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Abstract  

INTRODUCTION: 

Telomere length (TL) is a hallmark of biological aging. Shorter TL has been 
linked to an increased risk of Alzheimer's disease (AD), but its role in AD 
pathophysiology remains unclear. This study investigates the relationship 
between TL, longitudinal cerebrospinal fluid (CSF) AD biomarkers, and brain 
structure in cognitively unimpaired (CU) individuals at risk for AD. 

METHODS: 

We analyzed data from 346 middle-aged CU ALFA+ participants, measuring 
leukocyte TL (LTL) by qPCR. AD-related CSF biomarkers were measured at 
baseline and after 3 years. Stratified analyses by APOE-e4 and amyloid-tau 
(AT) status were conducted. 

RESULTS: 

Shorter LTL was associated with higher astrocytic reactivity and synaptic 
dysfunction biomarkers, as well as thicker cortex in AD-vulnerable regions. 
Astrocytic biomarkers mediated the LTL-cortical thickness association. In 
APOE-e4 carriers and AT-positive individuals, shorter LTL linked to higher p-
tau181 and neurodegeneration markers. 

CONCLUSION: 

These findings highlight telomere shortening as a potential contributor of early 
AD-related progression. 

 

Keywords: Alzheimer's disease; cerebrospinal fluid; glial biomarkers, glial 
fibrillary acidic protein, preclinical, soluble triggering receptor expressed on 
myeloid cell 2, s100B, α-synuclein, telomere length, leukocytes 

cognitively unimpaired; cortical thickness; glia; leukocyte telomere length; 
preclinical. 

 

Highlights 

● Shorter leukocyte telomere length (LTL) was associated with higher 
levels of cerebrospinal fluid (CSF) GFAP, CSF S100B and CSF α-
synuclein, independently of amyloid and tau pathology. 

● Shorter LTL was associated with higher baseline CSF NfL and t-tau 
levels in the A+T- and A+T+ groups, respectively.  

● LTL association with brain structure was partially mediated by CSF 
biomarkers of astrocytic reactivity.  
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Research in context:  

1. Systematic review: Literature review was performed using traditional 
sources (e.g., PubMed). While the association between leukocyte telomere 
length (LTL) shortening and increased sporadic AD risk is well-documented, 
its role in AD pathogenesis remains unclear. These findings have been 
appropriately referenced. 

2. Interpretation: In cognitively unimpaired adults at higher risk for AD, shorter 
LTL was associated with high AD-related cerebrospinal fluid (CSF) 
biomarkers, including p-tau181 and biomarkers of neurodegeneration, 
synaptic dysfunction, glial reactivity, and inflammation. These associations 
were either more pronounce or exclusively observed in APOE-e4 carriers 
and individuals with early AD pathology (measured by CSF Aβ42/40 and p-
tau181). Furthermore, increased astrocytic reactivity mediated the 
relationship between LTL and brain structure integrity. 

3. Future directions: Further research is needed to understand the role of 
peripheral aging in AD pathology. Investigating how peripheral immune aging 
influences brain homeostasis and AD progression could help identify early 
targets of neuroinflammation and neurodegeneration. 
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Abbreviations 

Aβ = amyloid-β 

AD = Alzheimer’s disease 

AT = amyloid β-tau staging 

CAIDE = Cardiovascular Risk Factors, Aging, and Incidence of Dementia 

CDR = Clinical Dementia Rating 

CSF = cerebrospinal fluid 

CU = cognitively unimpaired 

CV = coefficient of variation 

DNA = deoxyribonucleic acid 

FDR = False Discovery Rate 

GFAP = glial fibrillary acidic protein 

IL-6 = interleukin 6 

LTL = leukocyte telomere length 

MCI = mild cognitive impairment 

MMSE = Mini-Mental State Examination 

MRI = magnetic resonance imaging 

NfL = neurofilament light 

PET = positron emission tomography 

p-tau181 = phosphorylated tau181 

RT-qPCR = real-time polymerase chain reaction-based assay 

sTREM2 = soluble triggering receptor expressed on myeloid cells 2 

TL = telomere length 

t-tau = total tau 

YKL-40 = chitinase-3-like protein 1 
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1. Background  

Biological age is a more accurate indicator of an individual’s physiological and 

functional status than chronological age [1,2]. Since aging is the major risk 

factor for developing neurodegenerative diseases, including dementia due to 

Alzheimer’s disease (AD) [3], significant efforts have focused on understanding 

how hallmarks of biological aging contribute to neuropathological processes [4–

6].  

Telomere length (TL) is a well-known hallmark of cellular aging [7]. Telomeres, 

composed of repetitive DNA sequences (TTAGGG) at the ends of linear 

chromosomes [8], are essential for genomic stability during cellular division 

[9,10]. Telomeres shorten with each cell division, a process accelerated by 

factors such as oxidative stress or environmental exposures [11]. Telomere 

shortening may induce DNA damage and cellular senescence, contributing to 

the aging process [12] along with other hallmarks such as epigenetic alterations 

[13]. 

Leukocyte telomere length (LTL) serves as a surrogate for TL in other tissues. 

While TL varies across tissues, it shows moderate positive inter-tissue 

correlations and an inverse relationship with age, the primary determinant of TL 

across tissues. Notably, although tissues with higher cell division rates, such as 

leukocytes, exhibit shorter TL, age-related TL shortening is also observed in 

tissues with a high proportion of post-mitotic cells, such as the hippocampus 

[14].  

