1 2 3	Use of routine health data to monitor malaria intervention effectiveness: a scoping review
4	Richard Reithinger, ¹ Donal Bisanzio, ^{1,2} Anya Cushnie, ³ Jessica Craig ¹
5	
6	¹ Country Health Information System and Data Use Program, RTI International, Washington, D.C.
7	² School of Medicine, Nottingham University, Nottingham, United Kingdom
8	³ Country Health Information System and Data Use Program, John Snow Inc., Washington, D.C.
9	
10	Correspondence
11	Dr. Richard Reithinger; Email: rreithinger@yahoo.co.uk
12	
13	Article Summary Line
14	Monitoring malaria intervention effectiveness
15	
16	Keywords (6)
17	Malaria; intervention; effectiveness; routine; health information; review
18	

19 ABSTRACT

- 20 The expansive scale-up of malaria interventions has contributed to substantial reductions in malaria morbidity
- 21 and mortality in the past 15–20 years. The effectiveness of these interventions has traditionally been estimated
- 22 through research studies and trials, nationally representative surveys, and mathematical modelling. Because of
- 23 their sheer volume across space and time, programmatic data collected and reported routinely through health
- 24 management information systems (HMIS) can complement and even offer an alternative to nationally
- 25 representative and other ad hoc surveys to assess health intervention effectiveness, and ultimately impact on
- 26 health outcomes. The objective of this scoping review was to describe the different analytical approaches for
- 27 estimating the impact and effectiveness of malaria interventions using routine HMIS and surveillance data.
- 28 We examined PubMed using combination searches of the following terms: "malaria" AND "intervention" AND
- 29 "effect*" OR "impact" AND "system" OR "surveillance". We limited inclusion to studies and analyses that were
- 30 conducted in the past decade. We purposefully chose this time cut-off, as that is when countries' routine HMIS
- began to substantially mature, with data reported by these systems progressively becoming more robust. Out of
- 32 957 records generated from the PubMed search, following title and abstract screening, 93 were included for full-
- text review, with 49 records ultimately meeting the inclusion criteria and being included in the scoping review.
- 34 We summarize included studies by publication year, geography, outcome variables, target populations,
- 35 interventions assessed, HMIS data platform used—we show that analytical approaches used a range of modelling
- 36 and non-modelling approaches to assess intervention effectiveness.
- 37 This scoping review shows that routine HMIS data can also be used to regularly assess the effectiveness of
- 38 various malaria interventions—an important exercise to ensure that implemented malaria interventions continue
- to be effective, have the desired effect, and ultimately help countries progress towards their national strategic
- 40 goals and targets.

Strengths and Limitations of this Study

► This scoping review describes the different analytical approaches for estimating the impact and effectiveness of malaria interventions using routine health management information system (HMIS) and surveillance data.

► A range of analytical approaches to assess malaria intervention effectiveness using routine HMIS and surveillance data were identified in the records (studies) reviewed, which broadly can be categorized into modelling and non-modelling approaches.

► Limitations lie in the inclusion criteria and main literature database used for the review: some papers and grey literature may not have been included, as well as papers in languages other than English may have been missed.

42 BACKGROUND

43 Malaria is an acute febrile illness caused by a parasitic infection transmitted by Anopheles mosquitoes. 44 Human malaria is caused by five different *Plasmodium* parasites, with *P. falciparum* being the predominant 45 species in sub-Saharan Africa (SSA).[1] In the past 15-20 years, the combined efforts of Ministries of Health 46 (MOHs) and National Malaria Programs (NMPs), and their partners, have made tremendous progress against 47 malaria. Thus, in 2022, the estimated global malaria incidence was 58.43 per 1,000 people at risk, a 25% 48 reduction since 2002; similarly, in the same time period, malaria mortality rates have decreased by nearly 50% to 49 14.82 per 100,000 people in 2021.[2] This progress resulted from the massive scale-up of various malaria 50 prevention and control interventions, including facility and community-based confirmatory testing and treatment 51 of malaria cases, intermittent preventive treatment during pregnancy (IPTp), and seasonal malaria 52 chemoprevention (SMC), along with indoor residual spraying of households with insecticide (IRS) and 53 insecticide-treated nets (ITNs).[1-3] 54 MOH / NMPs use programmatic intervention coverage and effectiveness data to regularly monitor

55 impact of interventions, modify intervention implementation approaches (e.g., if coverage estimates are sub-par), 56 or switch interventions altogether (e.g., when the effectiveness of an intervention is observed to be lower than 57 expected or waning). Intervention coverage and effectiveness has traditionally been assessed by post-58 intervention campaign surveys (e.g., post-ITN distribution campaign surveys),[4-6] periodic nationally 59 representative surveys (e.g., Demographic and Health Surveys [DHS], Malaria Indicator Surveys [MIS], 60 Multiple Indicator Cluster Surveys [MICS]),[7–10] or estimated by complex mathematical modelling.[11, 12] 61 While these approaches are generally robust, they have limitations. For example, nationally-representative 62 surveys only occur every 2-5 years; take time; require significant human, logistical and financial resources, and 63 capabilities; and may not be powered sufficiently to provide sub-national intervention estimates. Similarly, 64 mathematical modelling may be limited by the available data and the significant technical expertise needed to 65 develop and run the models, let alone run them continuously. Additionally, neither surveys nor modelling may 66 avail necessary estimates at key strategic moments in the malaria programming planning, implementation, and 67 monitoring cycle, such as the development of key national strategies or design of necessary donor documents 68 (e.g., national malaria strategic plans, Global Fund to Fight AIDS, Tuberculosis and Malaria Concept Notes or 69 U.S. President's Malaria Initiative Malaria Operational Plans).

70 Countries' national health management information systems (HMIS) have been dramatically 71 strengthened in the past decade, [13] with countries being able to consistently and fully report on outpatient, 72 inpatient and other programmatic data-much of this progress has been made following the wide adoption, 73 piloting and roll out of the district health management information system 2 (DHIS2), an open-source data-74 system software specifically developed to capture health data in lower-and-middle income countries.[14] 75 Because of their sheer volume across space and time, data collected and reported through HMIS like DHIS2 can 76 complement and even offer an alternative to nationally representative and other ad hoc surveys to assess health 77 intervention coverage and effectiveness, and ultimately impact on health outcomes.[15–17]

78 The objective of this scoping review was to describe the different analytical approaches for estimating
79 the impact and effectiveness of malaria interventions using routine HMIS and surveillance data. To our

80 knowledge, such a review has not been conducted. A preliminary search for existing scoping and systematic

81 reviews on the topic was conducted on December 15, 2023, using PubMed, and no similar reviews were found.

82

83 MATERIALS & METHODS

84 To conduct and report this scoping review, we followed the PRISMA-ScR (Preferred Reporting Items for

85 Systematic Reviews and Meta-Analysis extension for Scoping Reviews) (S1 File: PRISMA-ScR

86 **Checklist**).[18]. The detailed published protocol is available on Protocol.io [19].

87 A systematic search of PubMed was conducted on January 2, 2024, to identify studies and analyses that 88 had used routine surveillance and HMIS data to assess the effectiveness of malaria interventions. A detailed 89 search strategy was designed and piloted to identify the optimal combination of keywords used. We examined 90 PubMed using combination searches of the following terms: "malaria" AND "intervention" AND "effect*" OR 91 "impact" AND "system" OR "surveillance". Other key terms such as "routine" or "information systems" were 92 not included in the search strategy to have a more comprehensive initial search and were used during abstract 93 and full text screening. All identified studies were imported into Rayyan, a systematic review management 94 software, to screen (title, abstract, and full text) and manage the results of the search.[20]

95 The first stage of the review involved two reviewers (JC, RR) independently identifying potentially 96 relevant articles based on information provided in the title and abstract. Inclusion criteria were: (1) they 97 addressed malaria, and (2) described an approach using routine HMIS and surveillance data to evaluate the 98 effectiveness of a malaria intervention. Articles were also included if the information provided in the title and 99 abstract was not sufficient to determine if it met the inclusion criteria (i.e., it was tagged as "Maybe" in the 100 Rayyan database). In the event of discordance between the two reviewers (e.g., "Included" / "Excluded" and 101 "Excluded" / "Maybe" tag dyad), a third reviewer (DB) reviewed the titles and abstracts and came to a final 102 decision (i.e., "Included", "Excluded", "Maybe").

103 The second stage of the review involved at least two of the three reviewers independently reviewing 104 articles' full text and determining which publications were relevant to the current review. We limited inclusion to 105 studies and analyses that were conducted in the past decade (i.e., the study publication date had to be 2014 106 onwards, with the study period having to include 2013 at the least). We purposefully chose this time cut-off, as 107 that is the time point when countries' routine HMIS began to substantially mature, with data reported by these 108 systems progressively becoming more robust.[13]

109 From the included articles, one reviewer (RR) extracted the data from the articles into a pre-specified 110 MS Excel spreadsheet, specifying the following data elements: (1) author; (2) year of publication; (3) geography; 111 (4) study design; (5) study or time period covered; (6) intervention(s) for which effectiveness and impact was 112 measured; (7) approach to measure effectiveness and impact; (8) health information system platform used for the 113 analyses; (9) indicator variables included in the analyses; (10) target population; (11) key findings; and (12) 114 items from the Template for Intervention Description and Replication (TIDieR) checklist. TIDieR is a 12-item 115 checklist that includes the brief name, why, what (materials), what (procedure), who provided, how, where, 116 when and how much, tailoring, modifications, how well (planned), how well (actual) of a program.[21]

