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Integrating clinical knowledge into AI remains challenging despite numerous medical guidelines 
and vocabularies. Medical codes, central to healthcare systems, often reflect operational patterns 
shaped by geographic factors, national policies, insurance frameworks, and physician practices 
rather than the precise representation of clinical knowledge. This disconnect hampers AI in rep-
resenting clinical relationships, raising concerns about bias, transparency, and generalizability. 
Here, we developed a resource of 67,124 clinical vocabulary embeddings derived from a clinical 
knowledge graph tailored to electronic health record vocabularies, spanning over 1.3 million 
edges. Using graph transformer neural networks, we generated clinical vocabulary embeddings 
that provide a new representation of clinical knowledge by unifying seven medical vocabularies. 
These embeddings were validated through a phenotype risk score analysis involving 4.57 million 
patients from Clalit Healthcare Services, effectively stratifying individuals based on survival out-
comes. Inter-institutional panels of clinicians evaluated the embeddings for alignment with clini-
cal knowledge across 90 diseases and 3,000 clinical codes, confirming their robustness and trans-
ferability. This resource addresses gaps in integrating clinical vocabularies into AI models and 
training datasets, paving the way for knowledge-grounded population and patient-level models.    

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 2 

Introduction  

Medicine is built on centuries of knowledge and the pursuit of individualized patient care 

through meticulous reasoning and evidence-based practice1. Over time, numerous medical vo-

cabularies and ontologies have been developed to represent clinical information, fostering in-

teroperability and global data exchange2–4. However, while these standardized coding systems 

provide a consistent framework for representing clinical knowledge, they remain fragmented, 

with each vocabulary optimized for specific purposes. This lack of unification across vocabular-

ies poses challenges for their integration into artificial intelligence (AI) models and training da-

tasets, creating a gap in the effective use of clinical knowledge for precision medicine.  

The increasing adoption of electronic health records (EHRs) and data standardization has driven 

medicine toward data-driven approaches5,6, with more than half of healthcare foundation AI 

models now relying exclusively on structured clinical codes, such as billing data and medication 

records7. These models generate predictions by identifying statistical patterns and latent repre-

sentations of patients and patient populations from EHR datasets. However, this process assumes 

that datasets contain the requisite information to represent clinical concepts and that inferred as-

sociations align with clinical knowledge. This assumption poses challenges when models capture 

patterns unique to specific healthcare settings rather than generalizable insights8–11. This issue is 

pronounced in prediction models trained on clinical codes from structured EHR data, where high 

variability across institutions can limit model generalizability12–15. Clinical codes are often opti-

mized for operational needs16, encoding patterns shaped by geographic factors17–19, national poli-

cies20–23, health insurance24–26, physician practices27–29, and other factors that affect healthcare 

delivery30–34.  EHR-based models, as a result, often fail to capture generalizable definitions and 

dependencies among clinical codes, which are critical for effectively leveraging clinical 

knowledge35–39. 

The lack of alignment between EHR-based prediction models and clinical knowledge also intro-

duces concerns about model bias and transparency40. Although large language models (LLMs) 

offer implicit access to clinical knowledge embedded within their training data, unvetted datasets 

from biological data repositories and scientific articles used to train LLMs can increase the risk 

of bias and mistakes in generated outputs41–43. Additionally, LLMs struggle to effectively 
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represent clinical codes44–46, especially rare or highly specific codes, resulting in inaccuracies, 

over-generalizations, or hallucinations during inference47. This can be concerning given that a 

large portion of medical codes are highly specific and may not be used in everyday clinical prac-

tice where, for example, fewer than 5% of SNOMED CT codes account for 95% of usage in 

healthcare institutions48, creating a mismatch between what is modeled and what is clinically rel-

evant.  

There is a gap in AI in integrating clinical knowledge and leveraging clinical expertise to pro-

duce more reliable and accurate predictions49,50. Clinical researchers have distilled scientific evi-

dence into precise recommendations, resulting in over 3,700 guidelines published across 39 

countries51–54. Despite the critical importance of these guidelines, most AI models lack mecha-

nisms to effectively and systematically integrate clinical knowledge. Instead, they rely on statisti-

cal associations derived exclusively from patient datasets or large text corpora, which struggle to 

capture the relationships encoded in structured EHR data. Bridging this gap requires consistent, 

machine-readable knowledge representations that map connections between clinical codes in 

EHRs and the broader clinical knowledge they reflect. While data types, such as text and images, 

can be transformed into high-dimensional embeddings to support AI models55–60, there is no 

equivalent resource for representing clinical knowledge tied to structured medical data.  

To address this need, we develop a resource that constructs embeddings for 67,124 medical 

codes, defining a unifying latent space of clinical knowledge. Using state-of-the-art relational 

graph transformers and a clinical knowledge graph, we create a cohesive, machine-readable map 

that captures relationships among seven clinical vocabularies, including laboratory tests, diagno-

sis codes, and medications, without requiring manual curation. By integrating verified 

knowledge bases and medical ontologies into a knowledge graph of standardized EHR codes, 

this resource reduces the risk of propagating inaccuracies while promoting transparency. 

Our resource provides a hypothesis-free approach to generating clinically insightful representa-

tions of medical codes. It offers three main applications: (1) integrating clinical knowledge into 

precision medicine patient models, (2) enabling generalizable models of populations and patient 

subtypes that can be safely exchanged across institutions, and (3) providing insights into the or-

ganization of clinical knowledge. The latent space of medical codes reveals patterns consistent 
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with human anatomy and disease presentations, capturing symptomatic and clinical presentations 

of diseases that can be decomposed into symptom-level embeddings. We demonstrate the predic-

tive utility of these embeddings through a large-scale phenotype risk score analysis for three 

chronic diseases across 4.57 million patients from Clalit Healthcare Services. An expert clinical 

evaluation across 90 diseases and 3,000 clinical codes conducted with clinician panels in the 

United States and Israel validates the alignment of these embeddings with established medical 

knowledge. Our findings establish unified medical code embeddings as a foundational resource 

for advancing AI-driven healthcare. Unified clinical vocabulary embeddings can facilitate col-

laborative, scalable efforts in clinical AI and deepen our understanding of disease mechanisms, 

laboratory tests, diagnosis codes, medications, and their underlying dependencies. 

Results  

Overview of Approach  

We develop a map of clinical embeddings using a clinical knowledge graph (KG) specifically 

constructed for clinical vocabularies used in EHRs. We encode structural and relational infor-

mation about each clinical concept from the KG in embeddings using state-of-the-art graph 

transformer neural networks. The construction of this resource can be broken down into three 

stages: (i) Integrating standard clinical vocabularies and existing databases into a unified 

knowledge graph (PheKG); (ii) Using a graph transformer neural network to model relationships 

between clinical codes; (iii) Learning joint representations of clinical codes through self-super-

vised learning and noise-contrastive estimation.  

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 5 

 

Figure 1: Overview of approach. (A) Illustrated is a local neighborhood of PheKG clinical knowledge graph. Each 

clinical concept is represented as a node, and the color denotes the node type (clinical vocabulary). (B) Workflow 

for generating clinical knowledge embeddings: building the clinical knowledge graph, constructing a graph trans-

former model, and generating embeddings through self-supervised learning. (C) Use cases of unified clinical vocab-

ulary embeddings. 

Knowledge graphs offer an intuitive approach for structuring biomedical knowledge due to their 

inherent capability to organize data across hierarchies and accurately capture intricate relation-

ships. Although many biomedical KGs have been constructed, most do not explicitly incorporate 

standard clinical vocabularies. Instead, they focus on biological processes61–63, such as genes and 

pathways, therapeutics55,64,65, genetic phenotypes66–69, or a combination thereof70–72. Further-

more, KGs that incorporate clinical vocabularies are often restricted to ICD (diagnosis codes) or 

rely on medical terminologies like HPO73 and MONDO74, which are not standard in most 

EHRs75–77. KGs can also be constructed directly from patient data78–80. However, this method is 
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highly sensitive to the selection of the patient population and risks capturing health patterns spe-

cific to the chosen group, limiting the generalizability of the resulting knowledge graph.  

To maximize the portability of PheKG, we construct the clinical knowledge graph using medical 

vocabulary without incorporating any patient information. We start from PheMap, a knowledge 

base of clinical concepts based on the natural language processing of biomedical literature81. For 

a given phecode (an aggregated version of diagnostic codes82), PheMap provides the pairwise 

importance score between a given phecode and clinical codes from standardized medical vocabu-

laries, including ICD-9, SNOMED CT (Systematized Nomenclature of Medicine – Clinical 

Terms), RxNorm, and LOINC codes, yielding an initial set of 78,801 codes and 727,939 pair-

wise-relationships. Next, we incorporate drug information from the Anatomical Therapeutic 

Chemical Classification (ATC)83. The RxNorm84 vocabulary is a terminology for medications 

and includes information regarding dosage and ingredients, and the ATC system is organized ac-

cording to drug therapeutic and chemical properties. We use the Unified Medical Language Sys-

tem (UMLS) database to integrate this information into the knowledge base to identify the ATC 

codes corresponding to each RxNorm code (Methods). The resulting knowledge base spans 

seven standardized vocabularies, all EHR coding systems (Figure 1A).  

To construct the knowledge graph, we designate each clinical code as a node and the node type 

as the source vocabulary. Using the precomputed importance scores from PheMap, we create an 

edge between a phecode and a clinical code whenever the pair is assigned a nonzero importance 

score. To incorporate the hierarchical structure of the ontologies, we add edges between clinical 

codes to reflect the parent-leaf node relationships. To reduce redundancies within the graph, we 

merge SNOMED CT codes with their shared synonyms and LOINC part codes that share the 

same part name (but have different part types) and then aggregate their edges (Methods). Some 

codes in the knowledge graph (e.g., “bacterial infections”) are inherently broad and non-specific, 

resulting in an exceptionally high number of connections in the KG. These high-degree nodes 

can introduce noise and hinder representation learning models. We applied selective pruning to 

nodes with a degree >1,000 to mitigate this issue. We remove edges connecting these nodes to 

leaf-level ICD-9 codes (codes with two decimal places) while retaining connections to their par-

ent-level ICD-9 codes. This approach preserves the hierarchical structure of the graph while 
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reducing redundancy and noise. The resulting knowledge graph, PheKG, comprises 67,124 

nodes spanning seven node types and 1,315,610 edges (Supplementary Table S1 and Methods).  

Using a heterogenous graph transformer85, we learn a function that maps each node (clinical 

code) in the KG to its low-dimensional representation (embedding) (Figure 1B). The KG deter-

mines how information is shared between nodes throughout the KG, while a multi-head attention 

mechanism enhances the model’s ability to simultaneously up-weight and down-weight different 

parts of the topological space86. The final model architecture utilizes four graph transformer lay-

ers comprised of over 34 million parameters. We implement a self-supervised approach by form-

ing the training objective as a supervised task where the labels are derived from the KG87. We 

train the model for edge prediction through self-supervised learning via contrastive edge mask-

ing88 (Methods). This approach generates versatile representations for each clinical code, ensur-

ing that codes proximal in the knowledge graph are likewise closely aligned in the latent space, 

reflecting their semantic similarity.  

The central output of our approach is a universal embedding space that captures relationships be-

tween clinical codes across diverse medical vocabularies, represented by 67,124 learned clinical 

knowledge embeddings. We evaluate how well the latent space reflects human physiology, pat-

terns of disease presentation, and performance in patient prediction tasks (Figure 1C). By lever-

aging a heterogeneous knowledge graph model, this approach integrates various clinical ele-

ments, including laboratory tests, procedures, and medications. This integration enables compari-

sons and connections between codes from different medical vocabularies, analogous to how 

health records chronicle a patient’s medical history through a diverse range of documented 

healthcare interactions.  

Clinical embeddings capture knowledge of human anatomy and clinical subspecialties  

For the clinical knowledge embeddings to be helpful, they must recapitulate clinically meaning-

ful patterns consistent with human biology, disease presentations, and healthcare practices.  A 

patient’s medical record comprises many clinical vocabularies, with various types of codes de-

scribing their medical history. A key advantage of joint embedding space is its ability to directly 

compare clinical codes across different vocabularies, bridging the gaps between disparate coding 

systems. We first aimed to characterize the breadth and granularity of the clinical knowledge 
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represented in the learned embeddings by visualizing the latent space (Figure 2A). Examining 

the clusters of phecode embeddings, we find that phenotypes broadly group by organ type, mir-

roring the organization of clinical care (adjusted rand index (ARI): 0.27, adjusted mutual infor-

mation (AMI): 0.40, silhouette-score: 0.34, computed over ten disease classes). Although some 

phenotypes deviate from these main clusters, many deviations reflect known distinctions within 

clinical care. For example, most endocrine conditions cluster together (Fig 2A: orange cluster), 

but some phenotypes cluster more closely to sense organ conditions (Fig 2A: green cluster). 

