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Abstract 

Venetoclax plus azacitidine (ven/aza) is a new standard of care for adult Acute Myeloid 

Leukemia (AML) patients who are not candidates for intensive therapies. Risk stratification 

approaches have been proposed to identify patients with favorable, intermediate, and adverse 

therapeutic outcomes following ven/aza and other lower intensive therapies. However, most 

have been developed for retrospective data analyses and have limitations in their application to 

upfront risk stratification of newly diagnosed patients. Here, we describe an AML risk model, 

termed the Refined Risk Model (RRM), that is specific for ven/aza, addresses important real-

world considerations and utilizes pathology features that have the potential to be available 

relatively quickly-and-broadly following diagnosis. The RRM was developed and internally 

validated using a single center cohort of 316 AML patients from the University of Colorado 

treated upfront with ven/aza, and then externally validated on an AML cohort from a nationwide 

electronic health record-derived de-identified AML database. The RRM effectively stratified 

patients into Adverse, Intermediate, and Favorable groups across both the internal and external 

cohorts; it performed well in subsets with or without allogeneic transplant recipients, 

demonstrated tolerance to missing data, and showed numerical performance comparable to or 

exceeding the existing alternatives such as the European Leukemia Network (ELN 2022) and 

molecular prognostic risk signature (mPRS) models. These findings suggest that the RRM may 

have potential application in defining the prognostic mortality risk for newly diagnosed AML 

patients, which may help guide clinical trial design and execution as well as other important 

elements of AML clinical decision support. 
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Introduction 

Acute myeloid leukemia (AML) is diagnosed in ~15,000-20,000 persons each year in the United 

States 1. Treatment for young and fit patients typically involves aggressive initial intensive 

induction chemotherapy (IC) such as an anthracycline plus cytosine arabinoside followed by 

consolidative chemotherapy or allogeneic hematopoietic cell transplant (allo-HCT) 2, 3. For older 

or less fit patients, the bcl-2 directed agent venetoclax combined with a hypomethylating agent 

(HMA) such as azacitidine or decitabine has become a standard of care 4-6.  For the IC type 

therapies, a variety of prognostic strategies have been developed to stratify patients into 

subgroups with varying outcomes 7-15. The European Leukemia Network (ELN) has developed 

the widely used ELN 2017 (ELN17) and more recently, the ELN 2022 (ELN22) risk categories 

16,17. These divide patients into favorable, intermediate, and adverse-risk groups based on AML 

cytogenetic (CYT), fluorescence in situ hybridization (FISH), and next generation sequencing 

(NGS) features associated with overall survival (OS) outcomes 16, 17. However, it has been 

shown that the original ELN risk models do not effectively stratify patients treated with lower 

intensity regimens, including ven/aza, likely because the risk features were largely based on 

treatment outcomes following IC 18-23. Recently, several new risk stratification approaches have 

been proposed for AML patients treated with low intensity regimens that appear to have 

improved performance over the prior ELN17 and ELN22 models 18-22. These stratification 

approaches have been explored in the post-hoc analysis of clinical trial and real-world data 

(RWD) so their applicability and practicality in upfront patient risk assignment remains unclear. 

In addition, most of these methods place a heavy reliance on NGS results which may be 

variably available for upfront patient allocation due to expense, technical challenges, 

accessibility, and turn-around time 24. Lastly, data missingness is a common issue in both 

clinical trial and RWD. Most of the current AML risk stratification approaches make no provision, 

other than excluding patients, for dealing with missing data and this strategy may induce 

selection bias and confound up front risk stratification 25, 26.  
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Recently, we have described a machine learning (ML) based AML risk stratification strategy for 

newly diagnosed AML patients treated specifically with ven/aza that effectively stratified newly 

diagnosed patients and addressed a variety of commonly encountered RWD issues including 

data missingness, data skewing, biases based on underlying assumptions, and other 

considerations 27. In the current study, we describe the development and testing of a relatively 

simple risk stratification model derived from this ML based strategy, termed the Refined Risk 

Model (RRM), that was designed to be applicable to patient risk classification in the upfront 

setting. 
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Methods 

The RRM training dataset included 316 adult patients from the University of Colorado (CU) with 

newly diagnosed AML treated front line with ven/aza either as standard of care or in a clinical 

trial between January 2015 and March 2024. The RRM external testing set was an independent, 

heterogeneous dataset (termed as real-world cohort (RWC)) comprised of 971 AML patients 

treated with ven/aza at 87 unique sites of care obtained from the nationwide Flatiron Health 

electronic health record-derived, de-identified database which is a longitudinal database, 

comprising patient-level structured and unstructured de-identified data, curated via technology-

enabled abstraction 28, 29. Table 1 summarizes patient features, while Figure 1 illustrates patient 

and cohort subset management. A pictorial representation of the AML phenotypic and genetic 

features of these two cohorts is illustrated in Figure 2. Kaplan-Meier (KM) analyses of OS by 

important features are performed (Supplemental Figure 1-5). Data definitions, standardization, 

and harmonization details are summarized in Supplemental Section A.1, Supplemental Table 2-

3, and a previous study 27.   

