy 217 

of produced models for each of our datasets. Resultant model ensembles were used to predict a 218 

binary outcome measure: single vs. additional BSI. This approach allowed for an independent 219 

statistical validation of candidate biomarkers by utilizing a completely independent machine 220 

learning approach as compared to the linear models used in sPLS-DA. An additional advantage of 221 

genetic programing is that candidate equations that are used to generate the model ensembles are 222 

displayed as an output, showing the algorithmic relationship between features and enhancing 223 

interpretability.  224 

Datasets were compared for accuracy and error including ‘Clinical Data, ‘Proteomic Data’, 225 

or ‘Combined Data’ with the same datasets tested in the sPLS-DA models. Ten candidate models 226 

were selected from the thousands of models generated per category. Candidate models were 227 

restricted to 4 variables, which is the recommended number of variables to allow for at least a 5:1 228 

ratio of datapoints (individuals) to support selected variables (Fig. 3A-C). The first step in 229 

evaluating genetic programming model ensembles (collections of models) is to inspect if model 230 

ensembles exhibit a 'knee' shaped Pareto plot, which signifies a balance between minimizing error 231 

and avoiding unnecessary complexity. Minimizing error with balance complexity is a desirable 232 

trait in all models but is especially important with small datasets. The 'knee' shape was notably 233 

absent in models relying solely on clinical data (Fig. 3A) suggesting that accuracy could not be 234 

achieved without undue complexity and therefore risk of overfitting. Additionally, accuracy in this 235 

context signifies confidence in a binary classification (e.g., single or additional BSI), rather than 236 

estimate of a continuous variable. 237 

Genetic programming models for the clinical metrics had the poorest performance, with 238 

resultant 10-model ensemble (Table S1) yielding relatively low accuracy (R2 = 78%) and high 239 

error rates for single BSI predictions (17 ± 14%) and for additional BSI predictions (29 ± 13%) 240 

across the selected 10 best performing models (Fig. 3D&E). Substantial variability between model 241 

ensembles was also present in clinical metrics alone (Fig. 3D). For the clinical models, the top-5 242 

most frequently occurring variables across the model ensemble included tibial length (40%), 243 

absolute lymphocyte count (40%), age at menses onset (40%), serum levels of 25 (OH) vitamin D 244 

(30%), and posteroanterior lumbar spine bone mineral content (PA-BMC) by DXA (30%). 245 

Furthermore, no variable was present in more than 50% of the selected models (Fig. 3F). The 246 

complexity scores ranged from 35-205, achieving 15.2-80% accuracy, respectively. A complexity 247 

score of 205 is extremely high and suggestive of overfitting. This ultimately led to highly complex 248 

models with considerable variability (Fig. 3E). Most of the resulting models were linear, with 249 

subsets of models being non-linear for the variables PA-BMD and PA-BMC (Fig. S2) 250 
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These results are in contrast with the model ensemble using proteomic data, which 251 

demonstrated higher accuracy (R2 = 91.6%), mean complexity score of 70.3, and much lower 252 

average error rates for single BSI predictions (3 ± 8%) and for additional BSI predictions (8 ± 253 

14%) across the selected 10 best performing models (Fig. 3D&E, Table S2). The expected ‘knee’ 254 

shape is present (Fig. 3B) in the proteomic models, allowing for exploration of a variety of models 255 

with balanced accuracy and complexity. For the proteomic models, the top-5 most frequently 256 

occurring variables across the models included FAAA (100%), OPN (100%), soluble leptin 257 

receptor (LEPR) (90%), Serpin B5 (60%), and trypsin-2 (40%) (Fig. 3F). From the variable 258 

distribution analysis of 2,435 generated models, a frequency of 60-100% in the resultant model 259 

ensemble underscores the predictiveness and consistency of FAAA, OPN, LEPR, and Serpin B5 260 

compared to clinical data, which did not have a single variable represented in more than 50% of 261 

models. Resultant models were primarily linear with non-linear models for OPN and LEPR (Fig. 262 

S3) 263 

Combining both clinical and proteomic data yielded the highest accuracy (R2 = 97%) and 264 

lowest error rates for single BSI predictions (3 ± 8%) and for additional BSI predictions (5 ± 9%), 265 

with a modest mean complexity score (63.2) across the selected 11 best performing models (Fig. 266 

3D&E, Table S3). Again, the ‘knee’ shape is present in the model ensembles (Fig. 3C). When 267 

clinical and proteomic data were combined, history of anorexia replaced LEPR as the third most 268 

common frequent variable (67% of models) in the combined ensembles, yet history of anorexia 269 

had not previously been identified in the clinical data models (Fig. 3F). Of note, only two 270 

individuals had a history of anorexia nervosa. For the combined models, the top-5 most frequently 271 

occurring variables across the selected models included FAAA (100%), OPN (100%), history of 272 

anorexia nervosa (72.7%), trypsin-2 (54.5%), red blood cell distribution width (RDW) (27.3%) 273 

(Fig. 3F). Resultant models were primarily linear with non-linear models for FAAA and OPN (Fig. 274 

S4) 275 
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276 
Figure 3: Genetic programming models were evaluated for accuracy and complexity 277 

using clinical, proteomic, and combined datasets. Models were generated using genetic 278 

programming to create candidate models and evaluate complexity and accuracy. The top ten 279 

models are highlighted in red and blue circles. (A) Clinical data produced minimal models 280 

that were both accurate and complex, noted by the absences of the ‘knee’ configuration in 281 

the plot. (B) Proteomic data produced the characteristic ‘knee’ shape, allowing for 282 

exploration of features that generate highly accurate and minimally complex models. (E) 283 