However, this small set of endocrine phenotypes includes mainly eye-related conditions resulting 

from complications from endocrine disorders, such as diabetic retinopathy and exophthalmos.  
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Figure 2. Latent space captures biomedical knowledge consistent with known organ system biology and anat-

omy. (A) Scatter plots showing a reduced dimension of the embedding space of clinical codes. On the left, the latent 

space of phecodes is shown, where each phecode is shaded by its corresponding organ system categorization.  On 

the right, the latent space of ATC-4 medication codes is shown, where each ATC-4 code is shaded according to the 

corresponding ATC level 1 and encodes are shaded in gray. (B) Visualization of the embedding region of digestive 

system phecodes. We highlight the following phenotype subcategories: functional digestive disorders – phecodes 
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560-570 (left), biliary system – 570-580 (center), and teeth and mouth disorders - 520-530 (right). (C) Visualization 

of embedding space overlaid with LOINC part-codes and CPT codes. Codes are shaded based on cosine similarity 

with systematic lupus erythematosus (left) and Graves’ disease (right). The target disease embedding is denoted with 

a black diamond. The black stars indicate a subset of the laboratory tests and procedures formally mentioned in each 

disease’s diagnostic guidelines89,90. These are presented along with other codes in their proximity but are not men-

tioned directly in the guidelines.    

Projecting the embeddings of ATC-4 codes into the same low-dimensional space of the diagnos-

tic codes, we observe a striking parallel between the organization of phecodes and ATC-4 codes. 

Groups of ATC-4 codes loosely cluster according to ATC level 1 (ATC-1) classification, which 

organizes drugs according to anatomical and pharmacological group83 (ARI: 0.16, AMI: 0.21, sil-

houette-score: 0.23, computed over ten drug classes). Broadly, codes clustered by ATC-1 are lo-

cated near phenotypes from the corresponding organ system (Figure 2A). For example, the ATC-

4 code N06AB (selective serotonin reuptake inhibitors; SSRIs) is situated near the phenotypes 

for anxiety disorder, major depressive disorder, and dysthymic disorder, which are consistent 

with the drug indications of SSRIs91. Again, we also find that deviations in the expected cluster 

labeling according to the ATC-1 classification reflect known artifacts of the ATC coding system. 

For example, the embeddings for ATC-4 codes G01AA (antibiotics) and D06AX (antibiotics for 

topical use) are located nearby in the embedding space despite being in different ATC-1 catego-

ries. However, given that both classes of drugs have overlapping disease indications, their prox-

imity in the latent space is consistent with their known clinical usage.  

To achieve maximum utility, the unified clinical vocabulary latent space must capture patterns at 

broad anatomical levels while also identifying discernible relationships at clinical subspecialty 

levels. To illustrate the granularity of clinical vocabulary embeddings, we perform a separate di-

mensionality reduction analysis using only phecodes of the digestive system (Figure 2B). We 

find that conditions within the same subspecialty are significantly closer together compared with 

all other conditions of the digestive system, where codes describing functional digestive disor-

ders (p-value=3.65×10-45; two-sided Mann-Whitney U test), biliary system (p-value=6.38×10-

44), and conditions of mouth and teeth (p-value=1.05×10-74) are separated within the latent space. 

Although these codes all fall under the practice of gastroenterology, the embeddings exhibit dis-

tinct clustering patterns that reflect their unique clinical presentations and organ systems. This 

finding highlights the ability of the clinical knowledge embeddings to capture fine-grained 
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distinctions within broader medical categories, offering insights that can enhance both clinical 

knowledge and provide new insights. 

Latent embedding space reflects patterns of disease presentation and diagnostic processes 

Although we have exhibited how the embedding space captures broader clinical patterns, most 

downstream translational tasks will also require granularity at the disease level. To assess how 

patterns of a given disease are encoded throughout the latent space, we use Graves’ disease and 

systemic lupus erythematosus as two case studies (Figure 2C). For each disease, we compute the 

cosine similarity between the disease embedding and each clinical code within the embedding 

space and visualize these patterns by projecting the computed cosine similarity onto the latent 

space. Broadly, as embeddings move closer to the target disease embedding, the cosine similarity 

increases where we observe regions of high cosine similarity with lupus and Graves’ disease em-

beddings, as shaded in red and orange.  

Highlighting procedures and laboratory tests used in the diagnostic process of lupus90, we find 

that many codes within this region are consistent with known lupus diagnostic guidelines, includ-

ing tests for anti-nuclear antibodies and lymphocytes and B-cells (Methods). For Graves’ dis-

ease, we observe a similar pattern where lab and procedure embeddings with a high cosine simi-

larity score are located near the disease embedding within the latent space. Many of these align 

with the diagnostic guidelines for Graves’ disease, including the codes for an assay of thyroid 

stimulating hormone, thyroglobulin antibody test, and fine needle aspiration biopsy89. This clus-

tering reflects how the unified embedding space captures the relationships between different 

types of clinical codes, providing a cohesive framework for connecting diagnoses, procedures, 

and tests across clinical subspecialties. 

Furthermore, we observe distinct clusters showing high cosine similarity between clinical codes 

and each disease despite being separate from the region surrounding the disease embedding. For 

lupus, this region includes tests such as erythrocyte sedimentation rate and C-reactive protein, 

both commonly used to assess systemic inflammation. Similarly, we identify a cluster of eye-re-

lated tests for Graves' disease, including codes for eye exams and ocular motility. This highlights 

the embedding space's ability to capture nuanced patterns that extend beyond identifying codes 
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associated with the same organ system, recapitulating patterns aligned with established disease 

presentations.  

Finally, to quantitatively assess the quality of the embedding space against known clinical 

knowledge of specific diseases, we compare the similarity between diseases and symptoms based 

on the guidelines described in the Phenotype Knowledgebase (PheKB), a database of clinically 

validated EHR-based phenotyping algorithms92. Although different algorithms within PheKB use 

various data types, such as clinical notes and structured EHR features, many utilize diagnostic 

codes. We select three diseases—chronic kidney disease, anxiety, and breast cancer—and meas-

ure the mean cosine similarity between the embedding of a given disease (in the form of a phe-

code embedding) and the embeddings of ICD codes corresponding to those listed in PheKB. We 

compare the mean similarity with a randomly selected set of ICD codes representing negative 

controls. Across the three diseases, we find that the group of codes derived from PheKB demon-

strates significantly higher similarity than those from the control group (mean p-value: 6.15×10-

5; two-sided Mann-Whitney U test), meaning that clinical codes related to each phenotype are 

indeed located in proximity to one another in the embedding space (Supplementary Figure S1). 

The clinical knowledge embeddings align with established medical ontologies and reflect real-

world diagnostic practices, offering versatility in examining different diseases.  

Embedding arithmetic reveals the composition and divergence of disease manifestations  

Clinical vocabularies have semantic properties that allow them to describe a wide range of clini-

cal scenarios. Our research demonstrates that clinical knowledge embeddings can achieve com-

parable descriptive power through embedding arithmetic. This technique allows embeddings to 

be combined mathematically to form new meanings. For example, adding the embeddings for 

diabetes and kidney disease might result in an embedding closely representing diabetic nephrop-

athy, effectively capturing the relationship between these conditions without explicitly defining it 

in the original vocabulary. Such compositions of disease symptoms, in the form of clinical code 

embeddings, produce embeddings that reside close to the target disease embedding within the la-

tent space.  In another example, the similarity between the vector summation of common heart 

disease symptoms (e.g., shortness of breath, chest pain) and the disease embedding of common 

heart disease yields a cosine similarity score of 0.66 (Supplementary Table S3). These 
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observations mirror the geometric properties of word embeddings in natural language pro-

cessing93. We refer to the aggregation of symptom embeddings in this manner as a disease symp-

tom embedding—denoting that the resulting vector is a composition of the symptoms of a given 

disease (Figure 3A).  

We assess this pattern by examining nine diseases with significant health implications across dif-

ferent clinical specialties. Five conditions are among the top non-communicable diseases with 

the highest mortality rate identified by the World Health Organization94 (chronic obstructive pul-

monary disease (COPD), Alzheimer’s, heart disease, stroke, and lung cancer), and four are 

among the most common autoimmune disorders in adult populations (Graves’ disease, multiple 

sclerosis, lupus erythematosus, and Crohn’s disease)95. Based on the clinical descriptions for 

each disease described by the Mayo Clinic96–100 and the manual translation of symptom lists to 

diagnosis codes, we aggregate all disease symptoms in the form of ICD-9 code embeddings 

(Supplementary Table S2). 

Computing the cosine similarity between the disease symptom embedding and the target disease 

embedding across all nine diseases, we find that all pairs have positive similarity scores (mean-

cos-similarity: 0.77, SD: 0.13) (Supplementary Table S3). Moreover, conditions with overlap-

ping symptoms also exhibit high similarity scores. For instance, the phecode embedding for mul-

tiple sclerosis also has a high similarity score with the disease composition embedding for lupus 

(cos-similarity=0.58), as both diseases share symptoms such as fatigue and muscle pain. We ob-

serve high levels of congruence between diseases affecting the same organ system, such as lung 

cancer (target disease) and COPD (symptom embedding), which both affect the respiratory sys-

tem (cos-similarity=0.86). We also observe divergent patterns when the symptoms and target dis-

ease differ. For example, computing the cosine similarity between each disease embedding and 

the symptom embedding for Crohn’s disease, we observe low similarity scores across all the 

other conditions (mean-cos-similarity: -0.065, SD: 0.23). This may be because most symptoms 

of Crohn’s disease affect the digestive tract, unlike most symptoms of the other eight diseases. 

After observing this trend, we assess whether individual symptoms possess meaningful syntactic 

and semantic patterns within the embedding space. As a proxy for the disease specificity of each 

symptom, we order symptoms from highest to lowest frequency as measured within a sample of 
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patients from Clalit Healthcare Services (CHS). Incrementally aggregating symptoms one by one 

for each of the nine diseases reveals striking patterns. As we add less common symptoms in the 

general patient population, the resulting pooled representation of symptoms gradually becomes 

more similar to the target disease embedding (Supplementary Figures S2, S3). We evaluate the 

robusticity of this effect by perturbing different elements of the embedding composition frame-

work. Even after varying the target disease and symptom, sampling related symptoms, and add-

ing randomly selected symptoms (as happens with patients), the symptom embedding still moves 

towards target disease embeddings in the latent space (Supplementary Figure S4). This analysis 

also illustrates that we can model meaningful patterns of diseases not explicitly provided in the 

knowledge graph, emphasizing the versatility of clinical knowledge embeddings. 

This process can help study diseases with similar symptoms by revealing subtle differences in 

clinical presentations. This level of granularity can be observed when comparing various autoim-

mune diseases due to the presentation of overlapping symptoms. For Graves’ disease, we com-

pute the initial cosine similarity between the disease embedding for each of the four diseases and 

the first symptom embedding, “palpitations”, (the Graves’ symptom found to be most prevalent 

in the sampled patient population), but no disease has a cosine similarity score > 0.40 (Figure 

3B). Given the relatively high prevalence of this symptom in the general patient population and 

lack of disease specificity (freq=0.232), it is unsurprising that initial symptoms do not show a 

high correlation with any of the immune conditions. However, as we add symptoms that are rela-

tively less common within the general population, such as ‘goiter’ (freq=0.029), the composition 

of symptoms becomes increasingly similar to the representation of Graves’ disease, and the simi-

larity with the other three autoimmune conditions begins to diverge. 

Analyzing the similarity scores of the disease embedding for Graves’ disease with individual 

symptoms, most symptoms show lower similarity than when compared to the combined disease 

symptom embedding, and even three symptoms show negative similarity scores (skin/integu-

mentary tissue symptoms, digestive symptoms, and fatigue) (Figure 3C). This analysis highlights 

the importance of considering the combination of symptoms instead of viewing each inde-

pendently. These patterns mirror how individual symptoms may not provide sufficient infor-

mation to assess the probability of a specific condition, but as a patient accumulates more symp-

toms over time, the aggregation of these symptoms provides a meaningful tool that can 
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potentially stratify patients according to disease risk. Finally, as the embeddings used in this 

analysis are not based on patient-level data, the predictive insights derived from the aggregated 

symptom embeddings can be generalized and reliably used across clinical settings. 

 

Figure 3: Embedding operations mirror symptomatic manifestations of clinical conditions. (A) Overview of 

approach for constructing disease symptom embeddings. (B) Line plot showing the cosine similarity across four au-

toimmune diseases and the aggregation of Grave’s disease symptoms. Aggregated embeddings are computed by per-

forming a vector sum across the embeddings for each symptom. (C) Bar plot showing the cosine similarity between 

Graves’ disease and each symptom without aggregation.  

Unified vocabulary embeddings enable disease risk stratification and severity prediction 

Many clinical AI models focus on patient outcome prediction, and we explore the predictive util-

ity of clinical knowledge embeddings in this context. Next, we investigate how these embed-

dings can be integrated into AI models for tasks such as predicting disease progression and dis-

ease risk. We compute a disease-specific risk score for various conditions and the relative 
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disease risk for each patient. We only use information derived from the clinical knowledge em-

beddings to prevent the performance from being biased towards a specific patient-level training 

dataset. Analogous to polygenic risk score frameworks101, we compute a phenotype risk score102 

by scanning a patient’s EHR and aggregating the embeddings across conditions with the highest 

similarity to the disease of interest (Methods).  

We validated our approach using retrospective CHS data from EHR data from 4.57 million indi-

viduals103. We utilized patients listed in the CHS chronic registry, a registry maintained by CHS 

that monitors individuals with specific chronic conditions104. We chose to focus on three clinical 

conditions with the largest sample sizes within the chronic registry: chronic kidney disease 

(CKD), chronic obstructive pulmonary disease (COPD), and prostate cancer (Supplementary Ta-

ble S4). For each condition, we constructed a 1:1 case-control cohort matched by age, sex, and 

number of ICD-9 codes as a proxy for healthcare utilization (Supplementary Table S5, Supple-

mentary Figure S5). Using the 5 years of clinical history before disease diagnoses, we computed 

a relative risk score for each condition and quantified patients’ disease risk according to their 

percentile of the total score distribution. 

