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The COVID-19 pandemic has underscored the critical need
for accurate epidemic forecasting to predict pathogen spread
and evolution, anticipate healthcare challenges, and evaluate in-
tervention strategies. The reliability of these forecasts hinges
on detailed knowledge of disease transmission across differ-
ent population segments, which may be inferred from within-
community transmission rates via proxy data, such as contact
surveys and mobility data. However, these approaches are in-
direct, making it difficult to accurately estimate rare transmis-
sions between socially or geographically distant communities.
We show that the steep ramp up of genome sequencing surveil-
lance during the pandemic can be leveraged to directly iden-
tify transmission patterns between communities. Specifically,
our approach uses a hidden Markov model to infer the frac-
tion of infections a community imports from other communities
based on how rapidly the allele frequencies in the focal com-
munity converge to those in the donor communities. Apply-
ing this method to SARS-CoV-2 sequencing data from England
and the U.S., we uncover networks of inter-community disease
transmission that, while broadly reflecting geographical rela-
tionships, also expose epidemiologically significant long-range
interactions. We provide evidence that transmission between
regions can substantially change between waves of variants of
concern, both in magnitude and direction, and analyze how the
inferred plasticity and heterogeneity in inter-community trans-
mission impact evolutionary forecasts. Overall, our study high-
lights population genomic time series data as a crucial record
of epidemiological interactions, which can be deciphered using
tree-free inference methods.

Correspondence: ohallats@berkeley.edu

Introduction
Despite extensive efforts to model epidemiological dynam-
ics, particularly during the COVID-19 pandemic, accurately
predicting epidemic trajectories has proven difficult for pop-
ulations with heterogeneous transmissibility patterns (1–5).
Heterogeneities arise from many factors, including varying
population densities, mobility patterns, immunity levels, be-
haviors, and non-pharmaceutical interventions. While the en-
suing transmission rate variations are difficult to predict, ig-
noring them reduces the applicability of model-based fore-
casts and may result in misguided interventions (6–9).

In principle, metapopulation models can account for
known heterogeneities in the host population by dividing it
into suitably many subpopulations, which are distinguished
by their epidemiological characteristics. A crucial input to
these models is a matrix of parameters that represents the
rates at which infections are transmitted between subpop-
ulations. Referred to as infectivity matrix (10–12), it en-
codes how individuals in different population groups acquire
infections from other groups. Metapopulation models can
be used to predict the impact of heterogeneities on the dis-
ease spreading and evolution. By perturbing the transmis-
sion parameters, they also allow for the exploration of group-
specific non-pharmaceutical interventions, immunity or be-
havioral changes.

As the number n of subpopulations grows, estimating the
n2 parameters of the infectivity matrix becomes increasingly
challenging. Valuable clues about the transmission rates have
been gleaned from measuring how often members of dif-
ferent groups come in contact. For example, the real-time
tracking of cell phones enables estimating the mobility flux
between different regions (13–15) and surveys can be used
to infer the mixing between different age groups (16, 17).
However, converting these fluxes into transmission rates re-
quires additional assumptions about the infection dynamics
during contact. For example, how precisely variations in
mask-wearing or immunity levels lower transmission rates
is difficult to measure directly (18, 19), thus, requiring esti-
mation methods. Furthermore, differences in local interven-
tions and individual behaviors can weaken the relationship
between mobility metrics and transmission rates, thereby re-
ducing their predictive power (20).

To transcend these limitations, a direct data-driven ap-
proach to infer heterogeneous disease transmission rates is
needed. Ground truths would be valuable even retrospec-
tively, as they could be used to falsify transmission rates ob-
tained from indirect methods and, more broadly, to develop
improved evidence-based forecasting of epidemic spread and
selective sweeps of new variants. Lastly, knowledge of
how infections cross population boundaries can also inform
phylogenetic approaches to embed genealogies of past out-
breaks into geographical space, which are usually based
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Fig. 1. Inter-community transmission promotes allele frequency convergence. (A) Simulated dynamics of a neutral variant to illustrate the effect of inter-community
disease transmission between two communities, A and B. Ten simulated trajectories are shown with their average as a dashed line. When the two communities are isolated
by a traffic lockdown, their allele frequencies fluctuate independently due to genetic drift acting independently in both populations. After the lockdown is lifted (dotted vertical
line), the allele frequencies tend to converge due to the exchange of infections between the communities. The rate of convergence reflects the rate of case importations. (B)
Time series of allele frequencies for two prevalent SARS-CoV-2 alleles (top and bottom graphs), exemplifying allele frequency convergence during the Delta wave in England.
Each color corresponds to one of the nine regions of England shown in (C). (D) Averaged across approximately independent alleles in our data set, the rate of convergence
substantially differs for different region pairs. The markers show the autocorrelation function Rij(τ) of the allele frequency differences between regions i and j. We focus
on the three region pairs indicated by arrows in Fig. C: London and North East (blue); London and Yorkshire and the Humber (green); and London and South East (red) (see
SI Sec. S.1 for the procedure for selecting the alleles over which we have averaged and for the mathematical definition of Rij(τ)). The solid lines represent exponential fits.
(E) The relative abundance of the top 20 Delta variant lineages over time in North East, Yorkshire and The Humber, London, and South East. Decay rates similar to those in
Fig. D are obtained from lineage-frequency data (Fig. S5).

on the assumption that lineages follow unbiased random
walks (21, 22).

We argue that the steep ramp up of the surveillance of
virus sequence variants during the COVID-19 pandemic of-
fers unprecedented opportunities to use population genetic
tools to obtain a direct view of the underlying metapopula-
tion transmission network. Numerous studies have already
demonstrated that the related effort of molecular source attri-
bution (23–25) substantially gains in precision by the abun-
dance of data. For example, embedding the phylogenetic tree
of the sampled viruses within the geographical landscape of
England has allowed for the reconstruction of detailed spatio-
temporal infection processes for different variants of con-

cern (26, 27). Nonetheless, inferring actual infection pro-
cesses necessitates making significant assumptions about the
dispersal of lineages (21, 22). Furthermore, phylogenetic
methods require constructing genealogical trees, which is
computationally challenging for large datasets like the com-
plete set of sequenced SARS-CoV-2 samples.

Our objective is to create a computationally efficient,
tree-free approach to infer infection matrices directly from
neutral allele frequency time series. We show that, with ad-
equate data, it is possible to map entire networks of disease
transmission between communities. By analyzing genomic
SARS-CoV-2 data from England, obtained from the COVID-
19 Genomics UK Consortium (COG-UK) (28), and data from
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the USA obtained from GISAID (29), we highlight differ-
ences across variants of concern, examine the statistical char-
acteristics of the resulting transmission networks, explore the
significance of long- and short-range connections, and assess
their impact on the spread of new variants.

Results

The Basic Idea. We can illustrate the core of our method
by examining how the importation of cases affects allele
frequency differences between communities. Imagine two
populations, A and B, that are initially epidemiologically
isolated due to a complete traffic lockdown, which is later
lifted. The population genetic simulations in Fig. 1A show
that, during the isolation period, allele frequencies fluctuate
independently in each population since there is no interac-
tion between both populations. However, once the lockdown
ends, both communities begin exchanging infections, causing
their allele frequencies to gradually converge. The higher the
transmission rate between the two populations, the faster this
frequency alignment occurs. Our method leverages this phe-
nomenon, computationally linking the convergence of allele
frequencies to inter-community transmission.

Before delving into our method, it is useful to first ver-
ify that the expected alignment of frequency trajectories is
indeed observable in SARS-CoV-2 data. Focusing for clar-
ity on just two alleles of the Delta variant, Fig. 1B demon-
strates that allele frequencies in different regions in Eng-
land tend to converge over time. Moreover, Fig. 1D demon-
strates that, on average, allele frequency mismatches between
nearby regions, such as London and the South East, diminish
faster than those between distant regions, like London and
the North East, in line with an isolation-by-distance expecta-
tion (32) (see SI Fig. S5 for additional comparisons between
region pairs). The Muller plots in Fig. 1E illustrate how the
sample frequencies of the top 20 Delta variant lineages in the
COG-UK phylogenetic tree fluctuated across regions in Eng-
land during the 2021 Delta wave (SI Sec. S.1).

Overview of the inference approach. To mathematize the
above idea, we resort to the principles by which lineage fre-
quencies evolve under neutrality.

Consider a population composed of n sub-populations,
distinguished by location (different cities or districts), age,
ethnicity, or any other feature that might influence the epi-
demic characteristics of its members. Under neutrality, we
can assume that, up to random fluctuations, the frequency
Xi(t) of a particular lineage in population i at time t depends
linearly on the lineage frequencies {Xj(τ)}j=1...n at some
earlier time τ < t,

Xi(t) =
n∑

j=1
Aij(t;τ)Xj(τ)+ noise , (1)

where A is a right-stochastic n × n matrix: its elements are
non-negative and, within each row, sum up to one,

∑
j Aij =

1. For now, we do not need to know anything about the noise

term, except that its expectation vanishes (See Sec. 1.2 for a
derivation of Eq. 1).

The coefficient Aij represents the proportion of infec-
tions that population i imports from population j, thus cap-
turing cross-infection rates between regions. Therefore, we
refer to A as the importation-rate matrix. Yet, an equally im-
portant dual interpretation of the matrix A arises when one
tries to model backward processes, where one starts from a
given sampled genome and follows its lineage of ancestors
backward in time. For this process, Aij(t;τ) describes the
probability that the lineage jumps from population i to popu-
lation j as time is run backward from t to τ . This backward-
in-time interpretation is needed, for example, when one tries
to embed phylogenetic trees within a metapopulation, be-
cause Aij(t;τ) provides the probabilistic weight for assign-
ing the branch of a phylogenetic tree to a transition from pop-
ulation i to j. We will frequently return to the interpretation
of the rows of A as backward transition probabilities, as it
helps develop intuition and hypotheses for the structure of
A. For example, the constraint

∑
j Aij = 1 is obviously re-

quired for the interpretation of the rows of A as probability
distributions.

The most straightforward way to estimate importation
rates, Aij , using the model described above, is to minimize
the least squares difference between predicted and observed
lineage frequencies over all right stochastic matrices. This
method is most effective when the true lineage frequencies
are known; however, in practice, these frequencies are de-
rived from a random sample of infected individuals. As
a result, the observed frequencies are affected by sampling
noise, introducing biases into the least squares estimation, as
demonstrated in SI Sec. S.2.4.

To avoid sampling biases, we employ a hidden Markov
model (HMM, sketched in Fig. 2A). The HMM analyzes the
entire trajectory of the time series, treating true frequencies
as hidden states and incorporating genetic drift and sampling
error as Gaussian noise processes. Posterior distributions
of the importation rates and the noise strengths are inferred
using a Markov Chain Monte Carlo (MCMC) method. To
speed up training, we have also implemented an Expectation-
Maximization (EM) algorithm. For tracking neutral lineages,
mutations are used as a tree-free alternative, with clustering
techniques employed to ensure neutrality and reduce statis-
tical errors (33). Further details about the inference method
and the data processing are reported in Sec. 1.1–1.3 and SI
Sec. S.2.

In Figs. 2B-D, we evaluate the effectiveness of our
method to infer a known importation-rate matrix from syn-
thetic data simulated under a metapopulation model of three
demes interacting through a 3 × 3 matrix. The simulation
duration (7 weeks), number of lineages, and effective pop-
ulation size were chosen to reflect the conditions during the
Delta plateau period (Aug 2021 – Dec 2021) in England (31).

Application to SARS-CoV-2 in England. To apply our
method to real-world data, we first focus on England due
to its large number of sequenced SARS-CoV-2 cases since
the early stages of the pandemic (SI Fig. S25). The fall of
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Fig. 2. Inference method overview. We use a hidden Markov model (HMM) with continuous hidden and observed states (a Kalman filter (30)) to infer transmission networks
from allele frequency time series. (A) A schematic of the HMM for the frequency dynamics. (B) To demonstrate the utility of our approach, we here use the depicted 3-deme
model to generate allele frequency time series as input for the inference of the importation rates (arrows). In these simulations, the frequencies are evolved according to
Eq. 5, with their initial frequencies being the same as those observed in EE, LDN, and SE of England during the week of June 20-26, 2021. We used effective population sizes
comparable to those measured for England regions during the Delta wave period (31). The measurement noise overdispersion parameter (defined in the Methods section) is
set higher than the value actually inferred, for illustrative purposes. (C) The input for the inference comprises weekly sampled sequences (left) and observed frequencies of
lineages (right) within a focal variant. (D) The output is posterior distributions of the 6 importation rates of the 3×3 network (left), of the local inferred population size (middle),
and of the deviation from uniform sampling (right). Each plot has a vertical dashed line, indicating the true value of the considered observable.

2021 constitutes a particularly suitable test case because of its
consistently high and relatively stable incident numbers over
more than four months (SI Fig. S26). We initially concentrate
on this plateau phase of the Delta wave because it offers long
allele frequency time series data with relatively low statisti-
cal error. In later sections, we also apply our method to the
Alpha and Omicron waves in England, as well as the Delta
wave in the USA.

Following our observations of regional allele frequency
fluctuations in England (Figs. 1C-E), we further subdivided
each region to create a total of 50 subunits, which we call
demes, to enhance the spatial resolution of our interaction
networks. Our subdivision algorithm ensures that each deme
contributes a roughly similar number of sequences (see SI
Sec. S.9.1). In SI Sec. S.4, we provide evidence that a finer

spatial resolution leads to less reliable results, given the data
we have.

Since sampling and incidence reporting typically follow
a weekly cycle, we run our inference with a time step of one
week (∆t = 1). This time step aligns well with the generation
time of SARS-CoV-2, which has an average infectious period
of approximately 4–6 days depending on the variant (34, 35).

Transmission networks mirror geography. After infer-
ring the importation-rate matrix A, we performed hierar-
chical clustering to order the 50 demes by the similar-
ity of their transmission networks, as quantified using the
Jensen-Shannon divergence between their respective rows (SI
Sec. S.7). Remarkably, the resulting matrix exhibits a pro-
nounced block structure (Fig. 3A) with different blocks cor-
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Fig. 3. Network inference reveals heterogeneity, distance dependence and stochasticity of disease transmission (England, Delta wave period, from Jun 20 to Sep 25, 2021).
(A) Heat map of the matrix A. The matrix coefficient Aij represents the proportion of infections that population i imports from population j, thus encoding cross-infection
rates between regions. Hierarchical clustering was used to order the 50 demes according to the similarity between rows of the matrix, as quantified by the Jensen-Shannon
divergence (see SI Sec. S.6). (B) Illustration of the main infection pathways (the largest 5% of the off-diagonal matrix elements). (C) Inferred probability distribution of jump
distances: A jump from deme j to deme i is assumed to occur with probability ∝ AijNi/Nj , where Ni represents the population size of deme i (see SI Sec. S.6 for
the underlying rationale). Inset: Histogram of matrix elements within and across regions. (D) Multidimensional scaling reveals an approximately geographic arrangement of
populations on a two-dimensional plane. MDS is a procedure that projects high-dimensional data on a plane so as to maintain pair-wise distances as closely as possible.
Here, pairwise distances are taken to be the square roots of Jensen-Shannon divergence between the rows of the matrix presented in Fig. A. In the right-side plot, the square
root of Jensen-Shannon distance is compared with the physical distance (the Spearman correlation = 0.74).

responding to geographically well-connected regions, such
as the demes within London or near Liverpool (NE-1) and
Manchester (NE-2). When we plot the major infection paths
(the largest 5% of the off-diagonal matrix elements) on a map
of England (Fig. 3B), a network of predominantly local con-
nections becomes apparent. This aligns with a general de-
cline of importation rates with distance and larger importa-
tion rates within than between regions (Fig. 3C).