Model accuracy was compared as well as (F) model complexity, with combined datasets 284 

performing best. (D) Variable presence in the model ensembles were compared between 285 

clinical, proteomic, and combined datasets. Clinical data lacked variables present in >50% 286 

of the generate models. In contrast, proteomic data produced 4 variables present in > 50% of 287 

models with FAAA appearing in 100% of models. Combined datasets performed similarly 288 

with the inclusion of a history of anorexia as the top feature from the clinical dataset. 289 

  290 
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Candidate biomarkers have a temporal expression pattern in additional vs. single BSI 291 

individuals. 292 

The top protein features from the sPLS-DA and genetic programming models were 293 

analyzed over the one-year follow-up including baseline, 6, 12, 24, and 52 weeks. Exploring 294 

candidate biomarker proteins across sPLS-DA models and genetic programming, we investigated 295 

the temporal patterns of FAAA, trypsin-2, and osteopontin. FAAA levels were higher in 296 

individuals who experienced additional BSIs compared to those with a single BSI at enrollment, 297 

week 6, and week 24 (enrollment, p = 0.004; week 6, p = 0.03; week 24, p = 0.05) (Fig. 4A). By 298 

contrast, Trypsin-2 levels were consistently lower in individuals with additional BSIs compared to 299 

those with a single BSI at all examined timepoints (enrollment, p = 0.002; week 6, p = 0.02; week 300 

12, p = 0.003; week 24, p = 0.01; week 52, p = 0.003) (Fig. 4B). OPN levels were higher in 301 

individuals with additional BSIs compared to those with a single BSI at enrollment and week 24 302 

(enrollment, p = 0.01; week 24, p = 0.005) (Fig. 4B). Given that the occurrence of additional BSIs 303 

varied in timing among individuals, we were unable to identify the FAAA, trypsin-2, or OPN 304 

levels that corresponded to the timing of the second or third BSI onset.  305 

We further explored the time dependent differences in key features from the sPLS-DA 306 

models, specifically characterizing VEGF sR2, TNF sR-II, and adiponectin (Fig. D-F). VEGF sR2 307 

levels were higher in individuals who experienced additional BSIs compared to those with a single 308 

BSI at enrollment, week 6, and week 24 (enrollment, p = 0.01; week 6, p = 0.04; week 24, p = 309 

0.05) (Fig. 4D). By contrast, TNF sRII levels were consistently lower in individuals with additional 310 

BSIs compared to those with a single BSI at all examined timepoints (enrollment, p = 0.02; week 311 

6, p = 0.01; week 12, p = 0.003; week 24, p = 0.01; week 52, p = 0.0002) (Fig. 4E). Adiponectin 312 

levels were lower in individuals with additional BSIs compared to those with a single BSI at 313 

enrollment and week 24 (enrollment, p = 0.004; week 24, p = 0.05) (Fig. 4F). Again, the protein 314 

levels were most different between groups at enrollment and at week 24, immediately following 3 315 

additional BSIs events (Table 1). Yet, proteomic expression of FAAA and Trypsin-2 showed 316 

sustained temporal patterns in proteomic levels between single and additional BSI groups (Fig. 317 

4A&B). Notably, week 24 was different for FAAA, trypsin-2 and OPN, which followed 5 of the 318 

additional BSI events and preceded 5 more BSIs (Table 1), suggesting that these proteins may be 319 

elevated following or prior to subsequent BSI. 320 

 321 
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Figure 4: Serum proteins represented in predictive models displayed distinct 322 

expression patterns over time between additional and single bone stress injury (BSI) 323 

groups. (A-C) Proteins identified in both sparse partial least squares discriminant analysis 324 

(sPLS-DA) and genetic programming models, such as fumarylacetoacetase (FAAA), 325 

trypsin-2, and osteopontin (OPN), exhibited temporal expression differences. (D-F) 326 

Proteins identified only in the sPLS-DA model, including vascular endothelial growth 327 

factor receptor 2 (VEGF sR2), tumor necrosis factor receptor superfamily member 1B 328 

(TNF sR-II), and adiponectin, also showed significant temporal variation. Data are 329 

presented as mean ± SEM (n = 10 for additional BSI, n = 20 for single BSI, analyzed using 330 

linear mixed-effects model (*p < 0.05, **p < 0.001). 331 

  332 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.03.24318372doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318372
http://creativecommons.org/licenses/by-nc-nd/4.0/


Additional BSI was associated with early dysregulation in proteins involved in blood clotting 333 

and immune function 334 

While proteomic analysis was useful for the biomarker identification and risk 335 

classification, biomarkers alone do not give insights into biological pathways involved in 336 

additional BSI risk. Therefore, functional pathways altered between additional and single BSI 337 

groups were assessed through a gene set enrichment analysis (21). Proteins were first analyzed for 338 

differential expression between groups while blocking for time using the ExpressAnalyst package 339 

(22) based on the limma package (23) in R (R 4.4.1). This analysis revealed 112 significantly 340 

different proteins expressed between additional and single BSI individuals [log2 FC > 0.5, 341 