For a target disease (here represented by a phecode embedding), we identify clinical code em-

beddings (features) most relevant to the disease by selecting all codes within a given radius in the 

embedding space (Methods). Each patient’s score is computed as a weighted sum of these fea-

tures, and the weight is calculated as the cosine similarity between the feature embedding and 

target disease embedding. If a patient does not have a given element in their record, the feature 

weight is set to 0. In practice, the size of the radius (k-neighbors) can be selected by comparing a 

validation patient dataset, similar to choosing the optimal performing p-value threshold in 

PRS105. This approach eliminates the need to pre-specify a list of features useful for diseases 

with heterogeneous presentations and highly variable symptoms, such as many chronic condi-

tions.  

Across all three conditions, we observe the separation of patients according to disease status, par-

ticularly at the extreme end of the risk distribution (Figure 4A-C). Within the group of individu-

als in the 90th percentile of the risk score distribution for CKD, there is a disease prevalence of 

56.7%. For patients above the 98th percentile, the disease prevalence increases to 64.6%. Top-
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identified clinical code embeddings are consistent with each disease's known comorbidities, lab 

test results, and medication usage. For example, among the top features of chronic kidney dis-

ease is Diabetes mellitus, which is a well-documented risk factor for the disease, and Pro-

teinuria, which can be an early disease indicator. Among the top features for the prostate cancer 

risk score are Dysuria and Urinary retention, which are both common symptoms of the condi-

tion. Although we assess the population-level correlation between disease prevalence and risk 

score percentile, these results suggest opportunities to leverage clinical knowledge embeddings 

for patient monitoring in a way that is independent of any training dataset. 

 

Figure 4: Clinical code embedding risk scores correlate with disease prevalence and severity. (A-C) In the top 

row, we provide scatter plots showing the risk score percentiles of each disease versus the disease prevalence within 

each bin. Dots are shaded according to disease prevalence. (D-F) The bottom shows a survival curve of cases that 

match the most common sex and age at diagnosis for each disease cohort. Lines are shaded by score quartiles. 

Standard error intervals are computed using 10,000 bootstrap samples. Columns are divided by diseases: chronic 

kidney disease, COPD, and prostate cancer. 

Given the marked stratification by disease status, we evaluate whether the computed risk scores 

could provide disease subtyping information. Intuitively, suppose individuals acquire a greater 

number of highly relevant clinical conditions. In that case, this trend may indicate a later disease 

stage and increased mortality rates. To prevent confounding from disease-specific effects with 
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age and sex, we restrict the assessment to individuals of the same sex and diagnosed at a similar 

age (Methods). For each of the three conditions, we compute the mode age and sex and use this 

as inclusion criteria for the survival analysis. Re-calibrating score percentiles based on the final 

set of patients, we observe a striking stratification by 6-year survival rate (Figure 4D, E, F). For 

CKD (age=69, sex=Male), individuals within the top quintile of this score distribution for CKD 

had a relative 28% lower survival compared to those in the bottom quartile (top-quartile: 60.3%, 

bottom-quartile: 84.1%). This trend is particularly remarkable considering the risk scores were 

inferred without any institution-specific, disease-specific, or patient-level information during 

training.  

Clinical vocabulary embeddings capture medical knowledge consensus across institutions 

For clinical knowledge embeddings to effectively incorporate external domain knowledge into 

machine learning models, the learned representations must be consistent with the current scien-

tific consensus and reflective of the information used in regular healthcare practices. To assess 

this, we perform a comprehensive human evaluation study comprising expert clinicians from Is-

rael and Boston, United States—each home to multiple leading academic and scientific research 

centers. We asked the panel to evaluate disease-symptom relationships inferred from the learned 

embedding space to quantify the alignment between information captured by the clinical 

knowledge embeddings and the scientific consensus. The expert panel was instructed to consider 

accuracy and relevance, where relationships must be accurate and relevant information likely 

used in typical clinical practice.   

We base the evaluation study on the relationships between disease phenotypes and selected 

SNOMED CT codes identified within the embedding space. We specifically chose to focus on 

SNOMED CT codes for evaluating clinical knowledge consensus, given their utility in 

knowledge-driven clinical care and management resources such as clinical support decision sys-

tems and public health databases106. Based on expert input from a subset of clinicians, we se-

lected 90 diseases, in the form of phecodes, that were identified as clinically relevant to the gen-

eral adult patient population. The final diseases include multiple chronic diseases, neoplasms, 

and other common conditions (Supplementary Table S6). We selected the top 20 SNOMED CT 

codes for each disease based on the cosine similarity score with the target phecode embedding 
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and 20 randomly selected SNOMED CT codes (Figure 5A). To prevent biases due to specific or 

uncommon symptoms, we match each top-selected SNOMED CT code with a random 

SNOMED CT code with a similar node degree within the KG (Methods). This process prevents 

diseases with prevalent symptoms from being matched with highly specific SNOMED CT codes, 

which could overestimate performance. Codes already forming an edge with the disease node 

within the knowledge graph were excluded from the analysis. The final evaluation dataset com-

prises 90 disease lists, each with 40 SNOMED CT codes. Clinicians were randomly assigned a 

set of disease lists, and each was scored once. 

To quantify the relevance of each code with a disease, clinicians were instructed to grade each 

SNOMED CT code on a scale from -2 (unrelated) to 2 (very relevant) (Figure 5B). Across all 

diseases, 58.9% of top selected SNOMED CT was graded as ‘very relevant’ or ‘relevant,’ com-

pared to only 9.0% of the randomly selected codes, providing evidence that relevant SNOMED 

CT codes are proximally located within the embedding space (Figure 5C). Performing a two-

sided t-test for each of the 90 diseases, the average p-value is 1.02 × 10-4, indicating a significant 

difference in the score distributions of the groups even after adjusting for multiple tests. Alt-

hough the top SNOMED CT codes did not have a connection to the target disease in the clinical 

KG dataset, the embedding space still captures relationships between clinical concepts. For ex-

ample, ‘major depression’ and ‘affective disorder’ are among the codes with the highest scores 

for obsessive-compulsive disorder (OCD). Given the high comorbidity rate and overlap of symp-

toms between affective disorders and OCD, these conditions are represented as nearby clinical 

codes in the embedding space107. This proximity reflects the clinical reality of their frequent co-

occurrence and shared symptomatology. This analysis provides strong evidence of alignment be-

tween the disease patterns captured by clinical code embeddings and clinical knowledge. This 

congruence demonstrates that these embeddings can accurately represent complex relationships 

among disorders, potentially enhancing the understanding and prediction of comorbidities.  

One advantage of unified clinical vocabulary embeddings is their ease of use across institutions. 

By unifying seven distinct medical vocabularies, these embeddings provide a standardized repre-

sentation of clinical knowledge, bridging gaps between disparate coding systems. Importantly, 

they are entirely free of patient-level information, ensuring no risk of compromising patient pri-

vacy. This design makes them highly portable and suitable for deployment in diverse healthcare 
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settings. Moreover, the embeddings are generated to capture generalizable clinical knowledge 

that aligns with universal medical practices, enabling consistent application across institutions 

with varying healthcare infrastructures. To evaluate this, we compare the distributions of scores 

graded by clinicians based in Israel, specifically CHS, and those graded by clinicians based in 

Boston, specifically Boston Children’s Hospital, Harvard Medical School, and Massachusetts 

General Hospital, collectively referred to as ‘Boston Medical Centers’ throughout this work. 

Comparing the distributions of scored SNOMED CT codes from CHS and those from the Boston 

Medical Centers, we find a remarkably high level of consistency (Figure 5D). For example, for 

the top SNOMED CT codes, clinicians from CHS labeled 59.4% of codes as either ‘highly rele-

vant’ or ‘relevant’; this aligns with the score distribution from the Boston clinicians who labeled 

58.4% of codes within these categories. The agreement in scoring distributions is striking, con-

sidering different healthcare systems and variations in medical training and clinical practices 

across countries. By integrating knowledge from multiple vocabularies and reflecting shared 

clinical standards, our unified clinical vocabulary embeddings offer a robust tool for facilitating 

interoperability and fostering collaboration in research and clinical care without the constraints 

of localized data dependencies. These features position embeddings as a powerful resource for 

advancing clinical AI in a secure, scalable, and universally applicable manner.  
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Figure 5: Human pilot evaluation of clinical vocabulary embeddings shows consensus with medical 

knowledge across institutions. (A) An example of SNOMED CT codes ranked similarly to the phecode embedding 

for generalized anxiety disorder. Clinicians provide a score from -2 (least) to +2 (most), denoting each code’s rele-

vance to the disease of interest. (B) Clinician score distributions comparing the top-ranked SNOMED CT codes and 

a randomly selected set of codes across six diseases. (C) The distribution of clinician scores across 90 diseases. (D) 

Comparison of score distributions stratified by clinician location. * ‘Boston Medical Centers’ collectively refers to 

clinicians from Boston Children’s Hospital, Harvard Medical School, and Massachusetts General Hospital. 

Discussion 

This work presents a unified embedding resource composed of 67,124 clinical vocabulary em-

beddings, providing a unified map of clinical knowledge for machine learning integration. These 

embeddings capture patterns between clinical codes consistent with human anatomy and clinical 

healthcare organization. They capture semantic properties that mirror how clinical concepts can 

be meaningfully combined and compared. We demonstrate that these clinical embeddings enable 

patient-level predictions across diverse conditions—without requiring patient data during train-

ing. Evaluations of clinical embeddings by inter-institutional panels of clinicians from the United 

States and Israel show that the clinical knowledge embeddings are consistent with the broader 

scientific and clinical research. This resource provides a safe way to share clinical knowledge 

and can support the development of more generalizable and transferable prediction models. 

The importance of clinical expertise in developing AI models is widely recognized, and various 

strategies to integrate specialized knowledge have been developed108–110. Previous approaches 

rely on a single clinical ontology (often ICD-9 or ICD-10), but this overlooks the inherent heter-

ogeneous nature of EHRs111–115. Furthermore, these frameworks often leverage shallow embed-

ding techniques, which only retain local neighborhood information and struggle to incorporate 

heterogeneous data sources77,116–121.  Recent techniques allow for the inference of deep embed-

dings, which can capture higher-order relationships. However, these often require patient-level 

training data and a pre-defined prediction task objective122–124, making the resulting representa-

tions inherently dependent on the chosen patient dataset. In contrast, our approach leverages a 

comprehensive clinical knowledge graph that integrates relationships across multiple clinical vo-

cabularies and a graph neural network architecture to produce highly contextualized embeddings. 

These embeddings capture local and global structures within the graph, providing a nuanced rep-

resentation of clinical knowledge125.  
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Clinical code embeddings provide a principled mechanism for representing clinical knowledge in 

AI models. By integrating a network of relationships across clinical codes, the embeddings pro-

vide knowledge-grounded representations of clinical data, which can serve as the basis for AI 

foundation models. Foundation models are large-scale models pre-trained on vast amounts of un-

labeled data, which can then be adapted to tasks using smaller labeled datasets for subsequent 

fine-tuning steps126.  The foundation model paradigm has been effective in natural language pro-

cessing and computer vision, partly due to the open sharing of these large pre-trained models, 

such as GPT127 and BERT128. Our resource could also be leveraged in conjunction with tech-

niques in retrieval-augmented generation (RAG)129 where the embeddings serve as a knowledge 

library. By incorporating clinical knowledge embeddings, RAG systems can retrieve information 

relevant to the user prompt and contextually aligned clinical vocabulary embeddings. 

The clinical knowledge embeddings are a shareable pre-trained model that can be transferred 

across institutions without risking patient information leakage. Unlike models pre-trained on in-

dividual-level patient records, where there is no guarantee that the model parameters will not in-

advertently retain or memorize private information130,131, our unified clinical code embeddings 

can be securely exchanged between healthcare systems without risk of patient data exposure. 

This approach could also reduce sensitivity to variations in patient-level data, allowing for more 

consistent predictions across diverse patient populations. A cross-institutional analysis in Israel 

and the United States indicates that these embeddings capture universal clinical patterns. By 

providing a standardized, privacy-preserving representation of clinical knowledge, these embed-

dings can facilitate collaboration and model development across healthcare systems and geo-

graphical regions, potentially accelerating advances in medical AI. 

While this resource holds potential for advancing precision medicine, several limitations exist. 

First, the current knowledge representations cannot capture varying levels of uncertainty. This is 

especially relevant since clinical knowledge is compiled from numerous sources, and the fre-

quency of specific clinical observations can often vary. For instance, disease guidelines may list 

multiple symptoms, but the frequency and prominence of these symptoms can vary widely across 

individuals. Additionally, the quality of the embeddings is highly dependent on the underlying 

knowledge graph. Inaccuracies, such as incorrectly defined edges, can introduce noise and distort 

the flow of information through the graph. As clinical knowledge evolves, it is paramount that 
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the knowledge graph is continually updated to reflect the current clinical consensus.  Another 

limitation is the absence of contextualizing information, such as age and sex, that can impact the 

accuracy and relevance of clinical knowledge elements. For example, the clinical presentation of 

a heart attack can vary significantly between males and females132, but this delineation is not 

considered in the construction of the current embeddings.  