To further explore how well epidemiological interac-
tions mirror geographic relationships, we sought a two-
dimensional representation of the entire network of impor-
tation rates. To this end, we performed a multidimensional
scaling (MDS) analysis (36) to embed the locations of all the
demes in a plane such that the in-plane distance between any
two locations measures how different their vectors of impor-
tation rates are. The result, properly rotated, crudely resem-

bles the map of England (Fig. 3D). Thus, frequency fluctua-
tions encode geographic relationships even beyond the pair-
wise level (see SI Sec. S.7 for details of the MDS and further
analyses).

Transmission networks are asymmetric and evolve.
The planar MDS representation only provides a time-
averaged picture and also ignores any asymmetry in the epi-
demiological interactions among populations. To investigate
the dynamics and asymmetry of infection, we focus on Lon-
don (LDN) and its neighboring regions East of England (EE)
and South East (SE). Applying our method to the Alpha,
Delta, and Omicron waves results in the inter-community
transmission rate matrices illustrated in Figs. 4A-C. Asym-
metry is evident in all cases, with notable changes between
waves. We find that the relative influence of different regions
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Fig. 4. Time-dependence of transmission networks. (A-C) The 3x3 importation-rate matrix between London and its two neighboring regions, East of England and South of
England, is inferred using the HMM-MCMC method. Arrows represent the mean importation rates for the Alpha, Delta, and Omicron variants. (D) Time series showing the
ratio of importation rates between each pair of regions, with shaded areas indicating the upper and lower quartiles. At each timepoint, the importation-rate matrix is inferred
using a time window of 7 weeks centered around that timepoint.

shifted across waves. During the Alpha and Delta waves,
London generally had a stronger impact on South East and
East of England than vice versa. Interestingly, within waves,
we detect only relatively modest shifts (Fig. 4D), such as the
growing influence of London on South East and East of Eng-
land from July to October during the Delta wave.

10 15 20
Ne (×102)

1

2

3

4

5

6

Po
sit

iv
e 

ca
se

s (
×1

04 )

y = (23.7±3.6)x

NE
NW
YH
EM
WM
EE
LDN
SE
SW

Fig. 5. Stochasticity of disease transmission, quantified by the effective population
size. For the Delta wave in England, the inferred effective population size at the
region level (x-axis) is compared to the estimated number of infected individuals (y-
axis). The Pearson’s correlation is 0.73 (p-value = 0.026). The error bars represent
the 95% confidence interval (CI), and the solid line indicates the best linear fit.

Inference indicates pronounced genetic drift and uni-
form sampling noise. Our HMM framework not only esti-
mates importation rates but also quantifies the strength of ge-
netic drift via the effective population size, Ne,i, and assesses
the impact of sampling noise through the overdispersion pa-
rameter, ci. We compared the inferred effective population
size with the number of infected individuals estimated by the
COVID-19 Infection Survey (37). While there is a strong
correlation between the two, the inferred effective popula-
tion size was consistently lower by factors ranging from 18
to 29 across regions (Fig. 5). This discrepancy between ef-
fective and infected population sizes, which aligns with ear-
lier studies aggregating over all England (31), may be ex-
plained by factors such as superspreading events and com-
munity structure (31, 38–43), as well as potential mutational
fitness effects, although significantly non-neutral alleles were
removed prior to the inference. In contrast, the overdisper-
sion parameter ci was close to one (Fig. S18), indicating that
sampling error is uniform and of expected magnitude in the
COVID-19 Infection Survey.

Comparison with the USA and mobility proxies. For
comparison, we also applied our method to the USA, focus-
ing on the Delta wave (Jul 18 – Oct 30, 2021). We divided the
USA into 30 subunits using the same subdivision algorithm
employed in the analysis of England (SI Sec. S.9.2). Fig. 6A
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Fig. 6. Transmission network in the USA during the Delta wave (30 demes, Jul 18, 2021 – Oct 30, 2021) and comparison to mobility data. (A) Illustration of the main
infection pathways. Arrows indicate the largest 5% of the off-diagonal matrix elements Aij . See Fig. S23 for the inferred matrix. (B) Comparison between the jump kernel
inferred from the 30×30 importation-rate matrix (blue) and indirectly estimated using the SafeGraph data (orange).

illustrates major importation pathways. Similar to England,
we found that inter-community importation rates in the US
mirror geographic relationships (Fig. S24).

The US data also allow us to compare the jump kernel
with what would be expected based solely on mobility data
collected by SafeGraph during the period of January to May
2020 (44). SafeGraph gathers data from a large panel of
anonymous mobile devices in the US, recording an average
“home” location over six weeks and all locations where the
device pauses for at least one minute. To convert these data to
the lineage jump probability, we assume that a lineage jumps
from deme i to deme j with a probability proportional to
Fi←j

Nj
, where Fi←j is the rate of trips from deme j to i, and

Nj is the population size of source deme j (see SI Sec. S.1.4
for details).

Our analysis shows that the jump kernel directly in-
ferred from the sequencing data decays substantially slower
with distance than predicted by the mobility proxy data
(Fig. 6B). This suggests that deducing epidemiological inter-
actions from mobility data may require a different model or
different information than the aggregated cell phone move-
ments provided by SafeGraph.

Eigenvalue decomposition. Given the potentially large
number of inferred importation rates—2,500 in the case of
England—it is important to determine which aspects of the
transmission network are truly relevant for predicting epi-
demiological trajectories. Intuitively, what is relevant should
depend on the timescale of interest. For instance, if we are
concerned with the dynamics from one viral generation to the
next, we need a detailed transmission network that captures
the strongest importation rates, such as those within a city.
Conversely, if we are interested in the dynamics over several
weeks, the fine structure is less critical. After a brief relax-
ation period, the different parts of a city with strong intra-city
connections will fluctuate coherently, allowing cities to be
effectively represented as single compartments with weaker
inter-city links.

Our dynamical model of neutral frequencies enables us to

formalize the intuitive concept of timescale-dependent col-
lective variations. First, note from Eq. 1 that our best pre-
diction for the allele frequencies at future time t is given by
the tth power of the matrix A applied to the current allele
frequencies,

E [X(t)] = At X(0) .

To compute the matrix power on the right-hand side, it is
natural to decompose the matrix A in terms of its eigenval-
ues, upon which we get

E [X(t)] =
n−1∑
µ=0

aµλt
µvµ ,

where vµ is the right eigenvector of A corresponding to the
eigenvalue λµ. The mode amplitudes aµ are determined by
the inner product ⟨uµ | X(0)⟩ between the µth left eigen-
vector uµ and the initial frequency vector X(0). We as-
sume that the eigenvalues are arranged in descending order
of magnitude and that the eigenvectors are normalized such
that ⟨uµ | vµ′⟩ = δµ,µ′ .

We expect the dynamics to mix all demes over long
times, unless there are isolated pockets, leading to an even-
tual equalization of the expected allele frequencies across
demes. This outcome is guaranteed (i) if A has an eigen-
value λ0 = 1 corresponding to a right eigenvector of con-
stant frequency Xi = 1 and (ii) if the magnitudes of all other
eigenvalues are less than 1, |λµ>0| < 1. These conditions
are mathematically ensured by the right-stochasticity of A,
provided that it is also irreducible.

Relaxation dynamics. Before discussing the long-term sta-
tionary state, we first address the relaxation toward station-
arity. The amplitude of mode µ decays e-fold after a time
τµ ≡ − ln−1(|λµ|), which diverges as |λµ| approaches unity.
Generally, many eigenmodes influence the relaxation pro-
cess, as shown in Fig. 7A for the Delta wave in England.
However, the total time to reach the steady state is controlled
by the longest relaxation time τ1.

In Fig. 7B, we display τ1 for the Alpha, Delta, and Omi-
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Left eigenvector

A B C

Fig. 7. Relaxation dynamics and reproductive values. (A) The absolute values of the left eigenvectors vn of the 50×50 matrix during the Delta wave in England, presented
in Fig. 3A. Each eigenvector vn is normalized such that

∑
i
|(vn)i| = 1. (B) The longest epidemiological relaxation times [week] is calculated for each major variant in

England from the regional importation-rate matrix. For comparison, we also show the relaxation times obtained from a modified matrix where transmission between non-
neighboring regions is excluded. (C) The per-capita reproductive value for the Alpha and Delta variant in England. Here, the reproductive valueπi is evaluated by inferring
the importation-rate matrix A at the region level, where NE, which has fewer sequences, is combined with YH to obtain reliable results. The values of πi moderately depend
on the choice of time intervals used for the inference (see Fig. S19).

cron waves in England. The relaxation times differ signifi-
cantly between waves; for instance, the relaxation time dur-
ing the Delta wave is approximately 10 weeks, which is less
than half of the relaxation time during the Alpha wave.

What features of the transmission network determine the
overall relaxation time? The strongest interactions, typically
short-range between neighboring demes, are certainly sig-
nificant. However, we also identified relatively weak long-
distance connections, whose impact is less clear. To assess
their effect, we artificially removed all inferred long-distance
connections (those spanning non-neighboring regions) and
reevaluated the relaxation spectrum. We found that elimi-
nating these long-distance interactions significantly increased
τ1, by more than fourfold during the Delta wave, for exam-
ple. This finding suggests that even very infrequent long-
distance connections must be considered to accurately predict
the speed of a pandemic.

Equilibration and reproductive value. To illuminate the
long-term stationary state, let us consider a neutral allele ini-
tially fixed in deme i and absent in all other demes. Due
to case importations, allele frequencies are expected to grad-
ually even out across demes. Consequently, the long-term
expected frequency, πi, is the same in all demes and de-
pends only on the identity i of the initial deme. The vec-
tor π = (π1, . . . ,πn)⊤, composed of these primary-deme-
dependent long-term frequencies, is proportional to the lead-
ing left eigenvector previously denoted by u0 and normalized
to sum to 1,

∑
i πi = 1. πi represents the expected contribu-

tion of deme i to the future gene pool, which is called the
class reproductive value (45, 46).

When we normalize the reproductive value of a deme i
by its number Ii of infected individuals, as measured by the
COVID-19 Infection Survey (37), we obtain the per-capita
reproductive value πi/Ii, which is the probability that a vi-
ral genome picked at random from an infected individual in
the distant future traces its ancestry back to this individual

in the present generation (45, 46). If the infection dynamics
were the same everywhere in England, one would expect in-
dividual reproductive values to be the same across all regions.
Interestingly, we find that per-capita reproductive values vary
by about a factor of 2 across England in both the Alpha and
the Delta wave, see Fig. 7C.

In the same data set, we find that ratios of reproductive
values approximately predict ratios of case importation rates
(Sec. 1.4 and SI Sec. S.3),

πj

πi
≈

Aij

Aji
. (2)

This relation with an equal sign is called detailed balance.
Under most epidemiological models, this condition is ex-
pected because otherwise the lineage jump process exhibits
unwarranted cyclic dynamics in equilibrium. Thus, finding
detailed balance is reassuring of basic assumptions in epi-
demiological modeling.

Additionally, detailed balance, Eq. 2, helps relate hetero-
geneities in reproductive value to heterogeneities in trans-
mission coefficients. For example, a lower per-capita re-
productive value for East of England (EE) is observed both
during the Alpha and Delta waves in England (Fig. 7C
right), suggesting that the per-capita importation rate from
EE to any other region is systematically lower than the
other way around. In SI Sec. S.3, we further investigate
these importation-rate patterns, demonstrating that the het-
erogeneities suggested by the reproductive values can be con-
firmed directly from the importation-rate matrix. We also ar-
gue that possible variations in reporting timing could affect
heterogeneous patterns of πi, highlighting the importance of
accurate reporting dates for precise inference (Fig. S11).

Selected variants. We have previously emphasized that in-
ferring Aij sheds light on case importation patterns, their
variations across time and space, their potential for control,
and their role in embedding phylogenetic trees. But knowing
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Fig. 8. Replaying the dynamics of a selective sweep. (A) Observed frequencies of the Delta variant in England, ranging between 10−3 and 1− 10−3, across ND = 50
locations in England (movies in SI). The heatmap displays the frequencies on a logit scale. On the vertical axis, epidemiological weeks (epiweeks) in 2021 are indicated below
the dates by [·]. (B) Simulations following the non-neutral transmission model described in SI Sec. S.8, with inter-community importation rates as inferred for the Delta wave
(shown in Fig. 3) (movie in SI). The observed frequencies at epiweek 10, when the Delta variant was reported only in deme "London-0", are used as the initial condition (see
SI Sec. S.8 for the fitting process). (C) Simulated frequencies, where transmission between non-neighboring regions (such as London and North West) is switched off (movie
in SI). (D) Comparison of the midpoint epiweek t 1

2
—the week when the frequency in a deme reaches 0.5—between observed data and simulated data for each deme (see

SI Sec. S.8 for the determination of t 1
2

). Orange circles represent t 1
2

from the simulation with the inferred Aij , while blue stars represent t 1
2

from the simulation without

transmission between non-neighboring regions. The horizontal bars indicate the standard deviations obtained from the bootstrapping method.

the Aij of a variant is useful also because it enables predict-
ing its behavior if it is under selection. In the SI Sec. S.5,
we show how selective forces modify the allele frequency
dynamics in an SIR or SEIR model. In particular, when
a variant under positive selection is rare, its dynamics fol-
lows the neutral dynamics in Eq. 5, with the modification
Aii → Aii + σ, where σ is the selected advantage of the
considered variant. Thus, as long as the variant is rare, its
expected frequency is computed as:

E [X(t)|X(0)] = eσtAt X(0). (3)

The kymograph in Fig. 8A illustrates the spreading pat-
tern of the Delta variant across England. We conducted simu-
lations of the Delta variant’s frequency dynamics (detailed in
SI Sec. S.8), starting from frequencies observed in the week
of March 7-13, 2021, when Delta variant sequences were re-
ported solely from the deme labeled “London-0.” Fig. 8B
displays the simulated abundance of the Delta variant using
the inferred Aij , presented in Fig. 3A, along with fit param-
eters associated with the relative infectivity of the Delta vari-
ant (SI Sec. S.8). To assess the impact of long-range trans-
mission, we artificially removed the inferred connections be-
tween non-neighboring regions and then conducted the same

simulation (Fig. 8C).
Figure 8D shows the comparison of the midpoint time,

t1/2, at which the abundance of the Delta variant reached
50% in a deme, between the observed and simulated data.
The simulation using the inferred matrix roughly reproduces
observed t1/2, clustering around epiweeks 18-21. In contrast,
without transmission between non-neighboring regions, the
simulation show delays in t1/2. In particular, for the NE, NW,
and YH demes, which are distant from the initial seeding at
“London-0,” the t1/2 values are predicted to be delayed by
2-6 weeks without the non-neighboring transmission. This
highlights the significant impact of rate, long-range transmis-
sion on the spread of the new variant.