117

118 RESULTS

- 119 The PubMed search generated 912 records. Following title and abstract screening, 93 were included for full-text
- 120 review, with 49 records ultimately meeting the inclusion criteria and being included in the scoping review
- 121 (Figure 1).[22–70] A complete list of all screened records can be found as a supplementary file (S2 File:
- 122 Complete Data File). Main characteristics of the included records (studies) are summarized in Table 1. All
- articles were published in English from 2014–2024.
- **Publication year.** Of the 49 included studies that were conducted between 2013 and 2023, 35 (71.4%) were
- published between 2020 and 2024; most studies were published in 2022 (n = 11) and 2020 (n = 10).
- 126 Geography. The 49 studies included in the scoping review were conducted in 23 countries; one multi-country
- 127 study was conducted in five countries.[41] Of included studies, 40 (81.6%) were conducted in Africa, compared
- to seven (14.3%) and two (4.1%) in Asia and Latin America and the Caribbean, respectively. Countries in which
- 129 more than three studies were conducted included Uganda (n = 9), Zambia (n = 5), and Mali (n = 4).
- 130 Outcome Variables. Studies included in the scoping review used a range of malariometric outcome indicators,
- 131 with the majority (n = 36, 73.5%) using either the number of confirmed uncomplicated malaria cases or
- uncomplicated malaria case incidence (usually defined as 1,000 per population). Many studies included more
- than just a single outcome indicator in their analyses. Other indicators used in the studies included clinical or
- 134 suspected malaria, malaria test positivity rate, hospitalizations, deaths, and low birth weight.
- **Target populations.** Generally, interventions' effectiveness was assessed for the entire population (n = 23),
- 136 children under five years of age (n = 8), pregnant women (n = 4); or other specific age groups (e.g., children
- under 10 years of age, people over five years of age) (n = 4); ten studies included analyses on two or more age
 groups.
- 139 Interventions evaluated. Interventions, whose effectiveness was assessed included ITNs and/or IRS (n = 18
- 140 [36.7%]), diagnosis and/or treatment (n = 12 [24.5%]), SMC (n = 7 [14.3%]), IPTp or intermittent preventive
- 141 treatment in children (n = 3 [6.1%]), mass drug administration (n = 3 [6.1%]), and some form of active and
- 142 responsive surveillance (n = 2 [4.1%]). Of the 49 studies included, four assessed the effectiveness of integrated,
- 143 complementary interventions (e.g., artemisinin-based combination therapies [ACT] and ITNs, or SMC and IRS).
- 144 HMIS data platform used. All studies included in the scoping review used routine HMIS data, some in
- 145 combination with other data sources (e.g., cross-sectional community and household surveys) (n = 5). Of
- included studies, 20 (40.8%) specifically stated using the DHIS2 platform, and nine (18.4%) used facility
- 147 registries (e.g., for antenatal care, outpatients, or inpatients).
- 148 Analytical Methods. Modelling approaches were used in 35 (71.4%) studies to estimate interventions'
- 149 effectiveness, including regression models (n = 18), interrupted time series models (n = 12), or Bayesian spatio-
- temporal models (n = 5). In the remaining 14 studies, non-modelling approaches were used, including
- comparisons of incidence trends (n = 8), rate ratios (n = 3), difference-in-difference analysis (n = 1), and the
- 152 compound annual growth rate (n = 1). No study was found comparing modelling and non-modelling approaches.

153 Collaborative in-country partnership. Of the 49 studies included in the scoping review, 46 (94%) had co-

authors affiliated with in-country institutions, notably the MOH or NMP (n = 31), and/or academic research

institutions (n = 24). Three studies did not have a co-author affiliated with MOH, NMP, or local academic

research institutions.[36]

157

158 DISCUSSION

159 As support for malaria control and elimination continues, and additional malaria interventions are introduced 160 (e.g., vaccines, spatial repellents),[1–3] alternative methods for measuring intervention effectiveness and impact 161 must be explored. Controlled and observational research studies or nationally representative surveys to 162 investigate intervention coverage and effectiveness at scale are resource-intensive and costly. Similarly, 163 modelling efforts are complex-they usually require specific types of data and a substantial level of technical 164 expertise, which may not always be available at country level. Following substantial investments by country 165 governments and external assistance partners such as the Global Fund to Fight AIDS, Tuberculosis and Malaria, 166 the U.S. President's Malaria Initiative, and GAVI, countries' HMIS have strengthened considerably over the past 167 decade.[13] There is an increasing acknowledgement that routinely (passively) collected data can not only be 168 used to monitor malariometric trends, but can also be used to assess the impact of malaria interventions, and that 169 such an approach—in complement to surveys and modelling—represents a great opportunity to substantially 170 inform programmatic decision-making.[70–74] Moreover, such approach can also be seen as more representative 171 of the true effect and impact of an intervention within a programmatic context rather than the testing and 172 monitoring of intervention effectiveness in a gold-standard, resource-intensive and rich environment (e.g., 173 randomized controlled trials). This change in thinking is reflected in the increasing number of studies conducted 174 and published in the last 3 years that used routine HMIS data to assess the effectiveness of malaria interventions 175 (i.e., of the 49 studies included in our review, 35 [71.4%] were published between 2020–2024). Using routine 176 HMIS data—whether from health facility registries or monthly aggregate, facility- or district-level DHIS2 177 data-we show that countries can estimate the programmatic impact of most commonly-implemented malaria 178 interventions across facilities, districts, provinces or regions, and at national levels.

179 For routine HMIS data to be successfully used to assess malaria intervention effectiveness, several pre-180 requisites need to be in place. First, for countries to be able to use routine HMIS data for such purpose, available 181 data needs to originate from the majority of health service delivery points (i.e., from community-level to tertiary 182 health facilities), as well as be complete, up-to-date and timely, and of high quality. [75] Second, ideally, 183 interventions for which effectiveness is assessed should have high programmatic coverage and be deployed or 184 implemented at a high-quality standard (e.g., SMC- eligible children should receive all preventive treatment 185 doses to protect them from malaria throughout the entire malaria transmission season). Third, the data for all 186 outcome indicators should be robust (e.g., if reported confirmed malaria case incidence is used as outcome 187 indicator, all suspected clinical malaria cases should be tested and confirmed, as otherwise the data will not be a 188 robust representation of malaria trends in a given geographic area). Fourth, efforts to estimate intervention 189 effectiveness using routine HMIS data should be cognizant of possible confounding variables. Thus, if there are 190 geographic variances in the proportion of the population accessing health services (e.g., due to physical distance, 191 commodity stock-outs or disasters), or accessing health services in the public versus private sector in areas where

192 a specific intervention is being implemented, outcome indicator data may under- or over-estimate the

193 effectiveness of the intervention. Similarly, if there are geographic and temporal variances of rainfall and

194 temperature between intervention and non-intervention areas, transmission as well as intervention coverage and

195 use may be impacted—again, under- or over-estimating the implemented interventions' effectiveness.

196 Consequently, analytical approaches should adjust for these confounders or at least fully address these in the

197 interpretation of the analyses' findings.

198 As shown in our scoping review, studies using routine HMIS data to assess intervention effectiveness 199 have been conducted for all main malaria interventions, i.e., for case management, preventive chemotherapy, 200 vector control, or surveillance (Table 1). For example, several studies showed the impact of vector control, 201 specifically IRS, in reducing malaria case incidence by 16% in moderate transmission districts in Mali [50] to 202 85% in high-transmission districts in Uganda [52]. Several studies assessed the impact of SMC in children, 203 showing reductions of 10-55%, 27-51% and 56-67% in uncomplicated malaria case incidence, hospital 204 admissions, and malaria-related deaths, respectively.[36-41] Similarly, several studies showed how the 205 introduction of community health workers and community case management lead to a reduction in malaria 206 incidence, [26, 27] severe malaria admissions, [31] and malaria-related deaths. [31] Importantly, analyses using 207 routine HMIS data also showed the changes in epidemiological trends when intervention are waning or are being 208 discontinued. Thus, in a study in the Burundian highlands, a decline of malaria incidence was noted 20 to 40 209 weeks after a national mass ITN distribution campaign; yet, from week 80 post-ITN distribution onwards, 210 malaria incidence had rebounded to levels higher than before the intervention.[55] In Uganda, discontinuation of 211 IRS was associated with a 5-fold increase in malaria case incidence within 10 months; subsequent reinstating of 212 IRS was associated with an over 5-fold decrease within 8 months. [53] In Mali, discontinuation of IRS resulted in 213 a 70% increase in malaria case incidence, compared to areas where IRS was continued and malaria case 214 incidence remained the same.[50].

215 As reported in our scoping review, different analytical approaches have been applied to estimate 216 interventions' effectiveness from routine HMIS and surveillance data, which broadly can be categorized into 217 modelling and non-modelling approaches. While the former is inherently more robust, as analyses can be 218 adjusted for covariates and confounding variables, they can be complex as requiring a certain level of expertise 219 and specific types of data—ultimately, this also could hamper the approaches' routine and long-term adoption 220 and use by in-country malaria policymakers and stakeholders. While not having the same level of robustness, 221 non-modelling analytical approaches are simpler to conduct and more readily communicated to and ultimately 222 applied and used by policymakers and stakeholders (e.g., because the approaches are often algebra based, they 223 do not require advanced data analytics or modelling expertise, and thus can be routinely applied by programme 224 personnel with a basic understanding of algebra)-a crucial element in changing a countries' data analysis and 225 use culture.[75] Interestingly, we found no study that specifically compared different sets of analytical 226 approaches (e.g., modelling vs non-modelling approaches; regression vs Bayesian spatio-temporal models). 227 Ultimately, deciding on which analytical approach to use to assess interventions' effectiveness will depend on 228 the body of data available for the analyses, the level of robustness and reproducibility required, the skills and 229 expertise available to conduct the analyses, software and computing requirements, and needs for capacity 230 transferability and sustainability (Table 2).

231 This scoping review has several potential limitations. First, we only searched one database (i.e., 232 PubMed), and some relevant studies may have been excluded. To mitigate against this, we used broad literature 233 database search terms, which resulted in the identification of over 900 records for title and abstract screening. 234 Second, scoping reviews are exploratory in nature and are meant to address broad questions—such as whether 235 routine HMIS data have been used to estimate malaria interventions' effectiveness. Although the scope was 236 wide, it is evident and clear from this scoping review that this topic is an area of increased interest for 237 researchers and policy makers as they are contemplating the most effective combination of malaria interventions 238 to use when, where and at what scale, in a context of increasingly constrained resources.[76] Third, we restricted 239 interventions as tools and approaches that public health practitioners deploy and implement to reduce the malaria 240 burden, rather than using an even broader definition of intervention (e.g., intervention being any "outside event" 241 affecting intervention effectiveness). For example, several studies assessed the impact of climate change [77–79] 242 or even the recent COVID-19 pandemic [80–82] on malaria burden, which we excluded from our scoping 243 review. Lastly, we did not assess the quality of the studies reported on in the records included in our review, with 244 studies varying in their approach to measure intervention effectiveness, first-and-foremost using either modelling 245 or non-modelling approaches. Parameters to assess the studies' quality would have to be defined. Of interest 246 could be a study comparing different analytical approaches, not only in terms of the outcome of the analyses 247 (i.e., quantitative metrics of intervention effectiveness), but also resource requirements and programmatic 248 decision-making outcome (i.e., would differences in the analyses' outcomes have led to a different programmatic 249 decision, such as continuing or discontinuing a specific intervention).

250

251 CONCLUSION

252 In its 2016–2030 Global Technical Strategy, WHO defines surveillance as a core intervention for malaria 253 prevention and control, making it one of three pillars the strategy is built upon. A strong routine HMIS is critical 254 for efficient and effective malaria surveillance in order to document and report on disease trends at national and 255 subnational levels, both spatially and temporally. This in turn supports strategic and programmatic planning, 256 including for targeting interventions geographically and epidemiologically, thereby optimizing and maximizing 257 the public health impact of available operational, human, and financial resources. The effectiveness of malaria 258 interventions has traditionally been estimated through research studies and trials, nationally representative 259 surveys, and mathematical modelling. This scoping review shows that routine HMIS and surveillance data can 260 also be used to regularly assess the effectiveness of various malaria interventions-an important exercise to 261 ensure that implemented malaria interventions continue to be effective, have the desired effect, and ultimately 262 help countries progress towards their national strategic goals and targets.

263

264 Acknowledgements

265 The findings and conclusions expressed herein are those of the authors and do not necessarily represent the

- 266 official position of their employing organizations, the U.S. Agency for International Development, or the United
- 267 States Government.