Clinical vocabulary embeddings represent common and chronic diseases and offer limited cover-

age of clinical concepts related to genetic disorders and Mendelian diseases. In future work, we 

aim to address this gap by incorporating codes from phecodeX133(a more recent version that in-

cludes chromosomal anomalies) and knowledge bases specifically developed to document Men-

delian disorders, such as the Online Mendelian Inheritance in Man (OMIM)134 and Human Phe-

notype Ontology (HPO)73. We also plan to integrate databases that capture biological mecha-

nisms, including those related to gene and protein processes, which could enhance the characteri-

zation of diseases with complex clinical presentations and poorly defined conditions.  

This unified clinical vocabulary embedding resource transcends institutional boundaries by inte-

grating seven medical vocabularies into a cohesive, standardized representation. This unification 

provides a robust foundation of clinical knowledge, eliminating the challenges posed by frag-

mented coding systems while safeguarding patient privacy. Designed to capture generalizable 

clinical knowledge, these embeddings align with medical practices. Unlike datasets limited to 

health state measurements, these embeddings incorporate a wealth of clinical knowledge, includ-

ing mechanistic rationales, clinical guidelines, and disease and treatment pathways. By embed-

ding this knowledge into AI, the resource can help make AI models evidence-based and clini-

cally grounded135. Ensuring that AI models reflect clinical knowledge and resources, such as uni-

fied clinical vocabulary embeddings, can enhance reliable cross-institutional use of AI.  
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Methods 

Construction of clinical knowledge graph 

Standardized medical vocabularies 

To provide maximum flexibility and utility of the clinical knowledge graph and subsequent em-

beddings, we derive all clinical concepts from standardized medical vocabularies:  International 

Classification of Diseases (ICD)136, Anatomical Therapeutic Chemical (ATC) Classification83, 

RxNorm84, Systemized Nomenclature of Medicine – Clinical Terms (SNOMED CT)106, Current 

Procedural Terminology (CPT)137, Logical Observation Identifiers Names and Codes 

(LOINC)138, and phecodes139. Here, we define a clinical code as an entry within a medical vocab-

ulary with a unique identifier.  

We begin by integrating the clinical codes and relationships defined in the phecode ontology. 

This database represents clinical phenotypes as phecodes, formed by aggregating groups of diag-

nostic codes (i.e., ICD codes) into clinical sub-groupings. In total, 13,707 ICD-9 codes are 

mapped to 1,817 phecodes82,140,141. Specifically, phecodes were developed to facilitate the sec-

ondary use of EHRs for biomedical research rather than for patient monitoring or hospital admin-

istration. A phecode is a 3-digit parent code with additional digits following the decimal point. 

Numbers after the decimal point reflect a hierarchical structure similar to the ICD code hierar-

chy. Under each leaf phecode is the set of corresponding ICD-9 codes where each phecode has 

between 1 – 20+ associated ICD-9 codes. We treat all parent phecodes and subsequent children 

phecodes (collectively referred to as ‘phecodes’ in this work) as individual clinical codes. Each 

ICD-9 code is also treated as a separate code, and we define a relationship between two clinical 

codes if they have a direct connection within the phecode hierarchy. This process provides an in-

itial set of 15,524 clinical codes and 20,783 pairwise relationships.  

Next, we incorporate the clinical codes and relationships defined by the PheMap database, an ex-

isting knowledge base of biomedical knowledge that defines a set of relationships between the 

codes and various clinical vocabularies81. This database offers relationship pairs linking phe-

codes and clinical codes from other medical vocabularies, including RxNorm, CPT, LOINC, and 

SNOMED CT. Relationships defined in PheMap were determined through text mining and 
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natural language processing of open-source biomedical literature. These relationships can be in-

terpreted as a phenotype being “associated with” a given clinical concept. However, we treat 

every relationship between clinical concepts as the same type regardless of the original database. 

In PheMap, clinical codes from the LOINC vocabulary are encoded as LOINC part codes, stand-

ardized attribute values used to construct full LOINC codes that specify a given laboratory test. 

Overall, this dataset yields a set of 78,801 codes and 727,939 pairwise relationships142. 

Finally, we utilize the Unified Medical Language System (UMLS) database to incorporate addi-

tional levels of information not provided in the previous databases, specifically information 

about the ATC vocabulary. Using the UMLS database, we map each RxNorm code to a Concept 

Unique Identifiers (CUI)143 if the given RxNorm code is the preferred term listed for the CUI. 

For each CUI, we select all ATC-5 codes that fall under that particular CUI with the term type 

‘IN’ (ingredient), meaning that the given CUI represents a concept that is an ingredient within 

the specified ATC-5 class. For example, the ATC-5 code for the drug ‘prednisolone’ would be 

obtained via: 8638 (RxNorm) to C0032950 (UMLS CUI) to S02BA03, D07AA03, …, C05AA04 

(ATC-5). The mapping between UMLS CUI and ATC-5 is not 1:1, so CUIs may map to multiple 

ATC-5 codes. To establish relationships between each ATC-5 code and codes from other clinical 

vocabularies, we first map each clinical code in the previous PheMap database to its correspond-

ing UMLS CUI code. Next, we create a pairwise relationship between an ATC-5 code and a phe-

code if the PheMap database shows a relationship between a clinical concept with the same CUI 

code and that phecode. 

Building a heterogenous knowledge graph 

Leveraging the clinical codes and relationships drawn from existing biomedical knowledge bases 

and vocabularies, as described above, we construct a knowledge graph144 (KG) to efficiently or-

ganize clinical knowledge in a format optimized for machine learning. First, we designate each 

clinical code as an individual node and the corresponding node type as the terminology source. 

Next, we draw an undirected edge between two clinical codes if they have a pairwise relationship 

described above in the clinical vocabulary aggregation process. Multiple edges are drawn if two 

nodes have a relationship defined multiple times (e.g., a relationship between a phecode and 
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ICD-9 code derived from the phecode hierarchy and the PheMap knowledgebase). Note that all 

edges are treated as the same edge type. 

An advantage of knowledge graphs over traditional relational databases is that KGs enable the 

representation of complex, multi-dimensional relationships. To accomplish this, we can incorpo-

rate additional semantic layers and hierarchies between clinical codes. First, we can leverage the 

natural hierarchical structure of ATC codes to incorporate medication information at varying 

granularities. We merge existing ATC-5 nodes according to their ATC-4 class to create a broader 

representation of therapeutic information as represented by ATC-4 nodes. All edges from the ag-

gregated ATC-5 nodes are mapped to the new ATC-4 node during this process. Because the 

RxNorm nodes already represent medication on a drug-level granularity, we remove the ATC-5 

nodes and retain the ATC-4 and RxNorm nodes for representing medications.  

Next, we consolidate nodes representing similar information to reduce redundancies within the 

graph, enabling the sharing of neural network information and enhanced interpretability. This is 

especially relevant for LOINC part codes, where different types of attributes will have different 

codes even if the entity of interest is the same. For example, ‘LP7501-2’ and ‘LP200001-8’ have 

the description ‘Prostate’, but the first is a system LOINC part code, and the latter is a radiology 

LOINC part code. We also merge sets of SNOMED CT codes that have a shared synonym. Fi-

nally, CPT codes with the same description are also merged. This occurs when procedures have 

the same description but different identifiers due to slight variations in the procedure. Altogether, 

we merge 2,507 clinical concepts. Edges from the previous individual nodes are all aggregated 

into the newly merged node.   

We filter nodes with a very high degree (number of directly connected neighbors), as high-de-

gree nodes can lead to the overrepresentation of certain information in the resulting embeddings. 

Additionally, nodes with an extremely high degree present computational challenges, especially 

when utilized in the context of graph neural networks. We threshold nodes based on a degree of 

1,000, which identifies 64 clinical codes. The majority of these are phecodes representing infec-

tious diseases (‘Tuberculosis’, ‘Meningitis’) and symptoms (‘Cough’, ‘Pain in joint’), and broad 

disease classifications (‘Cerebrovascular disease’, ‘Other conditions of brain’). The high node 

degree for infectious diseases is primarily due to the detailed ICD-9 relationships describing 
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disease strain and location of infection. We remove edges between the phecode and ICD-9 node 

for each high-degree node if the ICD-9 code contains >1 place after the decimal point (e.g., 

005.81). This allows us to maintain broad levels of information in a node’s neighborhood while 

discarding overly detailed information. The final graph comprises 67,124 nodes across seven 

node types and 1,315,610 edges, and the distribution of node types can be found in Supplemen-

tary Table S1. 

Heterogenous graph transformer 

Graph notation 

A heterogeneous graph, 𝒢 = (𝒱, ℰ), is defined by a set of nodes 𝒱 and edges ℰ. We define a 

mapping function 𝑓!:	𝒱 → 𝒯!where each node 𝑣 ∈ 𝒱 has an assigned node type 𝑓!(𝑣) ∈ 𝒯!. 

Here, the node types represent different clinical vocabularies. For a given graph, 𝒢, we denote 

the graph neural network, ℋ𝒢 , as a function that maps a vector of features for a node 𝑢, written 

as 𝒙𝒖	 ∈ ℝ
%, to a vector of real numbers representing the latent space:  

ℋ𝒢: 𝒙𝒖 → 𝒛𝒖	. 

Here, 𝑑 is the dimension of the input vector. This resulting mapped vector (also called an embed-

ding) is denoted by 𝒛 ∈ ℝ%. For convenience of notation, we assume that the input and output 

dimensions are equal. We provide a table with relevant notation and indicate whether they are an 

inferred parameter within the model.   
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Variable Description Dimension Trainable 
(Y/-) 

𝓖 Graph - - 
𝓥 Set of vertices or nodes - - 
𝓔 Set of edges - - 
𝓣𝒗 Space of node types - - 
d Input dimension ℝ' - 
L Number of layers ℝ' - 
𝓗𝓖 Graph neural network function ℝ% 	→ ℝ% Y 
𝒙𝒖 Feature vector of node u ℝ% - 
𝒛  Embedding vector of node u ℝ% Y 
𝓝(𝒖) Neighborhood of node u - - 
𝒎𝒖 Message feature of node u ℝ% Y 
𝒉𝒖
(𝒍) Embedding of node u at the lth layer ℝ% Y 

𝐀𝐓𝐓(𝒔, 𝒕) Attention vector for node u ℝ% Y 
h Number of heads ℝ' - 

𝑾𝑸
𝒊 ,𝑾𝑲

𝒊  Weight matrices ℝ%×%0 Y 

𝒉𝒆𝒂𝒅(𝒔, 𝒕)𝒊 Attention head vector for source node u and 
target node v 

𝑑/ℎ Y 

𝑾𝑸
𝒊 ,𝑾𝑲

𝒊  Weight matrices for attention computation ℝ%×%0 Y 

𝑾𝑽	
	  Weigh matrix for attention computation ℝ

%
0×

%
0 Y 

𝑲𝒔
𝒊 , 𝑸𝒕𝒊  Query and key vectors ℝ

%
0×' Y 

A ⊙𝑩 Hadamard product between A and B - - 
!	 Element-wise summation - - 

║𝒏(𝒙
𝒊) Row-level concatenation of the set vectors 

{𝒙', . . . , 𝒙5} 

- - 

𝒇(𝒖, 𝒗) Similarity scoring function - Y 
∥⋅∥ L2-norm ℝ' - 
𝒗6 Node forming a positive edge with 𝒖  - - 
𝒗7 Node that does not form an edge with 𝒖 - - 
𝓖8 Graph with masked edges - - 

Table 1: Summary of notation. We provide a summary of the variables used in deriving the graph transformer net-

work model, the dimension of each variable, and whether it is a learned or fixed parameter. Rows are sorted accord-

ing to the order in which each variable is introduced.   
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Overview 

We model the architecture of our graph neural network (GNN) after the heterogeneous graph 

transformer (HGT)85. In this work, we briefly describe the key model steps. The complete deri-

vation of HGT is detailed in previous work85.  

Learning  ℋ𝒢 	involves aggregating information across the graph structure defined by 𝒢. For a 

target node 𝑡, we define its neighborhood, 𝒩(𝑡), as the set of nodes with a direct connection or 

edge with t. Information is propagated through the graph by gathering information from the 

neighborhood of 𝑡, which is aggregated into a message feature 𝒎9. The embedding of t can be 

updated with the resulting message feature, 𝒉:
(;6') = UPDV𝒎9

(;), 𝒉𝒖
(𝒍)W where 𝒉𝒕

(𝒍6𝟏)is the embed-

ding of node 𝑡 at the l+1 layer and UPD(·) refers to an update function that integrates messages 

with the current node embedding. Note that the input of the l+1 layer is the output of the previ-

ous layer, and by stacking L layers 𝒉9
(∙), we represent the final HGT as a composition of these 

functions across all layers: 

ℋ𝒢(𝒙9) = 	 (	𝒉9
(>) ∘ 	𝒉9

(>7') ∘ …	∘ 𝒉9
('))(𝒙9). 

The input of the model is the set of node features, 𝒙9 ∈ ℝ% 	for all nodes in 𝒢	which is then used 

to initialize the 090	layer embedding of each node 𝒉9
(?). In practice, each of the node features is 

initialized using Xavier noise. The embedding represents the relational information learned from 

the knowledge graph without additional information from the node features. 