Discussion

The infection rates between individuals from different pop-
ulation segments are among the many known unknowns of
a pandemic. These rates, crucial for forecasting pathogenic
spread, depend on complex behavioral patterns, immunity
levels, and non-pharmaceutical interventions, rendering them
exceptionally challenging to measure directly.

We here proposed a novel approach to infer these elusive
rates retrospectively by examining the dynamics of viral ge-
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netic variation among different population groups. Utilizing
this method, we constructed transmission networks during
the COVID-19 pandemic in England and the US. Our find-
ings shed light on the heterogeneity and plasticity of trans-
mission networks, which have implications for epidemiolog-
ical forecasting and intervention strategies.

Methodological Advances. Our approach hinges on the
premise that the observed frequencies of neutral variants are
influenced solely by inter-community transmission, random
genetic drift, and observational noise. By averaging out
these noises, we can isolate the impact of cross-transmission,
which tends to reduce regional differences in allele frequen-
cies. This convergence towards a common value is evident in
the allele frequency data of SARS-CoV-2 (Fig. 1) and demon-
strates a plausible distance dependence. To optimally capture
this signal, we have implemented a Kalman filter, which en-
ables us to infer importation rates, local effective population
sizes, and the strength of observational noise. A key advan-
tage of this method is that it only relies on allele frequency
time series, bypassing the need to construct a phylogenetic
tree, which can be computationally demanding, especially
when dealing with polytomies. We validated our method us-
ing population genetics simulations of a metapopulation with
parameters consistent with those of SARS-CoV-2.

Epidemiological Insights. Our key finding is that, applied
to highly sequenced SARS-CoV-2 populations, this method
allows us to map an entire interaction network between dif-
ferent populations. Unlike methods based on proxies, this
approach quantifies direct epidemiological interactions that
can be integrated into models of the disease spread. Our
findings reveal substantial heterogeneity and plasticity in dis-
ease transmission networks. By applying our method to the
SARS-CoV-2 transmission data in England and the U.S., we
uncovered several key patterns:

Geographical Mirroring and Long-Range Interactions. The
inferred transmission networks largely reflect geographical
proximities. Cross-importation rates are strongest between
neighboring regions and gradually weaken with increasing
physical distance. Interestingly, when interaction strength is
converted into a distance and a map is drawn based on this
metric, it roughly represents the geographic layout of Eng-
land. This suggests that interactions reflect geographic rela-
tionships.

The observed gradual weakening of interactions with dis-
tance likely reflects the limited traffic flow between distant
regions. However, we did not find quantitative agreement
between the distance decay of US traffic flows as estimated
by SafeGraph and cross-importation rates. We see two po-
tential reasons for the discrepancy: (i) SafeGraph data treats
all visited locations equally, regardless of the duration of the
visit, which could lead to an underestimation of the impact of
long-distance visits. (ii) Long-distance trips may be associ-
ated with riskier behaviors, thereby increasing the likelihood
of disease transmission. Therefore, the reduction in mobil-
ity flux with distance may be partially offset by an increase

in infections caused by long-distance travelers. To separate
these contributions, differently curated mobility data will be
required.

Dynamic Changes in Transmission Patterns. The cross-
community importation rates and their directionalities exhibit
considerable variation across different waves of variants of
concern. These dynamics were evident in the varying impor-
tation rates between London, East of England, and South East
during different waves, with noticeable shifts in transmission
dominance between these regions. Such dynamic changes
emphasize the need for adaptive modeling approaches that
can accommodate evolving transmission patterns over time.

Asymmetry in Cross-Importation Rates. Our analysis
showed that cross-importation rates are often heterogeneous,
indicating that certain regions exert a stronger influence on
others. In general, epidemiological “rock-paper-scissor”
interactions could exist between different regions. How-
ever, we found that such non-transitive interactions are
not observed in our inferred importation rates, which ap-
proximately satisfy a certain symmetry property (detailed
balance) that ensures that the lineage dynamics backward
is time reversible (no cyclic fluxes). This also allows using
per-capita reproductive values (Fig. 7C) to compare the
infectivity across regions.

Implications for Epidemic Forecasting and Future Di-
rections. The ability to directly infer detailed transmission
networks has the potential to improve epidemic forecasting.
We found that weak long-range interactions are crucial for
explaining the spreading of beneficial mutations. This high-
lights the importance of accounting for such interactions in
epidemiological models, especially for highly transmissible
pathogens like SARS-CoV-2.

However, since importation-rate matrices were also
found to change considerably between waves, continu-
ous genomic surveillance will be needed to update cross-
importation rates. With accumulating time series data for
different waves and different pathogens, future studies might
also learn to predict the evolution of cross-importation rates
through time. Such progress might come either by identify-
ing interpretable patterns with the help of mechanistic epi-
demiological models or through machine learning.

The patterns we have identified show that detailed bal-
ance is a reasonable assumption for epidemic models, but
that different regions have different infectivities. Given de-
tailed balance, one important open challenge is to understand
mechanistically what sets the different infectivities of the dif-
ferent regions. Plausible candidate reasons are historical con-
tingencies due to differential exposure to prior waves, induc-
ing behavioral and immunological differences, or policy dif-
ferences.

Understanding the detailed structure of transmission net-
works may also allow for the design of targeted interventions.
For example, identifying regions with high cross-importation
rates can help prioritize areas for vaccination, testing, and
other control measures.
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Limitations and Assumptions of the Method. While our
allele-frequency-based method offers substantial advance-
ments, several limitations warrant discussion.

Our method assumes that the alleles we track are neutral.
Including alleles that are spatially sweeping and beneficial
can lead to an overestimation of cross-importation rates from
the origin to target areas. Therefore, it is crucial to exclude al-
leles whose selective changes are stronger than genetic drift,
as we have done following our precursor work in ref. (31).

The absence of direct measurements for cross-
importation rates means we lack a definitive benchmark for
comparing our results. As a result, our inferred matrices
should be interpreted with some caution. Nonetheless, the
observed distance decay in our inferred inter-community
transmission networks is a convincingly realistic feature,
aligning with expected cross-importation rates. It is reas-
suring that our method infers a plausible tradeoff between
transmission rate and geographic distance based solely
on frequency correlations, without requiring geographical
information.

Conversely, we have no way of verifying the weak long-
range connections we inferred. Simulations with and with-
out these interactions indicate their importance in facilitat-
ing rapid epidemic spread. So they need to be taken into
account for prediction purposes. But our bootstrapping anal-
ysis also suggests that we cannot pinpoint the precise identity
of these long-range connections: strong short-range interac-
tions are consistently identified across bootstrap samples, but
weak long-range connections vary (see SI Fig. S22). The
uncertainty in the identity of these crucial weak links makes
targeted intervention difficult, but hardly affect the predicted
spreading time scales. Thus, while long-range interactions
are significant for prediction purposes, their precise identities
are not. Future work may develop a better representation for
weak but important connections, for example, through sys-
tematic coarse-graining or other forms of regularization.

Our method does not require constructing a genealogical
tree; it only relies on standing genetic variation monitored
over time. The accuracy of our inferences improves with the
amount of time series data available. Therefore, our method
is most effective when applied to periods where a particular
variant of concern is already prevalent. However, it is less ef-
fective in measuring cross-importation rates early on when a
variant is just beginning to invade and few samples are avail-
able. Phylogeographical inference methods are better suited
for source attribution, as they enable tracing the emergence
of a new variant (26, 27). Nonetheless, our analysis indi-
cated that cross-importation rates did not change significantly
within waves, suggesting that our inferences may serve as a
baseline for cross-importation rates in the early stages of a
new wave.

Methods

1.1 Inference methods. The simplest way to infer the
cross-importation rates Aij(t + ∆t; t) in Eq. 1 for a fixed
time difference ∆t from time series data is to minimize the

least square difference between the predicted and actual lin-
eage frequencies,

A∗ = argmin
A

∑
i,µ

|t′−t|≤T

Xµ
i

(
t′+∆t

)
−

∑
j

AijXµ
j

(
t′

)2

,

(4)
over all right stochastic n × n matrices, satisfying Aij > 0,∑

j Aij = 1. The summation over time points t′ on the right-
hand side serves as a regularization step, which ensures that
A does not vary on time spans smaller than 2T . The more
sequencing data is available, the smaller T can be chosen,
which leads to a better resolution of the temporal variations
in A. Standard errors of the matrix coefficients are obtained
by bootstrapping over the available lineages µ.

The linear regression approach in Eq. 4 is computation-
ally efficient but requires as input the true lineage frequen-
cies, which are never known exactly. Instead, one can only
measure the frequencies within the sequenced sample, which
represent the true frequencies distorted by sampling noise.

Accordingly, we have adopted a HMM, as depicted in
Fig. 2, which treats the frequencies as hidden states. By
modeling genetic drift and sampling noise as Gaussian dis-
tributions, the HMM effectively transforms into a computa-
tionally efficient Kalman filter (30) with a likelihood func-
tion that can be calculated analytically. The per-generation
variance due to genetic drift is inversely proportional to the
effective population size Ne, which is usually smaller than
the actual number of infected individuals. Specifically, for
SARS-CoV-2 in England, the ratio between actual and ef-
fective population size was found to range from tens to hun-
dreds (31). Likewise, sampling noise can be larger than ex-
pected based on random sampling, if sampling is not random
but entails correlations. We therefore set the sampling vari-
ance to be inversely proportional to Si,t

ci
, where Si,t is the

number of sequences sampled from population i at time t,
and ci measures the deviation from random sampling. To in-
fer the strength of genetic drift (Ne) and sampling noise (ci)
from our HMM, we have implemented an MCMC algorithm,
which yields posterior distributions for these parameters (see
Sec. S.2 in SI).

Our simulation results in SI Fig. S7 show that, while
both the least squares method and the HMM method with the
MCMC algorithm retrieve importation-rate matrices close to
the ground truth, the least squares estimation tends to overes-
timate small interactions. Such a bias appears from the fact
that the solution of Eq. 4 tends toward the uniform matrix
when noise levels are high.

We thus focused on the HMM method to minimize these
biases. To reduce computational cost of the MCMC, we have
also implemented an EM algorithm, which provides the max-
imum likelihood estimate of all relevant parameters. The in-
ference error of the EM algorithm was assessed by using a
bootstrapping approach, where the parameters were inferred
multiple times from randomly created sets of alleles, each set
maintaining the same size as the original set.
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1.2 Neutral evolution in a metapopulation. Here, we
provide additional mathematical rationale for why Eq. 1
describes the frequency dynamics of a neutral allele in a
metapopulation. First, the deterministic terms in Eq. 1 are
linear in the frequencies because, under neutrality, the fre-
quency of any union of lineages must obey the same stochas-
tic evolution equation. Additionally, neutrality implies that
frequencies do not change in expectation if the frequency
is the same in all populations, necessitating that each row
of A sums up to 1. (If Xi(τ) = x for all i, Eq. 1 im-
plies E[Xi(t)|X(τ)] = x

∑
j Aij , which equals x only if∑

j Aij = 1. ) Finally, negative matrix elements are excluded
because they can generate negative frequencies.

Note that an alternative way of writing Eq. 1 is

Xi(t)−Xi(τ) =
n∑

j=1
Aij(t;τ) [Xj(τ)−Xi(τ)]+ noise ,

(5)
which explicitly shows (i) that the frequency in j only influ-
ences the frequency in i if Xi ̸= Xj , and (ii) that a larger
value of Aij > 0 leads to a faster convergence of Xi to Xj .

Each coefficient Aij(t;τ) for j ̸= i denotes the propor-
tion of infections that population i receives from population
j during the interval from τ to t. Meanwhile, Aii(t;τ) =
1 −

∑
j ̸=i Aij(t;τ) represents the proportion of infections

that are not imported, i.e., “homegrown” infections.
From this perspective, it is straightforward to see how

Eq. 5 arises. During the period from τ to t, population
i imports a total of Ii(t)Aij(t;τ) infections from popula-
tion j, with a fraction Xj(τ) of these infections carrying
the focal allele. Thus, at time t, the expected total num-
ber of infections carrying the focal allele in population i is
Ii(t)

∑
j Aij(t;τ)Xj(τ). Consequently, the updated allele

frequency X(t) is given by
∑

j Aij(t;τ)Xj(τ). By substi-
tuting Aii(t;τ) = 1−

∑
j ̸=i Aij(t;τ), we obtain Eq. 5.

1.3 From lineages to alleles. Our inference technique is
fueled by data collected through counting the prevalence of
independent lineages across locations and times. Identifying
these independent lineages is straightforward when a com-
plete and accurate phylogenetic tree is available, as it simply
involves segmenting the tree into monophyletic groups. But
constructing a large phylogenetic tree in the first place—in
the case of SARS-CoV-2 for millions of viral genomes—is
not only computationally demanding but often results in un-
resolved polytomies.

A tree-free alternative for creating time series of neutral
lineages is provided by tracking the frequency of all pre-
existing neutral mutations in the different sub-populations.
This works in principle because the frequency of a neutral
allele has to obey Eq. 1, even in the presence of recombina-
tion. The downside of this approach is that, due to linkage,
different alleles may not be independent. Treating them as
independent underestimates statistical errors. Moreover, it is
important to ensure that the included alleles are neutral.

Therefore, we first cluster alleles based on their pairwise
genetic distances and then select representative alleles for

each cluster (33). We then excluded a small fraction of outlier
alleles, whose time series are not consistent with neutrality,
as measured by a maximum likelihood method described in
refs. (31, 47) (also see SI Sec. S.1.3).

In SI Figs. S3 and S20, we demonstrate that, regardless
of whether we use tree-based lineages or alleles (including
only synonymous mutations or all mutations), the qualita-
tive and coarse-grained outcomes (the largest eigenvalues and
reproductive values) of both tree-based and allele-based ap-
proaches are consistent and do not significantly differ for the
Delta wave in England. Additionally, in SI Fig. S21, we
demonstrate that similar importation rates are inferred from a
downsampled fraction of the sequences (e.g., 10%).

As an additional consistency check, we provide a theo-
retical explanation in SI Sec. S.4 on how the importation-rate
matrix should change with spatial coarse-graining. We veri-
fied that the behavior of the inferred matrix aligns with these
theoretical predictions, further supporting the robustness of
our inference method.