268		
269	Financial Support	
270 271 272 273	The work was performed with funding provided by the US President's Malaria Initiative via the U.S. Ager nternational Development Country Health Information System and Data Use (CHISU) program (Coopera Agreement #7200AA20CA00009).	•
274	Conflict of Interest	
275	None to declare.	
276		
277	Patient Statement	
278	Patients and/or the public were not involved in the design, or conduct, or reporting, or dissemination plans	s of this
279	esearch.	
280		
281		
282	References	
283	1. Poespoprodjo JR, Douglas NM, Ansong D, Kho S, Anstey NM. Malaria. Lancet 2023; 402: 2328	3–2345.
284	2. World Health Organization (2023) World Malaria Report 2023. Geneva: WHO.	
285	https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2023 (access	sed
286	July 29, 2024)	
287	3. World Health Organization (2021) Global technical strategy for malaria 2016–2030, 2021 update	
288	Geneva: WHO. <u>https://www.who.int/publications-detail-redirect/9789240031357</u> . (accessed July	29,
289 290	 2024) Zegers de Beyl C, Koenker H, Acosta A, Onyefunafoa EO, Adegbe E, McCartney-Melstad A, Se 	lbr
290	 Zegers de Beyl C, Koenker H, Acosta A, Onyefunafoa EO, Adegbe E, McCartney-Melstad A, Se RA, Kilian A. Multi-country comparison of delivery strategies for mass campaigns to achieve un 	•
292	coverage with insecticide-treated nets: what works best? Malar J. 2016; 15: 58.	Iversar
293	 Maiteki-Sebuguzi C, Gonahasa S, Kamya MR, Katureebe A, Bagala I, Lynd A, Mutungi P, Kigo 	zi SP
294	Opigo J, Hemingway J, Dorsey G, Donnelly MJ, Staedke SG. Effect of long-lasting insecticidal r	
295	with and without piperonyl butoxide on malaria indicators in Uganda (LLINEUP): final results of	
296	cluster-randomised trial embedded in a national distribution campaign. Lancet Infect Dis. 2023; 2	
297	247-258.	
298	6. [to be added]	
299	7. Jima D, Getachew A, Bilak H, Steketee RW, Emerson PM, Graves PM, Gebre T, Reithinger R, F	Iwang
300	J; Ethiopia Malaria Indicator Survey Working Group. Malaria indicator survey 2007, Ethiopia:	-
301	coverage and use of major malaria prevention and control interventions. Malar J. 2010; 9: 58.	

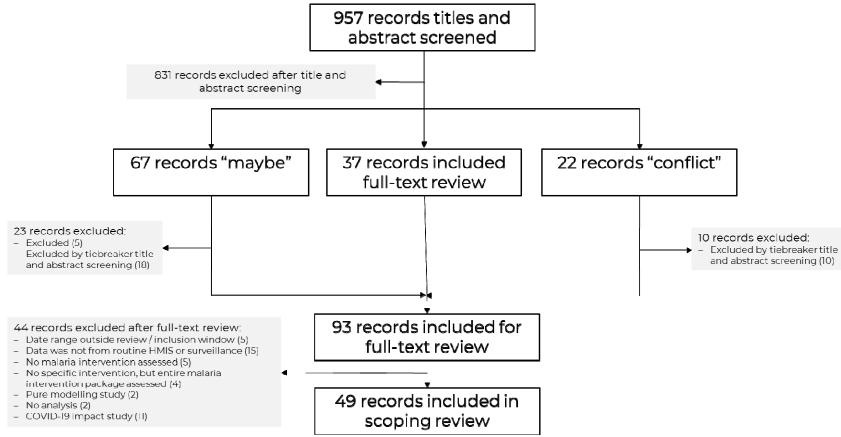
302	8.	Zamawe CO, Nakamura K, Shibanuma A, Jimba M. The effectiveness of a nationwide universal
303		coverage campaign of insecticide-treated bed nets on childhood malaria in Malawi. Malar J. 2016; 15:
304		505.
305	9.	Kang SY, Battle KE, Gibson HS, Ratsimbasoa A, Randrianarivelojosia M, Ramboarina S, Zimmerman
306		PA, Weiss DJ, Cameron E, Gething PW, Howes RE. Spatio-temporal mapping of Madagascar's Malaria
307		Indicator Survey results to assess Plasmodium falciparum endemicity trends between 2011 and 2016.
308		BMC Med. 2018; 16: 71.
309	10.	Alhassan Y, Dwomoh D, Amuasi SA, Nonvignon J, Bonful H, Tetteh M, Agyabeng K, Kotey M,
310		Yawson AE, Bosomprah S. Impact of insecticide-treated nets and indoor residual spraying on self-
311		reported malaria prevalence among women of reproductive age in Ghana: implication for malaria
312		control and elimination. Malar J. 2022; 21: 120.
313	11.	Ozodiegwu ID, Ambrose M, Galatas B, Runge M, Nandi A, Okuneye K, Dhanoa NP, Maikore I,
314		Uhomoibhi P, Bever C, Noor A, Gerardin J. Application of mathematical modelling to inform national
315		malaria intervention planning in Nigeria. Malar J. 2023; 22: 137.
316	12.	Souleiman Y, Ismail L, Eftimie R. Modeling and investigating malaria P. Falciparum and P. Vivax
317		infections: Application to Djibouti data. Infect Dis Model. 2024; 9: 1095–1116.
318	13.	Koumamba AP, Bisvigou UJ, Ngoungou EB, Diallo G. Health information systems in developing
319		countries: case of African countries. BMC Med Inform Decis Mak. 2021; 21: 232.
320	14.	DHIS2. https://dhis2.org
321	15.	Mwinnyaa G, Hazel E, Maïga A, Amouzou A (2021) Estimating population-based coverage of
322		reproductive, maternal, newborn, and child health (RMNCH) interventions from health management
323		information systems: a comprehensive review. BMC Health Serv Res. 21(Suppl 2): 1083.
324	16.	Epstein A, Namuganga JF, Kamya EV, Nankabirwa JI, Bhatt S, Rodriguez-Barraquer I, Staedke SG,
325		Kamya MR, Dorsey G, Greenhouse B (2020) Estimating malaria incidence from routine health facility-
326		based surveillance data in Uganda. Malar J. 19: 445.
327	17.	Ashton RA, Bennett A, Yukich J, Bhattarai A, Keating J, Eisele TP (2017) Methodological
328		Considerations for Use of Routine Health Information System Data to Evaluate Malaria Program
329		Impact in an Era of Declining Malaria Transmission. Am J Trop Med Hyg. 97 (3_Suppl): 46-57.
330	18.	PRISMA [Internet]. [cited 2021 Dec 2]. Available from:
331		http://www.prismastatement.org/Extensions/ScopingReviews
332	19.	Craig J, Bisanzio D, Reithinger R (2024) Scoping Review: Analytical Approaches to Estimating
333		Malaria Intervention Effectiveness and Impact. https://protocols.io/view/scoping-review-analytical-
334		approaches-to-estimating-c8nszvee.pdf
335	20.	https://www.rayyan.ai/
336	21.	Hoffmann TC, Glasziou PP, Boutron I, Milne R, Perera R, Moher D, et al. Better reporting of
337		interventions: template for intervention description and replication (TIDieR) checklist and guide. BMJ
338		2014; 348: g1687–g1687.
339	22.	Brito M, Rufatto R, Brito-Sousa JD, Murta F, Sampaio V, Balieiro P, BaÃ-a-Silva D, Castro V, Alves
340		B, Alencar A, Duparc S, Grewal Daumerie P, Borghini-Fuhrer I, Jambert E, Peterka C, Edilson Lima F
341		Jr, Carvalho Maia L, Lucena Cruz C, Maciele B, Vasconcelos M, Machado M, Augusto Figueira E,

242		
342		Alcirley Balieiro A, Batista Pereira D, Lacerda M. Operational effectiveness of tafenoquine and
343		primaquine for the prevention of Plasmodium vivax recurrence in Brazil: a retrospective observational
344		study. Lancet Infect Dis. 2024; 24: 629–638.
345	23.	Pradhan MM, Pradhan S, Dutta A, Shah NK, Valecha N, Joshi PL, Pradhan K, Grewal Daumerie P,
346		Banerji J, Duparc S, Mendis K, Sharma SK, Murugasampillay S, Anvikar AR (2022) Impact of the
347		malaria comprehensive case management programme in Odisha, India. PLoS One 2022; 17: e0265352
348	24.	Pradhan S, Pradhan MM, Dutta A, Shah NK, Joshi PL, Pradhan K, Sharma SK, Grewal Daumerie P,
349		Banerji J, Duparc S, Mendis K, Murugasampillay S, Valecha N, Anvikar AR (2019) Improved access to
350		early diagnosis and complete treatment of malaria in Odisha, India. PLoS One 2019; 14: e0208943
351	25.	Linn NYY and Kathirvel S and Das M and Thapa B and Rahman MM and Maung TM and Kyaw AMM
352		and Thi A and Lin Z (2018) Are village health volunteers as good as basic health staffs in providing
353		malaria care? A country wide analysis from Myanmar, 2015. Malaria J. 2018; 17: 242.
354	26.	McLean ARD and Wai HP and Thu AM and Khant ZS and Indrasuta C and Ashley EA and Kyaw TT
355		and Day NPJ and Dondorp A and White NJ and Smithuis FM. Malaria elimination in remote
356		communities requires integration of malaria control activities into general health care: an observational
357		study and interrupted time series analysis in Myanmar. BMC Medicine 2018; 16: 183.
358	27.	Zaw AS and Win ESS and Yan SW and Thein KS and Verma V and McLean ARD and Kyaw TT and
359		White NJ and Smithuis FM. Successful elimination of falciparum malaria following the introduction of
360		community-based health workers in Eastern Myanmar: A retrospective analysis. PLoS Medicine 2023;
361		20: e1004318.
362	28.	Bhavnani D and García Espinosa B and Baird M and Presley N and Le Menach A and Bradley C and
363		Outten M and González O. Malaria surveillance and case management in remote and indigenous
364		communities of Panama: results from a community-based health worker pilot. Malaria J 2022; 21: 297.
365	29.	Uwimana A and Penkunas MJ and Nisingizwe MP and Uyizeye D and Hakizimana D and
366		Musanabaganwa C and Musabyimana JP and Ngwije A and Turate I and Mbituyumuremyi A and
367		Murindahabi M and Condo J. Expanding home-based management of malaria to all age groups in
368		Rwanda: analysis of acceptability and facility-level time-series data. Trans R Trop Med Hyg 2018; 112:
369		513–521.
370	30.	Boyce RM and Muiru A and Reyes R and Ntaro M and Mulogo E and Matte M and Siedner MJ. Impact
371		of rapid diagnostic tests for the diagnosis and treatment of malaria at a peripheral health facility in
372		Western Uganda: an interrupted time series analysis. Malaria J 2015; 14: 203.
373	31.	Ashton RA, Hamainza B, Lungu C, Rutagwera MI, Porter T, Bennett A, Hainsworth M, Burnett S,
374		Silumbe K, Slater H, Eisele TP, Miller JM (2023) Effectiveness of community case management of
375		malaria on severe malaria and inpatient malaria deaths in Zambia: a dose-response study using routine
376		health information system data. Malaria J 2023; 22: 96.
377	32.	Green C, Quigley P, Kureya T, Barber C, Chizema E, Moonga H, Chanda E, Simfukwe V, Mpande B,
378		Simuyuni D, Mubuyaeta K, Hugo P, van der Weije K. Use of rectal artesunate for severe malaria at the
379		community level, Zambia. Bull WHO 2019; 97: 810–817.