Mutual attention 

The HGT utilizes the idea of multi-head attention, which is a key feature of the traditional trans-

former architecture86. Multi-head attention utilizes multiple attention mechanisms, or heads, in 

parallel to tend to different parts of the input, where each head has its own set of learnable 

weights (parameters). Updating a node’s embedding involves aggregating messages across all ℎ 

heads and weighting each message by its attention score. This mechanism essentially up- and 

down-weights messages based on their importance so that only necessary information is 
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propagated to the target node. Although the original HGT architecture allows the modeling of 

different relation types within heterogeneous graphs, we treat all nodes and edges as a single type 

during inference to maximize information sharing across the knowledge graph. 

For a target node 𝑡, a single attention head is a series of linear projections of the embedding from 

the previous layer, normalized by the embedding dimension. Here, a linear projection for an in-

put 𝒙 ∈ ℝ% ,	is defined as an affine linear transformation, 𝒚 = 𝑾𝑻𝒙 + 𝒃 where 𝒃 is a bias term 

and 𝑾 is a learnable weight matrix. For convenience, we drop the bias term in the following der-

ivations, but in practice, the parameter corresponding to the bias term is absorbed into the esti-

mation of 𝑾.  

The series of linear projections mirror the standard query, key, and value vectors used in the 

standard transformer architecture. The attention score vector corresponding to the edge between 

source node s and target node t, represented as 𝐀𝐓𝐓(𝑠, 𝑡), is computed as the concatenation of 

each head’s output:  

𝑲A
B = _𝑾C

B `D𝒉A
(;7'), 

𝑸9B = _𝑾E
B `D𝒉9

(;7'), 

𝑯𝑬𝑨𝑫(𝑠, 𝑡)B = _𝑾F
B `D𝑲𝒔

𝒊	
	
⊙ (𝑸𝒕B) ⋅

1
𝑑, 

𝐀𝐓𝐓(𝑠, 𝑡) = 	║B∈[?,0]	𝐇𝐄𝐀𝐃(𝑠, 𝑡)
B . 

Here, the operator “A ⊙𝑩” represents the elementwise or Hadamard product between 𝑨 and 𝑩, 

and the operator “║5(𝒙
B)” represents the row-level concatenation of the given set of vectors 

{𝒙', . . . , 𝒙5}.  

The input vector is 𝒉A
(;7') ∈ ℝ𝒅×', and the learnable weight matrices are 𝑾E

B ,𝑾C
B ∈ ℝ%×"#, and 

𝑾F	
	 ∈ ℝ

"
#×

"
# where %

0
 is the input dimension divided by the number of heads. For these weight 

matrices, the subscripts refer to the query, key, and value elements in the transformer. The 
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resulting query and key vectors follow as 𝑲A
B , 𝑸9B ∈ ℝ

"
#×'. The resulting attention vectors from 

each head and final multi-head attention vector are 𝐇𝐄𝐀𝐃(𝑠, 𝑡)B ∈ ℝ
"
#×' and 𝐀𝐓𝐓(𝑠, 𝑡) ∈

ℝ%×'.	And to ensure the attention scores for the target node t sum to 1, a 𝑆𝑜𝑓𝑡𝑚𝑎𝑥(·) is applied 

across all neighbors of t.   

Message passing 

For target node t, we first compute the message vectors across all heads for each neighbor of t. 

This message is calculated as a linear projection of the embedding for source node s from the 

prior layer multiplied by a weight matrix (𝑾𝑻). Each head maintains its linear projection matrix 

but	𝑾𝑻 is shared across all attention heads.  

The final message passed from 𝑠	 → 𝑡 is a concatenation of messages produced from each of the 

h heads. This resulting message vector is then multiplied by the multi-head attention vector. The 

final updated embedding (𝒉9	
(;)) is computed by aggregating across all neighbors of the node 𝑡 

through an elementwise sum. This is followed by a linear projection (𝑾L), which creates sepa-

rate projection for each node type. We need a single matrix because we only model a single node 

type. This is then followed by a residual connection and passed through an activation function:  

𝒎A
(;) = ║B∈[',0]V𝑾𝑻	(	𝑾M

B$𝒉A
(;7'))W

	
,	

𝒉o9
(;) = p 𝐀𝐓𝐓(𝑠, 𝑡)

∀!∈L(:)

⊙𝒎A
(;),	

𝒉9	
(;) = σV𝑾L	𝒉o9

(;) + 𝒉9	
(;7')W. 

The learnable weight matrices are 𝑾𝑻 ∈ ℝ
"
#×

"
#	, 	𝑾M

B ∈ ℝ%×"#	, and  𝑾L 	 ∈ ℝ%×%. The message 

vector is 𝒎9
(;) ∈ ℝ%×'. The operator ⨁ 	represents the elementwise summation. Training the final 

model involves optimizing the set of learnable weight matrices, {𝑾C
B ,𝑾E

B ,𝑾F
B ,𝑾M

B }	across h 

heads and finding  {𝑾D ,𝑾L} that minimizes the loss function ℒ. 

Self-supervised learning 
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For a given node 𝑢, our goal is to generate an embedding 𝒛:that quantifies the topological infor-

mation of the graph w.r.t 𝑢. The learning objective can be framed as a link prediction problem, 

where given two nodes 𝑢 and 𝑣, we want to train a function to predict whether an edge exists be-

tween these two nodes. This function can be described by, 

𝑓(𝑢, 𝑣) =
(𝒛:)D𝒛!

∥ 𝒛: ∥∥ 𝒛! ∥
= 𝑐𝑜𝑠(𝒛:, 𝒛!),	

where 𝒛: = 	ℋ(𝑢), and ℋ(∙) represents the trained GNN function that provides the node em-

beddings. Note that because edges are undirected and the scoring function is symmetric, 

𝑓(𝑢, 𝑣) 	= 	𝑓(𝑣, 𝑢).  

Optimizing this above scoring functions means solving for the parameters of ℋ(∙). This can be 

performed using contrastive learning. We mask a random subset of edges to create a modified 

version of the graph, 𝒢8. Then, given a source node 𝑢, we define a node where 𝑣6 ∈ 𝒩(𝑢) repre-

sents a target node that forms an edge with 𝑢 in the original graph 𝒢. We denote	𝑣	– ∉ 𝒩(𝑢) as a 

node that does not form an edge with 𝑢 in 𝒢 	and denote the set of these negative examples 

as	{𝑣'7, 𝑣P7, ⋯ , 𝑣57}. 

The function 𝑓(𝑢, 𝑣) is trained on 𝒢8to estimate whether a source node 𝑢 forms an edge with tar-

get node 𝑣	in the original graph 𝒢. We can quantify the probability of an edge existing between 

𝑢	and 𝑣6	with negative edges 𝑣{':5}
7  as the probability, 

𝑝_𝑢, 𝑣6, 𝑣{':5}
7 `

	
	= 	

𝑒𝑥𝑝(𝒛:D𝒛6)
𝑒𝑥𝑝(𝒛:D𝒛6 + 𝒛:D𝒛'7 +⋯+ 𝒛:D𝒛57)

.	

Given a dataset of N source nodes, each with a corresponding set of candidate nodes as described 

above, the negative log-likelihood over the dataset is equivalent to the cross-entropy loss where 

the true "class" always corresponds to the positive node 𝑣6. This type of contrastive loss func-

tion is well-established88,145–147 and is formulated as follows: 

ℒ	 = 	−∑ 𝑙𝑜𝑔_𝑝(𝑢, 𝑣6, 𝑣{':5}
7 )`L

	: ,  

where 𝑣6 ∈ 𝒩(𝑢) and 𝑣{':5}
7 ∉ 𝒩(𝑢). 

Node type-aware sampling of positive and negative edges 
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The contrastive learning requires specifying positive and negative edges during training, where a 

positive edge is defined as a pair of nodes with an existing edge in the KG, and a negative edge 

is a pair of nodes that are not connected by an edge. To generate a training tuple comprised of a 

single positive edge and a set of corresponding negative edges, we randomly sample an existing 

edge within the KG denoted as (𝑢, 𝑣) and 𝒯F(𝑣) is the node type of target node 𝑣. To create a 

negative sample, we select a node 𝑟 such that 𝒯F(𝑟) 	= 	𝒯F(𝑣)	and 𝑟 ∉ 𝒩(𝑢). 

Stochastic mini-batch training with neighbor sampling 

Because the topology and size of the GNN are determined by the KG, storing the entire network 

and its hidden states onto a single GPU is impossible. Although training with mini-batches alle-

viates some of this issue, the computation graph (the set of nodes involved in message passing in 

each iteration) for a GNN with L layers often still includes millions of parameters. To circumvent 

this, we use node neighbor sampling to select only a subset of nodes to include at each layer 

when computing a node’s message vector. Specifically, we take a sample n of neighbors at each 

k-hop neighborhood at each gradient descent step when computing messages during optimiza-

tion. Node types with a smaller set of nodes in the KG are upweighted to ensure they are repre-

sented in the sampling. The number of samples at each layer is a hyperparameter selected 

through hyperparameter tuning. The final training was performed on an H100 GPU for ten 

epochs, during which we trained on all 1,315,610 edges of the KG. 

Hyperparameter tuning 

We perform hyperparameter tuning in 2 steps: first for the model architecture and then for the 

parameters involved in the contrastive learning objective. We select a random subset of 500,000 

edges for training and 100,000 for validation from the KG. We perform hyperparameter tuning 

using Raytune where we fix the learning rate (1e-4), number of negative samples (10), batch size 

(100), and sampling neighborhood (10) and vary the following parameters: number of layers (2, 

3, 4), input feature dimension (128, 256, 512), output embedding dimension (128, 256, 512), 

head dimension (128, 256, 512), number of heads (2, 3, 4), and dropout (0, 0.1, 0.2). Perfor-

mance is assessed by measuring the prediction accuracy on the set of 100,000 validation edges 

and 100,000 node pairs that are not linked in the KG (negative edges). The optimal set of GNN 
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parameters is 4 layers, 128 input dimensions, 128 output embedding dimensions, 512-dimension 

head size, three heads, and a dropout of 0.0. 

We repeat the hyperparameter selection process by fixing the parameters selected above and vary 

the following: learning rate (1e-3, 1e-4, 1e-5), neighborhood sampling (5, 10, 20), and number of 

negative samples (3, 5, 10). The final hyperparameter set selected is a learning rate of 1e-5, 

neighborhood sampling of 20 nodes, and three negative samples. All experiments were per-

formed using the Ray Tune software (https://docs.ray.io/en/latest/tune/index.html).  

Visualizing the latent space 

To visualize the embedding space, we perform UMAP148 directly on the embedding vectors and 

plot the first two dimensions. When performing dimensionality reduction, we use phecode, ATC-

4, LOINC, and CPT embeddings. Phecode categorizations are pre-defined from the phecode v1.1 

mapping149. To visualize the latent space of phecodes within the digestive system, we performed 

UMAP only on the subset of phecode embeddings within the ‘Digestive’ category. We highlight 

phecodes broadly corresponding to mouth/teeth conditions (phecodes 520-530), functional diges-

tive disorders (560-570), and biliary tract disorders (570-580). To highlight embeddings related 

to specific diseases, we compute the cosine similarity between a phecode embedding (represent-

ing a disease) and each embedding within the latent space. We visualize this relationship by 

shading each embedding within the UMAP space according to the cosine similarity. We high-

light relevant procedures (CPT) and laboratory tests (LOINC) for lupus and Graves’ disease to 

provide additional interpretation of the latent space map. These were derived from the guidelines 

provided by the National Resource Center on Lupus90 and the European Thyroid Association 

Guideline89. 

Phenotype knowledgebase comparison  

To quantify the quality of the embedding space, we wanted to measure the distance or similarity 

between clinical concepts that have well-defined relationships externally of those defined in the 

knowledge graph. We first assessed the cosine similarity between a given disease (in the form of 

a phecode embedding) and the EHR-based codes that reflect this phenotype. For this, we utilized 

the Phenotype Knowledgebase (PheKB)92, a database of validated electronic algorithms to 
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identify patient characteristics and diseases from clinical data. Many algorithms listed in PheKB 

use ICD codes as a critical component for phenotyping, including those describing anxiety150, 

chronic kidney disease151, and breast cancer152. For each of these three diseases, we computed 

the cosine similarity between the corresponding disease phecode, and the list of ICD codes used 

in each algorithm. We compare this with a randomly selected sample of ICD codes from the em-

bedding space and measure significance using a two-sided Mann–Whitney U test. We apply a 

multiple hypothesis testing correction to account for three tests. 

Disease embedding arithmetic 

Constructing disease symptom embeddings 

To demonstrate the syntactic and semantic properties of the embedding space, we use vector-

level arithmetic to aggregate together disease symptoms to form a ‘disease symptom embed-

ding’. Aggregation is performed using sum pooling, but any vector-level aggregation method 

could be used in practice. For a given disease, we retrieve the list of symptoms from the Mayo 

Clinic Disease Description Guidelines153. A clinician manually translates each symptom into its 

corresponding ICD-9 code. We provide these translations for all nine diseases discussed within 

this analysis (Supplementary Table S2). To demonstrate the trend of increased similarity be-

tween a disease embedding and the disease symptom embedding, we order symptoms from high-

est to lowest prevalence. We approximate population prevalence using a random sample of 

200,000 patients from the CHS database.  