Shorter LTL has been linked to an elevated risk of mortality and age-related 

diseases, including all-cause dementia and dementia due to AD [15,16]. Cross-
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sectional and longitudinal studies indicate that shorter LTL, or greater LTL 

attrition, is associated with poorer cognitive performance in healthy young and 

middle-aged adults [17,18]. Furthermore, longer LTL is associated with larger 

grey matter (including the hippocampus) and white matter volumes, and cortical 

thickness [19].  

Shorter LTL has been observed among AD patients when compared to controls 

[20,21]. Additionally, shorter LTL was found to predict a 25-year risk of AD 

incidence in APOE-e4 carriers in the prospective Betula project [22]. However, 

faster LTL attrition was only marginally associated with progression from normal 

cognition to mild cognitive impairment (MCI) and AD in the AD Neuroimaging 

Initiative (ADNI) cohort [21]. Moreover, no significant associations were found 

between LTL and cerebrospinal fluid (CSF) amyloid-β (Aβ) 42 or total tau (t-

tau). Paradoxically, longer LTL was associated with cognitive decline in 

individuals with lower baseline CSF Aβ42 and higher CSF t-tau, and greater 

medial temporal lobe thinning among biomarker-negative ADNI participants 

[23]. 

AD is conceptualized as a biological and clinical continuum, driven by multiple 

interconnected and dynamic trajectories of pathophysiological changes, 

biomarker alterations, and cognitive symptoms, which collectively facilitate the 

transition from a prolonged asymptomatic stage to cognitive impairment [24–

29]. Interactions between AD-related pathology, genetic factors, environmental 

influences, and hallmarks of aging are hypothesized to contribute to disease 

progression along this continuum [7,30,31].  

Given these complexities and the paradoxical findings described above, there is 

a critical need to integrate longitudinal, multimodal biomarkers - beyond Aβ and 
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tau- as well as AD-related neuroimaging endophenotypes to better elucidate the 

role of LTL in AD pathophysiology. Furthermore, focusing on the earliest stages 

of the AD continuum may help clarify the biological pathways through which 

aging contributes to exacerbate AD pathology and progression to dementia, 

while also identifying potential resistance and resilience mechanisms that 

support successful cognitive aging [32]. 

In the present study, we explored the association between LTL and both 

baseline levels and 3-year changes in AD-related CSF biomarkers, including Aβ 

and tau pathology, neurodegeneration, astrocytic and microglial reactivity, and 

inflammation. We also examined LTL associations with baseline cortical 

thickness in brain regions associated with aging and AD-related atrophy, as 

measured by magnetic resonance imaging (MRI). Finally, we evaluated whether 

APOE-e4 carriership and amyloid-tau (AT) pathology influenced these 

associations. This approach aims to disentangle transient signals and 

confounding factors from the underlying biological mechanisms linking shorter 

LTL to an increased risk of late-life dementia. 

2. Methods  

2.1. Study population 

The present study was performed in the ALFA+ cohort. The ALFA+ study 

includes a subset of 450 participants from the Alzheimer’s and Families (ALFA) 

study [33] who were invited to participate based on their specific AD risk profile. 

Inclusion criteria considered participants’ AD parental history, APOE e4 status, 

verbal episodic memory score and Cardiovascular Risk Factors, Aging, and 

Incidence of Dementia (CAIDE) score. A comprehensive characterization was 

performed in ALFA+ participants, including demographic characteristics, 
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anthropometric measurements, a lumbar puncture for the measurement of CSF 

biomarkers and imaging (i.e., MRI and positron emission tomography (PET)) 

biomarker acquisition. ALFA+ inclusion criteria were: (1) individuals who had 

previously participated in the ALFA study; (2) age between 45 and 65�years at 

the moment of inclusion in ALFA; and (3) long-term commitment to the study: 

inclusion and follow-up visits and agreement to undergo all tests and study 

procedures (MRI, PET and lumbar puncture). ALFA+ exclusion criteria were: (1) 

cognitive impairment (Clinical Dementia Rating (CDR) >0, Mini-Mental State 

Examination (MMSE) <27 or semantic fluency <12); (2) any systemic illness or 

unstable medical condition that could lead to difficulty complying with the 

protocol; (3) any contraindication to any test or procedure; and (4) a family 

history of monogenic AD [34].  

The ALFA+ study (ALFA-FPM-0311) was approved by the independent ethics 

committee ‘Parc de Salut Mar’, Barcelona, and registered at Clinicaltrials.gov 

(identifier: NCT02485730). All participating subjects signed the study’s informed 

consent form which had also been approved by the independent ethics 

committee ‘Parc de Salut Mar,’ Barcelona.  

2.2. Leukocyte telomere length measurements  

LTL (T/S ratio) was measured by high throughput quantitative real-time 

polymerase chain reaction-based assay (RT-qPCR) [35] conducted at Harvard 

Cancer Center Genotyping & Genetics for Population Sciences Facility. All 

samples were processed in a single batch, with laboratory personnel blinded to 

participant’s characteristics. The assay was performed in triplicate under 

identical conditions, with a coefficient of variation (CV) ranging between 0.15-

14.6%. Samples with CV above 15% (3 samples) and those with high cycle 
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threshold values (48 samples) were excluded from the analysis. Forty-five 

samples (2.6%) failed the assay due to low DNA concentration, and APOE-

e2e4 individuals (N = 30) were also removed from the analyses. Further details 

can be found in [36]. 

