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Abstract 19 

Background:  Genetic studies consistently demonstrate that individuals born 20 

with reduced Cholesteryl Ester Transfer Protein (CETP) activity experience lower rates of 21 

atherosclerotic vascular disease throughout their lives. In contrast, short-term 22 

randomized controlled trials of CETP inhibitors have yielded mixed results, with only one 23 

of four trials reporting a reduction in clinical events. Several theories have been proposed 24 

to explain this discrepancy, but none fully account for the central mechanism of 25 

atherosclerosis: the cumulative lifetime exposure to circulating low-density lipoprotein 26 

(LDL) particles in the arterial walls.  27 

Objectives:  We aimed to reconcile these conflicting findings by examining 28 

the relationship between cumulative LDL exposure and atherosclerosis risk across both 29 

genetic studies and clinical trials.  30 

Methods:   We analyzed 679 carriers of CETP protein-truncating variants 31 

(resulting in reduced or non-functional CETP protein) and 505,837 non-carriers in a 32 

population with 95,568 atherosclerosis events. Additionally, we assessed treatment 33 

e`ects relative to cumulative LDL reductions in 34 cardiovascular prevention trials 34 

involving 328,036 participants and 53,161 events.  35 

Results:   Heterozygous CETP protein-truncating variant carrier status 36 

reduced atherosclerotic disease risk (odds ratio, 0.70; 95% confidence interval, 0.57–37 

0.85; P=5×10-4). In clinical trials, we observed a significant interaction between the 38 

magnitude and duration of LDL lowering on treatment e`ects (hazard ratio, 0.69 per 10–39 

mmol/L×years; 95% confidence interval, 0.52–0.90; P=0.007), supporting that reducing 40 

cumulative LDL exposure is key to lowering cardiovascular risk. When comparing 41 

genetics with trial outcomes, accounting for di`erences in timing, duration, and follow-42 

up, we observed consistent e`ects on atherosclerosis-related events per LDL years 43 

across genetic and pharmacological CETP inhibition, as well as with statins, ezetimibe, 44 

PCSK9 inhibitors, and familial hypercholesterolemia-associated variants (hazard ratio, 45 

0.74 and 0.69 per 10–mmol/L×years, respectively). This suggests that CETP inhibition 46 

reduces cardiovascular risk primarily through LDL. Notably, several trials failed to achieve 47 

su`icient cumulative LDL reduction to impact clinical events, and this was not unique to 48 

CETP inhibitors.  49 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.12.02.24318306doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318306
http://creativecommons.org/licenses/by/4.0/


 3 

Conclusion:  Our findings indicate that future CETP inhibitor trials achieving 50 

substantial and sustained LDL reduction will demonstrate e`icacy in preventing 51 

cardiovascular events. These results highlight the importance of long-term LDL lowering 52 

and support further investigation of CETP inhibition as a strategy for cardiovascular 53 

prevention. 54 

55 
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Introduction 56 

Cholesteryl ester transfer protein (CETP) is a lipid exchange protein found in 57 

the circulation of humans and certain higher mammals. It facilitates the transfer of 58 

cholesteryl esters from high-density lipoprotein (HDL) to low-density (LDL) or very-low-59 

density lipoprotein (VLDL) in exchange for triglycerides1,2 Reduced CETP activity may 60 

benefit human health by shifting plasma cholesterol from atherogenic LDL and VLDL to 61 

HDL, decreasing the number of cholesterol-containing particles that can accumulate in 62 

arterial walls, potentially slowing down atherosclerosis development.3-5 Several studies 63 

also suggest CETP inhibition improves HDL functionality and promotes cholesterol e`lux 64 

from plaque macrophages, further mitigating atherogenesis.3,6,7 However, the precise 65 

impact of CETP inhibition on atherosclerosis remains under investigation. 66 

CETP's contribution to atherogenesis led to the development of CETP 67 

inhibitors for atherosclerotic cardiovascular disease (ASCVD). Clinical trials of these 68 

inhibitors, however, yielded mixed results. Torcetrapib, the first inhibitor, increased 69 

cardiovascular events and mortality through o`-target e`ects such as raised blood 70 

pressure and aldosterone levels. 8,9 Subsequent inhibitors, dalcetrapib and evacetrapib, 71 

were safe but failed to reduce cardiovascular events in outcomes trials, possibly due to 72 

insu`icient LDL lowering and the short duration of the trials.10-12 Anacetrapib showed 73 

promise by reducing ASCVD events in a phase 3 trial, but its development was halted after 74 

it was found to accumulate in adipose tissue, raising long-term safety concerns.13,14 75 

Obicetrapib, a less lipophilic yet potent CETP inhibitor, is currently being evaluated in 76 

phase 3 trials.10,15 The single success among four major trials has cast doubt on CETP 77 

inhibition's therapeutic value in atherosclerosis prevention. 78 

Early atherosclerotic lesions begin forming in childhood, and cumulative 79 

exposure to LDL drives the progression of ASCVD through plaque formation.16,17 80 

Therefore, evaluating the long-term e`ects of CETP inhibition requires considering the 81 

duration and timing of LDL cholesterol (LDL-C) lowering. Human genetics o`ers a way to 82 

assess the potential of such sustained CETP inhibition in preventing ASCVD. Genetic 83 

variants that naturally reduce CETP activity from conception provide a “natural 84 

experiment” to predict the long-term e`ects of CETP inhibition. By analyzing health 85 

outcomes in individuals carrying protein-truncating variants (PTVs) in the CETP gene, 86 
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which lead to reduced or non-functional proteins, we can infer the impact of lifelong CETP 87 

inhibition on ASCVD risk.18-21 This approach minimizes confounding and reverse 88 

causation, and has proven e`ective in predicting drug target outcomes.22,23 89 

Given the potential of CETP inhibition and the conflicting results from clinical 90 

trials, this study aimed to determine whether CETP inhibition reduces ASCVD risk by 91 

lowering LDL particles. To ensure reliable long-term estimates, we analyzed the e`ects of 92 

genetic CETP inhibition across diverse populations. Additionally, we tested the 93 

cumulative LDL exposure hypothesis using clinical trial data. To reconcile the conflicting 94 

findings on CETP inhibition, we introduce the concept of 'LDL-C Plaque Years,' which 95 

models the cumulative impact of LDL-C reduction over time. This enabled a direct 96 

comparison between lifelong genetic reductions and shorter-term pharmacological 97 

e`ects from clinical trials. By accounting for di`erences in timing, duration, and 98 

magnitude between genetic and clinical studies, we found that CETP inhibition lowers 99 

ASCVD risk, but only when LDL-C is significantly reduced for a sustained period.100 
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Methods 101 

The analyses in this paper were conducted in two sequential steps. First, we measured 102 

the impact of CETP PTVs on ASCVD risk in the UK Biobank and performed a meta-analysis 103 

across diverse ancestries. Second, we assessed the plausibility of these genetic results 104 

by comparing the e`ects of genetic and pharmacological CETP inhibition on ASCVD risk 105 

relative to their cumulative LDL-C lowering, and against guideline-recommended lipid-106 

lowering therapies and LDLR PTVs (encoding the LDL receptor). 107 

Step 1 108 

Genetic association study of CETP protein-truncating variants and 109 

atherosclerotic disease 110 

Study design and data sources 111 

 The impact of lifetime CETP inhibition on ASCVD risk was measured in CETP 112 

PTV carriers and non-carriers in the United Kingdom Biobank (UKB). The UKB is a 113 

population-based study that has gathered a vast array of research data, including health 114 

outcomes data, genetics, and blood chemistry from 500,000 participants across the 115 