380	33	Coldiron ME, Lasry E, Bouhenia M, Das D, Okui P, Nyehangane D, Mwanga J, Langendorf C, Elder
381	55.	G, Salumu L, Grais RF. Intermittent preventive treatment for malaria among children in a refugee camp
382		in Northern Uganda: lessons learned. Malaria J 2017; 16: 218.
383	34	Kamau A, Musau M, Mwakio S, Amadi D, Nyaguara A, Bejon P, Seale AC, Berkley JA, Snow RW.
384	51.	Impact of Intermittent Presumptive Treatment for Malaria in Pregnancy on Hospital Birth Outcomes on
385		the Kenyan Coast. Clin Infect Dis 2022; 76: e875–e883.
386	35	Fraser M and Miller JM and Silumbe K and Hainsworth M and Mudenda M and Hamainza B and
387	55.	Moonga H and Chizema Kawesha E and Mercer LD and Bennett A and Schneider K and Slater HC and
388		Eisele TP and Guinovart C. Evaluating the Impact of Programmatic Mass Drug Administration for
389		Malaria in Zambia Using Routine Incidence Data. J Infect Dis 2022; 225: 1415–1423.
390	26	-
390 391	30.	Kirakoya-Samadoulougou F, De Brouwere V, Fokam AF, Ouedraogo M, Ye Y. Assessing the effect of
391 392		seasonal malaria chemoprevention on malaria burden among children under 5 years in Burkina Faso.
392 393	27	Malaria J. 2022; 21: 143. Fottsoh Fokam A, Rouamba T, Samadoulougou S, Ye Y, Kirakoya-Samadoulougou F. A Bayesian
393 394	57.	
394 395		spatio-temporal framework to assess the effect of seasonal malaria chemoprevention on children under 5 years in Cameroon from 2016 to 2021 using routine data. Malaria J. 2023; 22: 347.
395 396	20	•
390 397	38.	Richardson S and Moukenet A and Diar MSI and de Cola MA and Rassi C and Counihan H and Roca-
398		Feltrer A. Modeled Impact of Seasonal Malaria Chemoprevention on District-Level Suspected and
398 399		Confirmed Malaria Cases in Chad Based on Routine Clinical Data (2013–2018). Am J Trop Med Hyg
399 400	20	2021; 105: 1712–1721.
400 401	39.	Adjei MR, Kubio C, Buamah M, Sarfo A, Suuri T, Ibrahim S, Sadiq A, Abubakari II, Baafi JV.
		Effectiveness of seasonal malaria chemoprevention in reducing under-five malaria morbidity and
402	10	mortality in the Savannah Region, Ghana. Ghana Med J. 2022; 56: 64–70.
403	40.	Bisanzio D, Keita MS, Camara A, Guilavogui T, Diallo T, Barry H, Preston A, Bangoura L, Mbounga
404		E, Florey LS, Taton JL, Fofana A, Reithinger R. Malaria trends in districts that were targeted and not-
405		targeted for seasonal malaria chemoprevention in children under 5 years of age in Guinea, 2014–2021.
406	4.1	BMJ Global Health 2024; 9: e013898.
407	41.	Issiaka D, Barry A, Traore T, Diarra B, Cook D, Keita M, Sagara I, Duffy P, Fried M, Dicko A. Impact
408		of seasonal malaria chemoprevention on hospital admissions and mortality in children under 5 years of
409	10	age in Ouelessebougou, Mali. Malaria J. 2020; 19: 103.
410	42.	ACCESS-SMC. Effectiveness of seasonal malaria chemoprevention at scale in west and central Africa:
411	10	an observational study. Lancet 2020; 396: 1829–1840.
412	43.	Gunasekera WMKTAW, Premaratne R, Fernando D, Munaz M, Piyasena MGY, Perera D,
413		Wickremasinghe R, Ranaweera KDNP, Mendis K. A comparative analysis of the outcome of malaria
414		case surveillance strategies in Sri Lanka in the prevention of re-establishment phase. Malaria J 2021;
415		
416	44.	Mlacha YP, Wang D, Chaki PP, Gavana T, Zhou Z, Michael MG, Khatib R, Chila G, Msuya HM,
417		Chaki E, Makungu C, Lin K, Tambo E, Rumisha SF, Mkude S, Mahende MK, Chacky F, Vounatsou P,
418		Tanner M, Masanja H, Aregawi M, Hertzmark E, Xiao N, Abdulla S, Zhou XN. Effectiveness of the

419		innovative 1,7-malaria reactive community-based testing and response (1, 7-mRCTR) approach on
420		malaria burden reduction in Southeastern Tanzania. Malaria J 2020; 19: 292.
421	45.	Kitojo C, Chacky F, Kigadye ES, Mugasa JP, Lusasi A, Mohamed A, Walker P, Reaves EJ, Gutman
422		JR, Ishengoma DS. Evaluation of a single screen and treat strategy to detect asymptomatic malaria
423		among pregnant women from selected health facilities in Lindi region, Tanzania. Malaria J 2020; 19:
424		438.
425	46.	Bridges DJ, Miller JM, Chalwe V, Moonga H, Hamainza B, Steketee RW, Mambwe B, Mulube C, Wu
426		L, Tetteh KKA, Drakeley C, Chishimba S, Mwenda M, Silumbe K, Larsen DA. Reactive focal drug
427		administration associated with decreased malaria transmission in an elimination setting: Serological
428		evidence from the cluster-randomized CoRE study. PLoS GH 2022; 2: e0001295.
429	47.	Hilton ER, Gning-Cisse N, Assi A, Eyakou M, Koffi J, Gnakou B, Kouassi B, Flatley C, Chabi J,
430		Gbalegba C, Alex Aimain S, Yah Kokrasset C, Antoine Tanoh M, N'Gotta S, Yao O, Egou Assi H,
431		Konan P, Davis K, Constant E, Belemvire A, Yepassis-Zembrou P, Zinzindohoue P, Kouadio B,
432		Burnett S. Reduction of malaria case incidence following the introduction of clothianidin-based indoor
433		residual spraying in previously unsprayed districts: an observational analysis using health facility
434		register data from Côte d'Ivoire, 2018–2022. BMJ Global Health 2024; 9: e013324.
435	48.	Gogue C, Wagman J, Tynuv K, Saibu A, Yihdego Y, Malm K, Mohamed W, Akplu W, Tagoe T, Ofosu
436		A, Williams I, Asiedu S, Richardson J, Fornadel C, Slutsker L, Robertson M. An observational analysis
437		of the impact of indoor residual spraying in Northern, Upper East, and Upper West Regions of Ghana:
438		2014 through 2017. Malaria J 2020; 19: 242.
439	49.	Hilton ER, Rabeherisoa S, Ramandimbiarijaona H, Rajaratnam J, Belemvire A, Kapesa L, Zohdy S,
440		Dentinger C, Gandaho T, Jacob D, Burnett S, Razafinjato C. Using routine health data to evaluate the
441		impact of indoor residual spraying on malaria transmission in Madagascar. BMJ Global Health 2023; 8:
442		e010818.
443	50.	Wagman J, Gogue C, Tynuv K, Mihigo J, Bankineza E, Bah M, Diallo D, Saibu A, Richardson JH,
444		Kone D, Fomba S, Bernson J, Steketee R, Slutsker L, Robertson M. An observational analysis of the
445		impact of indoor residual spraying with non-pyrethroid insecticides on the incidence of malaria in
446		Ségou Region, Mali: 2012–2015. Malaria J 2018; 17: 19.
447	51.	Wagman J, Cissé I, Kone D, Fomba S, Eckert E, Mihigo J, Bankineza E, Bah M, Diallo D, Gogue C,
448		Tynuv K, Saibu A, Richardson JH, Fornadel C, Slutsker L, Robertson M. Rapid reduction of malaria
449		transmission following the introduction of indoor residual spraying in previously unsprayed districts: an
450		observational analysis of Mopti Region, Mali, in 2017. Malaria J 2020; 17: 19.
451	52.	Roh ME, Mpimbaza A, Oundo B, Irish A, Murphy M, Wu SL, White JS, Shiboski S, Glymour MM,
452		Gosling R, Dorsey G, Sturrock H. Association between indoor residual spraying and pregnancy
453		outcomes: a quasi-experimental study from Uganda. Int J Epidemiol 2022; 51: 1489-1501.
454	53.	Namuganga JF, Epstein A, Nankabirwa JI, Mpimbaza A, Kiggundu M, Sserwanga A, Kapisi J,
455		Arinaitwe E, Gonahasa S, Opigo J, Ebong C, Staedke SG, Shililu J, Okia M, Rutazaana D, Maiteki-
456		Sebuguzi C, Belay K, Kamya MR, Dorsey G, Rodriguez-Barraquer I. The impact of stopping and
457		starting indoor residual spraying on malaria burden in Uganda. Nature Communications 2021; 12: 2635.