 

The RRM was developed based on a previously described ML specific hazard model for OS 

where the risk of mortality was estimated over time by counterfactual arguments 27. The RRM 

utilizes AML diagnostic genetic features that could be potentially identified currently with CYT, 

polymerase chain reaction (PCR), FISH, and Sanger sequencing or other tests that have rapid 

turn-around, are relatively inexpensive, and widely available. Though not selected empirically, 

FLT3-ITD status was added in the feature list due to its clinical relevance and consistent 

importance in other risk models 20, 21. Risk stratification classifying each patient into Adverse, 

Intermediate, or Favorable groups was performed as described 27. Numerical performance of 

the RRM was compared with the ELN22, a newly described ven/HMA specific molecular 

prognostic risk signature (mPRS) model, and a variant of the mPRS termed the extended-
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mPRS (e-mPRS) 20, 22 using both the CU and RWC cohorts. To address data missingness, 

comparative analyses were performed based on the different analytical datasets summarized in 

Supplemental Table 1. Comparative analyses in both the CU and RWC were evaluated with 

respect to 5 key features: (a) equitability (extent to which risk groups distribute patients 

equitably) was assessed by summary statistics, (b) separability (extent to which OS is 

associated with risk strata) was performed by assessing the survival differences between-and-

within strata using KM analyses and the corresponding P-values testing the equality of curves, 

(c) conformity (extent to which risk groups overlap between methods) was assessed by Fleiss 

Kappa, (d) predictability (extent to which risk stratification predicts OS) was compared by 

survival metrics characterizing area under the curve of cumulative case dynamic control 

receiver operative curves (coined as cAUC), and (e) generalizability (extent to which risk models 

reproduce results in an external dataset) was assessed by applying the RMs in the test RWC 

set and re-evaluating (a)-(d) independently. Further details of methodologies are provided in the 

Supplemental Section A.1-A.2. 

 

All statistical tests were two-sided, with a significance level of 5% without multiplicity 

adjustments. All analyses were conducted using R, version 4.2.3.  
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Results  
 
RRM model development  

The RRM was developed as described in Methods and Supplemental Methods. A summary of 

the risk features and subject level risk assignment to Adverse, Intermediate, and Favorable 

categories based on these features is depicted in Figure 3A.  Favorable risk features in the 

RRM included IDH1, IDH2, NPM1, and good risk cytogenetics. Adverse risk features included 

TP53, Inv3, Minus 17, Del7q, t(9;11), Minus 5, and Complex cytogenetics. Intermediate risk 

features included either any good risk feature plus FLT3-ITD, the absence of any Favorable or 

Adverse risk features, or any 2-factor combination of Adverse and Favorable risk features in the 

same patient. First, the RRM was tested on the CU cohort (Figures 3B-D). As described in 

Methods and Supplemental Methods, the RRM was designed to account for the impact of allo-

HCT recipients on OS and so all testing was performed using subsets of the CU cohort that 

included and excluded allo-HCT recipients. The RRM was also designed to manage missing 

data, so the numerical performance of the RRM was initially tested on the CU Full Analytic Set 

(FAS, i.e., the dataset that included all patients in the cohort regardless of data missingness) for 

both the allo-HCT included and allo-HCT excluded subsets. Of note in these analyses, data was 

complete for 281/316 (89%) patients in the subset including allo-HCT recipients and 200/224 

(89%) patients in the subset excluding CU allo-HCT recipients. Initial analyses were performed 

for equitability of patient distribution and separability as defined in Methods. The RRM 

generated relatively equal distribution of patients between the three risk categories for both 

cohorts other than an elevated proportion in the Intermediate category (Figure 3B). This was 

consistent with the strategy of directing patients with unclear and undefined risk features as well 

as patients with the 2-feature combinations into the Intermediate group. The RRM effectively 

separated OS for the CU FAS allo-HCT included and excluded subsets by multiple statistical 

measures (Figure 3C, left panel, LR:P-value <0.0001 and Figure 3D left panel, LR:P-value 

<0.0001). The RRM also separated best response (BR) for these subsets as well (Figure 3C, 
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right panel and Figure 3D, right panel; P-value <0.0001). Subsequently numerical performance 

of the RRM were tested for the impact of data missingness. To evaluate this, the RRM was 

applied to a subset of the CU cohort, termed the Complete Case Analytic Set (CCAS, i.e. the 

subset of patients that had all available data necessary for assignment to a particular risk group) 

and its performance was compared with that of the RRM using the CU FAS. No obvious 

differences with respect to equitability of patient assignments or separability were noted 

between the CCAS and FAS datasets (Supplemental Figure 6A; ~23%:43%:33% for three risk 

groups respectively; LR P-value 0.0001). As a further test of the impact of incomplete data on 

the behavior of the RRM, missing data was imputed using multivariate models from the 

observed data to generate an imputed CU dataset, termed the Imputed Analytic Set (IAS). 

Again, inconsequential differences were noted between the IAS-based analyses and that of the 

FAS analyses (Supplemental Figure 6B). Together, these observations demonstrate that the 

RRM effectively separated Adverse, Intermediate, and Favorable risk groups for both OS and 

BR, performed well whether allo-HCT recipients were included or excluded, also performed well 

with a modest degree of data missingness, was adaptable to a version of the dataset with 

imputed data.  