Disease symptom embeddings are first initialized with a vector of zeros. We then add the embed-

dings from all symptoms (represented by an ICD-9 embedding). For visualization, we compute 

the cosine similarity between the disease symptom embedding at each step and the target disease 

embedding, represented using a phecode embedding. Across diseases, we see a broad trend of 

increased similarity with the disease embedding as more symptoms are aggregated.  

Robustness analysis 

To assess the robustness and generalizability of these trends, we perform the same analysis under 

various conditions while perturbing different variables in the framework. This includes analyses 

assessing the uncertainty in selecting disease symptoms, incorrect disease specification, and the 
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impact of random symptoms. First, due to the noise and uncertainty associated with using diag-

nosis codes as proxies for disease symptoms13, we tried to model real-world circumstances by 

varying the ICD-9 code used to represent each symptom. We selected a set of candidate ICD-9 

codes for each symptom by taking the original ICD-9 code from the clinician review and select-

ing all ICD-9 codes with the same parent ICD code by removing one decimal place. For exam-

ple, for code ‘786.2’ (Cough), the candidate set would include ‘786.1’ (Stridor), ‘786.0’ (Dysp-

nea and respiratory abnormalities), etc. Then, when selecting each symptom for aggregation, a 

random code from the candidate set is selected. This process is repeated 10 times, yielding simi-

larity curves constructed from 10 different disease symptoms.    

Next, we wanted to simulate when the disease of interest is mis-specified compared to the symp-

tom list. This reflects situations where the symptoms do not describe the target disease of interest 

but, instead, a closely related condition. To imitate this, we selected a set of diseases similar to 

the target disease; this was done by looking at other phecodes with the same parent phecode. 

When computing the similarity between symptom embedding and disease embedding composi-

tion, we used the phecode embedding of the alternative disease. Finally, we wanted to assess the 

situation where incorrect information is included in the symptom list. We simulated this by add-

ing a randomly selected ICD-9 code to the symptom list and included it in the computation of the 

aggregated symptoms. Because we use vector addition to aggregate symptoms and addition is 

commutative, we place the random symptom at the beginning of the aggregation procedure.  

Phenotype risk score 

Case/control construction 

For each disease, we first select the corresponding range of phecodes for the specific disease. 

This complete list of phecode inclusion ranges is provided in Supplementary Table S4. Then, all 

ICD-9 codes falling under each phecode make up the inclusion ICD-9 codes. To define cases, we 

first selected all patients with at least one ICD-9 code from the corresponding inclusion codes. 

We then filter patients to include only patients listed on the CHS chronic registry to confirm they 

have received the disease diagnosis. Because patients are not guaranteed to be added to the 

chronic registry when they are first diagnosed, we treat the first occurrence of the inclusion ICD-

9 code as the date of diagnosis. For each patient, we set the index date as January 1 of the year of 
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diagnosis, where only information occurring before the index date will be included in the risk 

score computation. For prediction, we select all EHRs recorded within the past 5 years of the in-

dex date.  

To define controls, we begin with the phecode exclusion criteria provided by the phecode map-

ping v1.1. For each phecode, the mapping provides a list of exclusion phecodes that are typically 

similar conditions or overlap with the target disease. We begin by selecting all individuals who 

have never received any exclusion diagnoses at any point in their EHR. We also remove individ-

uals on the chronic disease registry for the specified disease. We select a matched control from 

this set of candidate control patients for each case. Matching is based on the following criteria: 1) 

same sex, 2) year of birth ±2 years, and 3) number of recorded diagnoses in the EHR (with at 

least 1 diagnosis in the EHR). The complete case-control process is illustrated in Supplementary 

Figure S5.  

Risk score computation 

For a given disease, a risk score is computed as the weighted sum of relevant clinical codes, 

where the weight is the cosine similarity between the embedding of each code and the disease 

embedding. We restricted the set of potential features to laboratory tests, medications, and ICD-9 

codes with at least a 0.1% prevalence within the CHS patient population. The CHS EHR did not 

have SNOMED CT or CPT codes for analysis. To determine the clinical codes related to each 

disease, we compute the cosine similarity between all clinical codes within the latent space and 

the target disease embedding, represented by a phecode. The final set of features is the top k 

codes, where k=150, and the feature weights are the cosine similarity scores. In practice, the 

choice of k can be treated as a hyper-parameter and optimized with a validation dataset, similar 

to the p-value thresholding of polygenic risk scores. Patient risk scores are computed as a 

weighted sum where the associated weight is added to the sum if the patient has the given code 

in their EHR and given a 0 otherwise. Features are counted once in the score computation, even 

if a patient receives the codes multiple times.  

Survival analysis 
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For each disease, we computed the most common age at diagnosis and the sex with the highest 

disease prevalence. We restricted the survival analysis to patients meeting these age/sex criteria 

and those with a diagnosis date from 2016 or earlier. We re-computed risk score quantiles based 

only on this restricted set of patients. We looked at the 6 years of EHR after each patient’s index 

date and denoted a patient as deceased if they had a non-null death date. Patients were stratified 

into risk score quartiles based on the risk score computed at the index date. Confidence intervals 

for the survival curves were computed using 10,000 bootstrapped samples.  

Clinical evaluation study 

A key transferability aspect is demonstrating that the inferred clinical knowledge embeddings 

capture medical insights that align with established clinical consensus. Although the knowledge 

graph construction was based on mined biomedical literature, the inferred embeddings and latent 

space offer insight into relationships between codes beyond the direct edges in the KG. To vali-

date this, we perform a human pilot evaluation with groups of clinical experts from Brigham 

Women’s (N=1), Mass General (N=1), Boston Children’s Hospital (N=1), and CHS (N=3).  

To systematically assess this, we evaluate the association between different diseases and 

SNOMEDCT US codes. We restrict the set of SNOMED codes to the Clinical Observations Re-

cordings and Encoding (CORE) Problem List Subset of SNOMED CT48. This subset of codes 

has been identified as most informative in documenting and encoding clinical information. We 

survey clinicians to select 90 disease phenotypes (phecodes) that broadly capture major disease 

areas and are clinically relevant for potential clinical AI applications. For each disease, we com-

pute the cosine similarity between each SNOMED CT code that does not already form an edge 

with the target phecode. We select the top 20 SNOMED CT codes for evaluation. A control set is 

constructed by randomly selecting 20 SNOMED CT codes that are not in the top 20 nor already 

form an edge in the KG. To prevent biases due to differences in the frequency of symptoms or 

high degree and low degree within the KG, we match control SNOMED CT codes based on the 

case code’s node degree.  

Clinicians were provided with shuffled disease lists of case and control codes. For a given dis-

ease, a single clinician evaluated the full list of codes. They were provided a brief background of 

SNOMED CT codes and a scoring rubric where they were asked to evaluate each SNOMED CT 
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code according to how related each code is to the given disease phenotype. We utilize a Likert 

scale154 based on scores -2 – +2: ‘unrelated’ (-2), ‘unsure’ (0), and ' highly related’(+2). If a code 

is too broad or non-specific (e.g. ‘Clinical evaluation’), these are assigned a 0. 

Institutional Review Board approval 

Parts of this study that relate to the use of CHS data (for evaluating the predictive ability of the 

KG-derived concept embeddings) were approved by the CHS Institutional Review Board (Hel-

sinki) committee.  
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Data availability 

Data and clinical concept embeddings, as well as the PheKG knowledge graph, are available via 

Harvard Dataverse at https://dataverse.harvard.edu/dataset.xhtml?persisten-

tId=doi:10.7910/DVN/Z6H1A8. Due to national and organizational data privacy regulations, 

CHS individual-level data from this study cannot be shared publicly. 

Code availability 

The Python implementation of the heterogeneous graph transformer and the associated codebase 

for model training, (non-individual-level) analyses, and embedding evaluations are available at 

https://github.com/mims-harvard/Clinical-knowledge-embeddings. The project website is at 

https://zitniklab.hms.harvard.edu/projects/Clinical-knowledge-embeddings.   

Acknowledgements 

R.J., B.Y.R., R.D.B., N.D., and M.Z. are supported by the Berkowitz Family Living Laboratory 

at Harvard Medical School and the Clalit Research Institute. R.J. and M.Z. gratefully 

acknowledge the support of NIH R01-HD108794, NSF CAREER 2339524, US DoD FA8702-

15-D-0001, awards from Harvard Data Science Initiative, Amazon Faculty Research, Google Re-

search Scholar Program, AstraZeneca Research, Roche Alliance with Distinguished Scientists, 

Sanofi iDEA-iTECH, Pfizer Research, Chan Zuckerberg Initiative, John and Virginia Kaneb Fel-

lowship at Harvard Medical School, Biswas Computational Biology Initiative in partnership with 

the Milken Institute, Harvard Medical School Dean's Innovation Fund for the Use of Artificial 

Intelligence, and Kempner Institute for the Study of Natural and Artificial Intelligence at Har-

vard University. Any opinions, findings, conclusions or recommendations expressed in this ma-

terial are those of the authors and do not necessarily reflect the views of the funders. We grate-

fully acknowledge the resources provided by the Clalit Research Institute. We thank Michelle M. 

Li and Ayush Noori for contributing to the model development and analyses.  

Author contributions 

R.J. developed a unified knowledge graph representation of clinical concepts and designed, im-

plemented, and benchmarked heterogeneous graph transformer models. U.G. implemented the 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/Z6H1A8
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/Z6H1A8
https://github.com/mims-harvard/Clinical-knowledge-embeddings
https://zitniklab.hms.harvard.edu/projects/Clinical-knowledge-embeddings
https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 41 

approach and conducted detailed analyses using CHS individual-level data. L.H., J.W., S.D., 

C.R.G., P.H., and R.S. formed an inter-institutional panel of clinicians that evaluated the align-

ment of clinical concept representations with established clinical knowledge across 90 diseases 

and 3,000 clinical codes. B.Y.R. and R.B. provided feedback on the methodology and evaluated 

the clinical concept embeddings through large-scale phenotype risk scoring and alignment with 

expert clinical knowledge. R.J., N.D., and M.Z. conceptualized and designed the study. All au-

thors contributed to writing the manuscript. 

Competing interests 

The authors declare no competing interests.    

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 42 

References 

1. National Research Council (US) Committee on A Framework for Developing a NewTaxon-
omy of Disease. Toward Precision Medicine: Building a Knowledge Network for Biomedical 
Research and a New Taxonomy of Disease. (National Academies Press (US), Washington 
(DC), 2011). 

2. Campbell, J. R. et al. Phase II Evaluation of Clinical Coding Schemes: Completeness, Taxon-
omy, Mapping, Definitions, and Clarity. J. Am. Med. Inform. Assoc. 4, 238–251 (1997). 

3. de Lusignan, S. Codes, classifications, terminologies and nomenclatures: definition, develop-
ment and application in practice. Inform. Prim. Care 13, 65–70 (2005). 

4. Kather, J. N., Ferber, D., Wiest, I. C., Gilbert, S. & Truhn, D. Large language models could 
make natural language again the universal interface of healthcare. Nat. Med. 1–3 (2024) 
doi:10.1038/s41591-024-03199-w. 

5. Hulsen, T. et al. From Big Data to Precision Medicine. Front. Med. 6, 34 (2019). 

6. Topol, E. J. High-performance medicine: the convergence of human and artificial intelligence. 
Nat. Med. 25, 44–56 (2019). 

7. The Shaky Foundations of Foundation Models in Healthcare. https://hai.stan-
ford.edu/news/shaky-foundations-foundation-models-healthcare (2023). 

8. Zech, J. R. et al. Variable generalization performance of a deep learning model to detect pneu-
monia in chest radiographs: A cross-sectional study. PLOS Med. 15, e1002683 (2018). 

9. Yang, J., Soltan, A. A. S. & Clifton, D. A. Machine learning generalizability across healthcare 
settings: insights from multi-site COVID-19 screening. Npj Digit. Med. 5, 1–8 (2022). 

10. Panch, T. et al. “Yes, but will it work for my patients?” Driving clinically relevant re-
search with benchmark datasets. Npj Digit. Med. 3, 1–4 (2020). 

11. Goetz, L., Seedat, N., Vandersluis, R. & van der Schaar, M. Generalization—a key chal-
lenge for responsible AI in patient-facing clinical applications. Npj Digit. Med. 7, 1–4 (2024). 

12. O’Malley, K. J. et al. Measuring Diagnoses: ICD Code Accuracy. Health Serv. Res. 40, 
1620 (2005). 

13. Botsis, T., Hartvigsen, G., Chen, F. & Weng, C. Secondary Use of EHR: Data Quality Is-
sues and Informatics Opportunities. Summit Transl. Bioinforma. 2010, 1–5 (2010). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 43 

14. Sudat, S. E., Robinson, S. C., Mudiganti, S., Mani, A. & Pressman, A. R. Mind the clini-
cal-analytic gap: Electronic health records and COVID-19 pandemic response. J. Biomed. In-
form. 116, 103715 (2021). 

15. Binkheder, S. et al. Real-World Evidence of COVID-19 Patients’ Data Quality in the 
Electronic Health Records. Healthcare 9, 1648 (2021). 

16. Chalmers, R. J. G. Health Care Terminology for the Electronic Era. Mayo Clin. Proc. 81, 
729–731 (2006). 

17. Song, Z. et al. Physician Practice Pattern Variations in Common Clinical Scenarios 
Within 5 US Metropolitan Areas. JAMA Health Forum 3, e214698 (2022). 