United Kingdom.24 The study enrolled individuals aged 40-69 between 2006 and 2010, 116 

during which blood samples were collected. Ongoing follow-up of these participants 117 

ensures that their health information is continuously updated through medical records, 118 

death certificates, and registries. The data (UKB v18.1) were released to us on January 14, 119 

2024. 120 

 The primary outcome was ASCVD events (TABLE 1 details the primary and 121 

secondary endpoints). Diagnoses and event dates were retrieved from the first 122 

occurrences data set (UKB data fields 131271–131423). ASCVD events were defined as 123 

the first occurring hospital-record, death certificate, or primary care diagnosis of 124 

coronary heart disease (ICD-10: I20-I25), ischemic stroke (I63), or peripheral 125 

atherosclerosis (I70). We did not consider self-reported diagnoses as being positive for 126 

an endpoint. Myocardial infarction was defined as being positive for ICD-10 codes I21–127 

I23. Cardiovascular death was defined as any atherosclerotic event (defined above) or 128 

sudden cardiac death (I46.1) being recorded as the primary cause of the death in a death 129 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.12.02.24318306doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318306
http://creativecommons.org/licenses/by/4.0/


 7 

certificate (UKB data field 40001). Major adverse cardiovascular events were defined as 130 

the first-occurring stroke, myocardial infarction, or cardiovascular death.  131 

 Exposure to a defective CETP allele was assumed to begin at conception, 132 

and participants were followed from their birth (UKB data fields 34, 54) until the 133 

occurrence of the first event, loss to follow-up (UKB data field 191), death (UKB data field 134 

40000), or the end of the study period (January 1, 2023), whichever occurred first. 135 

Diabetes presence, statin medication, and smoking status were defined according to 136 

their self-reported status at enrollment between the years 2006-2010 (UKB data fields 137 

2443, 20003, 20116). LDL-C was measured both directly (UKB data field 30780), and 138 

calculated using the Friedewald formula from total cholesterol, HDL, and triglycerides 139 

(UKB data fields 30690, 30760, 30870). Non-HDL cholesterol was calculated by 140 

subtracting HDL from total cholesterol, and remnant cholesterol was calculated by 141 

subtracting directly measured LDL-C cholesterol from non-HDL cholesterol. 142 

Apolipoprotein A1, B, and Lipoprotein(a) levels were measured using 143 

immunoturbidimetry (UKB data fields 30630, 30640, 30790). Diastolic and systolic blood 144 

pressure was measured at recruitment using automated monitors (UKB data fields 4079, 145 

4080). The proportion of missing observations for each measure is presented in TABLE 1. 146 

Missing observations were not imputed. 147 

 148 

Pre-processing and quality control of genetic data 149 

To measure CETP PTV carrier status, we used the UK Biobank exome 150 

sequencing data (UKB data field 23157).25 Population variant call file meta data were 151 

annotated using gnomAD v.4.1.0, and Ensembl Variant E`ect Predictor v. 111 (VEP).21,26 152 

Variants qualified as PTVs if their impact on the MANE transcript (Matched Annotation 153 

from NCBI [National Center for Biotechnology Information] and EBI [European 154 

Bioinformatics Institute]) were annotated with VEP consequences  “frameshift variant”, 155 

“splice acceptor variant”, “splice donor variant”, “start lost”, “stop gained”, or “stop lost”, 156 

and their allele frequency was <0.001. To prevent batch e`ect bias, we excluded variants 157 

with a genotype depth of coverage (DP) ≤10 or were missing in more than 90% of the 158 

population. For single nucleotide variants, we further filtered out those with a DP <10, 159 

genotype quality (GQ) <20, and a binomial test of the alternate alleles deviation from the 160 
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heterozygous expectation of 0.5 with a P-value <1×10–3. For insertions and deletions, we 161 

removed variants with DP <10 and GQ <20. Details on the 60 di`erent CETP PTVs found in 162 

the UK Biobank trans-ancestry exome sequencing sample are provided in SUPPLEMENTAL 163 

TABLE 1. In a sensitivity analysis, we assessed the impact of PTV loss-of-function 164 

classification using LOFTEE (Loss-Of-Function Transcript E`ect Estimator).27 We found 165 

no di`erences in the association between CETP PTV carrier status and HDL levels across 166 

high-confidence, low-confidence, or not classified PTVs, indicating that LOFTEE 167 

classifications were not relevant to CETP PTVs (SUPPLEMENTAL FIGURE 1). 168 

 169 

Genetic association studies 170 

The inferential validity of genetic association studies relies on the 171 

assumption that the genetic variants under investigation are distributed in a random-like 172 

pattern within the study population. This randomness typically occurs because 173 

transmission of alleles from parents to o`spring, or the emergence of de novo variants, is 174 

a random-like natural process that mimics randomization in a clinical trial. Potential 175 

confounders, such as population stratification, assortative mating, or relatedness, could 176 

however impact the CETP PTV–ASCVD association by misbalancing the distribution of 177 

non-lipid risk factors between variant carriers and non-carriers.28-30 This would be 178 

analogous to failure of randomization in a clinical trial. To examine if such sources of bias 179 

were present, we tested whether the distribution of non-lipid ASCVD risk factors were 180 

similar in CETP PTV carriers and non-carriers. P values and 95% confidence intervals 181 

were computed using t-tests for continuous variables and Fisher’s exact test for 182 

categorical variables (see TABLE 1).  183 

In the analysis of the primary endpoint, the association between CETP PTV 184 

carrier status and ASCVD was measured using Cox regression, adjusting for age, sex, and 185 

the six first genetic principal components (UKB data field 22009). We restricted the 186 

sample to European ancestry individuals to limit bias from population stratification. To 187 

control for excessive relatedness, only one individual from each group of individuals more 188 

closely related than third-degree relatives was selected for further analyses, based on a 189 

KING coe`icient cut-o` of 0.0884.31 To reduce genotyping error, we excluded samples 190 

that were outliers for heterozygosity (principal components-adjusted heterozygosity 191 
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>0.1903) or had a missing rate >5%. We also excluded participants with sex chromosome 192 

aneuploidies (UKB data field 22019).  193 

A trans-ancestry meta-analysis was conducted to determine if the 194 

inferences were valid across ancestries. We included a previous study of Nomura et al., 195 

to increase statistical power (80,001 individuals and 44% East Asian, 44% European, 12% 196 

South Asian ancestry).32 Compared to the ASCVD composite endpoint used in the UK 197 