 

Comparison of the RRM to ELN22 and mPRS risk stratification models.  

Next, numerical performance of the RRM was compared to two competing AML risk 

stratification approaches, the ELN22 and mPRS 17, 22. The application of ELN22 model to the 

CU dataset has been described previously 27. In pairwise comparison between the risk 

subgroups defined by the RRM and ELN22, the main differences were noted in the Adverse risk 

subsets with the RRM Adverse subgroup having lower median OS (120d vs 206d) and shorter 

OS behavior than that of the ELN22 Adverse group (Figure 4A; LR P-value 0.0037). Fleiss 

kappa analysis, a measurement of conformity between subject-level risk assignments within risk 

groups between the RRM and ELN22, demonstrated the least conformity (0.20; P-value <0.001) 
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in the Intermediate risk groups (Figure 4B). These observations suggest that many patients 

classified as Adverse risk group by the ELN22 were stratified as Intermediate group by the 

RRM.  

Next, the RRM was compared to the mPRS model using the CU cohort. First the mPRS was 

directly applied to the CU cohort and its numerical performance was evaluated. The mPRS 

model has no obvious provision for assigning patients to risk groups if they are missing any of 

the four genes used in this model, (i.e., TP53, NRAS/KRAS, or FLT3-ITD). To account for this, 

the mPRS was initially tested using the CCAS as this most closely parallels the published 

approach where only cases with complete data for all four genes were used 20. All analyses 

were performed on the CU subsets with allo-HCT recipients included and allo-HCT recipients 

excluded as above. The mPRS assigned many patients to the High Benefit group 

(~56%:22%:22% for three risk groups respectively) as previously reported. The results 

demonstrated some compression of Intermediate (median OS: 268d) and Low (median OS: 

188d) Benefit OS curves at early time points and overlap of Intermediate and High benefit OS 

curves at later time points after 500 days (Figure 4C) 20, 22. Next, pairwise comparisons of the 

RRM and mPRS models were performed. Note, these pairwise comparisons were performed 

using a doubly Complete Case Analytical Set termed dCCAS (i.e., the dataset with complete 

features for both RRM and mPRS) to harmonize the data as closely as possible. The largest OS 

differences were noted in the Favorable/High Benefit risk groups with higher median and long-

term OS for RRM than that of mPRS (Figure 4D, lower panel; median OS of 438d vs 342d 

respectively). Fleiss kappa analysis also demonstrated the least conformity (0.21; P-value 

<0.001) in the Favorable groups (Figure 4E). To test the impact of missingness on the mPRS, it 

was tested using the CU FAS as well as IAS analytic datasets as described above. Note, in the 

CU FAS cohort tested by the mPRS, patients without data on TP53, NRAS/KRAS, or FLT3-ITD 

status were assigned to the High benefit group as this was where mPRS assigns patients 

without mutations in these genes. In both the FAS and IAS, the mPRS performed similar to that 
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of the CCAS suggesting that modest degrees of data missingness did not affect numerical 

performance but again demonstrating possibly reduced separability of OS curves relative to the 

RRM (Supplemental Figures 7A and 7B) 30. Lastly, empirical performance was assessed for e-

mPRS, which included both NGS and additional molecular testing for the same 4 feature genes 

as defined in Supplemental Table 3. The e-mPRS performed similarly to the mPRS model in the 

different analytical datasets (Supplemental Figures 7C-F) suggesting that additional data types 

other than NGS may be useful in populating the mPRS.  

 

External testing of the RRM 

To test the generalizability of the RRM, it was applied to the RWC FAS that included and 

excluded allo-HCT recipients (Figure 5A, left and right panels, respectively). As with the CU 

cohort, the RRM assigned the largest proportion of patients to the Intermediate category and 

effectively stratified Adverse, Intermediate, and Favorable OS risk groups for both allo-HCT 

included and excluded subsets. To test for the impact of data missingness, the RRM was next 

tested as above on the RWC CCAS which contained 181/971 (~19%) complete cases in the 

allo-HCT included and 170/911 (~19%) in the allo-HCT excluded subsets. Again, the RRM 

effectively separated the Adverse, Intermediate, and Favorable risk groups in the RWC CCAS 

(Figure 5B; median OS of 977d, 411d, and 255d for three groups respectively in the set 

including allo-HCT recipients; LR:P-value <0.0001). Similar performance was noted with the 

RWC IAS as well (Supplemental Figure 8A; LR:P-value <0.0001). BR testing with the RWC was 

not feasible due to the absence of short-term response data. Next, comparative analyses 

between the ELN22 and RRM were performed using the RWC. The ELN22 risk stratification 

was available for 704/971 (~73%) and 658/911 (~72%) patients in the RWC including and 

excluding allo-HCT recipients, respectively. As with the CU cohort, most patients in the RWC 

were assigned by the ELN22 to the Adverse risk group (~65% patients). Separation between 

the Favorable and Intermediate groups did not appear as robust by the ELN22 as with the RRM 
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model, and attenuation of the Intermediate and Adverse groups at early time points was noted 

(Supplemental Figure 8B, left and right panels). Direct pairwise comparison between the RRM 

and ELN22 in the RWC demonstrated lower OS for both the RRM-specific Adverse (LR:P-value 

0.0020) and Intermediate (LR:P-value 0.0038) groups (Supplemental Figure 8C top panels). 