Benjamini-Hochberg false discovery rate (FDR) adjusted p-value < 0.05] (Data File S5). Notably, 342 

76 of these genes were found to be upregulated, while 36 were downregulated, indicating 343 

substantial biological divergence that corresponds to subsequent BSIs (Fig. 5A). Of these proteins, 344 

several key proteins identified in sPLS-DA and genetic programming models were also 345 

significantly differentially expressed proteins, including FAAA, trypsin-2, OPN, TNFs RII, VEGF 346 

sR2, LEPR, and adiponectin (Fig. 5A). 347 

To enable Gene Set Enrichment Analysis (GSEA) with proteins, the initial panel of 1,500 348 

proteins were mapped to 1,207 corresponding unique genes via EntrezID to enable the analysis 349 

through established gene network databases. Dysregulated pathways were identified in individuals 350 

with an additional BSI as compared to a single BSI. Downregulated pathways in the additional v. 351 

single BSI groups included immune system function, adaptive and innate immunity, interleukin-352 

10 (IL-10) signaling, neutrophil degranulation, and signaling by interleukins (Fig. 5C). 353 

Significantly upregulated pathways in the additional v. single BSI included formation of fibrin 354 

clot, intrinsic pathway of fibrin clot formation, and hemostasis (Fig. 5C). A full list can be found 355 

in the supplement (Data File S6). Of the significant pathways, six are primarily associated with 356 

the immune system, while the remaining three are linked to blood clotting processes. Formation 357 

of fibrin clot (clotting cascade) (R-HSA-140877) included protein C (PROC), a2-macroglobulin 358 

(A2M), kallikrein B1 (KLKB1), thrombin (F2), and coagulation factor VII (F7) (Fig. 5B). Immune 359 

system (R-HAS-168256) included 24 immune system related proteins, notably trypsin-2 and TNF 360 

sRII, which were present in the sPLS-DA models (Fig. 5B). 361 

Because blood clotting pathways were significantly upregulated in additional BSI 362 

individuals, we explored if type of contraceptive (combined oral, progestin-releasing IUD, 363 

previously history of combined oral, or never used) contained any overlap with the protein profile 364 

identified in additional BSI individuals. Hormonal contraceptives may influence blood clotting 365 

pathways (24) as well as bone density and metabolism (25) and may be a confounding factor in 366 

this study. However, our sPLS-DA analysis of protein signatures relating to type of contraceptive 367 

did not contain overlapping proteins with the dysregulated proteins in the additional BSI 368 

individuals (Fig. S4 A&C). We also explored if MRI grade was associated with the dysregulated 369 

proteins in this study but found no overlap in MRI grade proteins and BSI risk proteins (Fig. S4 370 

B&D).  371 
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 372 

Figure 5: Individuals with additional bone stress injury (BSI) show increased blood 373 

clotting and decreased immune system proteins over time. (A) Volcano plot of 374 

differentially expressed serum proteins up- or downregulated in additional BSI v. single 375 

BSI individuals. (B) Heatmap of proteins from pathways including “formation of fibrin 376 

clot” and “immune system” that were identified in (C) a gene set enrichment analysis of 377 

differentially expressed proteins in additional BSI v. single BSI individuals. All data are 378 

aggregated per individual over 52 weeks and analyzed, blocking for time, for both the 379 

differential expression and gene set enrichment analysis (GSEA) analysis. 380 
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DISCUSSION  382 

Pathogenesis of BSIs is both complex and remains poorly understood. Biological and 383 

biomechanical factors contribute to subsequent BSIs, but clear clinical risk indicators are lacking. 384 

This study aimed to identify protein signatures in individuals who experience subsequent BSIs to 385 

address these clinical challenges. We conducted an in-depth proteomic analysis of female athletes 386 

with and without recurrent BSI. Our findings revealed that subsequent BSI risk can be predicted 387 

by early serum proteomic profiles. Using multivariate modeling, a sparse partial least squares 388 

discriminant analysis (sPLS-DA) model identified six candidate biomarkers (FAAA, trypsin-2, 389 

OPN, TNF sR-II, and VEGF sR2) with an accuracy of 91-96% in predicting recurrent BSI risk 390 

category from enrollment proteins alone. Analysis of protein changes over time revealed 112 391 

significantly different proteins, mapped to biological pathways associated with decreased immune 392 

system function and increased blood clotting pathways.  393 

Genetic programming further validated the candidate biomarkers, identifying FAAA as a 394 

key predictor of subsequent BSIs. Notably, clinical metrics alone were insufficient to distinguish 395 

between single and recurrent BSI groups. While combining clinical metrics with proteomic data 396 

slightly enhanced genetic programming models, combined data did not outperform proteomic data 397 

in sPLS-DA models, demonstrating the superior predictive power of proteomic information. This 398 

integration of high-resolution proteomic data enabled the application of standard machine learning 399 

methods on a relatively small dataset, surfacing a highly informative feature set far surpassing the 400 

predictive value of standard clinical data. Our study not only provides the most comprehensive 401 

proteomic dataset for BSIs in the underexplored population of female athletes but also identifies 402 

candidate biomarkers for recurrent BSIs, offering valuable insights for targeted therapeutic 403 

interventions and improved clinical prediction strategies. 404 

Multivariate linear regression models through sPLS-DA identified FAAA as the marker 405 