Biobank analyses, the outcome in the Nomura et al. paper was restricted to coronary 198 

heart disease alone. However, both endpoints reflect the same underlying 199 

pathophysiological phenotype, atherosclerosis, which justifies their inclusion in the 200 

meta-analysis. The odds ratio of ASCVD between CETP PTV carriers versus non-carriers 201 

was measured in 6908; 409,638; and 6969 UK Biobank participants of African, European, 202 

and South Asian ancestry, respectively. To harmonize the unit of e`ect measurements 203 

between the studies, we applied logistic regression with Firth’s correction in the UK 204 

Biobank subset, while otherwise reusing the analysis strategy described in the previous 205 

section.33 Meta-analysis was conducted using a fixed-e`ects inverse variance weighted 206 

estimator. Study heterogeneity was estimated using Cochran’s Q test and calculating the 207 

I2 statistic. 208 

Step 2 209 

Cumulative LDL cholesterol exposure and atherosclerotic cardiovascular 210 

disease risk in genetic studies and clinical trials 211 

Selection of clinical trials and genetic exposures 212 

 A list of clinical trials was retrieved from previous systematic reviews of 213 

guidelines-recommended lipid-lowering therapies for ASCVD prevention (see 214 

SUPPLEMENTAL TABLE 2 for details).34-36 We then added trials involving dialysis and heart 215 

failure patients, one post-acute coronary syndrome trial, and the pitavastatin trials.37-42 216 

The guideline-recommended therapies were statins, ezetimibe, and PCSK9 inhibitors. To 217 

obtain precise and unbiased e`ect estimates, we applied specific selection criteria. First, 218 

each trial was required to be designed to measure cardiovascular outcomes as the 219 

primary outcome and have recorded more than 100 events. Second, trials that were 220 

stopped early due to e`icacy were excluded if the information fraction was less than 0.90, 221 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.12.02.24318306doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318306
http://creativecommons.org/licenses/by/4.0/


 10 

as truncated trials tend to overestimate treatment e`ects, especially when the event rate 222 

is low.43 This overestimation is sometimes referred to as the “winner’s curse”. The 223 

information fraction was calculated as the ratio of the pre-specified planned events to the 224 

actual observed events before termination. Third, to ensure comparability between 225 

studies, the e`ect had to be measured using the hazard ratio (HR) or incidence rate ratio 226 

(IRR). The inclusion of studies using IRR for measuring the primary outcome was justified 227 

since, in most cases, the IRR closely resembles the HR.44 We performed sensitivity 228 

analyses to assess the impact of the second selection criteria (see SUPPLEMENTAL FIGURES 229 

2-5). Additionally, we examined whether excluding non-double-blind trials a`ected the 230 

results (SUPPLEMENTAL FIGURES 6-7). 231 

From each study, we extracted the reported composite outcome most 232 

closely resembling the ASCVD composite endpoint described in STEP 1. LDL-C reduction 233 

from treatment was obtained from the text, or if unavailable, directly from figures using a 234 

web-based tool (see DATA AVAILABILITY). Other key variables, such as baseline age and 235 

baseline LDL-C cholesterol, were extracted from tables, text, or supplemental materials. 236 

Regarding CETP inhibitors, we excluded torcetrapib from the meta-analysis due to its o`-237 

target toxicity.  238 

 As a genetic positive control, we assessed the e`ect of lifetime LDLR PTV 239 

carrier status (encoding the LDL receptor) on ASCVD risk in the UK Biobank. Carrying an 240 

LDLR PTV typically meets the genetic diagnostic criteria for heterozygous familial 241 

hypercholesterolemia, a condition characterized by increased lifetime LDL-C exposure 242 

that profoundly impacts ASCVD risk.45 Given the focus on the impact of cumulative LDL-243 

C di`erences on ASCVD, the LDLR PTV carriers served as a relevant genetic comparator 244 

to CETP PTV carriers. The association between LDLR PTV carrier status and ASCVD risk 245 

was measured using the same methods as described in the CETP PTV analyses in STEP 1. 246 

Additional details on the UK Biobank LDLR PTVs are provided in SUPPLEMENTAL TABLE 3. 247 

The conditional e`ect of CETP and LDLR PTVs on LDL-C were measured using linear 248 

regression adjusting for age, sex, and the six first genetic principal components. 249 
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LDL cholesterol exposure trajectories and calculation of cumulative LDL cholesterol 250 

diCerence 251 

 Low-density lipoprotein levels are low at birth, rise with age, and stabilize in 252 

late middle age.17,46,47 Consequently, lifetime ASCVD risk attributable to LDL-C is a time-253 

varying exposure that needs accounting for to accurately estimate its impact.48-50 For each 254 

intervention or genetic exposure, we quantified the reduction in cumulative LDL-C 255 

exposure, expressed as “LDL-C Plaque Years Di`erence”, by integrating over population 256 

mean LDL-C life course trajectories (see FIGURE 1). First, we adjusted the standard 257 

population LDL-C trajectory to match the baseline LDL-C levels of each specific study 258 

population. This adjustment was done by scaling the mean LDL-C trajectory using the 259 

ratio of the study’s baseline LDL-C level to a general population reference mean LDL-C 260 

value (3.55594 mmol/L), accounting for di`erences in baseline LDL-C levels between 261 

population-based studies and clinical trials involving secondary or high-risk prevention 262 

populations. The LDL-C trajectories were extracted from references,17,46,47 and the exact 263 

population trajectories that were used are provided in SUPPLEMENTAL TABLE 4. 264 

Then, we calculated the area under the LDL-C versus age curve (AUC) from 265 

the start of follow-up to the end (defined as the start age plus the median time of follow-266 

up) to represent cumulative LDL-C exposure without intervention. To model the e`ect of 267 

the intervention (or genetic exposure), we adjusted the LDL-C trajectory according to the 268 

intervention’s reported e`ect size. Our approach assumed a time-independent relative 269 

lowering of LDL-C levels across the exposure-time trajectory. To reflect this constant 270 

relative reduction of LDL-C over time, we applied a scaling factor ! = 1 +271 

	 !"!#$	&''()*	
!"!#$	+,-(./0(	1(,0  across the intervention or genetic exposure trajectory. We then 272 

recalculated the AUC for the adjusted LDL-C trajectory, representing cumulative LDL-C 273 

exposure with the intervention (or genetic exposure). The di`erence between the two 274 

AUCs (without and with intervention) therefore reflected the total reduction in cumulative 275 

LDL-C exposure due to the intervention (or genetic exposure). These di`erences were 276 

computed for each study and recorded as the “LDL-C Plaque Years Di`erence”. The 277 

measure allowed us to compare how much cumulative LDL-C exposure was lowered in 278 

each clinical trial or genetic association study. Reproducible code for these calculations 279 

is provided in the SUPPLEMENTAL NOTE. 280 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.12.02.24318306doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318306
http://creativecommons.org/licenses/by/4.0/


 12 

Meta-analysis of genetic and pharmacological cumulative LDL cholesterol lowering and 281 

atherosclerotic disease risk 282 

To compare CETP inhibition with the guidelines-recommended lipid-283 

lowering therapies and LDLR PTVs, we conducted separate analyses for CETP and the 284 

other approaches to measure the association between cumulative LDL-C di`erences and 285 

ASCVD risk. We used a fixed-e`ects inverse variance-weighted estimator to measure the 286 

combined e`ect size across studies. Study heterogeneity was assessed using Cochran’s 287 