18. Baicker, K., Chandra, A., Skinner, J. S. & Wennberg, J. E. Who you are and where you 
live: how race and geography affect the treatment of medicare beneficiaries. Health Aff. Proj. 
Hope Suppl Variation, VAR33-44 (2004). 

19. Baicker, K., Chandra, A. & Skinner, J. S. Geographic variation in health care and the 
problem of measuring racial disparities. Perspect. Biol. Med. 48, S42-53 (2005). 

20. Medicine, I. of, Services, B. on H. C. & Programs, C. on R. H. I. P. M., Payment, and 
Performance Improvement. Rewarding Provider Performance: Aligning Incentives in Medi-
care. (National Academies Press, 2007). 

21. Blumenthal, D. & Tavenner, M. The “Meaningful Use” Regulation for Electronic Health 
Records. N. Engl. J. Med. 363, 501–504 (2010). 

22. McIlvennan, C. K., Eapen, Z. J. & Allen, L. A. Hospital Readmissions Reduction Pro-
gram. Circulation 131, 1796–1803 (2015). 

23. Morden, N. E., Colla, C. H., Sequist, T. D. & Rosenthal, M. B. Choosing Wisely — The 
Politics and Economics of Labeling Low-Value Services. N. Engl. J. Med. 370, 589–592 
(2014). 

24. Fisher, E. S. et al. The implications of regional variations in Medicare spending. Part 1: 
the content, quality, and accessibility of care. Ann. Intern. Med. 138, 273–287 (2003). 

25. Charlesworth, C. J., Meath, T. H. A., Schwartz, A. L. & McConnell, K. J. Comparison of 
Low-Value Care in Medicaid vs Commercially Insured Populations. JAMA Intern. Med. 176, 
998–1004 (2016). 

26. Baicker, K., Chernew, M. E. & Robbins, J. A. The spillover effects of Medicare managed 
care: Medicare Advantage and hospital utilization. J. Health Econ. 32, 1289–1300 (2013). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 44 

27. Ancker, J. S. et al. How is the electronic health record being used? Use of EHR data to 
assess physician-level variability in technology use. J. Am. Med. Inform. Assoc. 21, 1001–
1008 (2014). 

28. Roland, M. Linking Physicians’ Pay to the Quality of Care — A Major Experiment in the 
United Kingdom. N. Engl. J. Med. 351, 1448–1454 (2004). 

29. Sirovich, B. E., Gottlieb, D. J., Welch, H. G. & Fisher, E. S. Variation in the Tendency of 
Primary Care Physicians to Intervene. Arch. Intern. Med. 165, 2252–2256 (2005). 

30. Berner, E. S., Kasiraman, R. K., Yu, F., Ray, M. N. & Houston, T. K. Data quality in the 
outpatient setting: impact on clinical decision support systems. AMIA Annu. Symp. Proc. 
AMIA Symp. 41–45 (2005). 

31. Verheij, R. A., Curcin, V., Delaney, B. C. & McGilchrist, M. M. Possible Sources of Bias 
in Primary Care Electronic Health Record Data Use and Reuse. J. Med. Internet Res. 20, e185 
(2018). 

32. Agniel, D., Kohane, I. S. & Weber, G. M. Biases in electronic health record data due to 
processes within the healthcare system: retrospective observational study. BMJ 361, k1479 
(2018). 

33. Tang, P. C., Ralston, M., Arrigotti, M. F., Qureshi, L. & Graham, J. Comparison of Meth-
odologies for Calculating Quality Measures Based on Administrative Data versus Clinical 
Data from an Electronic Health Record System: Implications for Performance Measures. J. 
Am. Med. Inform. Assoc. 14, 10–15 (2007). 

34. Hogan, W. R. & Wagner, M. M. Accuracy of Data in Computer-based Patient Records. J. 
Am. Med. Inform. Assoc. 4, 342 (1997). 

35. Hripcsak, G. & Albers, D. J. Next-generation phenotyping of electronic health records. J. 
Am. Med. Inform. Assoc. JAMIA 20, 117 (2012). 

36. Williams, R., Kontopantelis, E., Buchan, I. & Peek, N. Clinical code set engineering for 
reusing EHR data for research: A review. J. Biomed. Inform. 70, 1–13 (2017). 

37. Delvaux, N. et al. Coding Systems for Clinical Decision Support: Theoretical and Real-
World Comparative Analysis. JMIR Form. Res. 4, e16094 (2020). 

38. Odigie, E. et al. Fast Healthcare Interoperability Resources, Clinical Quality Language, 
and Systematized Nomenclature of Medicine—Clinical Terms in Representing Clinical Evi-
dence Logic Statements for the Use of Imaging Procedures: Descriptive Study. JMIR Med. In-
form. 7, e13590 (2019). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 45 

39. Kokkinakis, D. What is the Coverage of SNOMED CT&#174;on Scientific Medical Cor-
pora? in User Centred Networked Health Care 814–818 (IOS Press, 2011). doi:10.3233/978-
1-60750-806-9-814. 

40. Wiens, J. et al. Do no harm: a roadmap for responsible machine learning for health care. 
Nat. Med. 25, 1337–1340 (2019). 

41. Yang, J. et al. Poisoning medical knowledge using large language models. Nat. Mach. In-
tell. 6, 1156–1168 (2024). 

42. Omiye, J. A., Lester, J. C., Spichak, S., Rotemberg, V. & Daneshjou, R. Large language 
models propagate race-based medicine. Npj Digit. Med. 6, 1–4 (2023). 

43. Zack, T. et al. Assessing the potential of GPT-4 to perpetuate racial and gender biases in 
health care: a model evaluation study. Lancet Digit. Health 6, e12–e22 (2024). 

44. Soroush, A. et al. Large Language Models Are Poor Medical Coders — Benchmarking of 
Medical Code Querying. NEJM AI 1, AIdbp2300040 (2024). 

45. Huang, J. et al. A critical assessment of using ChatGPT for extracting structured data 
from clinical notes. Npj Digit. Med. 7, 1–13 (2024). 

46. Burford, K. G., Itzkowitz, N. G., Ortega, A. G., Teitler, J. O. & Rundle, A. G. Use of 
Generative AI to Identify Helmet Status Among Patients With Micromobility-Related Injuries 
From Unstructured Clinical Notes. JAMA Netw. Open 7, e2425981 (2024). 

47. Lee, S. A. & Lindsey, T. Can Large Language Models abstract Medical Coded Language? 
Preprint at https://doi.org/10.48550/arXiv.2403.10822 (2024). 

48. The CORE Problem List Subset of SNOMED CT®. https://www.nlm.nih.gov/re-
search/umls/Snomed/core_subset.html. 

49. von Rueden, L. et al. Informed Machine Learning – A Taxonomy and Survey of Integrat-
ing Prior Knowledge into Learning Systems. IEEE Trans. Knowl. Data Eng. 35, 614–633 
(2023). 

50. Sirocchi, C., Bogliolo, A. & Montagna, S. Medical-informed machine learning: integrat-
ing prior knowledge into medical decision systems. BMC Med. Inform. Decis. Mak. 24, 186 
(2024). 

51. General Cardiovascular Risk Profile for Use in Primary Care | Circulation. 
https://www.ahajournals.org/doi/10.1161/CIRCULATIONAHA.107.699579. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 46 

52. ACMG recommendations for standards for interpretation of sequence variations. Genet. 
Med. 2, 302–303 (2000). 

53. Poonacha, T. K. & Go, R. S. Scientific evidence underlying National Comprehensive 
Cancer Network Clinical Practice Guidelines. J. Clin. Oncol. 28, 6020–6020 (2010). 

54. Institute of Medicine (US) Committee on Standards for Developing Trustworthy Clinical 
Practice Guidelines. Clinical Practice Guidelines We Can Trust. (National Academies Press 
(US), Washington (DC), 2011). 

55. Zitnik, M., Agrawal, M. & Leskovec, J. Modeling polypharmacy side effects with graph 
convolutional networks. Bioinformatics 34, i457–i466 (2018). 

56. Nelson, W. et al. To Embed or Not: Network Embedding as a Paradigm in Computational 
Biology. Front. Genet. 10, (2019). 

57. Tshitoyan, V. et al. Unsupervised word embeddings capture latent knowledge from mate-
rials science literature. Nature 571, 95–98 (2019). 

58. Zitnik, M. et al. Machine learning for integrating data in biology and medicine: Princi-
ples, practice, and opportunities. Inf. Fusion 50, 71–91 (2019). 

59. Zhou, H. et al. Knowledge-guided convolutional networks for chemical-disease relation 
extraction. BMC Bioinformatics 20, 260 (2019). 

60. Nunes, S., Sousa, R. T. & Pesquita, C. Multi-domain knowledge graph embeddings for 
gene-disease association prediction. J. Biomed. Semant. 14, 11 (2023). 

61. Himmelstein, D. S. & Baranzini, S. E. Heterogeneous Network Edge Prediction: A Data 
Integration Approach to Prioritize Disease-Associated Genes. PLOS Comput. Biol. 11, 
e1004259 (2015). 

62. Morris, J. H. et al. The scalable precision medicine open knowledge engine (SPOKE): a 
massive knowledge graph of biomedical information. Bioinformatics 39, btad080 (2023). 

63. Santos, A. et al. A knowledge graph to interpret clinical proteomics data. Nat. Biotechnol. 
40, 692–702 (2022). 

64. Himmelstein, D. S. et al. Systematic integration of biomedical knowledge prioritizes 
drugs for repurposing. eLife 6, e26726 (2017). 

65. Gogleva, A. et al. Knowledge graph-based recommendation framework identifies drivers 
of resistance in EGFR mutant non-small cell lung cancer. Nat. Commun. 13, 1667 (2022). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 47 

66. Zhu, Q. et al. An integrative knowledge graph for rare diseases, derived from the Genetic 
and Rare Diseases Information Center (GARD). J. Biomed. Semant. 11, 13 (2020). 

67. Sosa, D. N. et al. A Literature-Based Knowledge Graph Embedding Method for Identify-
ing Drug Repurposing Opportunities in Rare Diseases. Pac. Symp. Biocomput. Pac. Symp. Bi-
ocomput. 25, 463–474 (2020). 

68. Feng, F. et al. GenomicKB: a knowledge graph for the human genome. Nucleic Acids 
Res. 51, D950–D956 (2023). 

69. Renaux, A. et al. A knowledge graph approach to predict and interpret disease-causing 
gene interactions. BMC Bioinformatics 24, 324 (2023). 

70. Percha, B. & Altman, R. B. A global network of biomedical relationships derived from 
text. Bioinformatics 34, 2614–2624 (2018). 

71. Ernst, P., Siu, A. & Weikum, G. KnowLife: a versatile approach for constructing a large 
knowledge graph for biomedical sciences. BMC Bioinformatics 16, 157 (2015). 

72. Zheng, S. et al. PharmKG: a dedicated knowledge graph benchmark for bomedical data 
mining. Brief. Bioinform. 22, bbaa344 (2021). 

73. Robinson, P. N. et al. The Human Phenotype Ontology: A Tool for Annotating and Ana-
lyzing Human Hereditary Disease. Am. J. Hum. Genet. 83, 610–615 (2008). 

74. Vasilevsky, N. A. et al. Mondo: Unifying diseases for the world, by the world. 
2022.04.13.22273750 Preprint at https://doi.org/10.1101/2022.04.13.22273750 (2022). 

75. Chandak, P., Huang, K. & Zitnik, M. Building a knowledge graph to enable precision 
medicine. Sci. Data 10, 67 (2023). 

76. Wang, M. et al. PDD Graph: Bridging Electronic Medical Records and Biomedical 
Knowledge Graphs via Entity Linking. in The Semantic Web – ISWC 2017 (eds. d’Amato, C. 
et al.) 219–227 (Springer International Publishing, Cham, 2017). doi:10.1007/978-3-319-
68204-4_23. 

77. Nelson, C. A., Butte, A. J. & Baranzini, S. E. Integrating biomedical research and elec-
tronic health records to create knowledge-based biologically meaningful machine-readable 
embeddings. Nat. Commun. 10, 3045 (2019). 

78. Huan, J.-M. et al. The biomedical knowledge graph of symptom phenotype in coronary 
artery plaque: machine learning-based analysis of real-world clinical data. BioData Min. 17, 
13 (2024). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 48 

79. Rotmensch, M., Halpern, Y., Tlimat, A., Horng, S. & Sontag, D. Learning a Health 
Knowledge Graph from Electronic Medical Records. Sci. Rep. 7, 5994 (2017). 

80. Murali, L., Gopakumar, G., Viswanathan, D. M. & Nedungadi, P. Towards electronic 
health record-based medical knowledge graph construction, completion, and applications: A 
literature study. J. Biomed. Inform. 143, 104403 (2023). 

81. Zheng, N. S. et al. PheMap: a multi-resource knowledge base for high-throughput pheno-
typing within electronic health records. J. Am. Med. Inform. Assoc. 27, 1675–1687 (2020). 

82. Wu, P. et al. Mapping ICD-10 and ICD-10-CM Codes to Phecodes: Workflow Develop-
ment and Initial Evaluation. JMIR Med. Inform. 7, e14325 (2019). 