(at enrollment, < 3 weeks of initial BSI) that most positively correlated with additional BSI and 406 

Trypsin-2 as the marker (at all time points) most negatively correlated. These proteins have not 407 

been previously identified as biomarkers for BSI risk, and their role in bone health is not well 408 

understood.  FAAA has been implicated as a serum biomarker for idiosyncratic drug-induced liver 409 

injury when increased (26, 27) and as a urine biomarker for acute hypercoagulable states in 410 

preclinical models when decreased (28, 29). In drug-induced liver inflammation, FAAA positively 411 

correlates with alanine aminotransferase (ALT) (26). While ALT was not assessed in our clinical 412 

metrics, ALT was measured via our Somamer panel and was found to positively correlate with 413 

FAAA levels (Fig. S5, Adj. R2 = 0.19, p < 0.0001), yet no overt liver diseases were reported in 414 

patient medical histories. Alcohol consumption was also not evaluated in this study. Participants 415 

were taking a variety of medications, precluding any clear correlations with potential drug-induced 416 

liver injury. Another consideration is the use of athletic or herbal supplements, which can be 417 

associated with liver injury (30) but are difficult to track due to poor reporting and labeling. 418 

Although we did not adequately assess supplement intake in this study cohort, other studies have 419 

shown that runners with a history of BSI report more frequent supplement intake (31) and athletes 420 

generally take more types of supplements than non-athletes, with elite athletes having the highest 421 

rate of supplement use (32, 33). In the additional BSI group, the proteins FAAA, aldehyde 422 

dehydrogenase 1 family member B1 (ALDH1B1), and cytochrome P450 family 3 subfamily A 423 

member 4 (CYP3A4) were all upregulated together and relate to the functional pathway of 424 

“metabolism” (R-HSA-1430728). Both ALDH1B1 and CYP3A4 are liver enzymes that regulate 425 

drug metabolism (34) and alcohol metabolism(35). Therefore, elevated liver metabolism enzymes 426 
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such as FAAA, ALDH1B1, and CYP3A4 suggest a potential challenge to the liver that may be 427 

due to supplement use or alcohol intake. Liver health status should be further considered for those 428 

at risk of recurrent BSI. 429 

Trypsin-2, also known as PRSS2 or tumor-associated trypsin, has been implicated as a 430 

biomarker in pancreatitis (36), ulcerative colitis (37), and diabetes (38), as well as the progression 431 

of tumor growth by immunosuppression via interaction with myeloid cells (39). Only recently has 432 

trypsin-2 been described in human bone marrow, specifically in the hematopoietic stem cell niche 433 

and highly expressed in early, undifferentiated hematopoietic progenitor cells and mobilized 434 

CD34+ hematopoietic cells (40). However, understanding of the role of trypsin-2 in the bone 435 

marrow is limited to the maintenance of the stem cell niche by complex diffusion interaction in 436 

the local microenvironments (40), not serum accumulation and potential endocrine signaling 437 

within bone marrow. Here we observed that trypsin-2 levels were the strongest positive correlative 438 

variable in the sPLS-DA models and the fourth most frequent variable in genetic program models 439 

of combined proteomic and clinical data. Trypsin-2 was increased in the single BSI group 440 

compared to the additional BSI group at all time points. Only trypsin-2 and TNF sRII were found 441 

to be different at all timepoints in the additional BSI group. The diminished trypsin-2 in the 442 

additional BSI group corresponds with a reduction in immune pathways, including neutrophil 443 

degranulation and innate immune system function, both of which contain trypsin-2 within the 444 

pathway categories. These data highlight that elevated serum trypsin-2 levels are positively 445 

correlated with successful BSI recovery at early time points and throughout the time course of 446 

healing. Diminished trypsin-2 was accompanied by immunosuppressive pathways, suggesting a 447 

role for diminished innate immune signaling in those with additional BSIs. A limitation of the 448 

interpretation of the absolute levels of trypsin-2 is that this study did not include an uninjured 449 

control group, so we cannot determine how the level of trypsin-2 relates to other health conditions 450 

in which it has been identified as a biomarker. 451 

Osteopontin (OPN) was identified as the second most frequent variable in genetic 452 

programming models for both the proteomic and combined models, occurring in 100% of the 453 

models selected in the model ensemble. Yet, OPN was only a modest negative predictor of 454 

additional BSI in the sPLS-DA models. OPN also did not appear in any of the differentially 455 

expressed pathways but was increased in additional BSI individuals at enrollment and at 24 weeks 456 

post injury. OPN was found to be elevated in severe liver dysfunction (41), as well as with severe 457 

inflammatory injury and sepsis (42). Elevated levels of OPN are associated with unfavorable 458 

prognoses, including mortality, in critically ill patients with SARS-CoV-2 (COVID19) (43). 459 

Broadly, OPN is known to have an inflammatory role, and is associated with other pro-460 

inflammatory cytokines, such as C-reactive protein (CRP) and interleukin-6 (IL-6), all of which 461 

have been shown to increase following bone trauma (44). We also observed in our time course 462 

analysis that OPN peaked in the additional BSI group both at the enrollment visit (within 3 weeks 463 

of BSI diagnosis) and again at week 24. This OPN 24-week peak was after an additional BSI in 5 464 

individuals and preceded an additional BSI in 5 others. The elevated levels of OPN and other 465 

proteins, at both baseline and week 24 (in and around the additional BSI events), strengthens the 466 

evidence that such proteins correspond to injury-related biomarkers. Overall, elevated OPN in the 467 

additional BSI group suggests a chronic inflammatory condition. 468 

While immunosuppressive markers are known to correlate to increased fracture risk, this 469 

is primarily understood for comorbidities such as organ transplantation and steroid use (45). 470 