Q test and the I² statistic. Leave-one-out sensitivity analyses of e`ect size and 288 

heterogeneity are presented in SUPPLEMENTAL FIGURE 8.  289 

We performed additional sensitivity analyses because, if atherosclerosis 290 

follows a cumulative exposure model, both the magnitude and duration of LDL exposure 291 

(LDL-C × follow-up length) should approximately predict the observed risk reductions. We 292 

used multiple meta-regression to assess the impact of LDL-C lowering and mean or 293 

median follow-up duration on the ASCVD hazard reduction observed in clinical trials. The 294 

data were fitted with a linear random-e`ects mixed model, and restricted maximum 295 

likelihood estimated heterogeneity. P values were validated using permutation tests.51 We 296 

performed sensitivity analyses by adjusting the interaction term (LDL-C × median time of 297 

follow-up) for baseline LDL-C, annual and cumulative event risk, age at enrollment, and 298 

year of publication, and used multilevel inference to rank them as predictors 299 

(SUPPLEMENTAL FIGURE 10). 300 

Ethical review and reporting of statistical tests  301 

This research has been conducted using the UK Biobank Resource under 302 

Application Number 148828. The LDL-C trajectory and meta-analyses used publicly 303 

available summary data that did not require separate ethical review. The research 304 

adhered to the ethical standards set forth in the Declaration of Helsinki. The primary 305 

research question in this study was to measure the impact of long-term CETP inhibition 306 

on ASCVD risk. The other statistical tests in STEP 1 were considered secondary endpoints. 307 

STEP 1 and STEP 2 analyses were separate, and did not require correcting for a family-wise 308 

error rate. Consequently, P values and 95% confidence intervals reported in this paper 309 

are presented without correction for multiple comparisons. 310 

311 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.12.02.24318306doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318306
http://creativecommons.org/licenses/by/4.0/


 13 

Results 312 

Step 1 313 

Protein-truncating variants that inhibit CETP throughout life reduce the risk 314 

of atherosclerotic disease 315 

Descriptive characteristics on the 409,638 European-ancestry individuals 316 

meeting inclusion criteria are presented in TABLE 1. The mean age at recruitment into the 317 

UK Biobank between 2006–2010 was 56.8 years and 53.9% were female. Genetic 318 

exposures begin at conception, and the median time of birth to end of follow-up was 70.2 319 

years. Between 1958 and 2023 (median year 2013, interquartile range 2006–2018); 61,091 320 

first occurrences of ASCVD were recorded. Details on the composite endpoints are 321 

provided in the METHODS section and FIGURE 2. UK Biobank CETP PTV variant types and 322 

allele frequencies are listed in SUPPLEMENTAL TABLE 1. 323 

There were 385 European-ancestry CETP PTV carriers available for analysis 324 

in the UKB. As anticipated, they presented with elevated HDL cholesterol (+0.42 mmol/L, 325 

P=9×10–37), and lowered LDL cholesterol (-0.18 mmol/L, P=3×10–5). Apolipoprotein A1 and 326 

Apolipoprotein B di`ered according to a similar pattern (TABLE 1). Lipoprotein(a) levels 327 

were lower in CETP PTV carriers (-6.5 nmol/L, P=0.021). Statin treatment was less 328 

common in CETP PTV carriers (16.3% vs. 12.5%, P=0.039). This was expected, as lowered 329 

LDL-C from birth should influence a physician’s decision to prescribe statins later in life. 330 

Non-lipid risk factors and participant characteristics were well-balanced between CETP 331 

PTV carriers and controls (TABLE 1). The only exception was diastolic blood pressure, 332 

which was 1.3 mmHg higher in CETP PTV carriers (P=0.043). It is unclear whether this 333 

di`erence reflects a true e`ect or was due to multiple comparisons, as previous trials 334 

with dalcetrapib, evacetrapib, anacetrapib, and obicetrapib did not report elevations in 335 

diastolic blood pressure.11-13,52 Overall, these data suggests that the allocation to CETP 336 

PTVs occurred in a random-like manner, making it unlikely that imbalances in ASCVD risk 337 

factors influenced the results.  338 

Lifetime CETP inhibition from a CETP PTV reduced absolute ASCVD risk by 339 

4.8 percentage points (TABLE 1). The adjusted hazard ratio was 0.65 (95% confidence 340 

interval, 0.48–0.90, P value = 0.008). This risk reduction corresponded to an average gain 341 
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of 1.1 years in ASCVD event-free survival before the age of 80 (FIGURE 2A). Although the 342 

secondary endpoints had overlapping CIs and were not statistically distinguishable, the 343 

association between CETP PTVs and the composite ASCVD endpoint seemed to be 344 

primarily driven by coronary heart disease and ischemic stroke events (FIGURE 2B). 345 

Notably, CETP PTV carrier status did not significantly a`ect all-cause mortality but 346 

reduced the risk of a composite endpoint of ASCVD or all-cause death (FIGURE 2B).  347 

The trans-ancestry meta-analysis included 506,516 individuals: 6908 of 348 

African; 36,856 of East Asian; 446,157 of European; and 16,595 of South Asian ancestry. 349 

Among them, 679 were CETP PTV carriers. There were 95,568 ASCVD cases and 410,948 350 

controls. Between-study heterogeneity was low (Q = 3.39, P value = 0.34, I2 = 11.5%). 351 

Lifetime CETP inhibition was associated with a reduced ASCVD risk, with an odds ratio of 352 

0.70 (95% confidence interval, 0.57–0.85, meta-analysis P value = 4.7×10-4) (FIGURE 2C). 353 

Taken together, these results indicate that lifetime CETP inhibition significantly reduces 354 

ASCVD risk, with no evidence of this e`ect being dependent on genetic ancestry. 355 

Step 2 356 

CETP inhibition reduces atherosclerotic disease risk by lowering LDL 357 

Data on ASCVD risk reduction, baseline LDL-C, LDL-C lowering, age, and 358 

median or mean time of follow-up were extracted from 47 clinical trials of CETP inhibitors, 359 

statins, ezetimibe, and PCSK9 inhibitors. Four trials were excluded because they were not 360 

designed to assess treatment e`ects on clinical cardiovascular endpoints. Eight trials 361 

terminated early for e`icacy were excluded to prevent inflated e`ect estimates due to the 362 

“winner’s curse”. One trial was excluded for not reporting outcomes as hazard ratios or 363 

incidence rate ratios, making it incomparable to the other trials. 364 

The remaining 34 cardiovascular outcomes trials covered a population of 365 

328,036 individuals with 53,161 ASCVD events across both primary and secondary 366 

prevention settings. Three trials studied CETP inhibitors (ntotal=58,412; nevents=7126), 23 367 

trials evaluated statins (ntotal=160,910; nevents=31,854), three examined ezetimibe 368 

monotherapy (ntotal=23,645; nevents=6271), two were of ezetimibe/statin combination 369 

therapy (ntotal=11,143; nevents=1480), and three investigated PCSK9 inhibitors (ntotal=73,926; 370 

nevents=6430). Age at enrollment ranged from 49.8 to 75.4 years, with follow-up durations 371 