458	54	Epstein A, Namuganga JF, Nabende I, Kamya EV, Kamya MR, Dorsey G, Sturrock H, Bhatt S,
459	54.	Rodriguez-Barraquer I, Greenhouse B. Mapping malaria incidence using routine health facility
460		surveillance data in Uganda. BMJ Global Health 2022; 8: e011137.
461	55	Van Bortel W, Marien J, Jacobs BKM, Sinzinkayo D, Sinarinzi P, Lampaert E, D'hondt R, Mafuko JM,
462	55.	De Weggheleire A, Vogt F, Alexander N, Wint W, Maes P, Vanlerberghe V, Leclair C. Long-lasting
463		insecticidal nets provide protection against malaria for only a single year in Burundi, an African
464		highland setting with marked malaria seasonality. BMJ Global Health 2022; 7: e009674.
465	56	Kabeya TK, Kasongo JCM, Matumba NB, Tshibangu DI, Garcia-Morzon LA, Burgueno E. Impact of
466	50.	mass distribution of long-lasting insecticide nets on the incidence of malaria in Lomami, Democratic
467		Republic of Congo: a study based on electronic health record data (2018 - 2019). Panafrican Med J
467		2023; 45: 89.
468 469	57	Bisanzio D and Mutuku F and LaBeaud AD and Mungai PL and Muinde J and Busaidy H and Mukoko
409 470	57.	
470 471		D and King CH and Kitron U. Use of prospective hospital surveillance data to define spatiotemporal heterogeneity of malaria risk in coastal Kenya. Malaria J 2015; 14: 482.
471 472	50	
	38.	Kamau A and Nyaga V and Bauni E and Tsofa B and Noor AM and Bejon P and Scott JAG and
473		Hammitt LL. Trends in bednet ownership and usage, and the effect of bednets on malaria
474		hospitalization in the Kilifi Health and Demographic Surveillance System (KHDSS): 2008–2015. BMC
475		Infect Dis 2017; 17: 720.
476	59.	Kabera M, Mangala JN, Soebiyanto R, Mukarugwiro B, Munguti K, Mbituyumuremyi A, Lucchi NW,
477		Hakizimana E. Impact of Pyrethroid Plus Piperonyl Butoxide Synergist-Treated Nets on Malaria
478		Incidence 24 Months after a National Distribution Campaign in Rwanda. Am J Trop Med Hyg 2023;
479		109: 1356–1362.
480	60.	Kigozi SP, Kigozi RN, Epstein A, Mpimbaza A, Sserwanga A, Yeka A, Nankabirwa JI, Halliday K,
481		Pullan RL, Rutazaana D, Sebuguzi CM, Opigo J, Kamya MR, Staedke SG, Dorsey G, Greenhouse B,
482		Rodriguez-Barraquer I. Rapid shifts in the age-specific burden of malaria following successful control
483		interventions in four regions of Uganda. Malaria J 2020; 19: 128.
484	61.	Katureebe A, Zinszer K, Arinaitwe E, Rek J, Kakande E, Charland K, Kigozi R, Kilama M,
485		Nankabirwa J, Yeka A, Mawejje H, Mpimbaza A, Katamba H, Donnelly MJ, Rosenthal PJ, Drakeley C,
486		Lindsay SW, Staedke SG, Smith DL, Greenhouse B, Kamya MR, Dorsey G. Measures of Malaria
487		Burden after Long-Lasting Insecticidal Net Distribution and Indoor Residual Spraying at Three Sites in
488		Uganda: A Prospective Observational Study. PLoS Medicine 2016; 13: e1002167.
489	62.	Mpimbaza A, Sserwanga A, Rutazaana D, Kapisi J, Walemwa R, Suiyanka L, Kyalo D, Kamya M,
490		Opigo J, Snow RW (2020) Changing malaria fever test positivity among paediatric admissions to
491		Tororo district hospital, Uganda 2012–2019. Malaria J 2020; 19: 416.
492	63.	Lubinda J, Haque U, Bi Y, Shad MY, Keellings D, Hamainza B, Moore AJ. Climate change and the
493		dynamics of age-related malaria incidence in Southern Africa. Environ Res 2021; 197: 111017.
494	64.	Rouamba T, Samadoulougou S, Tinto H, Alegana VA, Kirakoya-Samadoulougou F. Bayesian
495		Spatiotemporal Modeling of Routinely Collected Data to Assess the Effect of Health Programs in
496		Malaria Incidence During Pregnancy in Burkina Faso. Sci Rep. 2020; 10: 2618.


497	65	Nicussia TZ Zausstia T. Mulurah EV. Effects of alimete usrichility and anyiran montal factors on the
	63.	Nigussie TZ, Zewotir T, Muluneh EK. Effects of climate variability and environmental factors on the
498		spatiotemporal distribution of malaria incidence in the Amhara national regional state, Ethiopia. Spat
499 500		Spatiotemporal Epidemiol 2022; 40: 100475.
500	66.	Wagman J, Cisse I, Kone D, Fomba S, Eckert E, Mihigo J, Bankineza E, Bah M, Diallo D, Gogue C,
501		Tynuv K, Saibu A, Richardson JH, Fornadel C, Slutsker L, Robertson M. Combining next-generation
502		indoor residual spraying and drug-based malaria control strategies: observational evidence of a
503		combined effect in Mali. Malaria J 2020; 19: 293.
504	67.	Thomas R, Cirera L, Brew J, Saute F, Sicuri E. The short-term impact of a malaria elimination initiative
505		in Southern Mozambique: Application of the synthetic control method to routine surveillance data.
506		Health Econ 2021; 30: 2168–2184.
507	68.	Rodriguez-Rodriguez D, Maraga S, Lorry L, Robinson LJ, Siba PM, Mueller I, Pulford J, Ross A,
508		Hetzel MW. Repeated mosquito net distributions, improved treatment, and trends in malaria cases in
509		sentinel health facilities in Papua New Guinea. Malaria J 2019; 18: 364.
510	69.	Ashton RA, Bennett A, Al-Mafazy AW, Abass AK, Msellem MI, McElroy P, Kachur SP, Ali AS,
511		Yukich J, Eisele TP, Bhattarai A. Use of Routine Health Information System Data to Evaluate Impact
512		of Malaria Control Interventions in Zanzibar, Tanzania from 2000 to 2015. eClinical Medicine 2019;
513		12: 11–19.
514	70.	Ssempiira J, Kissa J, Nambuusi B, Kyozira C, Rutazaana D, Mukooyo E, Opigo J, Makumbi F, Kasasa
515		S, Vounatsou P. The effect of case management and vector-control interventions on space-time patterns
516		of malaria incidence in Uganda. Malaria J. 2018; 17: 162.
517	71.	Afrane YA, Zhou G, Githeko AK, Yan G. Utility of health facility-based malaria data for malaria
518		surveillance. PLoS One 2013; 8: e54305.
519	72.	Ashton RA, Bennett A, Yukich J, Bhattarai A, Keating J, Eisele TP. Methodological considerations for
520		use of routine health information system data to evaluate malaria program impact in an era of declining
521		malaria transmission. Am J Trop Med Hyg 2017; 97: 46–57.
522	73.	Wagenaar BH, Sherr K, Fernandes Q, Wagenaar AC. Using routine health information systems for
523		well-designed health evaluations in low- and middle-income countries. Health Policy Plan 2016;
524		31:129–135.
525	74.	WHO. Analysis and use of health facility data: guidance for malaria programme managers. Geneva:
526		World Health Organization. 2018.
527	75.	Hoxha K, Hung YW, Irwin BR, Grépin KA. Understanding the challenges associated with the use of
528		data from routine health information systems in low- and middle-income countries: A systematic
529		review. Hlth Informat Management Journal 2022; 51: 135–148.
530	76.	Munn Z, Peters MDJ, Stern C, Tufanaru C, McArthur A, Aromataris E. Systematic review or scoping
531		review? Guidance for authors when choosing between a systematic or scoping review approach. BMC
532		Med Res Methodol. 2018; 18: 143.
533	77.	Ssempiira J, Kissa J, Nambuusi B, Mukooyo E, Opigo J, Makumbi F, Kasasa S, Vounatsou P.
534		Interactions between climatic changes and intervention effects on malaria spatio-temporal dynamics in
535		Uganda. Parasite Epidemiol Control. 2018; 3: e00070.

536	78. Lubinda J, Haque U, Bi Y, Shad MY, Keellings D, Hamainza B, Moore AJ. Climate change and the
537	dynamics of age-related malaria incidence in Southern Africa. Environ Res. 2021; 197: 111017.
538	79. Nyawanda BO, Beloconi A, Khagayi S, Bigogo G, Obor D, Otieno NA, Lange S, Franke J, Sauerborn
539	R, Utzinger J, Kariuki S, Munga S, Vounatsou P. The relative effect of climate variability on malaria
540	incidence after scale-up of interventions in western Kenya: A time-series analysis of monthly incidence
541	data from 2008 to 2019. Parasite Epidemiol Control. 2023; 21: e00297.
542	80. DePina A, Barros H, Tiffany A, Stresman G. Sustaining surveillance as an intervention during the
543	COVID-19 pandemic in Cabo Verde and implications for malaria elimination. Front Immunol. 2022;
544	13: 956864.
545	81. Sampa M, Fisa R, Mukuma C, Mwanza M, Hamainza B, Musonda P. The effect of COVID-19 on
546	malaria cases in Zambia: a mixed effect multilevel analysis. Malar J. 2024; 23: 85.
547	82. Heuschen AK, Abdul-Mumin A, Adokiya M, Lu G, Jahn A, Razum O, Winkler V, Müller O. Impact of
548	the COVID-19 pandemic on malaria cases in health facilities in northern Ghana: a retrospective
549	analysis of routine surveillance data. Malar J. 2022; 21: 149.
550	83. Rowe AK, Kachur SP, Yoon SS, Lych M, Slutsker L, Steketee RW. Caution is required when using
551	health facility-based data to evaluate the health impact of malaria control efforts in Africa. Malar J
552	2009; 8: 1–3.

553 Tables and Figures

554

Figure 1. PRISMA Flowchart of Records (Studies) included in Scoping Review 555

557 Table 1. Characteristics of 49 records included in scoping review.

Geography	Study Period	Specific Intervention Assessed	Approach to Measuring Effectiveness / Impact	Health Information System Data Platform used for Analyses	included in Analyses	Target Population	Key Findings	Ref.
Diagnosis & T	reatment			,			l I	
Brazil	2021–2022	Updated treatment algorithm for <i>P</i> . <i>vivax</i> radical cure	Multivariate analysis	rHMIS (routine facility patient records / registers)	1 # malaria recurrences at 60, 90 and 180 days	Entire population, as well as population >16 yrs of age	In all treated patients of any age and any glucose- 6-phosphate dehydrogenase (G6PD) status, recurrence-free effectiveness at day 180 was 75.8% with tafenoquine, 73.4% with 7-day primaquine, and 82.1% with weekly primaquine. In patients aged at least 16 years who were G6PD normal, recurrence-free effectiveness until day 90 was 88.6% with tafenoquine and 83.5% with 7-day primaquine. Over 180 days, median time to recurrence in patients aged at least 16 years who were G6PD normal was 92 days with tafenoquine and 68 days with 7-day primaquine. Single-dose tafenoquine was more effective at preventing P vivax recurrence in patients aged at least 16 years who were G6PD normal compared with 7-day primaquine at day 90, while overall efficacy at 180 days was similar.	22
India	2009–2017	Early diagnosis and treatment	Difference-in difference analysis and interrupted time series analysis	rHMIS (DHIS2)	Monthly blood examination rate (MBER) Monthly parasite index (MPI)	Entire population	During program (intervention) implementation, adjusting for control areas, analysis indicated a 25% increase in MBER and a 96% increase in MPI, followed by a 47% decline in MPI post- program, though MBER was maintained.	23
India	2011–2015	Universal access to early diagnosis and treatment	Difference-in difference analysis	rHMIS (DHIS2)	Annual blood examination rate (ABER) Annual parasite index (MPI)	Entire population	Control-adjusted post-pre changes in API showed that 5.5 more cases were diagnosed, and 3.6 more cases were tested per facility in the intervention versus control areas. Larger differences in post-pre changes in API between intervention and control facilities were registered in the higher transmission-risk areas.	24
Myanmar	2015	Access to and quality of malaria treatment (comparison between village	Descriptive and inferential analysis	rHMIS	1# suspected clinical malaria cases, incl. test result, species type, severity of malaria, treatment initiation status, time of initiation of treatment (≤ 24	Entire population	Of 978,735 undifferentiated fever patients screened, 11.0% of patients were found malaria positive; the malaria positivity in VHV and BHS group were 11.1% and 10.9% respectively. Access to malaria care: higher proportion of children aged	25