Similar mechanisms in otherwise healthy populations have not been well studied. However, 471 
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intense exercise and overtraining can cause a diminished immune response (46) and intense 472 

exercise produces a robust inflammatory response (47), highlighting a knowledge gap in the role 473 

of the immune system in bone quality in athletes. Our pathway analysis for proteins up- or down-474 

regulated with additional BSI risk indicates an impaired or suppressed immune response, which 475 

may delay or complicate the recovery process following an injury. In multiple patient studies 476 

involving traumatic bone injuries, sustained immune suppression has corresponded to impaired 477 

bone healing (48). Of note, IP-10 (also known as C-X-C motif chemokine 10 (CXCL10)), was 478 

decreased in the additional BSI group in our time-independent analysis. We have previously shown 479 

that serum levels of IP-10 correlated with poor bone healing outcomes in preclinical models of 480 

severe muscle and bone trauma with cellular evidence of prolonged immunosuppression (14).  481 

We observed biologically upregulated pathways related to fibrin clot formation, the 482 

intrinsic clotting cascade, and hemostasis. Intense exercise is known to induce both coagulation 483 

and fibrinolysis, a process typically balanced under normal conditions (49). In our study, we noted 484 

an increase in thrombin (F2), a key regulator of hemostasis (50). This increase was not associated 485 

with the severity of fractures, as thrombin was not associated with the sPLS-DA for MRI grade 486 

(Fig. S4 B&D). While oral contraceptives are thought to create a clinically prothrombotic state, 487 

affecting both coagulation and fibrinolysis, we found no association between contraceptive use 488 

and blood clotting proteins (Fig. S4 A&C). Elevated proteins within the fibrin clot formation 489 

pathways included intrinsic clotting factors, such as KLKB1 and PROC, and extrinsic clotting 490 

factors, including coagulation F7, F2, and A2M. The pro-coagulation proteins were elevated 491 

alongside inhibitory proteins. Therefore, without functional coagulation assessment, our 492 

conclusions are limited to the elevation of proteins attributed to blood clot formation and 493 

hemostasis pathways. These findings are consistent with other studies of athletes undergoing 494 

intense exercise training (47, 49, 51, 52). In the present study, we did not observe differences in 495 

training level between the single and additional BSI groups (11). Therefore, elevated pro-496 

coagulatory proteins suggest that the additional BSI group might be more affected by exercise-497 

related coagulation changes, thereby increasing their risk of subsequent BSIs. 498 

Surprisingly, none of the clinical bone morphometric data were determined to be frequent 499 

variables in our combined clinical and proteomic models corresponding to additional BSI risk. 500 

Variables appear more frequently in the model ensembles if the features hold higher influence on 501 

predictive models and provide generalizability to the larger dataset. In the original study, we 502 

observed a decrease in cortical TMD and a decrease in finite element model analysis (FEA) 503 

stiffness from the distal tibia in the additional vs. single BSI groups (11). Tibial cortical TMD 504 

appeared in the sPLS-DA clinical models as well as tibial cortical vBMD, both of which were 505 

acquired using HR-pQCT. Whereas in genetic programming models, the DXA-based lumbar spine 506 

BMC appeared in the clinical model ensemble. Interestingly, in the combined model ensemble, 507 

DXA-based BMC was replaced by RDW, which has previously been negatively correlated to 508 

DXA-based BMD and increased risk of fracture (53, 54). Neither the genetic programming nor 509 

sPLS-DA clinical models were highly predictive for clinical data alone. Tibial length was included 510 

as the most frequent variable in the genetic program models of clinical metrics alone, but frequency 511 

in the models was 40% and comparable to frequency of other top variables, including absolute 512 

lymphocyte count (40%), vitamin D (30%), and age at menses onset (30%). Together, this implies 513 

that the clinical data variable are present in a relatively flat data plane are likely overfitted in our 514 

relatively small dataset. We would expect that if the clinical models were tested on a new dataset, 515 

they may not perform well in stark contrast to the proteomic datasets. 516 
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When proteomic and clinical data were combined, history of anorexia nervosa emerged as 517 

the third most frequent variable, present in 72.7% of the models, replacing LEPR. This finding 518 

suggests that both a history of anorexia nervosa and LEPR protein levels may be interchangeable 519 

in our models in relation to BSI outcomes. Low leptin levels are consistently noted in those with 520 

low weight anorexia nervosa (55–57). However, given that only five individuals in our study had 521 

a known history of anorexia, a follow up study would be needed to specifically evaluate the role 522 

of anorexia in our recurrent BSI models in a larger sample size. Problematic or prolonged low 523 

energy availability (LEA) from an eating disorder or disordered eating can lead to Relative Energy 524 

Deficiency in Sport (REDs), a syndrome in which bone quality and health are often impaired (58). 525 

LEA is major risk factor for BSI occurrence (59), so our finding of a history of anorexia being a 526 

positive predictor of subsequent BSI is not surprising. While no participants had a known current 527 

eating disorder throughout the study, it is plausible that they still had subclinical disordered eating 528 

or that there are lasting effects of a past anorexia diagnosis on metabolic function or lifestyle. 529 