Fleiss kappa analyses demonstrated the least agreement (0.13; P-value 0.001) in the Favorable 

risk group assignments despite their similar OS behavior (Supplemental Figure 8D).  

The mPRS model was then tested on the RWC as above. The mPRS was first applied to the 

RWC CCAS, which had complete data available for the mPRS for 97/971 (~10%) in the allo-

HCT included and 93/911 (~10%) in the allo-HCT excluded subsets. As with the CU cohort, the 

mPRS assigned many patients to the Favorable/High benefit cohort (~50%:22%:27% in three 

risk groups, respectively in Figure 5C left panel). While the mPRS separated the RWC CCAS 

subgroups at initial timepoints, crossing patterns in the Intermediate and Low Benefit/Adverse 

OS curves at later time periods were noted (Figure 5C). Next the mPRS was applied to the 

RWC FAS cohort (Supplemental Figure 9A, left panel). Limited separation between the High 

and Intermediate OS curves was noted (median OS 342d in Supplemental Figure 9A, left 

panel). Improved numerical performance (separability) was observed for the mPRS based on 

the RWC IAS (Supplemental Figure 9A, right panel). Lastly, pairwise comparisons between the 

RRM and mPRS were conducted in the RWC using the dCCAS as above (Figure 5D and 5E). 

Since the number of available patients in the dCCAS was relatively small, these results need to 

be interpreted with caution; but the biggest survival differences between the RRM and mPRS 

were noted in the Favorable/High Benefit group (977d vs 411d) where there was also less 

(0.16) conformity by Fleiss Kappa. When the e-mPRS was tested with the RWC, it 

demonstrated its best performance in the CCAS and IAS sets (Supplemental Figure 9B). 

Pairwise comparisons of the RRM and e-mPRS largely paralleled that of the mPRS comparison 

having the least concordance in the Intermediate groups (Supplemental Figures 9C-9D). 

Together these findings confirm the consistency of robust numerical performance of the RRM 
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with an external dataset as well as performance comparable to or exceeding the ELN22 and 

mPRS risk models.  

 

Predictive comparisons among the RRM, ELN22, mPRS and e-mPRS 

Lastly, predictability of the RRM, ELN22, mPRS and e-mPRS risk models was assessed at 

multiple longitudinal follow-up time points by determining cAUC values. First, internal validation 

for predictability over time was performed using cross-validation based on the CU dataset as 

described in Supplemental Section A.2. Treating allo-HCT patients as censored, the CU FAS 

and an additional dataset termed the total Complete Case Analytic Set (tCCAS, i.e., complete 

for all variables in all models) were used for predictive evaluation of the RRM, ELN22, mPRS, 

and e-mPRS. The RRM (cAUC15:0.68) demonstrated superior numerical performance over time 

and at 15 months post-treatment relative to the ELN22 (cAUC15:0.52), mPRS (cAUC15:0.59), and 

e-mPRS (cAUC15:0.59) (Figure 6A). Similar results were observed in the tCCAS based analyses 

(Figures 6B-C). Subsequently, using the similar intuition as above, comparative analyses were 

performed using the external RWC dataset. As before, the RRM exhibited superior predictive 

performance among the competing models (Figures 6D i-iv). Similar results were noted using 

the RWC FAS and IAS datasets although the m-PRS and e-mPRS performed like that of the 

RRM with the IAS set (Supplemental Figure 10). Together these findings suggest comparable or 

superior predictability performance of the RRM relative to the ELN22 and mPRS/e-mPRS 

across the CU and RWC. 
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Discussion 

In this study, we developed the RRM as a relatively simple upfront stratification approach for 

newly diagnosed AML patients specifically treated with ven/aza (see Figure 7 for a summary of 

goals and considerations). The RRM was based on diagnostic AML genetic tests that are 

potentially readily-and-widely available, and effectively stratified patients into Adverse, 

Intermediate, and Favorable risk groups of relatively balanced group sizes with distinct OS and 

BR behavior. The RRM performed favorably in the subsets that included and excluded allo-HCT 

recipients, tolerated feature identification using a variety of genetic testing technologies, and 

effectively stratified patients in both the CU and the multi-institutional RWC cohorts. Additionally, 

the RRM was designed to manage data missingness which is an important consideration in 

prospective stratification of patients when complete data is unavailable in the requisite time 

frame. Missingness is typically dealt with by either discarding patients who have incomplete 

data or imputing missing instances from observed data 31. However, as the magnitude of 

missingness goes up, discarding or imputing data may introduce selection bias confounding up 

front patient stratification and interpretation 32-34 35. The robust performance of the RRM in 

managing data missingness in both the CU and RWC may help address these concerns.  

Additionally, relative to the ELN22 and mPRS, the RRM had comparable or favorable 

performance based on equitability, separability, conformity, predictability, and generalizability 

across both the CU and RWC datasets. Of note, the mPRS performs well with complete 

datasets confirming its utility in the appropriate settings. The mPRS also outperformed the 

ELN22 here, adding further evidence that the ELN22 is not ideal for ven/aza or ven/HMA treated 

patients 19-22, 30.  