		health volunteers			or > 24 hrs of fever) and the		5-14 years (21.8% vs 17.3%) and females (43.7%	
		[VHV] and basic health staff [BHS])			regimen of treatment provided		vs 41.8%) with fever were screened for malaria by VHV compared to BHS. However, the same for children aged <5 years was 2.2% lower in VHV group compared to BHS. For quality of malaria care, after adjustment for potential confounders, patients with malaria provided care by VHV had 1.02 times higher chance of receiving treatment compared to BHS; VHV were more accessible to children and women than BHS in providing malaria screening services.	
Myanmar	2011–2016	Diagnosis and treatment following deployment of CHWs	Negative binomial mixed effects regression models	rHMIS	1# RDT confirmed cases 1 MBER and ABER 1 prevalence and incidence of confirmed malaria cases	Entire population	Communities with CHWs providing malaria diagnosis and treatment experienced declines in <i>P.</i> <i>falciparum</i> and <i>P. vivax</i> malaria incidence of 70% and 64%, respectively. RDT positivity rates declined similarly, with declines of 70% for <i>P.</i> <i>falciparum</i> and 65% for <i>P. vivax</i> with each year of CHW operation. In four cohorts studied, adding a BHC package was associated with an immediate and sustained increase in blood examination rates (step-change rate ratios 2.3, 5.4, 1.7, and 1.1). CHWs have overseen dramatic declines in <i>P.</i> <i>falciparum</i> and <i>P. vivax</i> malaria in rural Myanmar. Expanding their remit to general health care has sustained community uptake of malaria services.	26
Myanmar	2011–2018	Diagnosis and treatment following deployment of CHWs	Negative binomial mixed effects regression models	rHMIS	H RDT confirmed cases H MBER and ABER prevalence and incidence of confirmed malaria cases	Entire population	Incidence of <i>P. falciparum</i> malaria (including mixed infections) and <i>P. vivax</i> declined by 70% and 56%, respectively, for each year of CHW operation. Malaria RDT positivity rates for <i>P.</i> <i>falciparum</i> and <i>P. vivax</i> declined by 69% and 53%, respectively. Introduction of CHWs providing community-based malaria diagnosis and treatment and basic health care services in remote communities in Mon state was associated with a substantial reduction in malaria.	27
Panama	2014–2018	Diagnosis and treatment following deployment of CHWs	Incidence rate ratios	rHMIS	TPR ABER Incidence of uncomplicated malaria Time between symptom onset and diagnosis Time between diagnosis and treatment		During pilot, CHWs detected 61% of all reported cases from the region. Test positivity in the population tested by CHWs was higher (22%) than in those tested through active surveillance, both before (3.8%) and during the pilot (2.9%). From the pre-pilot to the pilot period, ABER decreased (9.8 per 100 vs. 8.0 per 100), test positivity increased (4.2% to 8.5%) and reported incidence	28

Rwanda	2015 – 2016	Home-based case management	Interrupted time series analysis	rHMIS (Système Informatique de Santé	Monthly incidence of uncomplicated malaria cases at health centers Monthly	PO5	increased (4.1 cases per 1000 to 6.9 cases per 1000). The percent of cases tested on the day of symptom onset increased from 8 to 27% and those treated on the day of their test increased from 26 to 84%. CHW network allowed for replacement of routine active surveillance with strong passive case detection leading to more targeted and timely testing and treatment. PO5 readily accessed malaria diagnosis and treatment services from CHWs. Uncomplicated and severe malaria increased in postintervention	29
				Communautaire)	incidence of severe malaria at		period for both intervention and control districts.	
Uganda	2010–2014	Introduction of RDTs	Interrupted time series analysis	rHMIS	hospitals 1# diagnostic tests per month	Entire population	Proportion of patients with parasite-based diagnoses more than tripled to 34% after the introduction of RDTs; RDTs largely replaced microscopy as the diagnostic method of choice. Compared to patients admitted during the pre-RDT period, patients admitted to the health centre with malaria in the post-RDT period had significantly reduced odds of being referred to another health centre, receiving antibiotics, and a significantly shorter mean length of stay.	30
Zambia	2015–2020	Scale-up of community case management	Negative binomial generalized linear mixed-effect models	rHMIS (DHIS2)	CU5 inpatient admissions with confirmed severe malaria 1 all- ages inpatient admissions with confirmed severe malaria 1 CU5 deaths among inpatient admissions with confirmed malaria 1 all-ages deaths among inpatient admissions with confirmed malaria.	CU5 and all ages	After accounting for covariates, an increase of one malaria service point per 1,000 was associated with a 19% reduction in severe malaria admissions among CU5 and 23% reduction in malaria deaths among CU5	31
Zambia	2017–2018	Introduction of rectal artesunate	Surveys carried out near the beginning and end of the intervention period; health facilities, which contributed data on malaria to the Zambian HMIS; and a community monitoring system.		1% CU5 with suspected severe malaria who received pre- referral rectal artesunate in the community 1% CU5 with suspected severe malaria who received pre-referral artesunate and who were then referred to a health facility 1% CU5 who also received a detailed counter-referral form 1 case fatality rate of CU5 with severe	CU5	At baseline, CHWs reported identifying an average of 0.4 cases per month of uncomplicated or severe malaria among CU5 in preceding 12 months; at endline, the average was 3.5 cases per month. The year before the start of the Intervention, 18 deaths resulted from 224 cases of confirmed severe malaria among CU5 who presented at the 8 intervention health facilities (i.e., case fatality rate of 8% (18/224)). Post-intervention, 619 confirmed cases of severe malaria in CU5 were recorded at intervention health facilities and three deaths	32

				ļ	malaria who were referred		occurred (i.e., case fatality rate was 0.5% (3/619)).	
Preventive che	17							
Uganda	2014–2015	IPTc	Incidence rate ratio (IRR)	complemented by community and household	Routinely collected case- related health facility numbers of uncomplicated malaria Malaria prevalence by microscopy and PCR Parasite density Adverse events	Children 6 months to 15 years of age	Compared to same period during previous year, incidence of malaria in target populations was reduced (IRR 0.73 among CU5; IRR 0.70 among children aged 5–14 years). Among those not targeted for intervention, incidence between the 2 years increased (IRR 1.49). Cross-sectional surveys showed a prevalence of parasitaemia (microscopy or PCR) of 12.9–16.4% (95% CI 12.6–19.3) during the intervention, with the highest prevalence among children aged 5–14 years, but with a large increase 8 weeks after the final distribution.	33
Kenya	2015–2021	ІРТр	Multivariate logistic regression model	rHMIS (facility patient records / registries)	1# newborns with low birth weight (LBW) 1# stillbirths	Pregnant women	Compared with no dose, IPTp3+ was associated with 27% reduction in the risk of LBW. A dose- response association was observed with increasing doses of SP from the second trimester linked to increasing protection against LBW deliveries. IPTp3+ were also associated with a 21% reduction in stillbirths.	34
Mozambique	2010–2014	MDA (on top of Dx/Rx, IPTp, ITNs)	Synthetic control method (SCM)	rHMIS (IDSR)	Weekly # uncomplicated confirmed malaria cases 1 weekly malaria incidence rate (cases per 1000 population at risk)	CU5 and PO5	Between August 2015 and April 2017, a total of 13,322 (78%) cases of malaria were averted relative to the synthetic control. During the peak malaria seasons, the integrated intervention package resulted in an 87% reduction in Year 1, and 79% reduction in Year 2.	35
Zambia	2015–2016	MDA	Interrupted time series analysis	rHMIS (DHIS2)	Monthly confirmed malaria case incidence	Entire population	MDA health facility catchment areas (HFCAs) saw a 46% greater decrease in incidence at the time of intervention than comparison areas (IRR = 0.536); however, incidence increased toward the end of the season. No HFCAs saw a transmission interruption. Programmatic MDA, implemented during 1 year with imperfect coverage in low transmission areas with suboptimal vector control coverage, significantly reduced incidence; however, elimination will require additional tools.	36
Burkina Faso	2013–2016	SMC	Negative binomial regression model	rHMIS (DHIS2)	1# confirmed uncomplicated malaria cases 1# confirmed severe malaria cases	CU5	Two SMC rounds were associated with a reduction of uncomplicated malaria (IRR: 69%) and severe malaria (IRR = 73%) incidence among CU5.	37
Cameroon	2011–2021 (baseline / control);	SMC	Interrupted time series analysis in Bayesian	rHMIS (DHIS2)	1# confirmed uncomplicated malaria cases 1# confirmed severe malaria cases	CU5	SMC rounds were associated with a 10-15% reduction of uncomplicated malaria incidence and a 0-51% reduction of severe malaria incidence	38

	2016–2021 (SMC)		framework				among CU5. While there was an effect for all 5 study years on uncomplicated malaria, there was no effect on severe malaria for 2020 and 2021.	
Chad	2013–2018	SMC	Generalized additive models were fitted with separate cyclic cubic spline terms	rHMIS (DHIS2)	1# suspected outpatient cases 1# confirmed outpatient cases	CU5	Compared to no-intervention areas, SMC was associated with lower monthly counts of both suspected (IRR: 0.82) and confirmed malaria cases (IRR: 0.81), representing around 20% reduction in malaria incidence. Sensitivity analyses showed effect sizes of up to 28% after modifying model assumptions.	39
Ghana	2018–2019	SMC	Incidence rate ratios	rHMIS (DHIS2)	1# uncomplicated malaria cases 1# severe malaria 1# deaths	CU5	There was 17% and 67% reduction in malaria- related morbidity and mortality, respectively, in the SMC implementation year compared with the non- SMC baseline. This translated into nearly 9,300 episodes of all forms of malaria and nine malaria- attributable deaths averted by the intervention.	40
Guinea	2014–2021	SMC	Compound annual growth rate (CAGR)	rHMIS (DHIS2)	1# clinical cases 1Test positivity rate 1Incidence uncomplicated confirmed malaria 1Incidence severe confirmed malaria	CU5 and entire population	For CU5 and all age groups, CAGR of TPR, uncomplicated malaria incidence, severe malaria incidence and deaths was statistically lower in SMC compared with non-SMC districts. Even in an operational programming context, adding SMC to the malaria intervention package yields a positive epidemiological impact and results in a greater reduction in TPR, as well as the incidence of uncomplicated and severe malaria in CU5.	41
Mali	2015–2017	SMC	Negative binomial regression model	rHMIS (facility patients records / registries)	1# hospitalizations 1# deaths	CU5	Incidence rate of all cause hospital admissions was 19.60 per 1000 person-years in the intervention group compared to 33.45 per 1000 person-years in the control group, giving an IRR adjusted for age and gender of 0.61. All-cause mortality rate per 1000 person-years was 8.29 in control areas compared to 3.63 in intervention areas; age and gender adjusted mortality rate ratio = 0.44.	42
Multi-country (Burkina Faso, Chad, The Gambia, Guinea, Mali, Niger, and Nigeria)	2015–2016	SMC	Country-level case- control studies	rHMIS (DHIS2 in Burkina Faso and The Gambia; facility patient records / registries in Chad, Guinea, Mali, Niger, and Nigeria)	cases Incidence hospital admissions Incidence malaria- related deaths	CU5	SMC was associated with a protective effectiveness of 88.2% over 28 days in case- control studies. In Burkina Faso and The Gambia, SMC was associated with 42.4% and 56.6% reductions in the number of malaria deaths, respectively. Over 2015–16, the estimated reduction in confirmed malaria cases at outpatient clinics during the high transmission period in the seven countries ranged from 25.5% in Nigeria to 55.2% in The Gambia.	43

