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Graphical Abstract 

Abstract

Background & Aims:

Metabolic dysfunction-associated steatotic liver disease (MASLD), formerly known as NAFLD, is
a leading cause of chronic liver disease worldwide. Current diagnostic methods, including liver
biopsies,  are  invasive  and  have  significant  limitations,  emphasizing  the  need  for  non-invasive
alternatives. This study aimed to evaluate extracellular vesicles (EV) as biomarkers for diagnosing
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and  staging  steatosis  in  MASLD  patients,  utilizing  machine  learning  (ML)  and  explainable
artificial intelligence (XAI).

Methods:
This  prospective,  single-center  cohort  study was conducted  at  the GI-Liver  Unit,  Hippocration
General Hospital, Athens. It included 76 MASLD patients with ultrasound-confirmed steatosis and
at least one cardiometabolic risk factor. Patients underwent transient elastography for steatosis and
fibrosis staging and blood sampling for EV analysis using nanoparticle tracking. Twenty machine
learning models were developed. Six to distinguish non-steatosis (S0) from steatosis (S1-S3), and
fourteen  to  identify  severe  steatosis  (S3).  Models  incorporated  EV  measurements  (size  and
concentration), anthropomorphic and clinical features, with performance evaluated using AUROC
and SHAP-based interpretability methods.

Results:
The CB-C1a model achieved, on average on 10 random splits of 5-fold cross validation (5CV) of
the train set, an AUROC of 0.71/0.86 (train/test) for distinguishing S0 from S1-S3 steatosis stages,
relying on EV metrics alone. The CB-C2h-21 model identified severe steatosis (S3), on average on
10 random splits of 3-fold cross validation (3CV) of the train set, with an AUROC of 0.81/1.00
(train/test),  demonstrating superior performance when combining EV with anthropomorphic and
clinical features such as diabetes and advanced fibrosis. Key EV features, including mean size and
concentration, were identified as important predictors. SHAP analysis highlighted complex non-
linear relationships between features and steatosis staging.

Conclusions:
EV  metrics  are  promising  non-invasive  biomarkers  for  diagnosing  and  staging  MASLD.  The
integration of ML-enhanced EV analysis with clinical features offers a scalable, patient-friendly
alternative  to  invasive  liver  biopsies,  advancing  precision  in  MASLD  management.  Further
research should refine these methods for broader clinical application.

Keywords: Metabolic  dysfunction-associated  steatotic  liver  disease  (MASLD),  extracellular
vesicles (EVs), non-invasive biomarkers, machine learning (ML), explainable artificial intelligence
(XAI), steatosis staging, transient elastography, chronic liver disease, cardiometabolic risk factors,
SHAP  analysis,  diagnostic  precision,  advanced  fibrosis,  severe  steatosis  (S3),  liver  biopsy
alternatives, hepatology diagnostics.

1. Introduction

MASLD is  one  of  the  most  frequently  diagnosed  and continuously  increasing  chronic  liver
diseases, particularly in the Western world [1]. It is characterized by significant morbidity and
mortality,  especially  in  advanced  stages,  and  is  currently  the  leading  cause  of  liver
transplantation  in  the  US  [2].  MASLD  includes  hepatic  steatosis  which  may  progress  to
metabolic dysfunction-associated steatohepatitis (MASH), fibrosis, cirrhosis, and hepatocellular
carcinoma. The main challenges in everyday clinical practice include firstly the diagnosis of
MASLD, secondly the diagnosis of MASH and the determination of the steatosis and fibrosis
extent [3].  Although the extend of liver fibrosis is the strongest predictor of end stage liver
disease,  the  presence  and  the  degree  of  steatosis  are  also  important  factors  that  should  be
accessed  since  they  are  closely  implicated  in  the  development  of  hepatic  and  extrahepatic
outcomes.  More particularly the two most common causes of mortality  in those patients  are
cardiovascular  outcomes  and  extrahepatic  malignancy,  while  the  dissemination  of  different
primary cancer in hepatic parenchyma is closely correlated with the degree of steatosis (HR of
1.34) based on EASL–EASD–EASO Clinical Practice Guidelines, whereas the least common
cause  is  interestingly  due  liver-related  outcomes  [4].  Interestingly,  MASLD patients  have  a
higher risk of developing extrahepatic malignancies, than obese patients, implying its significant
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implication in obesity-mediated cancers [4, 5]. 