 

Several additional observations were made. First, the confounding effect of allo-HCT to OS 

should be considered in future studies as varying frequencies of allo-HCT recipients across 

different cohorts may impact both median OS and long-term OS, particularly in relatively small 
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datasets, as also reported by others 19. However, excluding or censoring allo-HCT patients may 

also introduce selection or attrition biases. Moreover, allo-HCT is an important and growing 

therapeutic option for ven/aza treated patients and thus, necessitates careful consideration. To 

provide a comprehensive and balanced understanding of the effects of ven/aza treatment on 

survival outcomes, numerical results may need to be presented for multiple patient cohorts: the 

FAS including all patients, the set excluding allo-HCT recipients, the set treating all-HCT 

recipients as censored, and the set of allo-HCT recipients alone as we have previously 

described 27. The imputed models utilized here exhibited varying levels of numerical 

performance – which is not surprising as it depends on factors including, but not limited to, the 

missingness pattern, magnitude of missingness, and functional forms of the imputed models. 

Therefore, using imputation as a method for managing missingness should be interpreted with 

caution. Lastly, multiple observations related to a non-proportional OS pattern suggest that 

relying on a single simple summary statistic (e.g., median OS) may be misleading regarding the 

overall behavior of a particular treatment or cohort subset. As reported here, it may be more 

informative to report a variety of statistical metrics for both short- and long-term OS behavior to 

comprehensively interpret survival outcomes. 

 

There are a series of limitations to this study. Because of varied practices in molecular 

pathology and data reporting for both cohorts as well as data harmonization purposes, the 

molecular tests used in this study were all treated as equal and in a binary fashion for mutation 

status, regardless of technology, mutation frequency, type of mutation, or other potential 

confounding features. Additionally, cytogenetic reporting varied between the CU and RWC 

datasets as described in Supplemental Section A.1-A.2. Differences in test types, technologies, 

and reporting are likely to be important and further improvements in the RRM are expected 

when it is trained on larger and more comprehensive datasets that address these important 

distinguishing features in a more nuanced, harmonized, and consistent fashion. Also, the RRM 
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currently uses features that are available with tests outside NGS; however, as NGS becomes 

cheaper and more widely available with faster turn-around times, RRM performance may be 

enhanced by incorporating additional data and features that are only available through NGS. 

The RRM includes both cytogenetic and molecular features as exploratory analyses using 

univariate and multivariate methods demonstrated that these features were not completely 

overlapping. However, there are currently contrasting observations on whether TP53 

abnormalities and poor risk cytogenetics are possible non-overlapping risk factors for ven/aza 

treated AML patients, so further study of this issue is important 19, 30, 36. Additionally, several risk 

features in the RRM have low prevalence rates and require additional validation to confirm that 

these features are not merely selected by chance. Further refinement of the RRM, particularly 

by parsing Intermediate risk features into Adverse and Favorable risk categories while avoiding 

creation of unacceptable levels of complexity will also be important. The absolute median OS in 

this report varied between the CU and RWC datasets by several months, in part due to 

differences in comorbidities. Other possible contributors included differential survival and data 

reporting, different patterns of salvage therapies after ven/aza, patient selection bias, site-to-site 

variations, and differences in data definition and management factors. These types of 

differences will also be important to control for in future confirmatory studies. The ethnic 

diversity of both datasets used in this study is limited, and studying populations with more 

diversity is also necessary to further improve the generalizability and fairness of the RRM 37. 

Lastly, this report relies on retrospective data with its inherent limitations. It will be critical in 

future studies to address these caveats through larger, multi-center, diverse, harmonized, and 

comprehensive datasets as well as through prospective confirmation of the RRM performance 

30.    

 

In conclusion, we developed and validated externally the RRM for risk stratification of newly 

diagnosed AML patients treated with ven/aza. Further validation of the RRM with additional 
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datasets along with the application of more consistent and standardized diagnostic testing will 

improve and refine the overall RRM empirical performance as well as its applications to upfront 

patient risk stratification and retrospective analyses.    
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ABBREVIATIONS 

Acute myeloid leukemia  AML 
Intensive chemotherapy IC 
Allogeneic hematopoietic cell transplant Allo-HCT 
European Leukemia Network ELN 
Complete response  CR 
CR with incomplete hematologic recovery  CRi 
CR with partial hematologic recovery CRh 
Morphologic leukemia free state  MLFS 
Partial remission PR 
Cytogenetics CYT 
Flow cytometric FC 
Fluorescence in situ hybridization FISH 
Next generation sequencing  NGS 
Polymerase chain reaction PCR 
Venetoclax plus azacytidine ven/aza 
Overall survival  OS 
Institutional review board  IRB 
University of Colorado CU 
Real-world cohort based on the Flatiron Health AML database RWC 
Kaplan-Meier   KM 
Log-rank LR 
Tarone-Ware TW 
Fleming-Harrington FH 
Weighted multiple direction mdir 
Max-Combo MC 
K-sample omnibus non-proportional hazard KONP 
Restricted mean survival times RMST 
Area under the curve   AUC 
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Receiver operative characteristics   ROC 
Cumulative case AUC of dynamic control ROC  cAUC 
Complete cases CC 
Imputed analytical set IAS 
Full analytical set FAS 
Multivariate imputation by chained equations MICE 
Refined Risk model RRM 
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TABLE LEGENDS 

Table 1. Summary statistics for CU and RWC datasets. (%) is the percentage of available 

data and [%] is percentage of total patient counts.  *Standardized mean differences (SMD) were 

calculated after excluding missing cases (i.e., it compares the respective proportion reported 

within the first parenthesis). SMD > 0.10 for each covariate refers to substantial systematic 

differences between CU and RWC patients in the sample.  
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Table 1. Summary statistics for CU and RWC datasets.  
 