1.4 Detailed balance condition. The inferred infection
matrices are typically asymmetrical, which can be checked
for example for the Delta wave matrix shown in Fig. 3a.
However, one might wonder if a more general symmetry,
known as detailed balance, is maintained, which is often as-
sumed in modeling and inference studies. Detailed balance
is satisfied when the flux of lineages between two regions is
balanced when traced backward in time. This implies that
the backward-time lineage jump process is time-reversible.
Mathematically, this detailed balance condition can be ex-
pressed as

πiAij = πjAji , (6)

meaning that, in equilibrium, the lineage flux from region j
to i is equal to the reverse flux. In Bayesian phylodynamic
inference, detailed balance is often assumed to simplify the
learning algorithms (48). Moreover, standard epidemiolog-
ical models imply detailed balance, because otherwise the
lineage jump process exhibits unwarranted cyclic dynamics
in equilibrium. We show in SI Sec. S.5 how detailed bal-
ance emerges from a standard epidemiological SIR and SEIR
models.

It is therefore important to check whether the data jus-
tifies the detailed balance premise. We focus on the nine
regions in England and plot in Fig. 9 the ratio of left and
right-hand sides in Eq. 6 for all possible pairwise interac-
tions. While most long-distance interactions are too weak to
test for detailed balance, the strong neighbor-neighbor inter-
actions are largely consistent with detailed balance.

Data Availability
All of the SARS-CoV-2 genomes analyzed in this article are
publicly accessible through the GISAID platform and the
COG-UK consortium. The GISAID accession identifiers an-
alyzed in this study are provided as part of Supplementary
Materials.

12 | bioRχiv Okada et al. | Inferring inter-community disease transmission

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.02.24318370doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318370
http://creativecommons.org/licenses/by/4.0/


LD
N-

SE
EE

-L
DN

EM
-W

M
NE

YH
-N

W
EE

-S
E

SE
-S

W
EM

-E
E

NE
YH

-E
M

W
M

-S
W

NW
-W

M
NW

-E
M

W
M

-S
E

EM
-S

E

0.11

0.33

1.0

3.0

9.0

iAij

jAji

Between neighboring regions

EM
-S

W
NW

-E
E

W
M

-L
DN

NW
-S

E
EM

-L
DN

NE
YH

-E
E

NE
YH

-W
M

LD
N-

SW
W

M
-E

E
EE

-S
W

NW
-S

W
NE

YH
-S

E
NE

YH
-L

DN
NE

YH
-S

W
NW

-L
DN

Between non-neighboring regions

Fig. 9. Testing the detailed balance assumption. Under detailed balance, the ratio
πiAij
πj Aji

should equal one for all deme pairs (i, j), where πi denotes the class reproductive

value (satisfying
∑

i
πiAij = πj and normalized to 1). The box plots show these ratios for all pairs of regions in England, where YH and NE are combined to a single

region, using the 8×8 importation-rate matrix Aij inferred from the region-level data of mutations during the Delta wave period (June 20, 2021 - October 31, 2021). Results
for neighboring region pairs, which generally exhibit stronger couplings, are shown separately from those for non-neighboring regions, where couplings are typically smaller

and exhibit greater inference error in
πiAij
πj Aji

.

Code Availability
The Python script for the HMM-EM method and the C++
code for the HMM-MCMC method, along with the Python
scripts to reproduce the figures in this manuscript, are avail-
able at https://github.com/Hallatscheklab/
NetworkInfer.
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S.1 Data sources and processing
For the analysis of England, we downloaded the sequence metadata from the COVID-19 Genomics UK Consortium (COG-UK)
(28) on March 25, 2022. The metadada include the time and location of sample collection. The number of sequences over time
is presented in Fig. S25. For the analysis of the United States, the sequence metadata was obtained from the GISAID database
(https://www.gisaid.org/). For the Delta variant analysis, we excluded the AY.4.2 sequences, whose proportion
modestly increased in England during the Delta wave (49). For the Omicron variant analysis, we focused on the B.1.1.529 and
BA.1 lineages, except for the BA.1 sequences that had any of the mutations S:K417N, S:N440K, or S:G446S (50).

S.1.1 Lineage frequency data.

While the metadata include the lineage designation using the Pango nomenclature (51, 52), it classifies variants into a limited
number of lineages. Therefore, we created our own lineages based on phylogenetic distance using the publicly available COG-
UK phylogenetic trees (on March 25, 2022) (31); specifically, we cut the tree at a particular depth to create many subtrees,
defining each subtree as a lineage (see Fig. S1A). If any subtrees occupy more than 2.5% of the total sequences, we introduce
an additional cut at another position (farther from the root) and divide these subtrees further to create more subtrees (lineages).
We continue this process until no subtree occupies more than 2.5% of the total sequences. For the analysis of the Delta variant,
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the tree was cut at the depths at 50.5lunit, 56.5lunit, 59.5lunit where lunit = 3.34×10−5. Fig. S1B) shows how the sequences
are distributed along the depth of the tree over epiweeks. Note that in this figure and throughout the SI, we adopt epiweeks
starting from December 29, 2019, extending their application across multiple years to enable continuous analysis despite the
usual yearly reset. The correspondence between the epiweeks and calendar dates is summarized in Sec. S.10.

A B

Focal variant

Other variants

Lineage 1

Lineage 2

Lineage 3

Fig. S1. (A) Construction of lineages within a variant using the phylogenetic tree: Leaf nodes are represented by circles for sequences of the focal variant and by squares
for sequences of other variants. Lineages of the focal variant are defined by cutting the tree at a certain depth, represented by a vertical dashed line. In this illustration, three
lineages are obtained through this procedure. (B) Collection date versus tree depth for the metadata sequences of the Alpha, Delta, and Omicron variants: For each variant,
only 300 sequences are displayed for clearer visualization. The dashed horizontal lines represent the cuts used to define the lineages of the Delta variant in England. The
numbers [·] on the dates denote epiweeks.

S.1.2 Mutation frequency data.
Mutation frequency data for England and the USA were generated from mutations listed in the COG-UK and GISAID meta-
data, respectively. The COG-UK metadata includes both synonymous and non-synonymous mutations, whereas the GISAID
metadata includes only non-synonymous mutations. The frequency of each mutation was calculated by counting the number
of sequences carrying that mutation and normalizing this by the total number of sequences at each sampled location, with a
unit time of one week. For very rare mutations, the effect of sampling noise is significant, making the inference unreliable.
Conversely, including very abundant mutations would limit the total number of independent mutations (obtained from a method
described below (33)). Therefore, as a compromise, we decided to select mutations whose country-wide frequency, averaged
over a focal time window, is moderately low, ranging between 0.003 and 0.05.

The presence of genetic linkage between mutations can create statistical dependencies that can distort our inference. To
avoid bias due to linkage-induced correlations, we pruned the set of mutations following ref. (33). The pruning procedure first
defines a distance between two mutations m1 and m2 as

d(m1,m2) = 1− |S1 ∩S2|
|S1 ∪S2|

, (S.1)

where Si is the set of sequences carrying the mutation mi in a country. Next, we constructed a graph where nodes are mutations,
and an edge exists between two mutations if d(m1,m2) < dth, with dth ∈ [0,1] as a threshold parameter. We then identified the
connected components of the graph, treating each connected component as a cluster of mutations. Finally, from each cluster,
we selected the mutation mi with the largest |Si| as its representative, producing a set of approximately independent mutations.

The higher the threshold value dth, the more mutation trajectories are grouped into the same cluster, as illustrated for the
the Delta variant in England in Figure S2. We confirmed that as dth increases, the importation-rate matrix for the Delta variant
inferred from the mutation data becomes more similar to the matrix inferred from the lineage data (Figure S3). Based on these
results, we decided to use a high value of dth = 0.9 for all the inferences presented in this paper (except for Figure S3).

S.1.3 Outlier detection.
In our inference, we focused on alleles within a particular variant, as our method relies on the neutrality assumption, and
mixing alleles from different variants could introduce fitness differences that violate this assumption. However, there is still
a possibility that significant differences in fitness exist between alleles even within a variant, which could potentially bias the
inference of the importation-rate matrix. To prevent this, we applied the statistical test for neutrality (31, 47), which computes
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A

B

C

Fig. S2. (A) The country-wide frequency trajectories of a subset of mutations of the Delta variant in England. For each threshold value dth, the frequency trajectories
of mutations that belong to the same cluster are plotted in the same color. Nine mutations are classified into three, two, and one clusters for dth = 0.1, 0.5, and 0.7,
respectively. Similarly, Figures (B) and (C) show the frequency trajectories and the equivalence classes for other subsets of mutations of the Delta variant in England.
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Fig. S3. Comparison between the result for the Delta-sublineage data in England and the result for the mutation data, and the dependence on the threshold value dth
used for clustering mutations. ND = 50. (A) Importation-rate matrix, Alineage

ij
, inferred from the lineage data. (B-D) Importation-rate matrix, Amutaton

ij , inferred from the

mutation data, where dth = 0.0,0.4,0.8, respectively. (E) dth vs the Pearson correlation coefficient between Alineage
ij

and Amutation
ij . F-H) Element-wise comparison of

Alineage
ij

and Amutation
ij for dth = 0.0,0.4,0.8, respectively.

the maximum likelihood estimate of the relative fitness s and the p value for each allele, from the time-series data of allele
counts.

For the mutations selected by the clustering described in Sec. S.1.2, we applied this statistical test using their country-
wide count data. We then excluded significantly non-neutral mutations (p < 0.05) and used only putatively neutral mutations
(p ≥ 0.05) for our inference. Figure S4A displays the results of the statistical test on the Delta variant in England. From left to
right, it shows the allele-frequency trajectories for putatively neutral alleles (left), significantly non-neutral alleles (middle), and
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the p-s distribution (right). Among the 85 representative mutations identified by the clustering method described in Sec. S.1.2,
68 mutations are identified as putatively neutral. As a control, we also applied the statistical test to the simulated data of neutral
allele frequencies generated by the Wright-Fisher model (Fig. S4B). For both the actual and simulated data, the central region of
the p-s distribution exhibits a triangular shape, indicating the validity of the neutrality assumption for the majority of mutations
of the Delta variant sitting in this central region of the p-s distribution.

Similarly, we applied the same filtering to the lineage data and used only putatively neutral lineages for the inference.

Delta variant

Neutral Wright-Fisher model

A

B

Fig. S4. (A) Trajectories of mutation frequencies observed in the Delta wave in England (Left: trajectories with p > 0.05, Middle: trajectories with p < 0.05). Right: Inferred
selective coefficient and p-value, where each dot represents these values for a particular mutation. (B) Trajectories generated by the neutral Wright-Fisher simulation (Left:
trajectories with p > 0.05, Middle: trajectories with p < 0.05). The effective population size is set to 10,000, the sampling rate per week is set to 10,000, and the number of
trajectories is 100, comparable to actual country-wide data in England. Right: Inferred selective coefficient and p-value.

S.1.4 Mobility data in the United States.
In the analysis of the jump kernel presented in Fig. 6C, we used SafeGraph data (44), which were derived from cell phone
tracking. Specifically, we used the county-level dataset processed by the authors of ref. (53) and then aggregated spatial
locations to obtain the mobility flux between the 30 demes. Note that while we compared the jump kernel inferred from the
sequencing data during the Delta wave with that calculated from the SafeGraph data, the SafeGraph dataset spans March 2020
to February 2021, which predates the surge of the Delta variant.

S.1.5 Autocorrelation functions, Rij , in Fig. 1D.
In Fig. 1D, we demonstrate the convergence of allele frequencies across regions in England by computing the autocorrelation
functions Rij(τ), defined as

Rij(τ) = 1
NνNt

∑
ν

∑
t

(
Xν

i (t+ τ)−Xν
j (t+ τ)

)(
Xν

i (t)−Xν
j (t)

)
, (S.2)

where ν and t label alleles and timepoints, respectively; Nν and Nt denote the total numbers of alleles and timepoints, respec-
tively; and Xν

i (t) denotes the frequency of allele µ in region i at week t. We also calculated the autocorrelation functions using
the lineage frequencies of the Delta variant and confirmed that decay rates similar to those presented in Fig. 1D are obtained
from the lineage data (Fig. S5).
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BA

Fig. S5. (A) The time-series trajectories of lineage frequencies are illustrated for three lineages of the Delta variant. (B) The dots show the normalized autocorrelation
functions Rij between London and North East (blue), London and Yorkshire and the Humber (green), London and South East (red), computed from the lineage frequency
data. The solid lines show exponential curves fitted to the data. The auto-orrelation functions are computed by averaging over the 40 lineages with the largest sample sizes.

S.2 Hidden Markov Model for the neutral frequency dynamics

Our inference method is based on a dynamic linear model (a Kalman filter). We follow the notation and formulation in ref. (54).
In the following, we denote the multivariate normal distribution with mean µ and covariance Σ as

N(x|µ,Σ) ≡ 1√
(2π)k|Σ|

exp
(

−1
2(x−µ)⊤Σ−1(x−µ)

)
, (S.3)

where k is the dimensionality of x. We denote the function measuring “heterozygosity”, x(1−x), as

H(x) ≡ x(1−x). (S.4)

S.2.1 Hidden Markov Model.
We consider the neural dynamics of a lineage (or allele) frequency described by the spatial Wright-Fisher model with ND

demes. The dynamics of the true and observed frequencies can be approximately described by the following Markov process
(Fig. S6).

• Transition probability distribution: The true frequency vector zt ∈ [0,1]ND (hidden state) obeys

p(zt|zt−1) = N (zt|Azt−1,Γt−1) (S.5)

with the importation-rate matrix A ∈ RND×ND satisfying Aij > 0 (i ̸= j) and
∑

j Aij = 1, and

Γt−1 = diag.

(
(Azt−1)i(1− (Azt−1)i)

Ne,i

)
:= diag.

(
H((Azt−1)i)

Ne,i

)
(S.6)

Here (AZ)i =
∑

j Aijzj , and Ne,i is the effective population size of deme i, which controls the strength of the genetic
drift.

• Emission probability distribution: The observed frequency vector xt ∈ [0,1]ND approximately obeys:

p(xt|zt) = N (xt|zt,Σt), (S.7)

where Σt characterizes the strength of the measurement error and is assumed to be given by

Σt = diag.

(
ci

H(zi,t)
Si,t

)
. (S.8)

Here Si,t is the number of sequences at week t in deme i, and ci ≥ 1 is a parameter quantifying the deviation from ideal
random sampling. The quantity Si,t/ci can be interpreted as the effective sampling size.
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• Initial condition on z0:

p(zt=0) = N (zt=0|µ∗,V∗). (S.9)

We assume that µ∗ and V∗ are given by

µ∗ = xt=0

V∗ = diag.

(
H(x0,t=0)

S0,t=0
, . . . ,

H(xND,t=0)
SND,t=0

)
. (S.10)

Zt−1

ΣtΣt−1

Zt

Xt−1 Xt

Z0

Σ0

X0

Γt−1 ⋯ ZT−1

ΣT−1

XT−1

⋯
Zt = AZt−1 + 𝒩(0, Γt−1)

Γ0Γ0 ΓT−2

Fig. S6. The HMM for the frequency dynamics. Zt and Xt are true frequencies and observed frequencies, respectively. The transition probability densities (horizontal
arrows) and emission probability densities (vertical arrows) are modeled by Gaussian distributions, Eqns. (S.5) and (S.7).