 . CC-BY 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted December 3, 2024. ; https://doi.org/10.1101/2024.12.02.24318306doi: medRxiv preprint 

https://doi.org/10.1101/2024.12.02.24318306
http://creativecommons.org/licenses/by/4.0/


 15 

between 0.3 and 6.7 years. Baseline LDL-C ranged from 1.58 to 4.97 mmol/L, with 372 

reductions between 0.03 and 1.80 mmol/L. Twenty-nine trials were double-blind, and five 373 

were not. Further details, including study settings and extracted endpoints, are provided 374 

in SUPPLEMENTAL TABLE 2. 375 

To determine whether the clinical trial data aligned with the cumulative LDL 376 

exposure hypothesis of atherosclerosis, we used multiple meta-regression to assess the 377 

impact of LDL-C lowering magnitude and duration on ASCVD risk. We identified a 378 

significant interaction between LDL-C reduction and time of follow-up (P = 0.007) (see 379 

FIGURE 3). Sensitivity analyses confirmed the robustness of this association 380 

(SUPPLEMENTAL FIGURES 9-10). These data support the hypothesis that LDL-C’s e`ect on 381 

ASCVD risk follows a cumulative exposure model and provide a theoretical basis for 382 

modeling genetic e`ects alongside clinical trial data, as described next. 383 

We compared genetic and pharmacological CETP inhibition with guideline-384 

recommended lipid-lowering therapies and LDLR PTVs to evaluate their e`ects on ASCVD 385 

relative to cumulative LDL-C lowering. We found that the predicted e`ect of CETP 386 

inhibition was similar to the combined estimate from statins, PCSK9 inhibitors, ezetimibe, 387 

and LDLR PTVs (hazard ratio: 0.76 vs. 0.69 per 10 mmol/L × years) (FIGURE 4). Since CETP 388 

inhibition and the other pathways produced comparable e`ects per unit of cumulative 389 

LDL-C reduction, these results suggest that CETP inhibition reduces ASCVD risk primarily 390 

by lowering LDL-C. 391 

Nine out of eleven lipid-lowering trials with cumulative LDL-C reductions 392 

below 2.5 mmol/L × years did not achieve a statistically significant reduction in ASCVD 393 

events, as indicated by 95% confidence intervals overlapping the null in FIGURE 4. Only 394 

two trials (PROVE-IT and IMPROVE-IT) with reductions below this threshold had 395 

confidence intervals that did not overlap the null. These data suggest that the LDL-C 396 

reductions in the evacetrapib and dalcetrapib trials were too small to yield a statistically 397 

significant decrease in ASCVD events. Moreover, this issue appears not to be unique to 398 

CETP inhibitors but applies to LDL-C lowering therapies in general. To demonstrate 399 

stronger e`ects on clinical endpoints, future trials could target greater cumulative LDL-C 400 

reductions. 401 

402 
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Discussion 403 

The failure of the early CETP inhibitors in cardiovascular outcomes trials 404 

surprised many and raised doubts about the e`icacy of CETP inhibition in ASCVD 405 

prevention. In contrast, our study shows that individuals carrying a single defective CETP 406 

allele since birth, leading to lifelong partial CETP inhibition, have a significantly reduced 407 

risk of developing ASCVD. This finding aligns with previous genetic studies on both 408 

common and rare loss-of-function CETP variants across diverse populations,32,53-57 409 

reinforcing the potential of CETP inhibition as a promising strategy for ASCVD prevention. 410 

To reconcile the discrepancy between the promising genetic data and mixed 411 

clinical trial results, we applied the hypothesis that cumulative lifetime LDL-C exposure 412 

plays a critical role in ASCVD development. This concept aligns with the pathophysiology 413 

of atherosclerosis, which suggests that both the magnitude and duration of LDL-C 414 

exposure drive disease progression through plaque formation.17 A key strength of our 415 

study was the estimation of cumulative LDL-C di`erences over time, providing a more 416 

biologically accurate assessment of LDL-lowering e`ects on ASCVD risk. 417 

By analyzing data from individuals with CETP and LDLR PTVs, along with 418 

cardiovascular outcomes trials of lipid-lowering therapies, we identified a strong linear 419 

relationship between reductions in cumulative LDL-C exposure and decreases in ASCVD 420 

risk. Notably, clinical trials that did not achieve substantial and sustained LDL-C 421 

reductions over time. regardless of the therapeutic mechanism, including CETP 422 

inhibitors, statins, or PCSK9 inhibitors, were significantly less likely to show clinical 423 

benefit. These findings suggest that the lack of e`icacy seen in the evacetrapib and 424 

dalcetrapib trials was not specific to the particular class of drugs but was instead due to 425 

insu`icient LDL lowering and the short duration of the trials. 426 

Our analysis demonstrated that both LDL-C reduction magnitude and 427 

treatment duration were independent predictors of ASCVD risk reduction. Furthermore, 428 

we identified a significant interaction between these factors, providing strong support for 429 

the cumulative LDL hypothesis. A key strength of the meta-analysis was the use of strict 430 

exclusion criteria to eliminate trials that were likely to report inflated e`ect estimates.43 431 

Our findings are consistent with another meta-analysis of 21 trials that focused on 432 
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minimizing bias from small-study e`ects while also excluding trials with less than 3 years 433 

of follow-up.58 434 

These results indicate that instrumental variable analysis using human 435 

genetics can yield accurate treatment e`ect estimates when time-varying exposures are 436 

assessed and accounted for. Previous studies have suggested that genetic analyses may 437 

overestimate the impact of LDL-C lowering on ASCVD risk,50 potentially due to imprecise 438 

measurement of the exposure variable. Specifically, equating exposure to the e`ect of 439 

genetic variants on LDL-C at a single time point assumes that ASCVD risk reduction is 440 

driven by a constant, time-independent, and absolute LDL-C lowering. Given the 441 

progressive nature of atherosclerosis and the variation in LDL-C levels throughout life, 442 

this assumption may not be valid. 443 

This highlights that an important di`erence between genetic and 444 

pharmacological e`ects lies in the timing and duration of exposure and the length of 445 

follow-up. Genetic exposures begin at conception and persist throughout life, whereas 446 

clinical trials administer treatments to adults and generally follow participants for only a 447 

few years. Since atherosclerosis can begin early in life and is driven by cumulative LDL-C 448 

retention,16,17 accounting for lifelong time-varying exposure is essential for accurate 449 

estimation of treatment e`ects. 450 

In this study, we addressed this by modeling LDL-C reductions using 451 

population-averaged life-course trajectories. While this method improves accuracy over 452 

assuming time-independent absolute LDL-C reductions, it has limitations. Specifically, 453 

we did not account for individual variations in LDL-C trajectories across di`erent 454 

populations (besides correcting for baseline levels), nor did we consider complex, non-455 

linear interactions with treatments or risk factors such as diabetes, hypertension, 456 

inflammation, severely elevated Lipoprotein(a) levels, or lifestyle. Future studies should 457 

aim to use within-sample LDL-C trajectories and consider individual-level models to 458 

enhance the precision of cumulative LDL-C exposure measurements.  459 

Another limitation of this study was that we did not investigate genetic CETP 460 

inhibition in its homozygous state. Heterozygous CETP PTV carriers showed LDL-C 461 

reductions of –0.19 mmol/L, whereas potent CETP inhibitors reduced LDL-C by up to five 462 

times more (–0.98 mmol/L).15 From these genetic data, it is unclear whether increased 463 

genetic CETP inhibition leads to proportionally greater benefits. However, anacetrapib 464 
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100 mg daily achieved 80% CETP inhibition and demonstrated similar clinical benefits to 465 