Surveillance								
Sri Lanka	2017–2019	Surveillance. Passive Case Detection (PCD) vs Reactive Case Detection (RACD) vs Proactive Case Detection (PACD)	Descriptive	rHMIS	<pre># blood smears examined microscopically Yield = # cases detected by method / # slides examined by method x 100,000</pre>	Entire population	In study period, total of 158 malaria cases were reported, with between 666,325 and 725,149 blood smears examined annually. PCD detected 95.6%, with a yield of 16.1 cases per 100,000 blood smears examined. RACD and PACD produced a yield of 11.2 and 0.3, respectively. Despite over half of the blood smears examined being obtained by screening spatial cohorts within RACD and PACD, the yield of both was zero over all three years.	44
Tanzania (mainland)	2015–2018	malaria reactive community- based testing and response	Logistic regression models	rHMIS (facility patient records / registries), complemented by household surveys	Incidence of confirmed malaria case incidence	Entire population	Overall, 85 rounds of 1,7-mRCTR conducted in intervention wards significantly reduced the odds of malaria infection by 66% beyond the effect of the standard programming. In villages conducting 1,7-mRCTR, the short-term case ratio decreased by over 15.7% compared to baseline.	45
Tanzania (mainland)	2017–2018	Surveillance. Single screening and treatment (SST) for pregnant women their first antenatal care (ANC) visit	Logistic regression models	rHMIS (facility patient records / registries)	¹ # asymptomatic infections among pregnant women detected by SST, who would have been missed in the absence of the policy	Pregnant women	Over study period, 1,845 women attended their first ANC visits; overall 15.0% of the women had positive RDTs. For every 100 pregnant women in the moderate/high and low transmission areas, SST identified 60 and 26 pregnant women, respectively, with asymptomatic infections that would have otherwise been missed.	46
Zambia	2016–2018	Surveillance. Presumptive treatment during reactive case	Generalized linear model with the HFCA as a random intercept and a negative binomial link due to overdispersion	rHMIS, complemented by endline cross- sectional survey	Suspected malaria case incidence (Confirmed malaria case incidence Serology and PCR-based malaria prevalence (endline cross-sectional population survey)	Entire population	No significant difference was identified from routine incidence and endline PCR prevalence data to determine intervention effectiveness. Comparing long-term serological markers, a 19% reduction in seropositivity for the rFDA intervention using a difference in differences approach incorporating serological positivity and age. Serological analyses provide compelling evidence that rFDA both has an impact on malaria transmission and is an appropriate end-game malaria elimination strategy.	47
Vector Control	1							
Côte d'Ivoire	2020–2021	IRS	Interrupted time series	rHMIS (DHIS2)	1# monthly RDT/microscopy- confirmed uncomplicated malaria cases	Entire population	An estimated 10,988 malaria cases were averted in IRS districts the year following the 2020 IRS campaign, representing a 15.9% reduction compared with if IRS had not been deployed. Case incidence in IRS districts dropped by 27.7% (IRR 0.723) the month after the campaign. In the 8□ months after the 2021 campaign, 14,170	48

wall	2010-2018	CM1	interrupted time	Inivits (DHIS2)	1# communed uncomplicated	Entire population	Compared to areas with no IKS, cumulative case	52
Mali Mali	2012–2016	IRS	Interrupted time series analysis	rHMIS (DHIS2)	1# RDT-confirmed uncomplicated malaria cases 1# confirmed uncomplicated	Entire population	During 2012–2014, rapid reductions in malaria incidence were observed 6 months post-IRS campaign, though most of the reduction in cases (70% of the total) was concentrated in the first 2 months after each campaign was completed. Compared to non-IRS districts, in which normal seasonal patterns of malaria incidence were observed, an estimated 286,745 total fewer cases of all-age malaria were observed in IRS districts. Suspension of IRS in Bla District after the 2014 campaign resulted in a 70% increase in under-5- years-old malaria incidence rates from 2014 to 2015. Compared to areas with no IRS, cumulative case	51
Madagascar	2016-2021	IRS	Multilevel negative-binomial generalized linear models	rHMIS	1# monthly RDT-confirmed uncomplicated malaria cases	Entire population	IRS reduced case incidence by an estimated 30.3% from 165.8 cases per 1,000 population under a counterfactual no IRS scenario to 114.3 over 12 months post-IRS campaign in nine districts. A third year of IRS reduced malaria cases 30.9% more than a first year (IRR=0.578) and 26.7% more than a second year (IRR=0.733). Coverage of 86%–90% was associated with a 19.7% reduction in incidence (IRR=0.803) compared with coverage $\leq 85\%$.	
Ghana	2014–2017	IRS	Descriptive	rHMIS (DHIS2)	Monthly incidence of RDT- confirmed malaria cases reported per 10,000 person- months	Entire population	estimated cases were averted, a 24.7% reduction, and incidence in IRS districts dropped by 37.9% (IRR 0.621), immediately after IRS. Case incidence in control districts did not change following IRS either year and the difference in incidence level change between IRS and control districts was significant both years. District-level analysis from Northern Region showed 39%, 26%, and 58% fewer confirmed malaria cases reported in IRS districts relative to non-IRS comparator districts for 2015, 2016, and 2017, respectively, translating into approximately 257,000 fewer cases than expected over three years. In Upper East Region, the effect on reported malaria cases of withdrawing IRS from the region was striking; after spray operations were suspended in 2015, incidence increased an average of 485% per district compared to 2014.	49

			series analysis		malaria cases (case incidence rates in health facility catchment areas (HFCAs)		incidence rates in IRS areas were reduced 16% in Ségou Region during the 6 months following the 2016 campaign and 31% in Mopti Region during the 6 months following the 2017 campaign— averting an estimated 22,000 cases. Across HFCAs where there was no IRS in either year, peak malaria case incidence rates fell by an average of 22% from 2016 to 2017. At HFCAs in Mopti where IRS was introduced in 2017, peak incidence fell by an average of 42% between these years. In Ségou Region, the opposite effect was observed, with peak incidence increasing by an average 106% in those HFCAs where IRS was withdrawn after 2016.	53
Uganda	2013–2017	IRS	Difference-in- difference analysis	rHMIS (facility patient records / registries)	1# newborns with low birth weight (LBW) 1# stillbirths	Pregnant women	Matrix completion method (MCM) estimates indicated that the campaign was associated with a 33% reduction in LBW incidence (IRR = 0.67. Difference in difference estimates were similar to MC-NNM (IRR = 0.69). IRS was not associated with substantial reductions in stillbirth incidence (MCM IRR = 0.94). HIV status modified the effects of IRS effect on LBW, whereby HIV- negative women appeared to benefit from IRS, but not HIV-positive women (IRR = 1.12).	
Uganda	2013–2020	IRS	Mixed effects negative binomial regression models with random intercepts for health facility	rHMIS (14 sentinel facilities)	Monthly count of laboratory- confirmed uncomplicated malaria cases	Entire population	Stopping IRS was associated with a 5-fold increase in malaria incidence within 10 months, but reinstating IRS was associated with an over 5-fold decrease within 8 months. In areas where IRS was initiated and sustained, malaria incidence dropped by 85% after year 4.	54
Uganda	2019–2020	IRS	Spatio-temporal models	rHMIS (74 sentinel facilities)	Monthly count of laboratory- confirmed uncomplicated malaria cases	Entire population	Model predicted 1,062,216 cases in IRS scenario and 7,235,816 cases in the modelled non-IRS scenario, suggesting ca. 6.2 million cases were averted across 24-month period of IRS implementation. The difference between the estimated counterfactual incidence and estimated incidence under IRS was greater in districts in the north, where incidence was higher.	55
Burundi	2011–2019	ITNs	Generalized additive models	rHMIS (DHIS2)	Malaria incidence (# uncomplicated malaria cases)	Entire population	A fast and steep decline of malaria incidence was noted during the first year after mass LLIN distribution. In years 2 and 3 after distribution, malaria cases started to rise again to levels higher than before the control intervention.	56

DRC	2018–2019	ITNs	t-tests	rHMIS (DHIS2)	1# uncomplicated malaria cases 1# anemia cases	Entire population, CU5, pregnant women	Monthly evolution of malaria cases in Lomami Province showed that after LLIN distribution in 2019, the number of malaria cases was lower than in 2018.	57
Kenya	2008–2015	ITNs	Survival analysis	rHMIS (facility patient records / registries)	Incidence of malaria hospitalization	CU5	Among CU5, ITN ownership ranged between 69% and 93% during the 2008–2015 period. Among CU5 who reported using an ITN the night prior to surveys, the incidence of malaria hospitalization per 1000 child-years was 2.91 compared to 4.37 among those who did not (HR \square = \square 0.67), i.e., a 33% decrease in the incidence of malaria hospitalization.	58
Kenya	2012–2015	ITNs	Spatio-temporal Bayesian model	rHMIS	# suspected clinical malaria cases positive by microscopy	Entire population	Among 25,779 clinical cases, 28.7 % were positive for <i>Plasmodium</i> infection. High risk of malaria was linked to patient age, community development level and presence of rice fields; peak of malaria prevalence was recorded close to rainy seasons. Model showed that low malaria prevalence recorded during late 2012 / early 2013 was associated with large-scale ITN distribution in the study area during mid-2012.	59 60
Rwanda	2019 (baseline); 2020–2022	ITNs (PBO vs standard vs no [new] ITNs)	Incidence rate ratio	rHMIS (DHIS2)	Monthly # positive uncomplicated and severe malaria cases Incidence of confirmed malaria cases	Entire population	No differences were observed in average ITN coverage between PBO and standard ITN districts. A significant reduction in malaria incidence was reported in both PBO and two (control) standard ITN districts 1 year after ITN distribution. However, 2 years after distribution, this reduction was sustained only in PBO districts.	
Uganda	2009–2018	Multiple Interventions. ITNs vs IRS + ITNs	Multinomial regression models	rHMIS (facility patient records / registries)	1# positive uncomplicated and severe malaria cases 1 Incidence of confirmed malaria cases		In 2 ITN-only sites, the proportion of malaria cases in CU5 decreased from 31 to 16% and 35 to 25%, respectively. In two sites receiving ITNs + IRS, these proportions decreased from 58 to 30% and 64 to 47%, respectively. Similarly, in ITN-only sites, the proportion of malaria cases \Box people > \Box 15 years increased from 40 to 61% and 29 to 39%, respectively. In sites receiving ITNs + IRS, these proportions increased from 19 to 44% and 18 to 31%, respectively. Findings show a shift in burden of malaria from younger to older individuals after implementation of successful control interventions.	61
Uganda	2011–2016	Multiple Interventions. ITNs vs IRS +	Autoregressive integrated moving average (ARIMA)	rHMIS (facility patient records / registries),	1 Test positivity rate (TRP) 1 Incidence of confirmed uncomplicated malaria cases 1	Children 6 months to 10 yrs of age	In Walukuba, universal ITN distribution was associated with no change in malaria incidence (0.39 episodes PPY pre-intervention versus 0.20	62