Liver  ultrasound  is  the  most  commonly  used  diagnostic  method,  especially  for  cirrhosis
identification.  However,  it  is  an  operator-dependent  diagnostic  method  and  it  is  considered
insufficient for the evaluation of low-grade steatosis or fibrosis [6]. Liver biopsy remains the
gold standard for the definitive diagnosis of MASH, and fibrosis evaluation, even at the early
disease stages. However, its invasive nature, high cost, and variability in diagnostic accuracy
limit its widespread use [7, 8]. Liver stiffness measurement (LSM) with transient elastography
(TE)  and  attenuation  parameters  are  reliable  approaches  for  identifying  liver  fibrosis  and
steatosis  respectively.  However,  there  is  an  emerging  need  of  developing  new  and  easily-
performed noninvasive tests (NITs) or combinations of tests in order to assess liver or non-liver
prognosis in MASLD patients. [9].

In this context, extracellular vesicles (EVs) have emerged as probable diagnostic biomarkers and
could be an interesting alternative [10, 11]. EV’s are double-membraned nanoparticles, secreted
by  multiple  cells,  that  carry  several  molecules  such  as  DNA,  RNA,  proteins,  lipids,  and
autophagosomes [10]. EVs significantly contribute to intercellular communication by altering
the recipient cells' functional and biological status [11]. Lipotoxic hepatocytes are a major source
of  EVs  in  the  systemic  circulation.  During  lipotoxicity,  increased  lipid  storage  in  liver
parenchyma induces the release of EVs, which play a pivotal role in MASLD progression by
promoting  inflammatory  reactions,  recruiting  macrophages  and  monocytes,  and  activating
hepatic-stellate and liver sinusoidal endothelial cells, enhancing fibrosis and angiogenesis [10-
13]. It is important to underline the crucial role of EVs within the framework of steatotic liver
that can induce the development of extrahepatic malignancies and secondary hepatic lesions. 
Alterations in EV quantity and quality are closely implicated in MASLD pathogenesis and could
facilitate diagnosis, patient stratification, and prognosis [14]. Moreover, it has been demonstrated
in animal models (murine) that the EV levels are closely related to the EV circulating levels,
especially in cases of MASH compared to healthy controls that have been strongly related to
increased  angiogenesis  and advanced fibrosis  [14,  15].  Additionally,  it  was  demonstrated  in
another study that EVs were increased in pre- cirrhotic patients and were even more abundant in
cirrhotic patients, in comparison to patients with advanced MASH and healthy individuals [16].
It has been also demonstrated in the same study by Povero et al. [16], that liver constitutes a
significant source of EV in blood circulation. On the top of that, another study has reported a
depletion  of  small-sized  EVs  after  bariatric  surgery  and  the  subsequent  weight  loss  [17].
Moreover, it  was shown that plasma EVs especially the hepatocyte-derived ones, are notably
increased in the case of MASLD patients,  in comparison to post-weight loss patients,  which
implies the potential use of circulating EVs of hepatocyte origin as a diagnostic and prognostic
biomarker  in  a  point-of  case  manner  [17].  The  patient’s  response  to  surgical  intervention
(bariatric  surgery)  or  other  lifestyle  modifications,  hints  their  potential  utilization  also  as
monitoring tools for treatment response.

Additionally, several conditions can increase their levels and size such as in cirrhosis and YPE 2
Diabetes Mellitus (T2DM). More particularly,  T2DM can alter  the levels and the size of the
detected plasma EVs [18]. More specifically, it was demonstrated in several studies the presence
of higher levels of microvesicles in patients with T2DM, compared to euglycemic individuals
[19]. A meta-analysis concluded that the levels of circulating large EVs (microvesicles) were
indeed  higher  in  T2DM  patients,  especially  the  ones  that  were  derived  from  monocytes,
endothelial cells, and platelets, in contrast to the levels that originated by leucocytes, which have
been proven no statistically elevated and inversely correlated with the grade of fibrotic injury
[20]. On top of that, there is a close relation between MASLD and LSM progression (≥20%
increase  in  LSM values)  in  T2DM,  which  constitutes  a  statistically  significant  independent
predictor for LSM increase based on the recent study by Huang, Daniel Q. et al. [21].
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This  study aimed on the  assessment  of  the  severity  of  steatosis,  as  well  as  the  presence  of
steatosis,  in  MASLD patients  using  a  combination  of  two  parameters:  circulating  levels  of
plasma EV and the ultrasound attenuation parameter (UAP) measured by TE [22, 23].