2.3. Fluid biomarkers assessment   

CSF biomarkers Aβ42, Aβ40, neurofilament light (NfL), soluble triggering 

receptor expressed on myeloid cells 2 (sTREM2), chitinase-3-like protein 1 

(YKL40), glial fibrillary acidic protein (GFAP), S100B, neurogranin, α-synuclein, 

and interleukin 6 (IL-6), were measured using NeuroToolKit, a panel of 

exploratory robust prototype assays (Roche Diagnostics International Ltd, 

Rotkreuz, Switzerland) on either the Cobas® e 411 or the Cobas e 601 analyzer 

(Roche Diagnostics International Ltd). CSF phosphorylated tau181 (p-tau181) 

and total tau (t-tau) were quantified using the electrochemiluminescence 

Elecsys® Phospho-Tau (181P) CSF and Total-Tau CSF immunoassays (Roche 

Diagnostics International Ltd), respectively, on the fully automated Cobas e 601 

analyzer (all Roche Diagnostics International Ltd., Rotkreuz, Switzerland), as 

previously described in [34]. All fluid biomarkers were measured at the Clinical 

Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden. 

Amyloid groups were defined with the CSF Aβ42/40 ratio (Aβ+: < 0.071). 

Participants were tau positive (T+) if CSF p-tau181 > 24 pg/mL or tau negative 

(T−) if CSF p-tau181 ≤ 24 pg/mL. Fluid biomarkers were measured at two time 

points: at baseline (V1) and at follow-up visits (V2). CSF biomarkers values 

were log-transformed to base 10. Mean (SD) follow-up time was 3.45 (0.58) 

years. 
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2.3. Aging and AD cortical thickness signatures  

The acquisition of neuroimaging data was performed for a subset of the 

participants through MRI. MRI scans were obtained with a 3-tesla scanner 

(Ingenia CX, Philips, Amsterdam, Netherlands). The MRI protocol was identical 

for all participants and included a high-resolution 3D T1-weighted turbo field 

echo (TFE) sequence (voxel size 0.75 × 0.75 × 0.75 mm, TR/TE: 9.90/4.6 ms, 

flip angle = 8°). Structural T1-weighted images were segmented using 

FreeSurfer version 6.0 [37]. The average of the cortical thickness between 

hemispheres of specific brain regions was used to calculate the AD and aging 

brain signatures. AD brain signature was calculated as the average cortical 

thickness of AD-vulnerable brain regions: entorhinal, inferior temporal, middle 

temporal, and fusiform [38]. Aging brain signature was calculated as the 

average cortical thickness of aging-vulnerable brain regions: calcarine, caudal 

insula, cuneus, caudal fusiform, dorsomedial frontal, lateral occipital, precentral, 

and inferior frontal [39]. We used AD and aging brain signatures as the main 

outcomes to assess the association between LTL and brain structure. Higher 

values in these signatures represent a thicker cortex in the areas included in the 

signature.  

2.4. Statistical analysis 

The cross-sectional associations between LTL, CSF biomarkers and cortical 

thickness were assessed in the whole sample by using linear regression 

models. All models were adjusted by age, sex, APOE-�4 status, as well as 

firmware MRI version for neuroimaging outcomes. Further, models exploring the 

association between LTL and the 3-year rate of change in CSF biomarker were 

performed. These models were additionally adjusted by the time differences 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.03.24318248doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.03.24318248
http://creativecommons.org/licenses/by/4.0/


7 

between lumbar punctures. All regression β coefficients were standardized. 

Interactions and stratified models by APOE-�4 and AT status were run to test 

differential effects by genetic AD risk and pathology. Outliers were excluded in 

each final sample for CSF biomarkers and LTL values, based on a threshold of 

1.5 times the interquartile range. A multiple-comparison correction was applied 

following the Benjamini-Hochberg procedure at 5% to control for the false 

discovery rate (FDR). FDR was independently applied for baseline and 3-year 

change models, and by pre-defined CSF biomarkers pathways: amyloid 

pathology (i.e., Aβ42/40), neurofibrillary tangles pathology (p-tau181), 

neurodegeneration (i.e., NfL), synaptic dysfunction (α-synuclein, neurogranin), 

astrocytic response (GFAP, S100B, YKL40), microglial reactivity (sTREM2) and 

inflammation (IL6). A FDR-adjusted P value < 0.05 was considered statistically 

significant; unadjusted P value < 0.05 was considered nominally significant and 

unadjusted P value = 0.05 was considered borderline significant.  

Causal mediation analysis, employing quasi-Bayesian confidence intervals with 

1000 simulations was performed to assess the mediating role of CSF 

biomarkers in the association between LTL and neuroimaging outcomes [40]. 

All analyses were conducted using R software (version 4.3.3) [41].  

Three datasets were used to explore the association between LTL, CSF 

biomarkers and neuroimaging outcomes: (1) CSF V1 dataset, including 346 

individuals with available LTL and CSF biomarkers measurements obtained at 

V1; (2) MRI V1 dataset, including 325 individuals with available LTL, CSF 

biomarkers and neuroimaging data at V1; and (3) CSF longitudinal, including 

237 individuals with LTL and two CSF measurements. No MRI was available for 

A-T+ individuals (Figure 1).  
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3. Results  

3.1. Characteristics of the study participants 

Overall, no significant differences in LTL, sex, or body mass index were 

observed across AT stages (Table 1). However, individuals in the A+T+ group 

were older and had lower levels of education compared to those in the A-T- or 

A+T- groups. A higher proportion of APOE-e4 carriers was identified in the A+T- 

group compared to A-T- or A+T+, while no significant differences in APOE-e4 

status were observed between the A-T- and A+T+ groups. 