S.2.2 Inference.
Given the observed frequencies, xi,t, and the number of sampled sequence, Si,t, our goal is to estimate the importation-rate
matrix A, the effective population sizes Ne,i, and the overdispersion of measurement noise ci. To achieve this, we developed
two algorithms:

• Inference of the posterior distributions using a Markov Chain Monte Carlo (MCMC) method.

• Maximum likelihood estimation using an EM algorithm.

We employed the MCMC method for the region-level inference in England. Conversely, for deme-resolved matrices (Figs. 3A
and 6A), we chose the EM method because of intensive computational requirements of the MCMC approach.

S.2.2.1 Computing the likelihood function and the filtered trajectories using the forward algorithm.
Here, we describe the forward algorithm that computes the likelihood recursively. We have the identity:

p(zt+1|x0:t+1) = p(zt+1|xt+1,x0:t)

= p(zt+1,xt+1|x0:t)
p(xt+1|x0:t)

(∵ Product rule)

= p(xt+1|zt+1,x0:t)p(zt+1|x0:t)
p(xt+1|x0:t)

(∵ Product rule)

= p(xt+1|zt+1)p(zt+1|x0:t)
p(xt+1|x0:t)

(∵ Conditional independence)

logp(zt+1|x0:t+1) = logp(xt+1|zt+1)+ logp(zt+1|x0:t)+ const.︸ ︷︷ ︸
z−indep.

(S.11)

Because the second term p(zt+1|x0:t) can be rewritten as

p(zt+1|x0:t) =
∫

p(zt+1,zt|x0:t)dzt (∵ Marginalization)

=
∫

p(zt+1|zt,x0:t)p(zt|x0:t)dzt (∵ Product rule)

=
∫

p(zt+1|zt)p(zt|x0:t)dzt (∵ Conditional independence) (S.12)
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we have

logp(zt+1|x0:t+1) = logp(xt+1|zt+1)+ log
∫

p(zt+1|zt)p(zt|x0:t)dzt +const. (S.13)

In the standard Kalman filter, a crucial step in deriving the recursion equations is performing Gaussian integration over the
hidden state variables z. In our model, the covariance matrices Γt and Σt are dependent on z, which makes the process non-
Gaussian. To utilize the technique of the Kalman filter, we approximate the covariances using matrices that are independent of
z;

Γt−1 ≈ diag.

(
H(x̄t,i)

Ne,i

)
,

Σt ≈ diag.

(
ci

H(x̄i,t)
Si,t

)
, (S.14)

where the hidden frequency zi,t is replaced by the time-averaged observed frequency x̄i,t ≡ 1
T

∑T−1
t=0 xi,t. Under this approxi-

mation, all quantities appearing in Eq. (S.13) become Gaussian. We note that, unlike the standard Kalman filter, the covariance
matrix Σt in our model is time-dependent due to the time-varying sampling rates Si,t. However, we can still perform Gaussian
integrations even with the time-dependent covariance, as long as it remains independent of the hidden variables zt.

After some calculations (as detailed in ref. (54)), it can be shown that the triplet {µt,Vt, lt}, defined by

p(zt|x0:t) = N (zt|µt,Vt) (S.15)
lt = p(xt|x0:t−1), (S.16)

satisfies the following recursive equations:

Forward algorithm

– For t = 0,

µ0 = µ∗+K0(x0 −µ∗)
V0 = (I −K0)V∗
l0 = N (x0|µ∗,V∗+Σ0) (S.17)

where K0 = V∗(V∗+Σ0)−1.
For t = 1,2, . . . ,T −1,

µt = Aµt−1 +Kt(xt −Aµt−1)
Vt = (I −Kt)Pt−1

lt = N (xt|Aµt−1,Pt−1 +Σt) (S.18)

where Pt−1 = AVt−1A⊤+Γt−1 and Kt = Pt−1(Pt−1 +Σt)−1.

– The likelihood function is given by

p(x0, . . . ,xT−1) =
T−1∏
t=0

lt. (S.19)

For each lineage (or allele) labeled by ν, we compute the triplet {µν
t ,V ν

t , lνt }0≤t≤T by solving Eqns. (S.17, S.18) recursively,
with µ∗ and V∗ in Eq. (S.10) and Σt and Γt in Eq. (S.14). The total log likelihood of the time-series data for all lineages (or
alleles) is given by

logp(Data|Θ) =
T−1∑
t=1

∑
ν

log lνt ≡ −E(Θ), (S.20)

where Θ is the set of the parameters to be inferred, Θ = {Aij , Ne,i, ci}.
We note that in Eq. (S.20), the log likelihood at the initial timepoint, log lνt=0, is excluded from the summation (even
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though l0 appears in the likelihood in Eq. (S.19)). This exclusion is appropriate due to our assumption about the true initial
frequency, µ∗ = x0. Under this assumption, Eq. (S.17) leads to log lνt=0 = −1

2 log |V∗+ Σ0| + constant, which increases as
the overdispersion parameter of measurement noise, ci, decreases (see Σ0 in Eq. (S.14)), regardless of the values of measured
frequencies. Therefore, including the term log lνt=0 in Eq. (S.20) would introduce a bias that underestimates ci when maximizing
the likelihood.

S.2.2.2 Computing the posterior distributions using an MCMC.
We consider the flat prior distributions pprior(Θ) on Θ. In this case, the posterior distribution is proportional to the likelihood,

p(Θ|Data) = p(Data|Θ)pprior(Θ)∫
p(Data|Θ)pprior(Θ)dΘ

= C ×p(Data|Θ) ≡ C ×e−E(Θ), (S.21)

where C is a factor independent of Θ.
To obtain the posterior distribution p(Θ|Data) ∝ e−E(Θ), we perform an MCMC method, namely, simulate a random walk

in the Θ space whose stationary distribution is given by p(Θ|Data) ∝ e−E(Θ). Specifically, we implement the Metropolis
algorithm:

MCMC (Metropolis algorithm)

– Initialize Θ0.
– Compute E(Θ0) using the forward algorithm (Eq. S.20).
– For l = 0 to L−1,

– Propose Θ′ ∼ pproposal(Θ′|Θl) (explained below).
– Compute E(Θ′) using the forward algorithm (Eq. S.20).
– Sample u from the uniform distribution on [0,1].
– If u < e−(E(Θ′)−E(Θ)), set Θl+1 = Θ′. Else set Θl+1 = Θl.

For sufficiently large Monte Calro steps L (e,g., L ∼ 106), the sequence Θ0,Θ1, . . . ,ΘL approximates the posterior distribution
p(Θ|Data).

For the proposal distribution pproposal, we employ the followings:

• For Neff,i, sample h ∼ N (0, ϵN ), where ϵN is a positive constant. If Neff,i + h ≥ 0, set N ′eff,i = Neff,i + h. Else set
N ′eff,i = −(Neff,i +h).

• For ci ∈ Θ, sample h ∼ N (0, ϵc), where ϵc is a positive constant. If ci +h ≥ 1, set c′i = ci +h. Else set c′i = 2− (ci +h).

• For the importation-rate matrix Aij , randomly choose a pair (i, j) and sample ϵ ∈ [−Aii,Aij ] from the uniform distri-
bution. Set A′ij = Aij − ϵ and A′ii = Aii + ϵ.

Remark: While one may use other forms of pproposal(Θ′|Θ), it must satisfy two critical conditions:

1. The proposed Θ′ must be within the meaningful parameter region. For example, N ′eff,i must be positive, and A′i,j must
lie on the simplex.

2. pproposal(Θ′|Θ) must be symmetric, i.e., pproposal(Θ′|Θ) = pproposal(Θ|Θ′). Otherwise, the Metropolis-Hastings algo-
rithm should be used instead of the Metropolis algorithm.

Note that in our proposal distribution for Ne,i and ci, any proposed value that exceeds the boundary of the parameter space
is reflected along the boundary. This prescription ensures the symmetric condition near the boundary. For Aij , our proposal
distribution also satisfies the above two conditions (see ref. (55)).

S.2.3 Computing the maximum likelihood estimation through an EM algorithm.
We use an EM algorithm to search for the maximum likelihood estimate of the parameters Θ. Suppose that the model parameter
is Θold = (A,Ne)old at a stage of the algorithm. By using Θold, for each lineage, we first compute the filtered trajectory µt and
the covariance Vt using the forward algorithm. Then, we compute the smoothed trajectory µ̂t and the variance V̂t by solving
the backward equation:

µ̂t = µt +Jt(µ̂t+1 −Aµt)
V̂t = Vt +Jt(V̂t+1 −Pt)J⊤t (S.22)

22 | bioRχiv Okada et al. | Inferring inter-community disease transmission

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.02.24318370doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318370
http://creativecommons.org/licenses/by/4.0/


where Pt = AVtA⊤+ Γt and Jt = VtA⊤(Pt)−1. Solving the backward algorithm provides the following quantities, which
will be required below1;

Ep(z|x,Θ)[zt] = µ̂t

Ep(z|x,Θ)[ztz
⊤
t−1] = V̂tJ

⊤
t−1 + µ̂tµ̂

⊤
t−1

Ep(z|x,Θ)[ztz
⊤
t ] = V̂t + µ̂tµ̂

⊤
t . (S.23)

In the EM algorithm, we need to minimize the expectation Q of the complete-data likelihood p(z,x,Θ) (Here, z and x
collectively denote the frequencies zν and xν of all Nlin lineages). It can be shown that the terms of Q that are dependent on
Aij and Ne,i are given by (see ref. (54))

Q(Θ,Θold) = Ep(z|x,Θold)[lnp(z,x,Θ)]

= −1
2

Nlin∑
ν=1

T−1∑
t=1

ln |Γν
t−1|−Ep(z|x,Θold)

[
1
2

T−1∑
t=1

Nlin∑
ν=1

(zν
t −Azν

t−1)⊤(Γν
t−1)−1(zν

t −Azν
t−1)

]
+(terms independent of A,Ne)

= Nlin(T −1)
2

∑
i

lnNe,i −Ep(z|x,Θold)

[
1
2

T−1∑
t=1

Nlin∑
ν=1

(zν
t −Azν

t−1)⊤(Γν
t−1)−1(zν

t −Azν
t−1)

]
+ · · ·

=
∑

i

[
Nlin(T −1)

2 lnNe,i

− 1
2

T−1∑
t=1

Nlin∑
ν=1

Ne,i

H(x̄ν
i,t−1)

(
AE[zν

t−1zν,T
t−1]A⊤−E[zν

t zν,T
t−1]A⊤−AE[zν,T

t−1zν
t ]+E[zν

t zν,T
t ]

)
ii

]
+ · · · , (S.24)

where (· · ·)ii in the last line represents the ii component of the matrix inside the parentheses. The notation |M | denotes the
determinant of a matrix M .

The new matrix Anew is obtained by minimizing the quantities in the second line of Eq. (S.24). Since Aij and Ai′j′ are
decoupled if i ̸= i′, each row of Anew can be determined separately. Specifically, the i-th row (Anew

i1 , · · · ,Anew
iND

) := ζ⊤ is
obtained by solving

min
ζ

1
2ζ⊤gζ +q⊤i ζ (S.25)

under the constraints,
∑

j ζj = 1 and ζj > 0. The matrix g and the vector qi are given by

g =
T−1∑
t=1

∑
ν

E[zν
t−1zν,⊤

t−1]
H(x̄ν

i,t−1) ,

qi =
T−1∑
t=1

∑
ν

E[zν
t,iz

ν,⊤
t−1]

H(x̄ν
i,t−1) , (S.26)

which can be evaluated by using Eq. (S.23). We determine each row of Anew by solving the constrained quadratic programming
Eq. S.25 using the Python package CVXOPT.

After determining Anew, the new effective population size Nnew
e,i is determined by differentiating Eq. (S.24) with respect

to Ne,i. The result is

Nnew
eff,i = (T −1)Nlin∑T−1

t=1
∑Nlin

ν=1
1

H(x̄ν
i,t−1)

(
AnewE[zν

t−1zν,⊤
t−1](Anew)⊤−E[zν

t zν,⊤
t−1](Anew)⊤−AnewE[zν,⊤

t−1zν
t ]+E[zν

t zν,⊤
t ]

)
ii

.

(S.27)

1There is an erratum in the corresponding equation in ref. (54).
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Q also has the terms that are dependent on the parameter describing the deviation from uniform sampling, ci;

Q(Θ,Θold)|ci−dep. = −1
2

T−1∑
t=0

∑
ν

ln |Σν
t |−Ep(z|x,Θold)

[
1
2

T−1∑
t=0

∑
ν

(xν
t −zν

t )⊤(Σν
t )−1(xν

t −zν
t )

]

=
∑

i

∑
ν

[
−T

2 lnci − 1
2

T−1∑
t=0

Si,t

ciH(x̄ν
t,i)

(xν
t,ix

ν
t,i −2xν

t,iE[zν
t,i]+E[zν

t,iz
ν
t,i])

]
. (S.28)

The new value of the measurement noise overdispersion cnew
i is determined by minimizing the above expression with respect

to ci (subjected to ≥ 1):

cnew
i = max[1,

1
TNlin

∑
ν

T−1∑
t=0

Si,t

H(x̄ν
t,i)

(xν
t,ix

ν
t,i −2xν

t,iE[zν
t,i]+E[zν

t,iz
ν
t,i])]. (S.29)

In the EM algorithm, we initialized the parameters, Θ = Θ0, and iteratively updated them to Θnew, by solving Eq. S.25
and evaluating Eqns. S.27 and S.29, until the likelihood stabilizes/converges.

Regularization: To stabilize the inference for deme-resolved analysis (higher than at region level), we added a Ridge-like
regularization term Λ

∑
i

∑
j ̸=i A2

ij , to Q. Here, Λ is a regularization parameter. The value of Λ is determined via cross-
validation by dividing the set of allele-frequency (or lineage-frequency) trajectories into training and test data of equal size.

Bootstrapping: To evaluate the uncertainty in the MLE, we performed bootstrapping by randomly sampling lineages with
replacement to generate multiple new sets, each containing the same number of lineages as the original dataset. We then applied
the EM algorithm to each of these generated sets.

S.2.4 Computational tests.

• 3-deme system We simulated frequency time-series data using the 3×3 matrix shown in Fig. 2. The effective population
size and sampling rate were set to values similar to those inferred for London and its neighboring regions during the Delta
wave. The results for the simulated data, inferred using the HMM-MCMC, HMM-EM methods, and the least squares
(LS) method (see Eq. 4), are compared in Figs. S7A-D. The LS method, which ignores fluctuations due to genetic drift
and sampling noise, tends to overestimate the interaction strengths (Fig. S7C). Note that the results from the LS method
are not displayed in Figs. S7C and D because the LS method cannot infer Ne,i and ci.