Therefore, in our study, a history of anorexia may be supplemented in the models to simplify and 530 

improve the accuracy of the genetic programming models by replacing several individual proteins. 531 

Our study achieved ~97% accuracy in predicting additional BSIs using sPLS-DA and 532 

genetic programming models with primarily proteomic data and effectively identified candidate 533 

biomarkers in relatively small biological datasets. This highlights how high-resolution proteomic 534 

data can enhance the predictive power of models through the synergistic effects of standard 535 

machine learning models with the appropriate dataset.  However, evaluating model performance 536 

solely on error rates may not fully assess effectiveness. Genetic programming suggests that 537 

increased complexity can lead to less generalizable models, making it crucial to examine model 538 

distributions within the ensemble. Ideally, ensembles should exhibit a 'knee' shape in their context 539 

plot, balancing error minimization and complexity. In our study, this 'knee' configuration was 540 

absent in models relying solely on clinical metrics, indicating inefficiencies and potential 541 

overfitting. Conversely, proteomic models showed lower error rates and retained the 'knee' shape. 542 

This demonstrates that integrating detailed biomolecular profiles enhances the robustness and 543 

accuracy of predictive models in clinical applications.  544 

Our study has several limitations. While our results identified significant correlations 545 

between specific proteins and recurrent BSIs, establishing causal relationships would require 546 

further investigation. Multivariate models based on high dimensional, low sample size datasets are 547 

common in clinical research but face challenges like possible overfitting and increased complexity, 548 

complicating validation and interpretation. We sought to overcome these limitations by using both 549 

sPLS-DA and genetic programming models to explore both linear and non-linear relationships in 550 

the data as well as independent models with different assumptions. While most features presented 551 

as linear relationships in our datasets, there were subsets of proteomic data that were identified as 552 

non-linear relationships in genetic programming model ensembles, validating that both linear and 553 

non-linear relationships should be explored. 554 

Our results were also limited to the demographics of the study group, which includes 555 

relatively healthy, young female athletes with diagnosed BSI as well as a skewed distribution of 556 

individuals. Although our study demonstrated clear clustering between the study groups, we lack 557 

a test population to fully validate the identified candidate biomarkers for subsequent BSIs. 558 

Additionally, we lacked an injury-free control group, which would have aided in understanding 559 

the protein levels regarding health or disease. Nevertheless, our study identified 10 significant 560 

candidate biomarkers that appeared in 80% of the sPLS-DA models, including FAAA, 561 
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Osteopontin, and Trypsin-2, with a predictive accuracy of 95 ± 0.02% validated through leave-562 

one-out cross-validation. Time-course differential expression analysis highlighted 112 563 

differentially expressed proteins linked to pathways of increased fibrin clot formation and 564 

decreased immune signaling in individuals with additional BSIs. Our data highlight differences 565 

based on subsequent BSI risk in a relatively homogeneous study population (young, female 566 

athletes), adding to the strength of these findings as they relate to additional BSI risk in our study 567 

population. 568 

The clinical implications of our study include the identification of (1) candidate biomarkers 569 

of subsequent BSIs in young, female athletes, (2) pathway signatures of immunosuppression and 570 

increased blood clotting with subsequent BSIs, and (3) an innovative approach to identifying and 571 

validating candidate biomarkers in relatively small clinical study populations. Further studies are 572 

required to prospectively validate FAAA, OPN, and Trypsin-2 as biomarkers of subsequent BSIs, 573 

as well as their relationship in a broader study population. Additionally, the relationship between 574 

functional immunosuppression and increased blood clotting should be further explored in athletes 575 

with BSI. 576 

In conclusion, this study presents a robust statistical workflow, enhanced by machine 577 

learning, to analyze high-resolution proteomic data, paving the way for advancements in reinjury 578 

risk assessment. Our study underscores a critical gap in sports medicine: clinical metrics alone are 579 

insufficient to predict risk of recurrent BSIs, leading to potential discrepancies in determining 580 

appropriate rehabilitation and return to activity protocols. Our data reveal that specific protein 581 

signatures within three weeks of an initial BSI uniquely identify individuals at risk for subsequent 582 

BSI within 52 weeks. While biomarker discovery in small datasets is challenging, advances in 583 

proteomic technologies and machine learning can help isolate critical proteins that differentiate 584 

those with single BSIs from those at higher risk of additional BSI. Through multi-modeling, 585 

subsampling, and cross-validation, we consistently identified candidate biomarkers, reinforcing 586 

their potential as early indicators of additional BSIs. The network analysis of these proteins offers 587 

deeper insights into the biological mechanisms underlying subsequent BSI risk. These findings not 588 

only enhance our understanding of the pathophysiology of BSIs, but also suggest new avenues for 589 

preventive strategies and personalized medicine in sports, with the potential to reduce the 590 

incidence and impact of recurrent injuries. 591 

  592 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.03.24318372doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318372
http://creativecommons.org/licenses/by-nc-nd/4.0/


MATERIALS AND METHODS 593 

Study Design 594 

The design of the clinical study was previously published (11). In brief, local community 595 

recreational female runners who had been diagnosed with a BSI of MRI Fredericson grade 2-4/4 596 