  CU RWC *SMD 
N 

 
316 971 

 

¶Demographics    
   Age, median (IQR) 71.0 (11.0) 76.0 (9.0) 0.63 
   Male, n (%) 171 (54.1) 563 (58.0) 0.07 
   ECOG, n (%) [%]†   0.15 
 0 48 (23.8) [15.2] 92 (30.3) [ 9.5]  
 1 112 (55.4) [35.4] 152 (50.0) [15.7]  
 2 30 (14.9) [ 9.5] 42 (13.8) [ 4.3]  
 ≥3 12 (5.9) [ 3.5] 18 (5.9) [ 1.9]  
¶ELN 2022, n (%) [%]†   0.56 
 Favorable 54 (17.3) [17.1] 23 (3.3) [ 2.4]  
 Intermediate 50 (16.0) [15.8] 223 (31.7) [23.0]  
 Adverse 208 (66.7) [65.8] 458 (65.1) [47.2]  
Comorbidities, n (%)    
   Obesity 124 (39.2) 50 (5.1) 0.90 
   Prior non-AML cancer 165 (52.2) 251 (25.8) 0.56 
   Prior heart disease 140 (44.3) 174 (17.9) 0.60 
   Prior MDS 16 ( 5.1) 182 (18.7) 0.43 
   Prior CKD 95 (30.1) 117 (12.0) 0.45 
   Prior coagulopathy 35 (11.1) 22 ( 2.3) 0.36 
   Prior VTE 40 (12.7) 29 ( 3.0) 0.37 
   Prior COPD 34 (10.8) 49 ( 5.0) 0.21 
   Prior GERD 111 (35.1) 130 (13.4) 0.52 
   Prior hyperlipidemia 127 (40.2) 191 (19.7) 0.46 
   Prior hypertension 168 (53.2) 301 (31.0) 0.46 
   Prior hypothyroidism 79 (25.0) 88 ( 9.1) 0.43 
¶Genetics, n (%) [%]†     
AML composite mutations    
   TP53 (-ve) 222 (75.0) [70.3] 272 (64.9) [28.0] 0.23  

(+ve) 74 (25.0) [23.4] 147 (35.1) [15.1] 
 

   IDH1 (-ve) 275 (92.0) [87.0] 461 (88.1) [47.5] 0.13  
(+ve) 24 (8.0) [ 7.6] 62 (11.9) [ 6.4] 

 

   IDH2 (-ve) 254 (84.7) [80.4] 428 (81.2) [44.1] 0.09  
(+ve) 46 (15.3) [14.6] 99 (18.8) [10.2] 

 

   NPM1 (-ve) 236 (79.7) [74.7] 416 (85.1) [42.8] 0.14 
 (+ve) 60 (20.3) [19.0] 73 (14.9) [ 7.5]  
   FLT3-ITD (-ve) 267 (88.7) [84.5] 367 (90.2) [37.8] 0.05 
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 (+ve) 34 (11.3) [10.8] 40 (9.8) [ 4.1]  
Cytogenetics     
  Good risk cytogenetics (-ve) 311 (98.4) [98.4] 926 (95.4) [95.4] 0.18 
 (+ve) 5 (1.6) [1.6] 45 (4.6) [ 4.6]  
  Inv3 (-ve) 297 (98.3) [94.0] 675 (98.1) [69.5] 0.02 
 (+ve) 5 (1.7) [ 1.6] 13 (1.9) [ 1.3]  
  Minus5 (-ve) 293 (97.0) [92.7] 530 (76.9) [54.6] 0.63 
 (+ve) 9 (3.0) [ 2.8] 159 (23.1) [16.4]  
  Del7q (-ve) 290 (96.0) [91.8] NA NA 
 (+ve) 12 (4.0) [3.8] NA  
  Minus7 (-ve) 273 (90.4) [86.4] 533 (77.5) [54.9] 0.36 
 (+ve) 29 (9.6) [9.2] 155 (22.5) [16.0]  
  Minus17 (-ve) 278 (92.1) [88.0] 619 (90.0) [63.7] 0.07 
 (+ve) 24 (7.9) [ 7.6] 69 (10.0) [ 7.1]  
  Complex cytogenetics (-ve) 209 (69.2) [66.1] 856 (88.2) [88.2] 0.48 
 (+ve) 93 (30.8) [29.4] 115 (11.8) [11.8]  
 *t(9;11) (-ve) 295 (97.7) [93.4] 684 (~98.0) [~70.0] 0.15 
 (+ve) 7 (2.3) [ 2.2] <5 (<1.0) [<1.0]  
Next generation sequencing     
   KIT (-ve) 289 (98.3) [91.5] 382 (98.5) [39.3] 0.01 
 (+ve) 5 (1.7) [1.6] 6 (1.5) [ 0.6]  
  JAK2 (-ve) 284 (95.9) [89.9] 353 (92.2) [36.4] 0.16 
 (+ve) 12 (4.1) [ 3.8] 30 (7.8) [ 3.1]  
  CSF3R (-ve) 286 (98.3) [90.5] 333 (97.7) [34.3] 0.05 
 (+ve) 5 (1.7) [ 1.6] 8 (2.3) [ 0.8]  
  KRAS (-ve) 282 (95.9) [89.2] 335 (93.1) [34.5] 0.13 
 (+ve) 12 (4.1) [ 3.8] 25 (6.9) [ 2.6]  
  *MPL (-ve) 283 (98.3) [89.6] 293 (~98.0) [~30.0] 0.10 
 (+ve) 5 (1.7) [ 1.6] <5 (<1.0) [< 1.0]  
  DNMT3A (-ve) 230 (78.5) [72.8] 284 (74.0) [29.2] 0.11 
 (+ve) 63 (21.5) [19.9] 100 (26.0) [10.3]  
  DDX41 (-ve) 140 (95.9) [44.3] 118 (90.1) [12.2] 0.23 
 (+ve) 6 (4.1) [ 1.9] 13 (9.9) [ 1.3]  
  NRAS (-ve) 265 (89.8) [83.9] 325 (92.3) [33.5] 0.09 
 (+ve) 30 (10.2) [9.5] 27 (7.7) [ 2.8]  