• 50-deme system We simulated frequency time-series data using the 50 × 50 matrix shown in Fig. S8A, which was con-
structed by assuming five strongly interacting blocks, each consisting of 10 demes. The effective population size Ne,i

and ci were set to Ne,i = 1200 and ci = 1.0, respectively. The sampling rate was assumed to be Si = 500 for all demes.
These values were chosen to mimic the actual situation during the Delta wave in England. From the simulated data, we
inferred the parameters using the LS and HMM-EM methods. Fig. S8B compares the matrix elements of the true Aij

with those of the inferred Aij . The LS method tends to overestimate interactions, especially for small couplings. This
bias is further illustrated in Fig. S8C, which shows the histogram of the inferred matrix elements corresponding to the
zero elements in the true matrix.

The bias in the LS method can be intuitively understood by considering that in a large noise limit, the LS solution con-
verges to a homogeneous matrix Aij = 1

ND
. Thus, using the LS method, small couplings (roughly, Aij < 1

ND
) tend to be

overestimated, while large couplings (Aij > 1
ND

) tend to be underestimated.
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Fig. S7. Supplementary figures to Fig. 2. The Wright-Fisher model on three demes is simulated, where the importation-rate matrix A and the effective population sizes
are those shown in Fig. 2A. The measurement noise overdispersion parameter is set to ci = 1.5. (A) The distribution of A inferred by the HMM-MCMC, HMM-EM, and
LS methods, from 20 alleles (left) and 60 alleles (right). For the HMM-MCMC method, it represents the posterior distribution, while for the HMM-EM and LS methods, it
represents the bootstrap distribution. (B) The error, Ainfer

ij −Atrue
ij , in the inference of interaction strengths for the HMM-MCMC, HMM-EM, and LS methods, where all

pairs i, j are aggregated. (C) Boxplots showing the effective population sizes, inferred using the HMM-MCMC method from 60 alleles. The true values are indicated by thick
horizontal lines. (D) Boxplots showing the measurement noise overdispersion, ci, inferred using the HMM-MCMC method from 60 alleles. The true values (ci = 1.5) are
indicated by thick horizontal lines.
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Fig. S8. (A) Heatmap showing the true matrix. All matrix elements within the five diagonal blocks (each consisting of 10 demes) are assumed to be nonzero, while the
elements of the off-diagonal blocks are nonzero with probability of 0.1. The nonzero elements are randomly sampled from the exponential distribution with a mean of 0.02.
(B) Element-wise comparison between the true matrix and the inferred matrix obtained using the least squares and HMM-EM methods. (C) Histogram of the inferred matrix
elements corresponding to zeros in the true matrix.

Okada et al. | Inferring inter-community disease transmission bioRχiv | 25

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.02.24318370doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318370
http://creativecommons.org/licenses/by/4.0/


S.3 Reproductive values in England
In the main text, we have shown that the per-capita reproductive values πi/Ii vary across regions (Fig. 7C). Additionally, the
unnormalized “class” reproductive values πi are spatially heterogeneous, see Fig. S9.

S.3.1 Ranking regions according to ratios of bidirectional importation rates.

As discussed in the main text, reproductive values predict ratios of bidirectional importation rates when the principle of
detailed balance, Eq. 2, holds. To verify this, we simultaneously reordered both rows and columns of the matrix Aij to
maximize the asymmetry, as measured by

∑
i > jAij/(Aij + Aji). This approach indeed arranges regions roughly in line

with the values of πi for both the Alpha and Delta waves, see Fig. S10. In particular, the two regions, EE and SW, which have
lower πi values, are ordered last in the reordered matrices.
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Fig. S9. The inferred class reproductive values for each region during the Alpha wave (epiweeks 57-68) and Delta wave (epiweeks 82-95) in England.
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Fig. S10. Using the inferred importation-rate matrix A for the Alpha and Delta variants in England and the number of infected NIi, as measured by the COVID-19 Infection
Survey (37), the values of Aij/(Aij + Aji) are represented by heat maps. The order of regions is arranged to maximize the asymmetry,

∑
i>j

Aij/(Aij + Aji), is

maximized.

S.3.2 Testing the effect of the delay in sequence reporting.
One of the possible reasons for the observed heterogeneity in the reproductive value πi is the difference in the population size.
In fact, πi correlates with the average number of infected individuals in each region during the wave; the Spearman correlation
coefficients are ρ = 0.81 (p-value 0.015) for the Alpha wave and ρ = 0.88 (p-value 0.004) for the Delta wave, respectively.
However, as presented in Fig. 7, the reproductive values are heterogeneous even after normalizing by the number of infected
individuals.

Another possible explanation could be that the inferred heterogeneity in πi results from artifacts caused by variations in
the timing of disease reporting. For instance, assume two regions i and j have perfectly symmetrical cross-importation rates.
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If region i reports cases substantially later than region j, its frequency trajectories will tend to follow region j, mimicking a
causal influence of j on i. Consequently, the importation rate from j to i, Aij , is likely to be overestimated, which would then
expected to decrease πi. A more quantitative argument based on perturbative analysis is provided in Sec. S.3.3.

While no systematic reporting time heterogeneity has been documented to our knowledge, to test the impact of a hy-
pothetical reporting delay, we artificially advanced the allele counts data from EE by τshift(= 1,2) weeks compared to the
other regions, mimicking the scenario where the other regions report sequences later by τshift weeks. We then re-inferred the
importation-rate matrix (Fig. S11). As expected, the reproductive value of EE increases as τshift is increased, highlighting the
importance of accurate reporting dates for precise inference.

B

A

Fig. S11. (A) The reproductive values inferred for the data during the Delta wave in England (epiweek 82+τshift to 93+τshift for EE and epiweek 84 to 94 for the other
regions), where sequence reporting dates from EE are artificially advanced by τshift weeks. (B) The inferred per-capita reproductive values.

S.3.3 Perturbative analysis of the effect of delay in reporting.
Consider a population consisting of two groups, each containing ND1 and ND2 demes. Assume a consistent delay of one week
in sequence reporting from the demes in the second group. Ignoring the genetic drift and measurement noise, the dynamics of
the allele frequencies, z1(t) ∈ RND1 in the ND1 demes and z2(t) ∈ RND2 in the ND2 demes, are described by(

z1(t+1)
z2(t+1)

)
= A

(
z1(t)
z2(t)

)
=

(
A11 A12

A21 A22

)(
z1(t)
z2(t)

)
, (S.30)

where AIJ (I,J = 1,2) represents the matrix of importation rates from demes in J to demes in I . The observed frequencies,
x1(t) ∈ RND1 and x2(t) ∈ RND2 , are given by (

x1(t)
x2(t)

)
=

(
z1(t)

z2(t−1)

)
. (S.31)
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The dynamics of the observed frequencies are written as(
x1(t+1)
x2(t+1)

)
=

(
z1(t+1)

z2(t)

)
=

(
A11z1(t)+A12z2(t)

A21z1(t−1)+A22z2(t−1)

)
=

(
A11z1(t)+A12 (

A21z1(t−1)+A22z2(t−1)
)

A21 (
(A−1)11z1(t)+(A−1)12z2(t)

)
+A22z2(t−1)

)
, (S.32)

where (A−1)11 ∈ RND1×ND1 and (A−1)12 ∈ RND2×ND2 are the block matrices of A−1, defined by A−1 =(
(A−1)11 (A−1)12

(A−1)21 (A−1)22

)
. We assume that the interactions are weak, i.e. Aij = O(ϵ) (ϵ ≪ 1) for i ̸= j, which implies

z1(t−1) = z1(t)+O(ϵ) and z2(t) = z2(t−1)+O(ϵ). Under this approximation, Eq. (S.32) can be written as(
x1(t+1)
x2(t+1)

)
=

(
A11 +A12A21 A12A22

A21(A−1)11 A21(A−1)12 +A22

)(
z1(t)

z2(t−1)

)
+O(ϵ3)

=
(

A11 +A12A21 A12A22

A21(A−1)11 A21(A−1)12 +A22

)
︸ ︷︷ ︸

≡Adelay

(
x1(t)
x2(t)

)
+O(ϵ3). (S.33)

Hence, under the delay from the second group, the apparent dynamics are still linear but described by the modified matrix

Adelay. Compared to the true matrix A =
(

A11 A12

A21 A22

)
, the delay fictitiously modifies the upper-right block (representing

the influence of the second group on the first group) by introducing the factor A22 and the lower-left block (representing the
influence of the first group on the second group) by introducing the factor (A−1)11.

To illustrate the delay effect, let us consider the simplest case where ND1 = ND2 = 1, where A11,A12,A21,A22 are not
matrices but positive scalars. The constraints A11 + A12 = 1 and A21 + A22 = 1, along with the positivity condition, imply
that the delay-induced factors satisfy A22 < 1 and (A−1)11 > 1. Therefore, when the second group’s report is delayed, the
influence of the second group on the first group becomes underestimated, whereas the influence of the first group on the second
group becomes overestimated. This effect is demonstrated for cases where ND1 = 21 and ND2 = 2 in Fig. S12.

Ronald A. Fisher (1930) 
Sewal Wright (1931)

delayeddelayed

Fig. S12. The Wright-Fisher simulation was performed with the 4× 4 importation-rate matrix shown in the leftmost heatmap. The effective population sizes and sampling
rates were set to Ne,i = 104 and Si = 104, respectively, for all demes. We examined a scenario in which there was a 1-week delay in sequence counts from deme 2 and
deme 3. The matrices inferred from the HMM method and the perturbative formula in Eq. S.33 are presented in the middle and rightmost heatmaps, respectively. Consistent
with the formula, the influences from demes 2 and 3 (corresponding to the third and fourth columns) are underestimated due to the delay, while those from demes 1 and 2
(corresponding to the first and second columns) are overestimated.

S.4 Spatial Resolution and Inference Reliability

In the deme-resolved results presented in Fig. 3, we divided England into 50 demes. In this section, we present two arguments
supporting the idea that increasing the spatial resolution much beyond 50 demes is not feasible.

The first argument considers how Aij should behave under changes in spatial resolution. Let i and j represent demes, and
let I and J represent coarse-grained areas, referred to as regions. Suppose we have a deme-level matrix Aij . If all demes
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within the same region interact strongly, the region-level interaction AIJ can be approximated by:

AIJ ≈
∑
i∈I

∑
j∈J

πi∑
i′∈I πi′

Aij , (S.34)

where πi is the reproductive value(the normalized left eigenvector with eigenvalue 1 of the matrix Aij). This formula can be
understood from a time-backward perspective: assuming demes within the same region equilibrate instantaneously, a lineage
in region I is distributed across demes i ∈ region I with probability πi∑

j∈I
πj

. The lineage in deme i ∈ region I then moves

backward in time to deme j with probability Aij . Summing over demes i ∈ region I and j ∈ region J gives the probability that
a lineage in region I moves backward in time to region J , which corresponds to AIJ in Eq. (S.34).

In Fig. S13A and B, we show the deme-resolved matrix with ND = 50 for the Delta wave in England and its coarse-grained
counterpart. As shown in Fig. S13C, the coarse-grained matrix closely matches the one directly inferred from the region-level
allele frequency data. Fig. S13D shows the correlation between the two matrices as a function of the number of demes ND.
The decline in correlation above ND ≈ 70 indicates a loss of inference reliability at higher spatial resolutions.

A B

C D

Fig. S13. (A) Heatmap showing the importation-rate matrix A, with ND = 50, during the Delta wave in England.(B) The coarse-grained matrix obtained by applying
Eq. Eq. (S.34) to the 50×50 matrix in Fig. A. (C) Element-wise comparison between the coarse-grained matrix and the matrix directly inferred from the region-level mutation
data. The Pearson correlation coefficient is 0.89. (D) Plot showing the Pearson correlation between the 9×9 coarse-grained matrix, obtained from ND×ND deme-resolved
matrix, and the 9× 9 matrix directly inferred from the region-level mutation data, as a function of the number of demes ND . For each spatial resolution ND , the matrix
elements between the two matrices are compared as in Fig. C.

Another indirect argument comes from the relaxation times of the eigenmodes. Fig. S14A displays the inferred importation-
rate matrix for the Delta wave at the level of upper tier local authorities (UTLA), which is the finest spatial resolution available
from our data. Fig. S14B shows the relaxation time, − ln |λi|, for each eigenmode (|λ1| ≤ |λ2| ≤ . . .). While the relaxation time
around i = 50 is approximately 2 weeks, it decreases to less than 1 week for i > 60. Given that the unit time of our analysis is 1
week, modes with relaxation times shorter than 1 week cannot be reliably inferred. This observation suggests that significantly
increasing the spatial resolution beyond 50 demes is not practical.

S.5 Epidemiological interpretation of A
To aid in interpreting our importation-rate matrix A, we derive its expressions using specific epidemiological models.

Okada et al. | Inferring inter-community disease transmission bioRχiv | 29

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.02.24318370doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318370
http://creativecommons.org/licenses/by/4.0/


A

B

UTLA-level matrix for the Delta wave
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Aij

Fig. S14. (A) The importation-rate matrix among 120 UTLAs in England, inferred for the Delta wave (Jun 20, 2021 - Sep 25, 2021) with the HMM-EM method (without
Ridge regularization). The top 120 UTLAs with the most sequences are used in this inference. The 120 UTLAs are ordered by performing hierarchical clustering with the
Jensen-Shannon distance between rows. (B) The relaxation time for each mode of the importation-rate matrix. The shaded region shows the 95% confidence interval,
computed using the bootstrapping method.

We begin by extending the multi-patch SIR model (11, 53, 56, 57) to include distinct multiple viral lineages. The extended
model is represented by the following set of equations:

Ṡi(t) = −Si

∑
µ

ND∑
j=1

βµ
ij

Iµ
j (t)
Nj

(S.35)

İµ
i (t) = Si

ND∑
j=1

βµ
ij

Iµ
j (t)
Nj

−γµIµ
i (t) (S.36)

Ṙi(t) =
∑

µ

γµIµ
i (t). (S.37)

Here, Iµ
i denotes the number of individuals infected by lineage µ in deme i, Ni is the population size, Ni = Si(t)+Ii(t)+Ri(t),

and βµ
ij is the transmission rate of lineage µ from an infected individual in deme j to susceptible individuals in deme i. γµ

represents a lineage-specific recovery rate.
In terms of the total number of infected individuals Ii ≡

∑
µ Iµ

i in deme i and the frequency fµ
i ≡ Iµ

i /Ii of lineage µ,
Eq. (S.36) is expressed as

ḟµ
i = Si

∑
j

βµ
ij

Nj

Ij

Ii
fµ

j −Si

∑
j

β̄ij

Nj

Ij

Ii
fµ

i − (γµ − γ̄i)fµ
i ,

where β̄ij and γ̄i are lineage-averaged rates defined as

β̄ij ≡
∑

µ

βµ
ijfµ

j (S.38)

γ̄i ≡
∑

µ

γµfµ
i . (S.39)

In terms of the fractions si ≡ Si
Ni

and ii ≡ Ii
Ni

, we have

ḟµ
i = si

∑
j

ij

ii
(βµ

ijfµ
j − β̄ijfµ

i )− (γµ − γ̄i)fµ
i . (S.40)
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S.5.1 Neutral case.
Suppose that all lineages have the same transmission rate and recovery rate, βµ

ij = βij and γµ = γ. Then, Eq. (S.40) reduces to

ḟµ
i =

∑
j ̸=i

Aij(fµ
j −fµ

i ). (S.41)

where

Aij ≡ siβij
ij

ii
. (S.42)

If we assume that si ≈ 1, which is a reasonable approximation in realistic situations, and that the infected fraction is spatially
homogeneous (ii ≈ ij), as was the case during the plateau period of the Delta wave in England (Fig. S26), then Aij can be
approximated as Aij ≈ βij .