 Additionally, we employed data science (DS), ML [24] and XAI [25] methods to understand the
non-linear relationships between features and predict severe and presence of steatosis in MASLD
patients.

  2 Materials and Methods
  2.1 Patients
This  study  is  a  prospective  single-center  study  GI-Liver  Unit  of  the  Second  Academic
Department of Internal Medicine Hippocration General Hospital University of Athens), which is
composed  of  76  consecutive  patients  with  ultrasound  findings  of  steatosis  and  at  least  one
cardiometabolic  risk  factor  as  it  was  suggested  on  multi-society  Delphi  consensus  on  new
nomenclature and no other causes of steatosis. More particularly, the cardiometabolic risk factors
included, a BMI≥ 25 kg/m2 or increased waist circumference for men (>80cm) and women (>94
cm), low HDL levels for males <40mg/dl and for females <50mg/dl, high triglycerides (>150
mg/dl) or the intake of treatment for dyslipidemia, hypertension (≥130/80 mmHg) or the intake
of antihypertensive drug regime, as well as the presence high levels of fasting glucose, or high
2h-postprandial  glucose  levels  or  diagnosed diabetes  mellitus  or  high  levels  of  glycosylated
hemoglobin or the intake of anti-diabetic treatment [26]. Patients with alcohol abuse (≥2 drinks
for females  and ≥ 3 drinks for males  per day,  with 1 drink being equal to  10g of alcohol),
inflammatory  or  autoimmune  diseases,  other  chronic  viral  or  metabolic  liver  diseases,
hepatocellular cancer, or non-hepatic malignancy have been excluded [26]. After acquiring the
informed consent of all the participants in this study, we collected demographic data, patient’s
history  and  routine  blood  tests  as  well  as  we  performed  transient  elastography  (TE)  by  an
experienced operator.  The evaluation was made via the “iLivTouch” FT100 device by Wuxi
Hisky Medical Technologies Co., Ltd. (Hisky Med), China. This device performs LSM using
TE based on controlled low frequency shear wave synchronously with UAP using one universal
probe applicable to patients of different body sizes [24, 25]. Steatosis and fibrosis were assessed
with the evaluation of the UAP and the LSM, respectively, after the performance of ≥10 valid
measurements, with a ratio between the successful to the total number of measurements ≥ 60%,
as well as the ratio between the interquartile range (IQR) to the LSM being ≤ 30% based on the
guidelines of World Federation for Ultrasound in Medicine and Biology (WFUMB) [27]. The
thresholds  for  steatosis  based  on  the  estimation  of  UAP  value  were:  ≥S3  296dB/dl,  ≥S2
269dB/dl, and ≥S1 244dB/dl [10]. However, we further categorized the patients based on the
presence of severe steatosis (≥S3 296dB/dl) , S0-S2 (< 296 dB/dl) and S0 < 244 dB/dl [23]. In
Table 1 we provide patient characteristics and in Table 2 the percentages of T2DM and advanced
fibrosis in different stages of steatosis. 

2.2 Pre-analytical protocol
The protocol of pre-analysis was the same for each blood sample, including the time of collection,
the blood processing interval (BPI), the handling, and the processing to minimize the variability of
EV analysis. We chose the collection tubes with citrate for EV analysis, while the collection of the
samples followed the Declaration of Helsinki (DoH) after the patients had given written informed
consent. Blood drawing was performed at the same time of day, while the patients were fasting
before the procedure. Blood samples were collected in a tube with Citrate (Vacuette sodium citrate
3.2%,  volume  3,5  mL,  Greiner  Bio One)  [27],  the  time  interval  for  blood  drawing  was‐
approximately five minutes and the tube was turned vertically and back 10 times exactly after their
collection. All the samples were transported to the lab after the collection in special conditions to
avoid deterioration with a BPI of 1 hour. These samples were initially centrifuged for 20 min at
3000 x g at room temperature to deplete cell debris and the collected supernatant was immediately
stored at −80°C, until the following processing, including differential centrifugation [28].
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2.3 Nanoparticle Tracking Analysis (NTA)
Nanoparticle Tracking Analysis (NTA) was conducted using the NanoSight NS300 instrument
(Malvern Instruments, Amesbury, UK). Plasma samples were diluted in particle-free PBS (0.02
μm  filtered,  Cytiva  Whatman,  UK)  for  NTA  by  which  we  acquired  data  about  their  total
concentration  levels,  size (between 50-1000nm), and distribution  in the sample [29].  All  the
measurements  were  performed  under  constant  flow  and  temperature,  while  autofocus  was
adjusted to ensure clarity by avoiding indistinct particles. The type of camera and laser were
sCMOS and green, respectively.  More particularly,  five 30-second videos were recorded per
measurement under the following conditions: cell temperature at 25°C and syringe speed at 100
μL/second. During the measurements, there was no evidence of vibration, which can alter the
sizing of particles. Videos were analyzed using NanoSight NTA 3.4 build 3.4.4 software
(Malvern, 2020) in script control mode, comprising 1,500 frames per sample. Each sample was
measured five times, and the size distribution data were averaged. Additionally, we evaluated
the possible inter-day variability of the method, by performing NTA for each sample on different
days, which did not show any significant difference between the values. Lastly, we obtained data
regarding the mean size of vesicles for each patient, the amount of vesicles sized between 50 to
150nm or >150nm and the sum of vesicles between 50 to 1000nm.