83. ATCDDD - Structure and principles. https://atcddd.fhi.no/atc/structure_and_principles/. 

84. RxNorm. https://www.nlm.nih.gov/research/umls/rxnorm/index.html. 

85. Hu, Z., Dong, Y., Wang, K. & Sun, Y. Heterogeneous Graph Transformer. Preprint at 
https://doi.org/10.48550/arXiv.2003.01332 (2020). 

86. Vaswani, A. et al. Attention Is All You Need. Preprint at 
https://doi.org/10.48550/arXiv.1706.03762 (2023). 

87. Xie, Y., Xu, Z., Zhang, J., Wang, Z. & Ji, S. Self-Supervised Learning of Graph Neural 
Networks: A Unified Review. IEEE Trans. Pattern Anal. Mach. Intell. 45, 2412–2429 (2023). 

88. Oord, A. van den, Li, Y. & Vinyals, O. Representation Learning with Contrastive Predic-
tive Coding. Preprint at https://doi.org/10.48550/arXiv.1807.03748 (2019). 

89. Kahaly, G. J. et al. 2018 European Thyroid Association Guideline for the Management of 
Graves’ Hyperthyroidism. Eur. Thyroid J. 7, 167–186 (2018). 

90. Lab Tests for Lupus | Lupus Foundation of America. https://www.lupus.org/resources/lab-
tests-for-lupus. 

91. Anderson, I. M. & Edwards, J. G. Guidelines for choice of selective serotonin reuptake 
inhibitor in depressive illness. Adv. Psychiatr. Treat. 7, 170–180 (2001). 

92. Kirby, J. C. et al. PheKB: a catalog and workflow for creating electronic phenotype algo-
rithms for transportability. J. Am. Med. Inform. Assoc. JAMIA 23, 1046–1052 (2016). 

93. Mikolov, T., Yih, S. W. & Zweig, G. Linguistic Regularities in Continuous Space Word 
Representations. in (2013). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 49 

94. The top 10 causes of death. https://www.who.int/news-room/fact-sheets/detail/the-top-10-
causes-of-death. 

95. Conrad, N. et al. Incidence, prevalence, and co-occurrence of autoimmune disorders over 
time and by age, sex, and socioeconomic status: a population-based cohort study of 22 million 
individuals in the UK. Lancet Lond. Engl. 401, 1878–1890 (2023). 

96. Heart disease - Symptoms and causes. Mayo Clinic https://www.mayoclinic.org/diseases-
conditions/heart-disease/symptoms-causes/syc-20353118. 

97. COPD - Symptoms and causes. Mayo Clinic https://www.mayoclinic.org/diseases-condi-
tions/copd/symptoms-causes/syc-20353679. 

98. Alzheimer’s disease - Symptoms and causes. Mayo Clinic https://www.mayo-
clinic.org/diseases-conditions/alzheimers-disease/symptoms-causes/syc-20350447. 

99. Lung cancer - Symptoms and causes. Mayo Clinic https://www.mayoclinic.org/diseases-
conditions/lung-cancer/symptoms-causes/syc-20374620. 

100. Stroke - Symptoms and causes. Mayo Clinic https://www.mayoclinic.org/diseases-condi-
tions/stroke/symptoms-causes/syc-20350113. 

101. Dudbridge, F. Power and Predictive Accuracy of Polygenic Risk Scores. PLOS Genet. 9, 
e1003348 (2013). 

102. Bastarache, L. et al. Phenotype risk scores identify patients with unrecognized Mendelian 
disease patterns. Science 359, 1233–1239 (2018). 

103. Balicer, R. D. & Afek, A. Digital health nation: Israel’s global big data innovation hub. 
The Lancet 389, 2451–2453 (2017). 

104. Rennert, G. & Peterburg, Y. Prevalence of selected chronic diseases in Israel. Isr. Med. 
Assoc. J. IMAJ 3, 404–408 (2001). 

105. Choi, S. W., Mak, T. S. H. & O’Reilly, P. F. A guide to performing Polygenic Risk Score 
analyses. Nat. Protoc. 15, 2759–2772 (2020). 

106. SNOMED CT. https://www.nlm.nih.gov/healthit/snomedct/index.html. 

107. Murphy, D. L. et al. Anxiety and affective disorder comorbidity related to serotonin and 
other neurotransmitter systems: obsessive–compulsive disorder as an example of overlapping 
clinical and genetic heterogeneity. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120435 (2013). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 50 

108. Dash, T., Chitlangia, S., Ahuja, A. & Srinivasan, A. A review of some techniques for in-
clusion of domain-knowledge into deep neural networks. Sci. Rep. 12, 1040 (2022). 

109. Sheth, A., Gaur, M., Kursuncu, U. & Wickramarachchi, R. Shades of Knowledge-Infused 
Learning for Enhancing Deep Learning. IEEE Internet Comput. 23, 54–63 (2019). 

110. Leiser, F., Rank, S., Schmidt-Kraepelin, M., Thiebes, S. & Sunyaev, A. Medical informed 
machine learning: A scoping review and future research directions. Artif. Intell. Med. 145, 
102676 (2023). 

111. Choi, E., Xiao, C., Stewart, W. F. & Sun, J. MiME: multilevel medical embedding of 
electronic health records for predictive healthcare. in Proceedings of the 32nd International 
Conference on Neural Information Processing Systems 4552–4562 (Curran Associates Inc., 
Red Hook, NY, USA, 2018). 

112. Choi, E., Bahadori, M. T., Song, L., Stewart, W. F. & Sun, J. GRAM: Graph-based Atten-
tion Model for Healthcare Representation Learning. Preprint at 
https://doi.org/10.48550/arXiv.1611.07012 (2017). 

113. Ma, F. et al. KAME: Knowledge-based Attention Model for Diagnosis Prediction in 
Healthcare. in Proceedings of the 27th ACM International Conference on Information and 
Knowledge Management 743–752 (Association for Computing Machinery, New York, NY, 
USA, 2018). doi:10.1145/3269206.3271701. 

114. Rasmy, L., Xiang, Y., Xie, Z., Tao, C. & Zhi, D. Med-BERT: pretrained contextualized 
embeddings on large-scale structured electronic health records for disease prediction. Npj 
Digit. Med. 4, 1–13 (2021). 

115. Finch, A. et al. Exploiting hierarchy in medical concept embedding*. JAMIA Open 4, 
ooab022 (2021). 

116. Nelson, C. A., Bove, R., Butte, A. J. & Baranzini, S. E. Embedding electronic health rec-
ords onto a knowledge network recognizes prodromal features of multiple sclerosis and pre-
dicts diagnosis. J. Am. Med. Inform. Assoc. 29, 424–434 (2022). 

117. Steiger, E. & Kroll, L. E. Patient Embeddings From Diagnosis Codes for Health Care 
Prediction Tasks: Pat2Vec Machine Learning Framework. JMIR AI 2, e40755 (2023). 

118. Matta, A. et al. Embedding Representations of Diagnosis Codes for Outlier Payment De-
tection. in 2023 International Conference on Machine Learning and Applications (ICMLA) 
2153–2160 (2023). doi:10.1109/ICMLA58977.2023.00325. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 51 

119. Wu, T., Wang, Y., Wang, Y., Zhao, E. & Yuan, Y. Leveraging graph-based hierarchical 
medical entity embedding for healthcare applications. Sci. Rep. 11, 5858 (2021). 

120. Steinberg, E. et al. Language models are an effective representation learning technique 
for electronic health record data. J. Biomed. Inform. 113, 103637 (2021). 

121. Choi, Y., Chiu, C. Y.-I. & Sontag, D. Learning Low-Dimensional Representations of 
Medical Concepts. AMIA Summits Transl. Sci. Proc. 2016, 41 (2016). 

122. Zou, Y. et al. Modeling electronic health record data using an end-to-end knowledge-
graph-informed topic model. Sci. Rep. 12, 17868 (2022). 

123. Jiang, P., Xiao, C., Cross, A. & Sun, J. GraphCare: Enhancing Healthcare Predictions 
with Personalized Knowledge Graphs. Preprint at https://doi.org/10.48550/arXiv.2305.12788 
(2024). 

124. Landi, I. et al. Deep representation learning of electronic health records to unlock patient 
stratification at scale. Npj Digit. Med. 3, 1–11 (2020). 

125. Hamilton, W. L., Ying, R. & Leskovec, J. Representation Learning on Graphs: Methods 
and Applications. Preprint at https://doi.org/10.48550/arXiv.1709.05584 (2018). 

126. Bommasani, R. et al. On the Opportunities and Risks of Foundation Models. Preprint at 
https://doi.org/10.48550/arXiv.2108.07258 (2022). 

127. OpenAI et al. GPT-4 Technical Report. Preprint at 
https://doi.org/10.48550/arXiv.2303.08774 (2024). 

128. Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. BERT: Pre-training of Deep Bidirec-
tional Transformers for Language Understanding. Preprint at 
https://doi.org/10.48550/arXiv.1810.04805 (2019). 

129. Lewis, P. et al. Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. 
Preprint at https://doi.org/10.48550/arXiv.2005.11401 (2021). 

130. Lukas, N. et al. Analyzing Leakage of Personally Identifiable Information in Language 
Models. in 2023 IEEE Symposium on Security and Privacy (SP) 346–363 (2023). 
doi:10.1109/SP46215.2023.10179300. 

131. Pan, X., Zhang, M., Ji, S. & Yang, M. Privacy Risks of General-Purpose Language Mod-
els. in 2020 IEEE Symposium on Security and Privacy (SP) 1314–1331 (2020). 
doi:10.1109/SP40000.2020.00095. 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 52 

132. Heart Disease in Men and Women. https://www.massgeneralbrigham.org/en/about/news-
room/articles/heart-disease-in-men-and-women. 

133. Shuey, M. M. et al. Next-generation phenotyping: introducing phecodeX for enhanced 
discovery research in medical phenomics. Bioinformatics 39, btad655 (2023). 

134. Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F. & Hamosh, A. OMIM.org: 
Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and ge-
netic disorders. Nucleic Acids Res. 43, D789-798 (2015). 

135. Shevtsova, D. et al. Trust in and Acceptance of Artificial Intelligence Applications in 
Medicine: Mixed Methods Study. JMIR Hum. Factors 11, e47031 (2024). 

136. International Classification of Diseases (ICD). https://www.who.int/standards/classifica-
tions/classification-of-diseases. 

137. CPT® overview and code approval. American Medical Association https://www.ama-
assn.org/practice-management/cpt/cpt-overview-and-code-approval (2024). 

138. Forrey, A. W. et al. Logical observation identifier names and codes (LOINC) database: a 
public use set of codes and names for electronic reporting of clinical laboratory test results. 
Clin. Chem. 42, 81–90 (1996). 

139. Denny, J. C. et al. PheWAS: demonstrating the feasibility of a phenome-wide scan to dis-
cover gene-disease associations. Bioinforma. Oxf. Engl. 26, 1205–1210 (2010). 

140. Wei, W.-Q. et al. Evaluating phecodes, clinical classification software, and ICD-9-CM 
codes for phenome-wide association studies in the electronic health record. PLOS ONE 12, 
e0175508 (2017). 

141. Bastarache, L. Using Phecodes for Research with the Electronic Health Record: From 
PheWAS to PheRS. Annu. Rev. Biomed. Data Sci. 4, 1–19 (2021). 

142. Knowledge Base. LOINC https://loinc.org/kb/. 

143. McInnes, B. T., Pedersen, T. & Pakhomov, S. V. S. UMLS-Interface and UMLS-Similar-
ity : Open Source Software for Measuring Paths and Semantic Similarity. AMIA. Annu. Symp. 
Proc. 2009, 431–435 (2009). 

144. Wilcke, X., Bloem, P. & de Boer, V. The knowledge graph as the default data model for 
learning on heterogeneous knowledge. Data Sci. 1, 39–57 (2017). 

145. Radford, A. et al. Learning Transferable Visual Models From Natural Language Supervi-
sion. Preprint at https://doi.org/10.48550/arXiv.2103.00020 (2021). 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/


 53 

146. Sohn, K. Improved Deep Metric Learning with Multi-class N-pair Loss Objective. in Ad-
vances in Neural Information Processing Systems vol. 29 (Curran Associates, Inc., 2016). 

147. Chen, T., Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive 
learning of visual representations. in Proceedings of the 37th International Conference on Ma-
chine Learning vol. 119 1597–1607 (JMLR.org, 2020). 

148. McInnes, L., Healy, J. & Melville, J. UMAP: Uniform Manifold Approximation and Pro-
jection for Dimension Reduction. Preprint at https://doi.org/10.48550/arXiv.1802.03426 
(2018). 

149. PheWAS - Phenome Wide Association Studies. https://phewascatalog.org/phe-
codes_v1_1. 

150. Anxiety algorithm | PheKB. https://phekb.org/phenotype/anxiety-algorithm. 

151. Chronic Kidney Disease | PheKB. https://phekb.org/phenotype/chronic-kidney-disease. 

152. Breast Cancer | PheKB. https://phekb.org/phenotype/breast-cancer. 

153. Medical Diseases & Conditions. Mayo Clinic https://www.mayoclinic.org/diseases-condi-
tions. 

154. Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 22  140, 55–55 
(1932). 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 

 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 10, 2024. ; https://doi.org/10.1101/2024.12.03.24318322doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318322
http://creativecommons.org/licenses/by-nd/4.0/