  
 
 
 
 
 
 

Remarks:  
• The counts and percentages for T9;11 and MPL (highlighted in *) are provided in intervals and 

approximate percentages since the counts in the frequency table are <5 for the RWC.  
• Summary statistics of features with superscript ¶ for the CU patients’ cohort are discussed previously in 

a separate study 27 with the same group of authors.  
 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.12.02.24318344doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318344


 
FIGURE LEGENDS 

Figure 1. Cohort management. Summary of CU and RWC cohorts used in the refined risk 

model (RRM) development and testing.  

 

Figure 2. OncoPlot for CU and RWC datasets.  Data represents the AML phenotypic and 

genotypic features on a per patient basis for the CU (left panel) and RWC (right panel) datasets. 

The top legend on the right (+ve) refers to the number of patients mutated or positive for each 

feature and the lower legend (%) refers to the proportion of patients with mutated or positive 

label for that feature in the observed (complete) data.  

   

Figure 3. Refined Risk Model (RRM). A) Definition of the RRM features associated with AML 

risk groups for OS (left panels) and methods for assigning patients to Adverse, Intermediate and 

Favorable risk categories (right panels); B) Frequency of patients in the CU Full Analytic Set 

(FAS, i.e. total patients) assigned to the different risk categories; C) Application of the RRM to 

the ven/aza treated from the CU FAS subset with allo-HCT recipients included for OS (left 

panel) and best response (BR, right panel); D) Application of the RRM to the ven/aza treated 

CU FAS subset excluding allo-HCT patients for OS (left panel) and best response (right panel). 

 

Figure 4. Comparison of the RRM with ELN22 and mPRS risk models in the CU cohort.  A) 

Pairwise comparison between the RRM and the ELN22 model for Adverse, Intermediate, and 

Favorable risk groups using the CU FAS cohort; B) Agreements of patient assignment to the 

different risk groups by RRM and ELN22 in the CU FAS cohort;  C) Application of the mPRS risk 

model to the CU Complete Case Analytical Set (CCAS, i.e. the subset of data for which 

complete data was available for the mPRS) for OS with allo-HCT patients included (right panel) 

and excluded (left panel); D)  Pairwise comparison of the RRM and mPRS risk models using the 
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CU doubly Complete Case Analytical Set (dCCAS, i.e. the subset of data for which complete 

data was available for both the RRM and the mPRS) for OS with allo-HCT patients excluded; E) 

Agreement of patient assignment to the different risk categories between the RRM and mPRS in 

the CU dCCAS using Fleiss kappa. 

 

Figure 5. Evaluation of the RRM and mPRS for overall survival using the RWC dataset. A) 

Application of the RRM to the RWC FAS cohort for OS including allo-HCT patients (left panel) 

and excluding allo-HCT patients (right panel); B) Application of the RRM to the RWC CCAS 

cohort for OS including allo-HCT patients (left panel) and excluding allo-HCT patients (right 

panel); C) Application of the mPRS to the RWC CCAS cohort for OS including allo-HCT patients 

(left panel) and excluding allo-HCT patients (right panel); D) Pairwise comparison between the 

RRM and the mPRS model in the RWC dCCAS cohort for Adverse, Intermediate, and 

Favorable risk groups; E) Agreements across risk groups by RRM and mPRS in the RWC 

dCCAS. 