		ITNs	models		Human biting rate (HBR)		post-intervention; adjusted rate ratio $[aRR] = 1.02$)	
		TINS	models	complemented by household and community surveys	Human blung rate (HBR)		and nonsignificant reductions in TPR (26.5% pre- intervention versus 26.2% post-intervention; aRR = 0.70) and HBR (1.07 mosquitoes per house-night preintervention versus 0.71 post-intervention; aRR	
							= 0.41). In Kihihi, over the 21-months post-ITN period, universal ITN distribution was associated with a reduction in malaria incidence (1.77 pre- intervention versus 1.89 post-intervention; aRR = 0.65), but no significant change in the TPR (49.3% pre-intervention versus 45.9% post intervention; aRR = 0.83) or HBR (4.06 pre-intervention versus 2.44 post-intervention; aRR = 0.71). In Nagongera, over the 12-month post-intervention period, universal ITN distribution was associated with a reduction in the TPR (45.3% pre-intervention versus 36.5% post-intervention; aRR = 0.82), but no significant change in malaria incidence (2.82 pre-intervention versus 3.28 post-intervention; aRR = 1.10) or HBR (41.04 pre-intervention versus 20.15 postintervention; aRR = 0.87). Addition of 3 rounds of IRS at ~6-months intervals in Nagongera was followed by clear decreases in	
							all outcomes: incidence of malaria (3.25 pre- intervention versus 0.63 post-intervention; $aRR = 0.13$), TPR (37.8% pre-intervention versus 15.0% post-intervention; $aRR = 0.54$) and HBR (18.71 pre-intervention versus 3.23 postintervention; $aRR = 0.29$).	
Uganda	2012–2019	Multiple Interventions. IRS vs ITNs vs IRS + ITNs	Interrupted time series analysis	rHMIS (facility patient records / registries)	Malaria TPR among febrile admissions aged 1 month to 14 years	Children 1 month to 14 years of age	Comparing intervention intervals to baseline TPR (60.3%), TPR was significantly higher during first ITN period (67.3%), and significantly lower during period when IRS was implemented using bendiocarb (43.5%) and actellic (31.3%). ITSA confirmed significant decrease in the level and trend of TPR during the IRS with the second ITN period compared to the pre-IRS (baseline $\Box + \Box$ first ITN) period.	63
Zambia	2000–2016	Multiple Interventions. IRS, ITNs, climate	Linear and mixed regression models	rHMIS data and data from nationally- representative surveys	Incidence of confirmed uncomplicated malaria cases	CU5 and PO5 (all ages)	Climate variables influenced malaria substantially more than ITNs and IRS. Climate parameters are negatively impacting malaria control efforts by exacerbating the transmission conditions via more conducive temperature and rainfall environments,	64

							which in turn are exacerbated by cultural and	
							socioeconomic exposure mechanisms	
Integrated Pac					-	- 1		
Burkina Faso	2015–2017	Community- based health promotion, results-based financing, and IPTp	Bayesian hierarchical spatio- temporal Poisson models	rHMIS (sentinel facility patient records / registries)	ı# malaria cases in pregnant women	Pregnant women	Overall annual incidence increased between 2015 and 2017. Results-based financing, health promotion and IPTp-SP significantly reduced incidence of malaria in pregnant women (by 17.7%). Despite intensification of control efforts, MiP remains high at the community-scale.	65
Ethiopia	2010–2014	Diagnosis, treatment, ITNs	Bayesian generalized Poisson spatiotemporal model.	rHMIS (DHIS2)	Incidence of confirmed uncomplicated malaria cases	Entire population (CU5, C5-14, PO14)	Risk of malaria incidence decreased by 24% per 100 m increase in altitude. Monthly minimum temperature decreased risk of malaria by 2.2% per 1°C increment. Risk of malaria transmission was increased by 8% per 100 mm rise in the total monthly rainfall of districts. ITN coverage significantly reduced malaria risk by a factor of 0.8955.	66
Mali	2014–2015	IRS vs SMC vs IRS + SMC	Negative binomial regression model	rHMIS (DHIS2)	Monthly incidence of confirmed uncomplicated malaria cases	CU5 and entire population	Cumulative peak-transmission all-ages incidence was lower in each of the intervention districts compared to control districts: 16% lower for SMC; 28% lower for IRS; and 39% lower for SMC + IRS district. Same trends were observed for CU5: incidence was 15% lower with SMC, 48% lower with IRS, and 53% lower with SMC + IRS. SMC- only intervention had a more moderate effect on incidence reduction initially, which increased over time. IRS-only intervention had a rapid, comparatively large impact initially that waned over time. The impact of the combined interventions was both rapid and longer-lasting.	67
Papa New Guinea	2010–2014	ACTs and ITNs	Negative binomial regression models	rHMIS (sentinel facility patient records / registries)	Incidence of confirmed uncomplicated malaria cases	Entire population	Malaria incidence initially ranged from 20 to 115/1000 population; subsequent trends varied by site. Overall, ITN distributions had a cumulative effect, reducing malaria case numbers with each round (IRR ranging from 0.12 to 0.53 in five sites). No significant reduction was associated with ACT introduction. <i>P. falciparum</i> remained the dominant parasite in all sites; resurgence occurred in one site in which a shift to early and outdoor biting of anophelines had previously been documented.	68
Tanzania (Zanzibar)	2000–2015	ACTs, IRS, ITNs	Interrupted time series analysis	rHMIS	Monthly incidence of confirmed uncomplicated malaria cases	Entire population	After accounting for climate, seasonality, diagnostic testing rates, and outpatient attendance, average monthly incidence of confirmed malaria	69

							showed no trend over the pre-intervention 2000– 2003 period (IRR 0.998). During the ACT-only 2003–2005 period, the average monthly malaria incidence rate declined compared to the pre- intervention period, showing an overall declining trend (IRR 0.984). There was no intercept change at the start of the ACT-only period (IRR 1.081), but a drop in intercept was identified at the start of the ACT plus vector control period (IRR 0.683). During the ACT plus vector control 2006–2015 period, the rate of decline in average monthly malaria incidence slowed compared to the ACT- only period, but the incidence rate continued to show an overall slight declining trend during 2006–2015 (IRR 0.993).	
Uganda	2013–2016	Case management and vector control	Bayesian hierarchical spatio- temporal Poisson models	rHMIS (DHIS2)	Incidence of confirmed uncomplicated malaria cases	CU5 and PO5 (all ages)	Temporal variation in incidence was similar in both age groups and depicted a steady decline up to February 2014, followed by an increase from March 2015 onwards. Trends were characterized by strong biannual seasonal pattern with two transmission seasons. Average monthly incidence in CU5 declined from 74.7 cases in 2013 to 49.4 per 1,000 in 2015, followed by an increase in 2016 of up to 51.3 cases. In PO5, a decline in incidence from 2013 to 2015 was followed by an increase in 2016. A 100% increase in ITN coverage was associated with a decline in incidence by 44% in CU5; similarly, a 100% increase in ACT coverage reduced incidence by 28% and 25% in CU5 and PO5, respectively. Space–time patterns of malaria incidence in CU5 are similar to those of parasitaemia risk predicted from the malaria indicator survey of 2014–15. Decline in malaria incidence shows effectiveness of case management with ACT and vector-control.	70

Abbreviations: ABER, annual blood examination rate; ACT, artemisinin-combination therapies; aRR, adjusted rate ratio; C5–14, children between 5 and 14 years of age;

558 559 CHW, community health worker; CU5, children under five years of age; G6PD, glucose-6-phosphate dehydrogenase; HBR, human biting rate; HMIS, health management

560 information system; IPTp, intermittent preventive therapy; IRR, incidence rate ratio; IRS, indoor residual spraying of households with insecticide; ITN, insecticide-treated

561 nets; ITSA, interrupted time series analysis; MBER, monthly blood examination rate; MDa, mass drug administration; MiP, malaria in pregnancy; MPI, monthly parasite

- medRxiv preprint doi: https://doi.org/10.1101/2024.12.01.24318260; this version posted December 2, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
- index; PO5, people over five years of age; PO14, people over 14 years of age; rACD, reactive case detection; RDT, rapid diagnostic test; rHMIS, routine HMIS; SMC,
- seasonal malaria chemoprevention; SST, single screening and treatment; TPR, test positivity rate.

564

565 Table 2. Qualitative comparison of different analytical approaches conducted to assess interventions' effectiveness using routine HMIS and surveillance data, in

terms of technical and other resource requirements, as well as sustainability.

	Robustness	Reproducibility	Skills Requirement	Software Requirement	Computing Requirement	Capacity Transferability	Sustainability
Modelling							
Classic statistical regression (linear models, generalized linear models, mixed models)	High	High	Moderate	Requiring statistical software such as R language or Stata	Low	Difficult	Low
Interrupted time series models	High	High	Advance	Requiring statistical software such as R language or Stata	Low	Difficult	Low
Bayesian spatio-temporal models	High	High	Advance	Statistical software (e.g., R or Stata) and GIS software (e.g., QGIS or ArcGIS)	High	Difficult	Low
Non-modelling							
Descriptive approach	Low	Low	Low	Office Suites (MS Office, LiberoOffice)	Low	Easy	High
Comparison of incidence trends	Moderate	Moderate	Moderate	Office Suites (MS Office, LiberoOffice)	Low	Easy	High
Rate ratios	Moderate	Moderate	Low	Office Suites (MS Office, LiberoOffice)	Low	Easy	High
Difference-in-difference analysis	High	High	Moderate	Statistical software (e.g., R or Stata)	Low	Moderate	High
Compound annual growth rate	Moderate	Moderate	Low	Office Suites (MS Office, LiberoOffice)	Low	Easy	High

567

568

- medRxiv preprint doi: https://doi.org/10.1101/2024.12.01.24318260; this version posted December 2, 2024. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
- Robustness (Low, Moderate, High); Reproducibility (Low, Moderate, High); Skills set required (Basic, Moderate, Advanced); Software (Descriptive); Computing requirement
 (Low, Moderate, High); Data source (Descriptive); Capacity transferability (internal) (Easy, Moderate, Difficult); Sustainability (Low, Moderate, High).