CSF concentrations of NfL and t-tau were elevated across AT stages at V1. At 

V2, no significant differences in CSF NfL concentrations were found between A-

T- and A+T-. CSF concentrations of neurogranin, α-synuclein, GFAP, S100B, 

YKL-40, and sTREM2 were significantly higher in A+T+ compared to A-T-, with 

similar elevations (excluding S100B) noted in A+T+ compared to A+T-. In 

contrast, no significant differences in these biomarker concentrations were 

observed between A-T- and A+T- at either visit. CSF IL-6 concentrations did not 

differ across AT stages at V1 or V2. Moreover, at V1, individuals in the A+T+ 

group exhibited thinner brain cortex compared to the A+T- group for both aging- 

and AD-vulnerable brain regions, with a trend toward thinner cortices also 

observed in A+T- individuals compared to A-T-. 

When stratified by APOE-e4 status, we observed higher proportion of AT-

positive individuals and lower CSF sTREM2 concentrations among e4 carriers, 

at both at V1 and V2. Higher cortical thickness was observed among APOE-e4 

carriers in AD vulnerable regions (Table S1 in supporting information).  
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3.2. Association between LTL and AD-related CSF biomarkers  

In the whole sample shorter LTL was associated with higher baseline GFAP (β 

= -0.11, P = 0.042) (Figure 2A). This association remained statistically 

significant after adjusting for CSF Aβ42/40 (β = -0.11, P = 0.044). However, the 

association was no longer statistically significant after controlling for CSF p-

tau181 (β = -0.08, P = 0.103), or Aβ40 levels which account for differences in 

CSF production and clearance rates (β = -0.08, P = 0.084) [42]. Similarly, 

shorter LTL was associated with higher baseline levels of S100B (β = -0.13, P = 

0.013) (Figure 2B). This association persisted after adjusting for CSF Aβ42/40 

ratio (β = -0.13, P = 0.014), p-tau181 (β = -0.12, P = 0.027), and Aβ40 levels (β 

= -0.12, P = 0.024). 

Longitudinally, shorter LTL was associated with increased CSF α-synuclein 

levels over time (β = -0.14, P = 0.042) (Figure 3). This association remained 

statistically significant after adjusting for CSF Aβ42/40 ratio (β = -0.14, P = 

0.042), p-tau181 (β = -0.13, P = 0.044), and Aβ40 baseline levels (β = -0.13, P 

= 0.046). 

No other statistically significant associations were found in the whole sample 

(Table S2).  

3.2. Modification by APOE-e4 status on CSF biomarkers 

LTL showed statistically significant interactions with APOE-e4 status on the 

association with CSF YKL-40 at baseline (βint = -0.2, Pint = 0.047) and the 

change in CSF sTREM2 over time (βint = 0.27, Pint = 0.036). Specifically, 

shorter LTL was associated with higher baseline CSF YKL-40 (β = -0.19, P = 

0.006) and decreasing CSF sTREM2 over time (β = 0.17, P = 0.046) only 

among e4 carriers (Figures S1-S2). No other statistically significant interactions 
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between LTL and APOE-e4 status were observed (Table S3 in supporting 

information).  

Nonetheless, when stratifying by APOE-e4 status (Figure 4), shorter LTL was 

associated with higher p-tau181 (β = -0.15, P = 0.033), NfL (β = -0.15, P = 

0.026), t-tau (β = -0.17, P = 0.021), neurogranin (β = -0.15, P = 0.034), GFAP (β 

= -0.15, P = 0.040) and YKL-40 at baseline in carriers of the e4 allele. In 

addition, shorter LTL was associated with longitudinal increases of α-synuclein 

(β = -0.18, P = 0.05) and decreases of sTREM2 over time (β = 0.17, P = 0.046) 

among APOE-e4 carriers.  

In contrast, among APOE-e4 non-carriers, shorter LTL was associated with 

higher baseline S100B (β = -0.21, P = 0.010) (Table S4, Figure S3 in supporting 

information). These associations were independent of Aβ status, while trends 

were observed for CSF NfL, t-tau and GFAP, only the association with YKL-40 

remained statistically significant after adjusting for T status (Tables S5-S6 in 

supporting information). 

3.3. Modification by AT status on CSF biomarkers 

LTL showed significant interactions with AT status in its association with 

baseline CSF Aβ42/40 (A-T+ vs. A-T-: βint = 3.89, Pint = 0.002; A+T- vs. A-T-: 

βint = 0.57, P = 0.09) (Figure S4 in supporting information). When stratifying by 

AT status (Figure 4), trends were observed between LTL and CSF Aβ42/40 in 

both A-T+ individuals (β = 0.74, P = 0.080) and A+T- individuals (β = 0.18; P = 

0.091). Regarding p-tau pathology, no significant interactions or associations 

were found in any AT groups. However, a trend was observed among A+T+ 

individuals with a suggestive negative association between LTL and CSF p-

tau181 (β = -0.42; P = 0.085). Even though no other interactions between LTL 
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and AT status were observed statistically significant associations were found 

between LTL and CSF biomarkers when stratifying by AT status (Tables S4, S7 

in supporting information). 