(9) were enrolled in the study and monitored over 52 weeks. Inclusion criteria included a minimum 597 

of 4 hours/week of self-reported weightbearing exercise during the 6 months prior to injury. 598 

Exclusion criteria included known medical conditions that would affect bone health (e.g., current 599 

eating disorder, hyperparathyroidism, celiac disease). Exclusion also included medications known 600 

to affect bone health (e.g., oral steroids, bisphosphonates, lithium). Enrollment attrition is 601 

summarized in Fig. 1, with loss due to disinterest (2 participants), diagnosis > 3 weeks (2 602 

participants), lack of physical activity (1 participants), and dropped participation (2 participants). 603 

Four participants missed more than 1 visit (Fig. 1). Timepoints include enrollment (within 3 weeks 604 

of BSI diagnosis), 6, 12, 24, and 52 weeks post-enrollment. Participants were monitored for 605 

activity levels, bone density (DXA and HR-pQCT), clinical standard-of-care labs, and 606 

development of additional BSIs. Over the course of the study, 10 participants developed a 2nd BSI, 607 

one of whom developed a 3rd BSI (Table 1). The remaining 20 participants went on to heal and 608 

return to activity uneventfully. Following this study, we re-analyzed serum from all 30 final 609 

participants to retrospectively determine the proteomic signatures between those with a single vs. 610 

additional BSI. Proteomic data are all newly generated data and all analyses are new, including 611 

those with clinical data that have been previously published (11). 612 

To overcome the small clinical sample size, multiple machine learning algorithms were 613 

applied to determine robust proteomic signatures in those with an additional BSI compared to those 614 

with a single BSI. These models included sPLS-DA combined with non-parametric machine 615 

learning models: CatBoost (60), logistic regression (61), and random forest (62). LOOCV was 616 

applied to sPLS-DA models to provide robust sub-sampling of the data during model building to 617 

ensure no single individual was skewing the protein signatures. Finally, protein signatures were 618 

analyzed for key biological pathway signatures to glean insights into the systemic dysregulation 619 

in those with additional BSIs. This study was approved by the institutional review boards of 620 

participating institutions and informed consent was obtained prior to participation. 621 

Dataset 622 

The clinical study was previously published (11) and was restricted to the clinical and HR-623 

pQCT data. New analyses of the serum proteins were completed and the subsequent bioinformatic 624 

approach combined the prior and new data. The current dataset consisted of 30 individuals, 10 of 625 

whom experienced a new BSI event during the 1 year of follow-up. For each participant, the serum 626 

was analyzed with a custom panel of 1,500 proteins by the SOMAscan (SomaLogic, Boulder, CO, 627 

USA) (Data File S2). Detailed methods for the SOMAscan assay have been previously published 628 

(63). In brief, aptamer-based protein capture is utilized to multiplex the analysis and quantify 629 

protein levels in a microarray-based technology. 630 

Initially, raw clinical data from the original study (11) were meticulously reviewed to 631 

discern which metrics were relevant. We excluded some variables, such as types and frequency of 632 

exercise and height, which were deemed extraneous and/or noisy for modeling BSI risk. 633 

Additionally, to maintain consistency across the data, categorical variables, such as contraceptive 634 

use, were standardized as categorical variables. A comprehensive workflow was then created to 635 

preprocess the data and create data structures amenable to machine learning approaches. 636 
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Proteomic Panel Selection & SomaLogic Assay  637 

Previous literature was initially examined to identify key proteins of interest. This led to 638 

the curation of a list containing 1,500 target proteins, each selected for its association with relevant 639 

physiologic categories from pre-fabricated panels provided by SomaLogic, such as 640 

'Cardiovascular Disease', 'Inflammation and Immune Response', 'Metabolic Disease', and 641 

'Oncology', as well as identified proteins of interest from literature (64–66) (full list in Data File 642 

S2). To efficiently align these proteins with the naming convention used by SomaLogic, a 643 

specialized Python program was developed. This program automatically translates gene names, as 644 

cited in prior research, into UniProt IDs. Consequently, a custom panel featuring these 1,500 645 

relevant proteins was created, providing a focused and comprehensive proteomic assay for our 646 

study. 647 

Following custom panel creation, serum samples from clotted blood were supplied to 648 

SomaLogic for aptamer-based analysis. Samples were obtained from 30 individuals from the prior 649 

BSI study (11). SomaLogic assay has been described previously. In brief, samples are analyzed 650 

with custom slow off-rate aptamers designed for up to 7,000 human proteins. Concurrent analysis 651 

of the custom 1,500 protein panel is done from 55 uL of serum and samples are normalized with 652 

SomaLogic’s custom and robust internal and plate-to-plate normalization methods (67). Standard 653 

mathematical normalization techniques (log2 and mean centering) were applied before further 654 

processing. A subset of samples were flagged (6/145 samples) because the samples failed to 655 

hybridize in the initial step and were re-run successfully. Flagged samples can occur with bubble 656 

formation or other technical difficulties during assay processing. 657 

Data Preprocessing 658 

Optimal data preprocessing was identified by comparing the methods: standardization, 659 

variance stabilization normalization (VSN), quantile, linear-regression, and mean-centered 660 

approaches, each of which are widely accepted preprocessing methods. Resulting box-plot 661 

distributions were compared for equitable distribution of the data and standardization emerged as 662 

the most effective normalization technique. Transformation was similarly scrutinized, with log2, 663 

log10, and box-cox evaluated. The log2 transformation was selected because it stabilized the 664 

variance of high intensities but increased the variance at low intensities, allowing for more uniform 665 

evaluations (68). Standardization and log2 transformations were applied to all datasets. 666 