2.4 Data Science
Based on the bibliographic data regarding the alterations in EV quantity, size, and quality in
MASLD pathogenesis, we utilized ML algorithms and feature engineering (FE) [30], techniques
to understand non-linear relationships between features. FE boosts ML performance by creating
more features, and feature selection methods identify the most important ones [30]. We applied
the  CatBoost  algorithm  [31-33],  FE  techniques,  XAI  methods,  and  feature  selection  (FS)
methodologies [30, 34-37] to create a data science pipeline for predicting non-severe or severe
steatosis in MASLD patients in two main cases: Case 1 (C1) and Case 2 (C2), respectively. More
specifically, we primarily used UAP cut-off values to label patients between severe and non-
severe  steatosis  and quantified  their  circulating  plasma  EV levels  to  show associations  and
potential diagnostic performance for C1: S0, S1, S2 vs. S3 and for C2: S0 vs. S1, S2, S3.

We used the following EV features: ‘mean’, ‘50-150nm’, ‘>150’, and ‘Sum’, anthropomorphic
ones: ‘Sex’, ‘Age’, ‘Height', 'Weight', ‘BMI’ and clinical: advanced fibrosis ‘Adv_Fibrosis’, and
‘Diabetes’.  Concretely, the ‘mean’ represents the mean size of vesicles for each patient,  ‘50-
150nm’ the amount of vesicles sized between 50 to 150nm , “>150” the vesicles sized over
150nm and the “sum” that represents the sum of vesicles between 50 to 1000nm. We tuned
twenty CatBoost ML models. Additionally, we used XAI and FS [34-37] to identify the most
important features. For tuning and to understand the robustness of our models, we used non-
stratified k-fold cross validation 5CV, 3CV for C1 and C2 respectively, and a test-set to measure
the performance of our ML models. Moreover, since the dataset’s volume was relatively low we
used  ten  times  k-fold  cross-validation,  splitting  with  different  random  seeds,  to  eliminate
possible randomness splitting effect [30].

2.4.1 Cases Definition: We investigated the role of EV as biomarkers in two cases. Namely, in
C1 we defined the binary classification problem of distinguishing non-steatosis vs steatosis S0
vs. S1, S2, S3. In C2 we defined the binary classification problem of identifying an individual’s
severe steatosis stage S0, S1, S2 vs. S3.

C1: We created six sub-cases:

• C1a: Using EV features (mean, 50-150nm, >150, Sum).

• C1b: Applying FE on C1a.

• C1c: Combining EV with anthropomorphic features (Sex, Age, Height, Weight, BMI).
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• C1d: Applying FE on C1c.

• C1e: Combining EV features with the presence of advanced fibrosis and diabetes.

• C1f: Applying FE on C1e.

C2: We created eight sub-cases: 

• C2a: Using only EV features.

• C2b: Applying FE on C2a.

• C2c: Combining EV features with anthropomorphic features.

• C2d: Applying FE on C2c.

• C2e: Combining EV features with the presence of advanced fibrosis and diabetes.

• C2f: Applying FE on C2e.

• C2g: Combining EV features with anthropomorphic features and the presence of 
advanced fibrosis and diabetes

C2h: Applying FE on C2g.