In A-T- individuals, shorter LTL was longitudinally associated with increased 

CSF α-synuclein (β = -0.17, P = 0.042) and IL-6 over time (β = -0.18, P = 0.029) 

(Figure S5 in supporting information). In the A+T- group, shorter LTL was 

associated with higher baseline CSF NfL (β = -0.21, P = 0.021), S100B (β = -

0.22, P = 0.042) and YKL-40 (β = -0.22, P = 0.020), whereas no significant 

associations were found for the change in CSF concentrations over time (Figure 

S6). Among A+T+ individuals, shorter LTL also associated with higher CSF t-

tau (β = -0.58, P = 0.016), α-synuclein (β = -0.48, P = 0.039), sTREM2 (β = -

0.49, P = 0.046) at baseline. In addition, shorter LTL was longitudinally 

associated with decreased CSF S100B levels over time among A+T+ 

individuals (β = 0.72, P = 0.049) (Figure S7). No significant associations were 

observed in the A-T+ group.  

3.4. Imaging biomarkers and leukocyte telomere length 

Shorter LTL was associated with a thicker brain cortex in regions vulnerable to      

AD-related neurodegeneration (β = -0.11, P = 0.046) (Figure 5A). This 

association was independent of CSF Aβ42/40 (β = -0.11, P = 0.046), p-tau181 

(β = -0.12, P = 0.035), and NfL (β = -0.13, P = 0.021). Shorter LTL was 

associated with thicker cortex in aging-vulnerable brain regions (β = -0.13, P = 

0.019) (Figure 5B). This association was independent of CSF Aβ42/40 (β = -

0.13, P = 0.019), p-tau181 (β = -0.13, P = 0.019), and NfL (β = -0.13, P = 0.017) 

(Table S8). 
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Previous studies have reported positive associations between CSF biomarkers 

of glial reactivity and inflammation with higher gray matter volumes and thicker 

cortical thickness [43–45]. Therefore, we investigated whether shorter LTL's 

association with increasing CSF glial and inflammatory biomarkers could 

mediate its association with cortical thickness. Specifically, we explored the 

putative mediating role of glial (i.e., GFAP, S100B, YKL-40 and sTREM2) and 

inflammatory biomarkers (i.e. IL-6) in the association between LTL and cortical 

thickness. 

The association between shorter LTL and higher cortical thickness in AD-

vulnerable regions was partially mediated by GFAP (i.e., 23.8% of the effect 

mediated) (P = 0.038). Specifically, shorter LTL was indirectly associated with 

thinner cortex in AD signature through its effect on GFAP (Indirect pathway: β = 

0.03, P = 0.010). However, the direct negative association between LTL and AD 

signature was still significant after accounting for the GFAP pathway (Direct 

pathway: β = -0.14, P = 0.012) (Figure 5C). 

In addition, a significant indirect association between shorter LTL and thinner 

AD signature through YKL-40 was observed (Indirect pathway: β = 0.019, P = 

0.040). The direct negative association persisted after accounting for the YKL-

40 pathway (Direct pathway: β = -0.13, P = 0.018). A borderline mediating role 

of YKL-40 in the association between LTL and AD signature was observed 

(Mediation proportion: 16.94%; P = 0.064) (Figure 5D). 

No evidence for other mediation was detected for CSF S100B, sTREM2 or IL-6 

in the association between LTL and AD signature. Regarding the aging 

signature, a borderline significant mediating effect was observed for YKL-40 

(Mediation proportion 16.19%, P = 0.088). LTL was indirectly and positively 
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associated with the aging signature through YKL-40 (Indirect pathway: β = 0.02, 

P = 0.036). Nonetheless, shorter LTL remained associated with higher cortical 

thickness in aging-vulnerable regions after accounting for YKL-40 indirect 

pathway (Direct pathway: β = -0.13, P = 0.018). No evidence for other mediating 

roles were detected for CSF GFAP, S100B, sTREM2 or IL-6 in the association 

between LTL and aging signature (Figure S8 in supporting information). 

4. Discussion  

In this study, we investigated the association between LTL, AD-related CSF 

biomarkers (baseline and 3-year changes), and cortical thickness in CU 

individuals at increased risk of AD. We showed that shorter LTL was associated 

with higher levels of astrocytic reactivity and synaptic dysfunction biomarkers, 

as well as thicker cortex in aging and AD-vulnerable brain regions. Notably, 

astrocytic biomarkers partially mediated the relationship between LTL and 

cortical thickness, suggesting a potential pathway through which telomere 

shortening may influence early neurodegeneration in AD. Additionally, the 

relationship between LTL and AD-related CSF biomarkers differed according to 

APOE-e4 and AT status.  

To our knowledge, this is the first study to comprehensively examine the 

relationship between LTL and an extensive set of AD-related CSF biomarkers. 

In the whole sample, no significant associations were found between LTL and 

CSF Aβ or p-tau biomarkers, consistent with previous studies focused on 

cognitively impaired patients with MCI or AD [23,46]. Unlike prior work, our 

study accounted for the modifying effects of APOE-e4 and AD pathology in 

preclinical stages, revealing that shorter LTL was significantly associated with 

higher baseline p-tau181 levels in APOE-e4 carriers. Although no significant 
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associations were observed when stratifying by AT status for p-tau181, a trend 

of increasingly negative coefficients across AT stages suggests that the 

association with p-tau181 in e4 carriers may be influenced by the progression of 

the disease, potentially diluted by smaller sample sizes in later stages. Similarly, 

shorter LTL was associated to increased neurodegeneration biomarkers in 

APOE-e4 carriers, including NfL and t-tau, primarily in A+T- and A+T+ 

individuals, respectively. 