Machine Learning Sparse Partial Least Square Discrimination Analysis (sPL-DA) 667 

Clinical and proteomic data were compiled for analysis using custom Python and R scripts 668 

designed for feature reduction and multivariate modeling. Sparse Partial Least Square 669 

Discriminant Analysis (sPLS-DA) was conducted in R (R 4.4.1) using the MetaboAnalystR 4.0 670 

(69) package. Prior to analysis, the data were preprocessed as described above. 671 

The sPLS-DA method was utilized to reduce dimensionality while retaining the most 672 

informative features across clinical, proteomic, and combined datasets. Three components were 673 

computed, with each retaining 10 latent variables (LVs), which maximized group separation. An 674 

orthogonal rotation was applied in the component space to align the axis with the largest group 675 

distinction, thereby ensuring that the selected collection of LVs captured the most meaningful 676 

variation in the data. Score plots were evaluated and components with the largest degree of 677 

separation between ‘additional BSI’ and ‘single BSI’ were selected for further analysis. 678 
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To validate the robustness of the sPLS-DA model and minimize undue influence by single 679 

individuals with our relatively low sample size (n = 30), a feature stability test was performed. 680 

Here, one individual was randomly removed from the dataset and models were recorded. This was 681 

repeated 10 times. Models were then compared for the most frequently appearing features. Stable 682 

features were identified if present in over 80% of models during the 10 iterations. Only stable 683 

features were input into the final machine learning models. 684 

Machine learning models were applied to the stable features including non-parametric 685 

machine learning models: CatBoost (60), logistic regression (61), and random forest (62). These 686 

models were chosen because they do not assume a specific distribution of the data (70), making 687 

them ideal for complex clinical and proteomic dataset. Feature selection was performed for each 688 

model with subsequent LOOCV, ensuring the most consistent and reliable features were evaluated. 689 

This cross-validation approach provided a rigorous evaluation of the model’s predictive capability, 690 

addressing the challenges posed by our dataset's high dimensionality and limited sample size. 691 

Model performance was evaluated by ROC curves, accuracy, sensitivity, and specificity across the 692 

models. 693 

Nonlinear Multivariate Modeling with Genetic Programming 694 

Multivariate, linear and nonlinear regression models were generated using Evolved 695 

Analytics DataModeler software (Version 9.7) in the SymbolicRegression package. Our modeled 696 

outcome was binary as “additional BSI” or “single BSI”. Preprocessed data were uploaded as 697 

“clinical”, “proteomic”, or “combined” (clinical + proteomic) datasets. Total models generated 698 

were 3,020 models for “clinical”, 2,435 models for “proteomic”, and 3,225 models for 699 

“combined”, each over 3 rounds of independent modeling at ten iterations each resulting in 30 700 

total rounds of modeling. Models were then filtered to the “fittest” models, which represent ~50% 701 

of models that satisfied < 80 complexity score and < 0.2 square error rate within the “knee” of the 702 

Pareto front. This reduced models to 65 for “clinical, 130 for “proteomic” and 258 for “combined” 703 

models. Model ensembles were generated and analyzed using the VariablePresence and 704 

CreateModelEnsemble functions, which represented the diversity of the filtered models for both 705 

complexity and square error rate. Model ensemble statistics are presented in the paper for the 10-706 

model ensemble for “clinical”, 10-model ensemble for “proteomic”, and 11-model ensemble for 707 

“combined”. 708 

Differential Expression Analysis and Gene Set Enrichment Analysis 709 

ExpressAnalyst package (22) based on the limma package (23) in R (R 4.4.1) was utilized 710 

for the differential expression analysis (DEA). Data was log2 transformed and mean-centered. 711 

Cutoff criteria included a fold change (FC) > 0.5. A Benjamini-Hochberg false discovery rate 712 

(FDR) adjusted p-value < 0.05 was applied. Full data can be found in Data File S5. Time was used 713 

as a blocking factor for the differential expression analysis. Gene Set Enrichment Analysis (GSEA) 714 

was used to map the statistical likelihood that sets of identified proteins relate to biological 715 

pathways based on the assumption that the measured proteins would map to gene databases of 716 

known interaction networks. This approach was used because protein interaction networks are less 717 

well developed for high-resolution proteomics and is common for this data type (71). An FDR ≤ 718 

0.05 and p < 0.05 was also used for the GSEA. A heatmap of the average protein values, z-scored 719 

across timepoints, was used to display the proteins corresponding to the top up- and down-720 

regulated biological pathways. 721 

 722 
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Statistical Analysis 723 

Data are reported as mean ± SEM for time-course analysis of individual proteins. Statistical 724 

analysis was performed for time-dependent variation using a linear mixed effect model, lme4 725 

package (72), in R (R 4.4.1) for time series analysis of select proteins with a Tukey’s post-hoc 726 

analysis for contrast results of “additional BSI” v. “single BSI”, specifically for key proteins in the 727 

sPLS-DA and genetic programming models. Statistical significance was determined at p < 0.05 728 

and FDR ≤ 0.05 for all components of the study. sPLS-DA and Model ensemble information are 729 

presented in the respective sections above. 730 

 731 
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