CETP PTV carriers (per unit of cumulative LDL-C lowering),13,59 suggesting that the genetic 466 

e`ects may be generalizable (FIGURE 3). 467 

These findings have important clinical implications that require confirmation 468 

in clinical trials. They suggest that maximizing the benefits of LDL-C lowering depends on 469 

achieving substantial and sustained reductions over extended periods. They also 470 

highlight the need for further research in early intervention and long-term adherence to 471 

both lifestyle and pharmacological lipid-lowering interventions. Future clinical trials 472 

should consider the impact of LDL-C over time in their design to better assess the e`icacy 473 

of lipid-lowering therapies for ASCVD prevention. 474 

In conclusion, we predict that future CETP inhibitor trials achieving 475 

substantial and sustained LDL-C lowering will demonstrate e`icacy in preventing ASCVD. 476 

Our findings emphasize the importance of sustained LDL-C reduction over time and 477 

support the continued investigation of CETP inhibition as a therapeutic strategy for 478 

ASCVD prevention. 479 

480 
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Legends 502 

Table 1 503 

Characteristics of the European-ancestry United Kingdom Biobank cohort. 504 

All measurements, except for the atherosclerotic cardiovascular disease-related primary 505 

and secondary endpoints, were taken at the time of entry into the United Kingdom 506 

Biobank. To protect privacy, cell counts of five or fewer are reported as ‘≤5’. 507 

Figure 1 508 

Comparison of LDL cholesterol trajectories in genetic studies and clinical trials.  509 

This schematic compares LDL cholesterol trajectories from genetic e`ects versus clinical 510 

interventions. The left panel shows a modest, lifelong reduction in LDL cholesterol 511 

beginning at conception due to CETP protein-truncating variants (PTVs). In contrast, the 512 

right panel illustrates a more substantial reduction starting in adulthood, as seen in the 513 

Scandinavian Simvastatin Survival Study (4S). Despite di`erences in onset and 514 

magnitude, both approaches lead to similar reductions of cumulative LDL cholesterol 515 

exposure over time. The cumulative LDL cholesterol lowering for each scenario 516 

corresponds to the values shown on the x-axis of FIGURE 4. 517 

Figure 2 518 

Association of CETP protein-truncating variants with cardiovascular endpoints. 519 

(A) Kaplan-Meier survival curves comparing cumulative survival (left panel) and event-520 

free survival (right panel) between carriers of CETP protein-truncating variants (PTVs) (n = 521 

385) and non-carriers (n = 409,253) in the European-ancestry subset of the UK Biobank. 522 

Shaded areas around each curve represent the 95% confidence intervals. Curves were 523 

truncated when the at-risk population fell below 10 participants. 524 

(B) Forest plot showing the association between CETP PTVs and primary and secondary 525 

cardiovascular endpoints. 526 

(C) Forest plot showing the trans-ancestry meta-analysis combining UK Biobank results 527 

with data from previous studies of CETP PTVs.32 Ancestries are denoted as: ‘Eur’ for 528 

European, ‘Afr.’ for African, and ‘S. As’ for South Asian. ‘ASCVD’ denotes atherosclerotic 529 

cardiovascular disease, and “CHD” denotes coronary heart disease. 530 
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Figure 3 531 

Atherosclerotic risk reduction from the magnitude and duration of LDL cholesterol 532 

lowering in clinical trials.  533 

Meta-regression scatterplot illustrating the association between atherosclerotic 534 

cardiovascular disease (ASCVD) risk reduction and the interaction between LDL-C 535 

lowering and median time of follow-up in clinical trials. The clinical trials investigated 536 

statins, ezetimibe, PCSK9 and CETP inhibitors. Each point represents a clinical trial, with 537 

size of the circles reflecting the weight of the trial in the meta-regression analysis. The 538 

solid line shows the association between the observed treatment e`ects on 539 

atherosclerotic vascular disease risk and the cumulative LDL di`erences (LDL × time) 540 

observed during follow-up, and the dashed lines represents the 95% confidence interval 541 

(CI). 542 

‘QE’ denotes test for residual heterogeneity  543 

Figure 4 544 

Relationship between cumulative LDL cholesterol reduction and atherosclerotic 545 

cardiovascular disease risk reduction across multiple mechanisms. 546 

The regression scatterplot shows the relationship between cumulative LDL cholesterol 547 

(LDL-C) reduction (measured in LDL-C plaque years) and atherosclerotic cardiovascular 548 

disease (ASCVD) risk reduction achieved through CETP inhibition, statins, ezetimibe, 549 

PCSK9 inhibitors, and the LDL receptor (LDLR). Each point represents a clinical trial or 550 

genetics study, with circle sizes reflecting study weight in the meta-analysis. Risk 551 

reductions were observed either between treatment arms or between carriers of protein-552 

truncating variants (PTVs) and controls. Solid lines indicate meta-analysis treatment 553 

e`ect estimates, with shaded areas showing 95% confidence intervals (CIs). Individual 554 

study e`ect estimates are marked by data points with attached vertical lines representing 555 

95% CIs.  556 

‘HR’ denotes hazard ratio, and ‘IRR’ denotes incidence rate ratio. Drug targets are 557 

indicated as: ‘HMGCR’ for HMG-CoA Reductase (statins), ‘NPC1L1’ for Niemann-Pick C1-558 

Like 1 (ezetimibe), and ‘PCSK9’ for PCSK9 inhibitors. ‘LDLR PTVs’ refer to protein-559 

truncating variants in the LDL receptor. 560 
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† To simplify visualization, carriers of LDLR PTVs (familial hypercholesterolemia-561 

associated variants) were used as the reference group. Compared to controls (n = 562 

409,539), LDLR PTV carriers (n = 99) had a higher ASCVD risk, with a hazard ratio of 4.44 563 

(95% CI: 3.27–6.04). 564 

Appendices 565 

Supplemental note 566 

R script for estimating LDL-C Plaque Years Di^erence.  567 

This script provides reproducible code for estimating cumulative LDL cholesterol (LDL-C) 568 

lowering from clinical trials or genetic exposures, as described in the paper. 569 

Supplemental figures 570 

Supplemental figure 1 571 

Association between HDL cholesterol and CETP Loss-Of-Function Transcript E^ect 572 

Estimator (LOFTEE) protein-truncating variant (PTV) classifications. 573 

Tukey Box plot showing there were no meaningful di`erences between LOFTEE PTV 574 

classifications with regards to plasma HDL cholesterol (HDL-C) levels. The analysis was 575 

conducted in 357,794 European ancestry United Kingdom Biobank participants. The 576 

association between CETP PTV classifications were tested using analysis of variance. 577 