Shorter LTL was associated with higher baseline CSF α-synuclein in A+T+ 

individuals and an increase in α-synuclein over time in the overall sample and 

A-T- individuals. As we measured total CSF α-synuclein, this likely reflects the 

effect of shorter LTL on synaptic loss and neuronal injury [34]. Previous studies 

show that shorter telomeres induce aging-related phenotypes in iPSC-derived 

neurons, such as reduced neurite density and length [47], though the role of 

telomeres in neuronal maintenance and synaptic plasticity in humans is not well 

understood. Additionally, shorter LTL was associated with higher CSF 

neurogranin concentrations in APOE-e4 carriers. Neurogranin, a postsynaptic 

protein important for memory formation [48,49], is associated with cognitive 

resilience during aging and increases in the CSF of AD patients due to synaptic 

degeneration [50–56]. Genes involved in telomere maintenance have pleiotropic 

effects on brain expression, methylation, and chromatin profiles with effects on 

synapsis homeostasis [57]. Given that LTL is highly heritable and partially 

determined early in life [58,59], the association between LTL and synaptic 

biomarkers may reflect the pleiotropic roles of telomere maintenance pathways 

in synaptic plasticity during brain development and aging. These effects may be 
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amplified under pathological conditions, particularly in APOE-e4 carriers, due to 

its role in synapse pruning and neuroinflammation [60]. 

Several studies have reported increased CSF glial biomarkers across the AD 

continuum [34,61–66]. In our study, LTL significantly interacted with APOE-e4 

status in the association with CSF YKL-40, with shorter LTL linked to higher 

baseline YKL-40 levels exclusively in APOE-e4 carriers. YKL-40 is a 

glycoprotein secreted by multiple cell-types, including leukocytes and 

endothelial cells, which participates in systemic inflammation and angiogenesis 

[67,68]. In the brain, YKL-40 is highly expressed in astrocytes associated with 

Aβ deposits [69] and increased CSF YKL-40 concentrations are found since 

prodromal AD [70]. In our sample, CSF YKL-40 was previously linked to tau 

phosphorylation and Aβ-related neuronal injury [71]. In addition, longitudinally, a 

significant interaction between LTL and APOE-e4 status was observed with the 

change in CSF sTREM2 over time. Shorter LTL was longitudinally associated 

with decreasing CSF sTREM2 among APOE-e4 carriers. This is in line with the 

notion of an impaired microglial-response to injury in aging and among APOE-

e4 carriers [72,73]. However, shorter LTL was associated with higher CSF 

sTREM2 at baseline in A+T+ individuals. Elevated CSF sTREM2 have been 

observed in the early stages of AD after the onset of amyloid pathology [61,74–

77]. In individuals at the preclinical stage of sporadic AD, higher baseline CSF 

sTREM2 was linked to a deceleration in tau deposition, as measured by tau-

PET  [78]. On the contrary, increases in CSF sTREM2 mediated amyloid-

related p-tau181 pathology at the earliest stages of the AD continuum [79]. In 

our sample, higher baseline CSF sTREM2 was associated with better memory 

and executive outcomes, independent of AD pathology [80]. The contrasting 
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baseline and longitudinal associations between LTL and CSF sTREM2 suggest 

a complex interplay between LTL, microglial activation, and potentially 

neuroinflammation across the disease continuum. These findings align with 

previous studies linking longer LTL to worse cognitive outcomes in biomarker-

positive individuals [23]. Further longitudinal studies, including individuals at 

more advanced biological and clinical stages of AD, are needed to clarify LTL’s 

role in microglial reactivity. 

Additionally, shorter LTL was associated with higher CSF GFAP levels in the 

whole sample, an association primarily driven by APOE-e4 carriers. A similar 

trend was observed in the A-T- group but diminished across AT stages, 

potentially due to reduced statistical power with smaller sample sizes. The high 

proportion of APOE-e4 carriers in the A+T- group (i.e., 81%) suggests LTL may 

influence astrocytic reactivity through an ApoE-related pathway early in the AD 

continuum, even before reaching the CSF Aβ positivity threshold. Additionally, 

shorter LTL was associated with higher baseline CSF S100B in APOE-e4 non-

carriers and A+T- individuals, but with longitudinal decreases in CSF S100B in 

A+T+ individuals. S100B is a calcium-binding protein primarily expressed in 

astrocytes in the brain and acts as a damage-associated molecular pattern, 

released under cell stress [81]. S100B is found to be elevated in CSF across 

various neurodegenerative diseases, including AD, and correlates with brain 

atrophy and cognitive decline [82–84]. Finally, shorter LTL was associated with 

increased CSF IL-6 over time in A-T- individuals. 

Together, these findings suggest that telomere maintenance may influence glial 

activity and neuroinflammation in an ApoE and pathology-associated manner, 

particularly in early AD stages. Interestingly, shorter telomeres in human iPSC-
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derived astrocytes from old donors were related to increased production of 

inflammatory cytokines, GFAP expression and elevated DNA damage when 

compared to younger donors [47]. In addition, distinct inflammatory and glial 

signatures have been found in relation to APOE genotype and cognitive 

performance stages in AD patients [85], suggesting that LTL could play a role in 

pathways associated with resilience to disease progression.  