By discretizing time using one week as the unit of time,

fµ
i (t+1) = fµ

i (t)+
∑
j ̸=i

Aij(fµ
j (t)−fµ

i (t))

= (1−
∑
j ̸=i

Aij)fµ
i (t)+

∑
j ̸=i

Aijfµ
j (t)

≡
∑

j

Aijfµ
j (t), (S.43)

where Aii ≡ 1 −
∑

j ̸=i Aij (or equivalently,
∑

j Aij = 1). We note that the diagonal elements Aii in the time-discrete
dynamics are determined from the normalization, and the transmission rate within a deme, βii, does not enter the neutral
dynamics.

In ref. (53), βij is modeled in terms of human mobility as

βij = β
fi→jpj +fj→ipi

Ni
, (S.44)

where β is the transmission rate when a susceptible individual has contact with an infected, pi is the contact probability in deme
i, and fi→j is the mobility flux from i to j. The first term in the numerator corresponds to the case that a susceptible person in
deme i visits deme j and gets infected by a residence of deme j, while the second term corresponds to the case that an infected
person in deme j visits deme i and infects a resident of deme i. Note that, in ref. (53), pi is assumed to be the same for all
demes. Using Eq. (S.44), Aij in Eq. (S.42) can be expressed in terms of the mobility flux as

Aij = βsi
fi→jpj +fj→ipi

Ni

ij

ii

= β
SiIj

Ii

fi→jpj +fj→ipi

NiNj
. (S.45)

The expression in Eq. (S.45) implies:

1. The combination Aij
Ii

SiIj
is symmetric in i and j.

2. The asymmetry in the couplings between i and j is given by Aij

Aji
= SiI2

j

SjI2
i

≈ Nj

Ni
, where the densities si and ii are assumed

to be approximately the same for all demes. This expression of the asymmetry means that a deme with a larger population
size is expected to have a greater impact on the other.

3. Aij in Eq. (S.45) satisfies the detailed balance condition. Specifically, the reproductive value(the left null vector of Aij)

is given by Πi ∝ I2
i

Si
≈ Ni.

S.5.2 Non-neutral variant.
Consider the case of two non-neutral lineages, specifically the Alpha and Delta variants (µ = α,δ). We express βµ

ij and
γµ for these variants as follows: βα

ij = βij(1 − ϵβ),γα = γ(1 + ϵγ),βδ
ij = βij ,γδ = γ and denote the Delta’s frequency as

f∆
i (t) = fi(t).
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Using these expressions, Eq. (S.40) for µ = δ becomes:

ḟi =
∑
j ̸=i

Aij(fj −fi)+(siϵββii + ϵγγ)fi(1−fi)+ ϵβ

∑
j ̸=i

Aijfi(1−fj), (S.46)

where Aij ≡ si
ij

ii
βij denotes the importation-rate matrix for the Delta variant. When the Delta variant is rare, fi ≪ 1, we can

drop the terms quadratic in frequencies:

ḟi ≈
∑
j ̸=i

Aij(fj −fi)+(siϵββii + ϵγγ + ϵβ

∑
j ̸=i

Aij)fi

=
∑
j ̸=i

Aij(fj −fi)+σifi, (S.47)

where σi ≡ siϵββii + ϵγγ + ϵβ
∑

j ̸=i Aij . In the main text, the subscript of σi is dropped, assuming that siϵββii and∑
j ̸=i Aij(= 1−Aii) are not significantly different across populations.

S.5.3 Other epidemiological scenarios. While we verified the linear dynamics fi(t + 1) =
∑

j Aijfj(t) in Eq. S.43 as-
suming the standard transmission function βSI/N , it is worth noting that this result holds independently of specific transmis-
sion functions employed (see ref. (58) for a variety of transmission functions). For instance, if the transmission function takes
the form βijSp

i Iq
j with some exponents p,q > 0, Eq. S.36 would be replaced by:

İµ
i = (Si)p

∑
j

βij(Ij)qfµ
j −γµIµ

i fµ
i . (S.48)

Note that the transmission term is linear in fµ
j , which guarantees that the sum over lineages yields the total transmission rate.

More generally, Eq. S.36 can be generalized to:

İµ
i = Fijfµ

i , (S.49)

where Fij is any lineage-independent function that may depend on the total numbers of susceptible and infected individuals, as
well as any other lineage-independent quantities such as population densities and geographic distances. It can then be shown
that the neutral dynamics of a lineage frequency is given by Eq. S.41 with:

Aij = Fij

Ii
. (S.50)

Furthermore, the linear dynamics fi(t+1) =
∑

j Aijfj(t) can also be justified in another important class of epidemiolog-
ical models, the SEIR model, which has been widely applied to SARS-CoV-2 (refs. (11, 59)). A multi-patch extension of the
SEIR model is described by the following equations:

Ṡi = −
∑

µ

∑
j

Siβij

Iµ
j

Nj
, (S.51)

Ėµ
i =

∑
j

Siβij

Iµ
j

Nj
−γEEµ

i , (S.52)

İµ
i = γEEµ

i −γIIµ
i , (S.53)

Ṙi =
∑

µ

γIIµ
i . (S.54)

Here, Eµ
i represents the number of asymptomatic individuals in deme i who have been infected by lineage µ. γE is the rate

at which an exposed individual becomes infectious (the inverse of the average latent time), and γI is the rate at which an
infectious individual recovers. The total population size, Ni = Si + Ii +Ei +Ri, is constant in each deme, where Ii =

∑
µ Iµ

i

and Ei =
∑

µ Eµ
i , respectively, represent the total infected and exposed populations in deme i across all lineages.

We can show that the lineage frequencies, fµ
i ≡ I

µ
i

Ii
and gµ

i ≡ E
µ
i

Ei
, among exposed and infected individuals, obey the
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following equations:

ḟµ
i = γE

Ei

Ii
(gµ

i −fµ
i ), (S.55)

ġµ
i =

∑
j ̸=i

ASEIR
ij (fµ

j −gµ
i )+βii

si

ei
ii(fµ

i −gµ
i ), (S.56)

with

ASEIR
ij = βij

si

ei
ij = ii

ei
ASIR

ij , (S.57)

where si = Si
Ni

, ei = Ei
Ni

, ij = Ij

Nj
are the fractions of these epidemiological classes, and ASIR

ij is the matrix in Eq. S.42. The

matrix ASEIR
ij differs from ASIR

ij by the factor ii
ei

. This factor is largely determined by the ratio γE
γI

(see Eq. S.53) and takes
similar values across demes.

By subtracting Eqs. S.55 and S.56, we obtain

d

dt
(fµ

i −gµ
i ) = −

(
γE

Ei

Ii
+βii

si

ei
ii

)
(fµ

i −gµ
i )−

∑
j ̸=i

ASEIR
ij (fµ

j −gµ
i )

≈ −
(

γE
Ei

Ii
+βii

si

ei
ii

)
(fµ

i −gµ
i ), (S.58)

where we dropped the off-diagonal couplings, which are usually smaller than the within-deme transmission, βii
si
ei

ii. The

coefficients γE
Ei
Ii

and βii
si
ei

ii in Eq. S.58 can be roughly approximated as γE
Ei
Ii

≈ γE
γI
γE

= γI and βii
si
ei

ii ≈ βii
ii
ei

≈ βii
γE
γI

.
Evaluating these with realistic parameter values (for instance, βii = 0.4day−1, γE = (3.0day)−1, γI = (5.5day)−1 (ref. (59)),
we observe that the difference fµ

i −gµ
i relaxes to 0 within 1 week. Thus, we may practically identify fµ

i and gµ
i . Consequently,

from Eq. S.56, with this identification, we find that in the SEIR model, the dynamics of the lineage frequency fµ
i is described

by

ḟµ
i ≈

∑
j ̸=i

ASEIR
ij (fµ

j −fµ
i ), (S.59)

where, as argued above, ASEIR
ij ≡ βij

si
ei

ij ≈ γE
γI

ASIR
ij .

S.6 The jump-size distribution calculated from the importation-rate matrix A
In Fig. 3C, we computed the probability distribution of per-individual jump distances, assuming that a jump from deme i to
deme j occurs with a probability proportional to Aij × Ni

Nj
. The rationale for this population-size-dependent rescaling is that

the impact of a source location j on a target location i will be greater if the source population size Nj is larger and the target
population size Ni is smaller. To offset these effects, we rescaled Aij by the factor Ni

Nj
, thereby obtaining the per-individual

jump rate.
We can also justify the rescaling factor based on the SIR model. As described in SI Sec. S.5, when deriving Eq. S.44,

two possibilities for an infection event are considered: (i) a susceptible person in deme i visits deme j and gets infected by
a resident of deme j, and (ii) an infected person in deme j visits deme i and infects a resident of deme i. Assuming that the
second contribution is dominant, we would obtain Aij ≈ βp

fj→i

Ni
instead of Eq. S.45. Here, we assume si ≈ 1, ii ≈ ij , and

pi = p. Consequently, the per-individual jump rate from location j to i, fj→i

Nj
, is proportional to Aij × Ni

Nj
, consistent with the

above intuitive argument.

S.7 Distance between demes used for the hierarchical clustering of Aij and multidimensional
scaling analysis
For the deme-resolved coupling matrices A shown in Figs. 3 and 6, we ordered demes according to how similar their rows are.
To this end, we performed hierarchical clustering using Ward’s method with the following metric dij between populations;

dij = DJS(Aîj
i ,Aîj

j ), (S.60)
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where DJS(p,q) is the square root of the Jensen-Shannon divergence between two probability distributions p and q. Aîj
i ∈

RND−2 (resp. Aîj
j ∈ RND−2) is the vector of the probability distribution obtained by removing the i-th and j-th elements from

the i-th (resp. j-th) row of the importation-rate matrix. Explicitly, their k-th elements are given by

(Aîj
i )k ≡ Aik∑

j′ ̸=i,j Aij′
, (Aîj

j )k ≡
Ajk∑

j′ ̸=i,j Ajj′
. (S.61)

In the backward-in-time interpretation, the metric dij compares the probability distribution of the spatial locations of a lineage
starting at population i and the one starting at population j, conditional on that they go to populations outside of i and j.

Figures S15A and B show the results of hierarchical clustering using Ward’s method, and the MDS analysis with the above
metric for the matrix powers An (n = 1,5,10,20), where A is the importation-rate matrix for the Delta wave in England
(Fig. 3). Fig. S15C compares the Jensen-Shannon divergence to the physical distances between demes. We can see that the
clustering of the 50 demes is relatively robust to the timescale n of interest. However, as n becomes large (compared to the
timescale of relaxation, approximately n = 10 weeks), all rows of (An)ij approach the reproductive valueπ (i.e., the left
eigenvector of A corresponding to the eigenvalue 1), and the Jensen-Shannon divergence becomes less informative of physical
distances. For example, for (A20)ij , demes in LDN, SE, and SW become highly clustered in the MDS plot (the bottom panel
of Fig. S15B), indicating that the Jensen-Shannon divergence cannot effectively distinguish between physically close demes
(the bottom panel of Fig. S15C).
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n = 1

n = 5

n = 10

n = 20

Aij

A B C
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Fig. S15. Clustering and distances based on the Jensen-Shannon divergence for the (An) for n = 1, 5, 10, 20, where A is the 50× 50 matrix for the Delta wave
(weeks 78-91) in England. (A) Heatmaps of An(n = 1,5,10,20), where hierarchical clustering is performed using the Ward’s method with the Jensen-Shannon divergence
between the rows of An. (B) Multidimensional scaling plots. (C) Comparison between the Jensen-Shannon divergence and physical distance, with each dot representing
these two distances for a specific pair of demes i and j.
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S.8 Prediction of the spreading dynamics of the Delta variant shown in Fig. 8
Non-neutral transmission dynamics: We modeled the frequency dynamics of the Delta variant in England using the ordinary
differential equation in the form of Eq. S.46:

ḟi =
∑
j ̸=i

Aij(fj −fi)+ σ̃fi(1−fi)+ ϵβ

∑
j ̸=i

Aijfi(1−fj), (S.62)

where Aij represents the 50×50 importation-rate matrix presented in Fig. 3, and σ̃ and ϵβ are fit parameters.
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Fig. S16. Heatmap showing the discrepancy between theoretical predictions and observed data, defined in Eq. S.63, as a function of (σ̃, ϵβ). The parameter values,
indicated by the red cross, are used for the results presented in the main text.

Determination of the parameter values: To fix σ̃ and ϵ, we simulated the above ODE and identified the optimal parameter
values that minimize the discrepancies between our model’s predictions and the observed frequencies in a logit scale:

min
σ̃,ϵβ

∑
i,t∈Di,t

(
log10

f sim
i (t)

1−f sim
i (t)

− log10
fobs

i (t)
1−fobs

i (t)

)2

, (S.63)

where f sim
i (t) and fobs

i (t) denote the simulated and observed frequencies, respectively, of the Delta variant. The data points
D(i,t) ≡ {(i, t)| 0.05 < fobs

i (t) < 0.95 and (the number of sequences reported from location i in week t) > 10} are used
for the fitting.

We examined the discrepancy between theoretical predictions and observed data, Eq. S.63, across a range of parameter
values (Fig. S16). The discrepancy has a weak dependence on ϵβ , indicating that it cannot be reliably estimated solely from
our fitting process. Therefore, we referred to the relative infectivity reported in ref. (35), which found that the Delta variant is
43–68% more transmissible than the Alpha variant, corresponding to ϵβ values between 0.30 and 0.40 (see Eq. S.46 and the
definition of ϵβ). Based on these, we constrained our optimization search to this realistic range, resulting in the optimal values,
(σ̃, ϵβ) = (0.97,0.30). These parameter values are used in the simulations presented in the main text.

Determination of the mid timepoint t1/2: To compare the observed and simulated frequency trajectories, we calculated
the mid timepoint t1/2 for each trajectory fi(t) by fitting it to a logistic curve, (1 + e−l(t−t1/2))−1, where l and t1/2 are fit
parameters (see Fig. S17 for the actual trajectories and the fitting results).
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Fig. S17. Procedure of determining t1/2 for the actual frequencies of the Delta variant in England. In each panel, the dashed lines represent the observed frequencies
fobs

i (t) in demes within a region, while the solid lines represent fitted logistic curves, f(t) = 1
1+exp[−k(t−t1/2)] , where k and t1/2 are fit parameters. For each deme,

the time window with more than 10 sequences is used for the fitting. The inflection points t1/2 of these fitted logistic curves are used in Fig. 8 of the main text.