2.4.2 Data Preprocessing:  For the C2 we used the cut-off UAP value of >= 296 to label the
‘target’ feature, which was severe steatosis (S3) and not severe steatosis (S0, S1, S2). For the C1
we used the cut-off UAP value of >= 244a. We dropped data instances with null values and no
rnomalization/scaling applied.

2.4.3 Datasets Creation: For both cases, we split the initial dataset of 74 or 72 data instances,
depending on the subcase, to 80% as train and 20% as a test set with a fixed random seed for
reproducibility. The percentage of the ‘target’ was similar in the train and test sets in both cases
so that the ML models we tuned would be fair. A patient who belonged to the train datasets did
not belong to the test sets so there would be no data/information leakage [38]. Furthermore, our
approach to random split to train and test set is aligned with the guidelines from the DELFI
TRIPOD-AI statement [39] so that our ML models would be applied to the examination center
where the data have been retrieved from. The feature selection methodology [6a-9a] uses both
datasets but the inductive learning [40] approach of it makes sure there is no information/data
leakage [38].  We had two approaches for the examination of the role of EV regarding their
predictability and associativity, due to the following reasons: (i) lack of bibliographic data about
the assessment of EV role and their predictability on MASLD using XAI and ML models and (ii)
the relatively low volume of data instances of the dataset (number of patients). In FE sub-cases
we divided the EVs with 10^9, we raised the numeric features to 11th power and we calculated
their square root, and finally we calculated the pair-wise products for all features.

2.4.4 Feature selection methodology: Applying the FE methodology [34-37] on the sub-cases
C2d, C2f and C2h, lead us to five, eleven and twenty-one respectively, most important features.
Analyzing these features using SHAP [41] and CatBoost’s feature importance, provided us with
insights regarding the features in C2 cases.

2.4.5 Models Evaluation: All ML models tuned using k-fold cross validation (kCV) on the train
dataset for each case, and have been applied to the corresponding per case test set for validation.
We  used  5  and  3  folds  for  the  C1  and  C2  respectively.  Each  model  could  correspond  to
potentially a new method for classifying in an automatic way individuals that belong to each of
the classes for each case. Since the data volume was relatively small, after the tuning we applied
ten splits with different random seeds for the kCV to eliminate the impact of randomness. We
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tuned the iterators, the learning rate, the depth and the weights from CatBoost. For all the other
hyperparameters we used the default values.

   2.4.6 Algorithm:
   A deterministic algorithm to create two predictive ML models for the cases C1 and C2, and to      
identify   the most important features and their associations.
   - Input: VE, anthropomorphic, clinical features and the UPA values of the 76 patients described in 2.1.
   - Output: a. The best predictive model for the case C1 and the best one for the case C2.

      b. The most important features for each model and their associations to the outcome

1. Initialize Data and Libraries:

• Import necessary libraries (CatBoost, SHAP, etc.).
• Load the dataset.

2. Data Preprocessing:

• Drop data instances with null values.
• Label the target feature for C1 (S0 vs. S1, S2, S3) and C2 (S0, S1, S2 vs. 

S3) using the cut-off UAP values (≥ 244a for C1 and ≥ 296 for C2).
3. Dataset Splitting:

• Split the dataset into train (80%) and test (20%) sets using a fixed random seed 
to ensure reproducibility.

• Ensure similar percentages of ‘target’ in both train and test sets.
4. Features’ Combinations:

For each case (C1 and C2), create at least four sub-cases that correspond to :
• Use only EV features.
• Combine EV with anthropomorphic features.
• Combine EV with clinical features.
• Combine EV with anthropomorphic and clinical features.

5. Feature Engineering

• For numeric features:
• Divide by 10^9.
• Raise to the 11th power.
• Calculate square roots.

• For all features compute the pair-wise products
6. Model Training:

• Use CatBoost model for training.
• Perform k-fold cross-validation (kCV) for tuning hyperparameters 

(iterators, learning rate, depth, weights).
7. Model Evaluation:

• Evaluate the ML models validating them on the test set.
8. Feature Selection Methodology:

• Apply FS
9. Identify the best model for each case:

• From the statistics on the kCV and the performance on the test set identify the
best model for each case.

10. Identification of Important Features:
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• After feature selection, identify the most important features using SHAP.