We observed an unexpected negative association between LTL and cortical 

thickness in regions vulnerable to aging and AD. This contrasts with prior 

studies linking longer LTL to greater gray matter volumes and cortical thickness 

[19,86,87]. However, previous studies have described transient increases in 

cortical thickness in AD-susceptible regions among CU individuals at risk for 

AD, primarily attributed to early gliosis and Aβ pathology accumulation [45,88–

92]. In line with this, our sample previously showed associations between higher 

CSF glial and inflammatory biomarker concentrations and increased cortical 

volumes [43,44]. In the current study, the association between LTL and cortical 

thickness was independent of CSF Aβ42/40, p-tau181, and NfL, and partially 

mediated by astrocytic biomarkers, including GFAP and YKL-40. Interestingly, 

while shorter LTL showed an indirect positive association with cortical thickness 

through these biomarkers, the direct association between shorter LTL and 

increased cortical thickness persisted even after accounting for these 

mediators. 

The mechanisms by which telomere shortening impacts brain structure remain 

unclear [87], but may involve cellular aging, oxidative stress, and immune 

dysregulation [93,94]. LTL is inversely and strongly correlated with a blood 

proteomic age clock, primarily driven by immune and inflammatory cytokines, 
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which is linked to mortality, cognitive decline, and neurodegeneration [95]. 

Blood leukocyte telomeres serve as a marker of peripheral immune aging, 

associated with chronic systemic inflammation and increased infection risk 

[7,96,97]. Growing evidence suggests that heightened systemic inflammation 

and activation of the peripheral innate immune system can trigger microglial 

activation and neuroinflammation in aging and neurodegeneration [98]. Based 

on our findings, we might speculate that peripheral immune aging, represented 

by leukocyte telomere shortening, may influence glial reactivity via the 

neuroimmune axis, disrupting brain microstructure homeostasis as reflected in 

cortical thickness [99–101]. Additionally, LTL’s dynamic effects on glial 

activation in the context of AD pathology may underlie its non-linear relationship 

with cognitive performance and AD risk across the disease continuum 

[22,36,102], warranting further investigation.  

Our study is not without limitations. The ALFA+ cohort includes middle-aged, 

CU individuals at increased risk of AD, which may limit generalizability to the 

general population, particularly to biomarker-positive individuals at later AD 

stages or with comorbidities. The 3.5-year follow-up period also restricted our 

ability to capture long-term biomarker trajectories. Finally, the relatively modest 

sample size may have constrained our power to detect associations surviving 

multiple comparison corrections, but the observed trends warrant further 

investigation in larger cohorts with multimodal biomarker data. 

In conclusion, our findings highlight the role of LTL in AD pathophysiology, 

particularly in synaptic dysfunction and glial homeostasis. Importantly, astrocytic 

reactivity mediated the relationship between LTL and cortical thickness, 

suggesting a pathway linking peripheral biological aging to neurodegenerative 
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processes in the brain. Further research is needed to clarify the mechanisms 

underlying LTL’s role in neurodegeneration, with the potential to identify 

determinants of resilience and resistance to pathology leading to successful 

cognitive aging. 
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Table 1. Descriptives of study participants stratified by AT status. 

 

Characteristics A-T-1 N A+T-1 N A+T+1 N A-T- vs. 
A+T-2 

A-T- vs. 
A+T+2 

A+T- 
vs. 

A+T+2 
A-T+1 N 

Leukocyte telomere length (T/S) 1.03 (0.92, 1.17) 215 1.02 (0.90, 1.15) 92 1.04 (0.99, 1.12) 26 0.687 0.841 0.685 1.02 (0.92, 1.06) 13 
Age (years) 60.2 (57.0, 64.0) 215 61.9 (58.2, 65.2) 92 64.1 (62.5, 66.6) 26 0.147 <0.001 0.025 62.6 (60.4, 63.2) 13 
Females, n (%) 136 (63%) 215 52 (57%) 92 18 (69%) 26 0.307 0.667 0.268 9 (69%) 13 
Education (years) 12 (11, 17) 215 14 (11, 17) 92 11 (8, 17) 26 0.930 0.025 0.036 17 (12, 17) 13 
Body mass index (kg/m2) 26.4 (24.5, 30.1)  26.2 (23.9, 28.8)  26.3 (24.3, 28.6)  0.468 0.306 0.583 26.2 (22.9, 28.0)  
APOE-e4 carriers, n (%) 88 (41%) 215 76 (83%) 92 15 (58%) 26 <0.001 0.141 0.015 5 (38%) 13 
CSF biomarkers at V1            