Welch’s F test indicated unequal variances (P = 3.0×10-25). Post hoc tests indicated there 578 

were no significant di`erences between predicted low-confidence and high-confidence 579 

CETP PTVs (P = 0.55). However, HDL-C levels were elevated in both high- and low-580 

confidence CETP PTV carriers compared to non-carriers (P = 2.3×10-12, and P = 2.4×10-6, 581 

respectively). There were only two individuals carrying non-classified predicted CETP 582 

PTVs, and their HDL-C levels were nominally higher than non-carriers, but nominally 583 

lower than low- or high-confidence CETP PTV carriers (&̂mean = 1.55 mmol/L). Since the 584 

HDL-C levels were similar across the LOFTEE categories, we conclude that LOFTEE 585 

classifications were irrelevant as they did not predict the CETP PTVs impact on CETP 586 

activity as measured through plasma HDL-C concentrations. 587 

Supplemental figure 2 588 

Sensitivity analysis of atherosclerotic risk reduction from cumulative LDL 589 

cholesterol lowering, including trials terminated early due to e^icacy.  590 
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The meta-analysis followed the same procedure as in FIGURE 3 but retained trials that 591 

were stopped early for e`icacy. 592 

Supplemental figure 3 593 

Leave-one-out sensitivity analysis of the pooled e^ect size and heterogeneity for 594 

ASCVD risk reduction from cumulative LDL-C lowering, based on SUPPLEMENTAL 595 

FIGURE 2.  596 

Each study was sequentially excluded to measure its influence on the overall association.  597 

Supplemental figure 4 598 

Sensitivity analysis of atherosclerotic risk reduction from cumulative LDL 599 

cholesterol lowering, including and penalizing trials terminated early due to e^icacy.  600 

The meta-analysis followed the same procedure as in FIGURE 4 but included trials 601 

stopped early for e`icacy, penalizing their e`ect estimates (natural logarithm of the 602 

hazard ratio) by multiplication with their information criterion (see the METHODS section 603 

for definition).  604 

Supplemental figure 5 605 

Leave-one-out sensitivity analysis of the pooled e^ect size and heterogeneity for 606 

atherosclerotic cardiovascular disease risk reduction from cumulative LDL 607 

cholesterol lowering, based on SUPPLEMENTAL FIGURE 4.  608 

Each study was sequentially excluded to assess its influence on the overall association.  609 

Supplemental figure 6 610 

Sensitivity analysis of atherosclerotic risk reduction from cumulative LDL 611 

cholesterol lowering, excluding non–double-blind clinical trials.  612 

The meta-analysis was conducted using the same methods as in FIGURE 4 but excluded 613 

non–double-blind trials.  614 

Supplemental figure 7 615 

Leave-one-out sensitivity analysis of the pooled e^ect size and heterogeneity for 616 

atherosclerotic cardiovascular disease risk reduction from cumulative LDL 617 

cholesterol lowering, based on SUPPLEMENTAL FIGURE 6. 618 

Each study was sequentially excluded to assess its influence on the overall association 619 

between LDL cholesterol reduction and ASCVD risk. 620 
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Supplemental figure 8 621 

Leave-one-out sensitivity analysis of the pooled e^ect size and heterogeneity for 622 

atherosclerotic cardiovascular disease risk reduction from cumulative LDL 623 

cholesterol lowering, based on FIGURE 4. 624 

Each study was sequentially excluded to assess its influence on the overall association 625 

between LDL cholesterol reduction and ASCVD risk.  626 

Supplemental figure 9 627 

Supplemental Figure 9. Meta-regression analyses for atherosclerotic disease risk 628 

reduction based on LDL-C reduction times the median time of follow-up. 629 

(A) The left scatterplot regression line shows the association between LDL-C (low-density 630 

lipoprotein cholesterol) reduction and atherosclerotic cardiovascular disease (ASCVD) 631 

risk reduction conditioning on median time of follow-up. The right scatterplot regression 632 

line shows ASCVD risk as a function of adjusted median time of follow-up by LDL-C 633 

reduction.  634 

(B) The scatterplots show meta-regressions with an interaction term between LDL-C 635 

reduction and median time of follow-up. The top plot regression slope shows the adjusted 636 

ASCVD risk as a function of the interaction between LDL-C reduction and median time of 637 

follow-up (mmol/L × years). The two bottom plots show the separate e`ects of LDL-C 638 

reduction (left) and median time of follow-up (right) on ASCVD risk, taking the interaction 639 

term into account.  640 

Dashed lines indicate confidence intervals. Larger circle sizes correspond to studies with 641 

greater weight in the analysis. ‘HR’ denotes hazard ratio, and ‘IRR’ denotes incidence rate 642 

ratio. 643 

Supplemental figure 10 644 

Supplemental Figure 10. Meta-regression sensitivity and multi-model inference 645 

analyses 646 

(A) The table shows adjusted models of the interaction between LDL cholesterol (LDL-C) 647 

reduction and the median time of follow-ups across atherosclerotic cardiovascular 648 

disease (ASCVD) risk reduction in clinical trials. Model 1 includes the interaction between 649 

LDL-C reduction and median time of follow-up, while models 2–6 adds a single 650 

adjustment for either baseline LDL-C, annualized risk, cumulative risk, mean age, and 651 
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year of publication. The interaction regression coe`icients (β), standard errors (SE), p-652 

values, and permutation-based p-values are shown in separate columns.  653 

(B) This bar plot shows the ranking of the importance of predictor variables in explaining 654 

ASCVD risk reduction as observed in the clinical trials.  655 

Supplemental tables 656 

Supplemental table 1 657 

UK Biobank CETP protein-truncating variants. 658 

This table lists the protein-truncating variants (PTVs) in CETP (encoding the cholesteryl 659 

ester transfer protein) that were analyzed in the United Kingdom Biobank (see STEP 1). It 660 

includes variant identifiers, genomic positions, allele frequencies, and Ensembl Variant 661 

E`ect Predictor predicted consequences. 662 

Supplemental table 2 663 

Cumulative LDL cholesterol exposure versus atherosclerotic cardiovascular disease 664 

risk. 665 

This table includes summary data from clinical trials and genetic association studies 666 

relevant to the analysis of cumulative LDL cholesterol exposure in relation to 667 

atherosclerotic cardiovascular disease risk, which are presented in FIGURE 3 and 668 

SUPPLEMENTAL FIGURES 2-12. 669 

Supplemental table 3 670 

UK Biobank LDLR protein-truncating variants. 671 

This table lists the protein-truncating variants (PTVs) in LDLR (encoding the low-density 672 

lipoprotein receptor) that were analyzed in the United Kingdom Biobank (see STEP 1). It 673 

includes variant identifiers, genomic positions, allele frequencies, and Ensembl Variant 674 

E`ect Predictor predicted consequences. 675 

 676 

Supplemental table 4 677 

Low-density lipoprotein cholesterol life-course trajectories. 678 

This table presents averaged life-course trajectories of low-density lipoprotein (LDL) 679 

cholesterol levels derived from population-based cohorts.17,46,47 These data were used in 680 

the analyses presented in FIGURE 1, FIGURE 4, and SUPPLEMENTAL FIGURES 2–8.  681 

682 
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Does cumulative LDL cholesterol 
exposure differences explain the 

mixed results of CETP inhibitors in 
cardiovascular outcomes trials?