Alpha, week 55-68 Delta, week 78-91 Omicron, week 107-110

Fig. S18. The posterior distributions of the measurement noise parameters ci for the Alpha, Delta, and Omicron variants in England, which are inferred by applying the
HMM-MCMC method to the region-level mutation data.
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Fig. S19. Supplementary figure to Fig. 7C. The reproductive value in England is inferred at the regional level, with NE and YH being treated as a single region. For the Alpha
wave, the time windows used for the four box plots are epiweek 54-67, 55-68, 56-69, and 57-70, respectively, from left to right. For the Delta wave, the time windows used
for the six box plots are epiweek 78-91, 79-92, 80-93, 81-94, 82-95, and 83-96, respectively, from left to right. For each variant, we aggregated the results for all the time
windows, and the aggregated results are shown in Fig. 7C.
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D E F

G H

Fig. S20. The heatmaps (A-C) display region-level inferred matrices for the Delta wave (epiweeks 78-91) in England, where YH and NE regions are combined, for different data
types: (A) mutation data, incorporating both synonymous and nonsynonymous mutations; (B) synonymous mutation data; (C) lineage data. The mean values of parameters,
computed using MCMC, are presented in these heatmaps. (D-F) provide element-wise comparisons of these matrices, with error bars indicating standard deviations. (G)
Comparison of the reproductive values πi. (H) Comparison of the eigenvalues λi of the importation-rate matrix.

A B C

Fig. S21. (A) The importation-rate matrix for the Delta wave in England, inferred from the full dataset. The matrix is inferred using the EM algorithm, and the error indicates
the lower and upper quartiles obtained from the bootstrapping method. (B) The importation-rate matrix inferred from 10% of the data. (C) The Pearson correlation coefficient
between the matrix elements of the full dataset and those of the downsampled matrix is computed for downsampling fractions of 5%,10%,20%,40%,60%,80%, and 100%
(i.e., the full dataset). The error bar indicates the standard deviation in the Pearson correlation coefficient obtained from the bootstrapping method. The matrix elements
inferred from the downsampled data begin to deviate from those inferred from the full dataset when the fraction of downsampling is less than 10%.
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Aij

Fig. S22. (A) Six examples of transmission-rate matrices inferred for the Delta wave in England, obtained through the bootstrapping method. For each matrix, the relaxation
time computed from the matrix is written on the heatmap. (B) Each of the six matrices from Fig. A is binarized with a threshold of Aij = 0.005.
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Fig. S23. Heat map of the importation-rate matrix Aij for 30 demes of the USA during the Delta wave (epiweek 82-96). The main infection pathways are illustrated in Fig. 6
of the main text.
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Fig. S24. Comparison between the actual geography and the multidimensional scaling plot for the state-level importation-rate matrix of the Delta wave in the US.
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A

B Alpha Delta Omicron

Fig. S25. (A) The number of sequences per week for each variant in England. The numbers [ · ] shown above dates in the horizontal axis indicate epiweeks since Dec/29/2021.
(B) The weekly number of sequences in each region of England for Alpha, Delta, and Omicron. The numbers [ · ] shown above dates in the horizontal axis indicate epiweeks
since Dec/29/2021.
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Fig. S26. The number of weekly infected individuals (estimated by surveillance testing (37)) divided by the population size across over time in the regions of England.
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S.9 Construction of demes
S.9.1 Construction of demes in England. For the deme-resolved analysis of England, presented in Fig. 3, we constructed
50 demes from the upper tier local authorities (UTLAs). This involved clustering within each of the 9 regions of England in the
following manner:

1. First, we select the 150 largest UTLAs based on the number su of metadata sequences reported from each UTLA u.

2. In each of the 9 regions, we create a connected graph using Delaunay Triangulation, using the geographic locations of
these UTLAs. Edges that cross over the ocean are removed (Fig. S27A).

To create 50 demes with similar sizes, we determine the number ni of demes to be assigned to each of the 9 regions using
a greedy algorithm:

1. As the initial state, we set ni = 2 for all regions i.

2. Assuming that, at an intermediate step of the algorithm, the 9 regions respectively have ni demes. We define the weight
of each region as wi = Si

ni
, where Si ≡

∑
u∈region i su is the total number of sequences in region i. We then increase ni

by 1 for the region with the smallest weight.

3. This process is repeated until the sum of ni across all regions reaches the target number of demes, 50. The resulting
allocation of demes was ni = 3,7,5,4,5,5,8,8,5 for i = NE, NW, YH, EM, WM, EE, LDN, SE, SW, respectively.

Finally, for each region i, we organize n demes (where the subscript i of ni is omitted for notational simplicity) by grouping
the UTLAs in the region into non-overlapping sets U1, . . . ,Un:

1. Suppose that region i includes M UTLAs in the graph, labeled by uα (α = 1, . . . ,M). By arranging the UTLAs, we may
assume that s1 ≥ s2 ≥ . . . ≥ sM , where sα is the number of sequences reported from UTLA uα.

2. We initialize the sets Uk with the first n UTLAs, namely, the largest n UTLAs, as Uk = {uk} (k = 1, . . . ,n).

3. For the remaining UTLAs un+1, . . . ,uM , we add each UTLA one by one to its nearest set on the graph constructed from
the Delaunay Triangulation. Here, the distance between UTLA u and set Uk is defined as minu′∈Uk

du,u′ , where du,u′

is the graph distance; for example, the distance is 1 for adjacent UTLAs.

4. If the nearest set for UTLA u is not unique, we add it to the set with the fewest sequences, to mitigate the imbalance in
deme sizes.

The resulting demes are shown in Fig. S27B and summarized in Table 1.

A B

Fig. S27. (A) The nodes represent the top 150 UTLAs with the highest number of sequences in the metadata. Within each region, a graph is constructed using Delaunay
triangulation. (B) The UTLAs in each region are grouped into ni demes, using the information of the number of sequences. The 50 demes constructed in this manner are
shown as connected components.
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deme UTLAs

0 NE-0 County Durham; Sunderland; Stockton-on-Tees; Middlesbrough; Darlington
1 NE-1 Northumberland; Gateshead
2 NE-2 Newcastle upon Tyne; North Tyneside; South Tyneside; Redcar and Cleveland; Hartlepool
3 NW-0 Lancashire
4 NW-1 Manchester; Salford; Oldham; Rochdale
5 NW-2 Liverpool; Sefton; Knowsley
6 NW-3 Cumbria; Blackburn with Darwen; Blackpool
7 NW-4 Cheshire East; Stockport; Trafford; Tameside
8 NW-5 Cheshire West and Chester; Wirral; Halton
9 NW-6 Wigan; Bolton; Warrington; Bury; St. Helens

10 YH-0 Leeds; York; North Lincolnshire; North East Lincolnshire
11 YH-1 North Yorkshire; East Riding of Yorkshire; Kingston upon Hull, City of
12 YH-2 Sheffield; Rotherham; Barnsley
13 YH-3 Bradford; Calderdale
14 YH-4 Kirklees; Wakefield; Doncaster
15 EM-0 Nottinghamshire
16 EM-1 Derbyshire; Derby
17 EM-2 Lincolnshire; Nottingham; Rutland
18 EM-3 Northamptonshire; Leicestershire; Leicester
19 WM-0 Birmingham; Sandwell
20 WM-1 Staffordshire; Stoke-on-Trent
21 WM-2 Worcestershire; Shropshire; Dudley; Herefordshire, County of
22 WM-3 Warwickshire; Walsall; Wolverhampton; Telford and Wrekin
23 WM-4 Coventry; Solihull
24 EE-0 Essex
25 EE-1 Hertfordshire
26 EE-2 Suffolk; Southend-on-Sea; Thurrock
27 EE-3 Cambridgeshire; Norfolk; Peterborough
28 EE-4 Central Bedfordshire; Luton; Bedford
29 LDN-0 Barnet; Camden; Haringey; Harrow
30 LDN-1 Croydon; Sutton; Merton; Richmond upon Thames; Hammersmith and Fulham; Kingston upon Thames
31 LDN-2 Newham; Greenwich; Hackney
32 LDN-3 Ealing; Brent; Hillingdon; Hounslow
33 LDN-4 Enfield; Redbridge; Waltham Forest; Havering
34 LDN-5 Bromley; Lewisham; Bexley; Barking and Dagenham
35 LDN-6 Tower Hamlets; Southwark; City of London
36 LDN-7 Wandsworth; Lambeth; Westminster; Islington; Kensington and Chelsea
37 SE-0 Kent; Medway
38 SE-1 Hampshire; Southampton
39 SE-2 West Sussex
40 SE-3 Oxfordshire; Reading; West Berkshire
41 SE-4 East Sussex
42 SE-5 Buckinghamshire; Milton Keynes; Slough
43 SE-6 Surrey; Wokingham; Windsor and Maidenhead; Bracknell Forest
44 SE-7 Brighton and Hove; Portsmouth; Isle of Wight
45 SW-0 Devon; Torbay
46 SW-1 Gloucestershire; South Gloucestershire; Swindon; Bath and North East Somerset
47 SW-2 Cornwall; Plymouth
48 SW-3 Somerset; Bristol, City of; North Somerset
49 SW-4 Wiltshire; Bournemouth, Christchurch and Poole; Dorset

Table 1. List of 50 demes in England.

44 | bioRχiv Okada et al. | Inferring inter-community disease transmission

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.02.24318370doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318370
http://creativecommons.org/licenses/by/4.0/


S.9.2 Construction of demes in the US. In the US analysis, shown in Fig. 6, we constructed 30 demes using an approach
similar to that used in the England analysis: Since the USA has no direct counterpart to the regions of England, we defined
8 regions in the USA for the purpose of the analysis: NE, MA, SA, SC, ENC, WNC, Mt, PAC, as colored in Fig. 6B. We
then performed the same clustering as in the England analysis, making the following replacements: 150 UTLAs → 49 states
(excluding Hawaii and Alaska) and 50 demes → 30 demes. In addition, instead of using Delaunay Triangulation, we constructed
the graph of the US states based on whether they are geographically neighboring. The resulting demes are summarized in Table
2.

deme States

0 NE-0 Massachusetts,Maine,New Hampshire,Vermont
1 NE-1 Connecticut,Rhode Island
2 MA-0 New York
3 MA-1 Pennsylvania
4 MA-2 New Jersey
5 MA-3 Maryland,District of Columbia
6 MA-4 Delaware
7 SA-0 Florida
8 SA-1 Georgia
9 SA-2 North Carolina

10 SA-3 Virginia,West Virginia
11 SA-4 South Carolina
12 SC-0 Texas,Oklahoma
13 SC-1 Tennessee,Arkansas
14 SC-2 Alabama
15 SC-3 Louisiana,Mississippi
16 SC-4 Kentucky
17 ENC-0 Illinois
18 ENC-1 Ohio
19 ENC-2 Michigan
20 ENC-3 Indiana
21 ENC-4 Wisconsin
22 WNC-0 Missouri,Kansas
23 WNC-1 Minnesota,Iowa,Nebraska,South Dakota,North Dakota
24 Mt-0 Arizona
25 Mt-1 Colorado,New Mexico,Wyoming
26 Mt-2 Utah,Nevada,Idaho,Montana
27 PAC-0 California
28 PAC-1 Washington
29 PAC-2 Oregon

Table 2. List of 30 demes in the US.

Okada et al. | Inferring inter-community disease transmission bioRχiv | 45

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted December 5, 2024. ; https://doi.org/10.1101/2024.12.02.24318370doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318370
http://creativecommons.org/licenses/by/4.0/


S.10 Calendar Dates and Weeks Since December 29, 2019

Epiweek Date

1 Dec 29, 2019
2 Jan 05, 2020
3 Jan 12, 2020
4 Jan 19, 2020
5 Jan 26, 2020
6 Feb 02, 2020
7 Feb 09, 2020
8 Feb 16, 2020
9 Feb 23, 2020

10 Mar 01, 2020
11 Mar 08, 2020
12 Mar 15, 2020
13 Mar 22, 2020
14 Mar 29, 2020
15 Apr 05, 2020
16 Apr 12, 2020
17 Apr 19, 2020
18 Apr 26, 2020
19 May 03, 2020
20 May 10, 2020
21 May 17, 2020
22 May 24, 2020
23 May 31, 2020
24 Jun 07, 2020
25 Jun 14, 2020
26 Jun 21, 2020
27 Jun 28, 2020
28 Jul 05, 2020
29 Jul 12, 2020
30 Jul 19, 2020
31 Jul 26, 2020
32 Aug 02, 2020
33 Aug 09, 2020
34 Aug 16, 2020
35 Aug 23, 2020
36 Aug 30, 2020
37 Sep 06, 2020

Epiweek Date

38 Sep 13, 2020
39 Sep 20, 2020
40 Sep 27, 2020
41 Oct 04, 2020
42 Oct 11, 2020
43 Oct 18, 2020
44 Oct 25, 2020
45 Nov 01, 2020
46 Nov 08, 2020
47 Nov 15, 2020
48 Nov 22, 2020
49 Nov 29, 2020
50 Dec 06, 2020
51 Dec 13, 2020
52 Dec 20, 2020
53 Dec 27, 2020
54 Jan 03, 2021
55 Jan 10, 2021
56 Jan 17, 2021
57 Jan 24, 2021
58 Jan 31, 2021
59 Feb 07, 2021
60 Feb 14, 2021
61 Feb 21, 2021
62 Feb 28, 2021
63 Mar 07, 2021
64 Mar 14, 2021
65 Mar 21, 2021
66 Mar 28, 2021
67 Apr 04, 2021
68 Apr 11, 2021
69 Apr 18, 2021
70 Apr 25, 2021
71 May 02, 2021
72 May 09, 2021
73 May 16, 2021
74 May 23, 2021

Epiweek Date

75 May 30, 2021
76 Jun 06, 2021
77 Jun 13, 2021
78 Jun 20, 2021
79 Jun 27, 2021
80 Jul 04, 2021
81 Jul 11, 2021
82 Jul 18, 2021
83 Jul 25, 2021
84 Aug 01, 2021
85 Aug 08, 2021
86 Aug 15, 2021
87 Aug 22, 2021
88 Aug 29, 2021
89 Sep 05, 2021
90 Sep 12, 2021
91 Sep 19, 2021
92 Sep 26, 2021
93 Oct 03, 2021
94 Oct 10, 2021
95 Oct 17, 2021
96 Oct 24, 2021
97 Oct 31, 2021
98 Nov 07, 2021
99 Nov 14, 2021

100 Nov 21, 2021
101 Nov 28, 2021
102 Dec 05, 2021
103 Dec 12, 2021
104 Dec 19, 2021
105 Dec 26, 2021
106 Jan 02, 2022
107 Jan 09, 2022
108 Jan 16, 2022
109 Jan 23, 2022
110 Jan 30, 2022
111 Feb 06, 2022
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