Aβ42, (pg/mL) 1,397 (1,085, 1,819) 215 801 (669, 992) 92 842 (720, 1,189) 26 <0.001 <0.001 0.123 2,575 (2,113, 2,803) 13 
Aβ40, (pg/mL) 16,530 (13,380, 20,060) 215 15,220 (13,490, 17,370) 92 22,505 (19,080, 25,030) 26 0.028 <0.001 <0.001 26,010 (25,980, 27,920) 13 
Aβ42/40 ratio 0.085 (0.081, 0.093) 215 0.054 (0.044, 0.064) 92 0.042 (0.031, 0.051) 26 <0.001 <0.001 <0.001 0.098 (0.091, 0.104) 13 
p-tau181, (pg/mL) 13 (10, 17) 215 15 (12, 18) 92 29 (27, 33) 26 0.007 <0.001 <0.001 25 (24, 29) 13 
NfL, (pg/mL) 74 (59, 88) 215 80 (63, 95) 92 111 (93, 138) 26 0.033 <0.001 <0.001 95 (85, 100) 13 
t-tau, (pg/mL) 169 (139, 209) 215 183 (153, 218) 92 323 (302, 364) 26 0.029 <0.001 <0.001 303 (287, 325) 13 
neurogranin, (pg/mL) 680 (540, 895) 215 686 (571, 868) 92 1,314 (1,178, 1,443) 26 0.605 <0.001 <0.001 1,356 (1,283, 1,419) 13 
α-synuclein, (pg/mL) 173 (138, 230) 215 170 (146, 207) 92 295 (244, 352) 26 0.605 <0.001 <0.001 311 (298, 356) 13 
GFAP, (pg/mL) 6,940 (5,700, 8,700) 215 7,685 (5,800, 8,720) 92 10,755 (9,050, 11,910) 26 0.524 <0.001 <0.001 7,510 (6,310, 9,900) 13 
S100B, (pg/mL) 966 (852, 1,120) 215 1,030 (832, 1,210) 92 1,130 (892, 1,260) 26 0.117 0.003 0.073 1,120 (869, 1,210) 13 
YKL-40, (pg/mL) 133,300 (105,400, 159,300) 215 137,400 (100,950, 166,750) 92 200,850 (174,800, 234,100) 26 0.745 <0.001 <0.001 201,800 (150,000, 217,600) 13 
sTREM2, (pg/mL) 7,550 (6,380, 8,950) 215 7,185 (5,960, 8,740) 92 9,875 (8,700, 11,480) 26 0.141 <0.001 <0.001 10,250 (9,930, 13,480) 13 
IL-6, (pg/mL) 3.57 (2.91, 4.41) 215 3.54 (2.85, 4.44) 92 3.40 (2.77, 4.63) 26 0.912 0.891 0.755 2.98 (2.42, 4.65) 13 

CSF biomarkers at V2            
Aβ42, (pg/mL) 1,424 (1,104, 1,893) 147 755 (676, 989) 61 828 (661, 1,128) 17 <0.001 <0.001 0.717 2,249 (1,855, 3,382) 12 
Aβ40, (pg/mL) 16,740 (13,690, 20,860) 147 16,250 (14,360, 19,350) 61 22,410 (18,830, 25,780) 17 0.725 <0.001 <0.001 25,675 (23,565, 28,975) 12 
Aβ42/40 ratio 0.088 (0.077, 0.098) 147 0.048 (0.040, 0.060) 61 0.038 (0.032, 0.049) 17 <0.001 <0.001 0.003 0.098 (0.073, 0.121) 12 
p-tau181, (pg/mL) 15 (12, 19) 147 17 (15, 21) 61 32 (29, 39) 17 <0.001 <0.001 <0.001 26 (22, 29) 12 
NfL, (pg/mL) 93 (73, 117) 147 101 (78, 123) 61 138 (119, 180) 17 0.152 <0.001 <0.001 104 (97, 126) 12 
t-tau, (pg/mL) 175 (145, 225) 147 201 (169, 260) 61 336 (292, 443) 17 <0.001 <0.001 <0.001 300 (260, 337) 12 
neurogranin, (pg/mL) 730 (566, 1,018) 147 837 (724, 1,092) 61 1,443 (1,347, 1,623) 17 0.016 <0.001 <0.001 1,412 (1,199, 1,521) 12 
α-synuclein, (pg/mL) 181 (131, 243) 147 212 (158, 251) 61 322 (275, 403) 17 0.079 <0.001 <0.001 312 (281, 360) 12 
GFAP, (pg/mL) 9,790 (7,840, 12,040) 147 10,320 (8,250, 12,550)  15,080 (14,070, 16,870)  0.665 <0.001 <0.001 11,320 (8,805, 12,855) 12 
S100B, (pg/mL) 964 (834, 1,090) 147 1,010 (867, 1,150) 61 1,160 (898, 1,320) 17 0.271 0.007 0.098 1,155 (1,000, 1,195) 12 
YKL-40, (pg/mL) 149,300 (117,800, 186,100) 147 163,100 (135,300, 195,900) 61 229,000 (198,200, 272,500) 17 0.098 <0.001 <0.001 218,300 (167,750, 283,500) 12 
sTREM2, (pg/mL) 8,900 (7,480, 10,530) 147 9,280 (7,390, 10,420) 61 10,830 (9,200, 14,000) 17 0.834 0.006 0.010 12,945 (11,950, 16,090) 12 
IL-6, (pg/mL) 4.26 (3.58, 5.29) 147 4.40 (3.56, 5.25) 61 4.03 (3.38, 5.07) 17 0.703 0.571 0.417 3.76 (3.12, 3.89) 12 

Cortical thickness            
Aging signature 2.28 (2.23, 2.35) 209 2.28 (2.25, 2.34) 91 2.26 (2.18, 2.31) 25 0.362 0.075 0.036 - 0 
AD signature 2.53 (2.46, 2.58) 209 2.54 (2.48, 2.60) 91 2.47 (2.42, 2.57) 25 0.129 0.055 0.008 - 0 

1 Median (Q1, Q3); n (%) 
2 Wilcoxon rank sum test; Fisher’s exact test 
Mean (SD) follow-up time was 3.45 (0.58) years. 
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