 

Figure 6. Predictive validation of the RRM, mPRS and ELN22 models using CU and RWC 

datasets. Predictive analysis was performed using the allo-HCT as censored subset. Results 

are summarized over 15-fold cross-validation (CV) over unique follow-up times up to 4 years 

based on penalized Cox-PH model adjusting for age, gender, race, and either RRM, mPRS, e-

mPRS, or ELN22 risk variables for the A) CU FAS, B) the CU total Complete Case Analytical 

Set (i.e., tCCAS, the subset of patients with complete ELN, mPRS and RRM data) for the mPRS 

and C) the tCCAS for the e-mPRS. Reported are the medians (over CVs) of 2.5th, 25th, 50th, 75th, 

and 97.5th percentile values of AUCs with respect to cumulative case/dynamic control (cAUC) 

receiver operator curves over time. Evaluations are enumerated at discrete unique follow-up 

times that are at-least 5-days apart (as described In the Methods); cAUC15  refers to cAUC value 

at 450 days (~15 months). D) Evaluation of predictive performance of the RRM, mPRS, e-
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mPRS, and ELN22 risk models for OS up to 4 years in the tCCAS and CCAS of the RWC (allo-

HCT censored) based on penalized Cox-PH model. Models were trained on four different 

complete case (CC) scenarios. i) tCCAS with mPRS; ii) tCCAS with e-mPRS; iii) CCAS with 

mPRS; iv) CCAS with e-mPRS. 

 
Figure 7. Goals and considerations in developing and testing the RRM. The RRM was 

developed to be a relatively simple, affordable and widely applicable risk stratification model 

with the ability to perform well with a variety of testing types, data missingness, variable 

inclusion of subsequent allo-HCT recipients and other real-world considerations important in an 

upfront patient stratification strategy. 
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Figure 1. Cohort management. 
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Figure 2. Molecular landscape comparisons between the CU (left) and RWC (right) dataset. 
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Figure 3.  Refined Risk Model (RRM).  

A. RRM: Feature-level classification definition (left) and subject-level risk category assignment (right).  
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Figure 3, cont’d 

B. RRM: Risk category assignment in the CU FAS cohort 

 

 

 

 

 

 

 

C. RRM: OS (left) and best response (right) for the CU FAS patient cohort with allo-

HCT recipients included.  
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Figure 3, cont’d 

D. RRM: OS (left) and best response (right) for the CU FAS patient cohort with allo-

HCT recipients excluded.  
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Figure 4. RRM compared to ELN22 and mPRS risk models for OS. 

A. Pairwise comparisons between the RRM and ELN22 in the CU FAS patient cohort. 
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Figure 4, cont’d 

 

B. Agreements between RRM and ELN 2022 risk models based on FAS. 

 

 

 

 

 

 
 
 
 
 
 
C. mPRS:  CU CCAS cohort with allo-HCT included (left) and excluded (right) recipients. 
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Figure 4, cont’d 

D. Pairwise comparisons between the RRM and mPRS in the CU dCCAS cohort (allo-HCT 

patients excluded). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

LR 0.9046 
TW 0.9275 
FH:e 0.9704 
FH:l 0.8584 
LR:r 0.9991 
MaxC 1.0000 
mDir2 0.8730 
mDir4 0.8140 
RMST 0.9536 
KONP 0.9910 

 

Adverse-mPRS 

Adverse-RRM  

LR 0.4623 
TW 0.1341 
FH:e 0.0691 
FH:l 0.4505 
LR:r 0.1689 
MaxC 0.2042 
mDir2 0.0380 
mDir4 0.0320 
RMST 0.7569 
KONP 0.1359 

 

Intermediate-RRM 

Intermediate-mPRS  

Favorable-mPRS 

Favorable-RRM  

LR 0.0639 
TW 0.0962 
FH:e 0.1363 
FH:l 0.0697 
LR:r 0.1278 
MaxC 0.1851 
mDir2 0.1990 
mDir4 0.4070 
RMST 0.0758 
KONP 0.1189 

 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.12.02.24318344doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318344


 37 

Figure 4, cont’d 

E. Agreements between the RRM and mPRS risk models in the CU dCCAS cohort.  
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Figure 5. Evaluation of RRM and mPRS for overall survival using the RWC.  

A. RRM: RWC FAS cohort with allo-HCT included (left) and excluded (right) recipients. 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

B. RRM: RWC CCAS cohort with allo-HCT included (left) and excluded (right) recipients. 
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Figure 5, cont’d   

C. mPRS: RWC CCAS with allo-HCT included (left) and excluded (right) recipients. 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
D. Pairwise comparisons between the RRM and mPRS in the RWC dCCAS cohort (allo-HCT 

patients excluded). 
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Figure 5, cont’d 

 

 

 

 

 

 

 

 

 

 

 

 

E. Agreements between the RRM and mPRS risk models in the RWC dCCAS cohort.  
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Figure 6. Predictive validation of the RRM, mPRS, e-mPRS and ELN22 models using the CU and 

RWC datasets and FAS and tCCAS cohorts. Reported are the 2.5th, 25th, 50th, , 75th, 97.5th percentile 

values of cAUCs over follow-up times. cAUC15 correspond to the cAUC value evaluated at 14.7month. 

Note the results for CU are summarized over 15-fold cross-validations.  
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Figure 6, cont’d 

 

D. Evaluation of the predictive performance of RRM, mPRS, e-mPRS, and ELN22 risk 

models for OS in the RWC tCCAS and CCAS cohorts.   
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Figure 7. Goals and considerations in developing and testing the RRM. 
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