1. Cumulative LDL exposure drives 
atherosclerosis risk:

2. Lifelong genetic CETP inhibition reduces cardiovascular 
events by lowering LDL:

3. Mixed CETP inhibitor trial results reflect insufficient cumulative 
LDL lowering:

Inconsistent trial outcomes 
are attributable to inadequate 

cumulative LDL reduction, 
highlighting the need for more 

prolonged LDL lowering in 
future trials
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Table 1. Cohort characteristics Mean (95% CI)  /  No. (%)
Complete 
observations
(% missing)

Controls
(n = 409 253)

Heterozygous CETP 
PTV carriers (n = 385)

P value

Age (years) 409 638 (0.0%) 56.8 (56.8-56.8) 56.7 (55.9-57.4) 0.71
Male 409 638 (0.0%) 188 542 (46.1%) 178 (46.2%) 0.96
Blood pressure (mmHg)

Systolic 382 697 (6.6%) 139.9 (139.9-140.0) 140.8 (138.7-142.9) 0.41

Diastolic 382 708 (6.6%) 82.2 (82.2-82.2) 83.5 (82.2-84.7) 0.043
Weight (kg) 408 454 (0.3%) 78.2 (78.2-78.3) 78.1 (76.5-79.7) 0.92
BMI (kg/m2) 408 306 (0.4%) 27.4 (27.4-27.4) 27.4 (27.0-27.9) 0.88
Self-reported diabetes status at 
recruitment 408 727 (0.3%) 19 783 (4.8%) 21 (5.5%) 0.55
Self-reported smoking status at 
recruitment 408 234 (0.4%) 42 677 (10.4%) 37 (9.6%) 0.68
Self-reported statin usage at 
recruitment 408 511 (0.3%) 66 879 (16.3%) 48 (12.5%) 0.039

Lipids (mmol/L)
HDL cholesterol 357 796 (12.7%) 1.45 (1.45-1.45) 1.87 (1.81-1.92) 9 × 10-37

LDL cholesterol, direct 390 187 (4.8%) 3.57 (3.57-3.57) 3.39 (3.30-3.47) 3 × 10-5

LDL cholesterol, Friedewald 357 486 (12.8%) 3.46 (3.46-3.47) 3.23 (3.13-3.34) 2 × 10-5

Non-HDL cholesterol 357 731 (12.7%) 4.26 (4.26-4.26) 4.05 (3.94-4.16) 2 × 10-4

Remnant cholesterol 357 145 (12.9%) 0.69 (0.69-0.69) 0.65 (0.62-0.68) 0.017
Triglycerides 390 628 (4.7%) 1.75 (1.75-1.76) 1.78 (1.67-1.90) 0.06

Lipoproteins
Apolipoprotein B (g/L) 389 028 (5.1%) 1.04 (1.03-1.04) 0.97 (0.95-1.00) 6 × 10-7

Apolipoprotein A-I (g/L) 355 784 (13.2%) 1.54 (1.54-1.54) 1.73 (1.70-1.77) 6 × 10-23

Lipoprotein(a) (nmol/L) 311 427 (24.0%) 44.0 (43.8-44.2) 37.5 (32.9-43.0) 0.021
Endpoints during follow-up

Primary
Any atherosclerotic 

           disease 409 638 (0.0%) 61052 (14.9%) 39 (10.1%) 0.008

Secondary
Coronary heart disease 409 638 (0.0%) 52666 (12.9%) 35 (9.1%) 0.027
Ischemic stroke 409 638 (0.0%) 10491 (2.6%) 6 (1.6%) 0.26
Myocardial infarction 409 631 (0.1%) 20600 (5.0%) 17 (4.4%) 0.73
Cardiovascular death 409 638 (0.0%) 4167 (1.0%) ≤5 (≤1.3%)
Major adverse

           cardiovascular events 409 633 (0.1%) 29484 (7.2%) 21 (5.5%) 0.20

Peripheral atherosclerosis 409 638 (0.0%) 3667 (0.9%) ≤5 (≤1.3%)
All-cause death 409 638 (0.0%) 36641 (9.0%) 27 (7.0%) 0.21
Any atherosclerotic   

           disease or all-cause 
           death 409 638 (0.0%) 83510 (20.4%) 59 (15.3%) 0.013

Step 1(TABLE 1)
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Heterogeneity: Q = 3.39, P value = 0.34, I	2 = 11.5%
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Other (HMGCR, NPC1L1, PCSK9, LDLR)
Hazard ratio, 0.68 per 10-mmol/L × years (95 % CI, 0.66–0.71) 

Heterogeneity: Q = 53.47 (Het. P value = 0.061), I	2 = 27.1%

CETP Inhibition
Hazard ratio, 0.76 per 10-mmol/L × years (95 % CI, 0.64–0.89)
Heterogeneity: Q = 2.4 (Het. P value = 0.49), I	2 = 0%



(SUPPLEMENTAL FIGURE 5)
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Omitting LDLR PTVs (Genetic)
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(SUPPLEMENTAL FIGURE 6)
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Other (HMGCR, NPC1L1, PCSK9, LDLR)
Hazard ratio, 0.69 per 10-mmol/L × years (95 % CI, 0.66–0.71)
Heterogeneity: Q = 37.8, (Het. P value = 0.062), I	2 = 31.3%

CETP Inhibition
Hazard ratio, 0.76 per 10-mmol/L × years (95 % CI, 0.64–0.89)
Heterogeneity: Q = 2.4 (Het. P value = 0.49), I	2 = 0%



(SUPPLEMENTAL FIGURE 7)
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(SUPPLEMENTAL FIGURE 8)
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(SUPPLEMENTAL FIGURE 9)
A. Meta-Regression Without Interaction Term

B. Meta-Regression With Interaction Term

(Formula = Atherosclerotic Disease Risk Reduction ~ LDL-C Reduction + Time of Follow-up)

(Formula = Atherosclerotic Disease Risk Reduction ~ LDL-C Reduction + Time of Follow-up + LDL-C Reduction × Time of Follow-up)
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(SUPPLEMENTAL FIGURE 10)

SUPPLEMENTAL FIGURE 10. Meta-Regression Sensitivity Analysis

Model Independent variables βLDL-C × 

Follow-Up

SELDL-C × 

Follow-Up

P value P value 
(Permutation)

1 LDL-C Reduction, Time of Follow-Up, LDL-C 
Reduction × Time of Follow-Up

-0.0378 0.0131 0.0074 0.0090

2 1 + Baseline LDL-C -0.0343 0.0131 0.0136 0.0180

3 1 + Annualized ASCVD event risk -0.0384 0.0161 0.0236 0.0290

4 1 + Cumulative ASCVD event risk -0.0361 0.0133 0.0113 0.0110

5 1 + Mean Age at Baseline -0.0327 0.0128 0.0164 0.0250

6 1 + Year published -0.0356 0.0125 0.0079 0.0060

A. Meta-Regression Table of Adjusted Models

B. Multi-Model Inference Analysis
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