11. Identify the most important combination of family of features:
Conclude about the contribution of each one of the families of features (EV, anthropomorphic, clinical) 
for C1 and C2

3 Results

3.1 C1

In C1, the training set consisted of 59 individuals,  and the test  set included 15. Six CatBoost
models were developed, tuning hyperparameters such as iterations, learning rate, depth, and class
weights. Performance metrics, including sensitivity,  specificity,  ROC-AUC, and F1 scores, are
summarized  in  Table  3.  The  CB-C1a  model  emerged  as  the  best-performing  configuration,
achieving an AUROC of 0.70 (±0.15) and an F1 score of 0.73 (±0.14). The model demonstrated
balanced performance with a sensitivity of 0.66 (±0.17) and specificity of 0.74 (±0.14).

The addition of anthropomorphic and clinical features, such as advanced fibrosis and diabetes, or
the application of FE, did not improve the model’s performance. In the S1- S3 group, advanced
fibrosis was present in only 6/53 cases, diabetes in 13/53, and both conditions in 5/53 (Table 2),
supporting the sufficiency of EV metrics for distinguishing S0 from steatosis stages. Feature
importance and SHAP analyses, presented in Figure 1,  respectively,  identified "Mean," "50-
150nm," ">150nm," and "Sum" as the most influential predictors, with "Mean" ranking highest.
The  SHAP  scatter  plots  (Figure  3).  highlighted  the  non-linear  relationships  between  these
features and model predictions, showcasing the necessity of advanced ML techniques to capture
such complexity. 

3.2 Case 2: S0, S1, S2 vs. S3 Steatosis
In Case 2, the training set included 58 individuals, and the test set consisted of 13. Fourteen
CatBoost models were tuned, and their results are presented in Table 4. The CB-C2h-21 model
demonstrated superior performance, with an AUROC of 0.89 (±0.03) on the training set (3CV)
and a perfect AUROC of 1.00 on the test set. Sensitivity and specificity values of 0.92 (±0.12)
and  0.87  (±0.10),  respectively,  further  underscored  its  reliability  in  distinguishing  mild-to-
moderate steatosis (S0-S2) from severe steatosis (S3).

In contrast to C1, the inclusion of anthropomorphic and clinical features, such as advanced
fibrosis and diabetes, significantly enhanced model performance, increasing the AUROC from
0.81 to 0.89. The S3 group had a higher prevalence of advanced fibrosis (3/19), diabetes (9/19),
and  their  co-occurrence  (3/19)  (Table 2),  highlighting  their  relevance  in  identifying  severe
steatosis. Feature importance and SHAP analyses, shown in Figure 2 and Figure 4, revealed that
EV features remained imporant predictors.  Additionally,  engineered features such as "Mean ×
Weight" and "Sum × Age" contributed significantly, indicating non-linear relationships between
predictors and outcomes.

The consistent significance of EV metrics across both cases underscores their diagnostic value.
In  C1,  features  like  "Mean"  and  "50-150nm"  were  the  strongest  predictors,  while  in  C2,
engineered features such as "Mean × Weight" and "Sum_sqrt" played crucial roles. SHAP
scatter  plots  in  both  cases  (Figures  3  and  4)  illustrated  the  absence  of  linear  correlations,
emphasizing the necessity of non-linear ML models to capture intricate interactions. 
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The XAI analysis provided interpretable insights into feature contributions. Figure 1 and Figure
3 highlighted "Mean" and "50-150nm" as the top predictors in C1, while Figure 2 and Figure 4
identified "Mean × Weight" and "Weight^7" as the most critical features in C2. These findings
reinforce the physiological relevance of EV metrics as biomarkers and their potential in MASLD
diagnosis.

This study demonstrated the crucial  role of EV metrics in diagnosing and staging steatosis in
MASLD. The CB-C1a model, which relied solely on EV, was sufficient for distinguishing S0
from S1, S2, and S3 stages in C1. Conversely, the CB-C2h-21 model showed that combining EV
metrics with anthropomorphic and clinical features improved the prediction of severe steatosis in
C2. These results highlight the diagnostic potential of EV-related features and the utility of XAI in
interpreting complex ML models for clinical applications in Hepatology.

4. Discussion

There  is  a  continuous  effort  to  identify  new  non-invasive  biomarkers  and  tests  for  MASLD
patients, due to the various limitations of liver biopsy. The development of blood biomarkers that
can be reproducible,  more easily applicable,  and potentially  available  for utilization in clinical
practice and treatment response monitoring, is in the spotlight of scientific research. Steatosis has a
key role in the progression of the disease from MASL to MASH and fibrosis. Even though fibrosis
strongly predicts  long-term prognosis for MASLD patients  and end-stage liver  outcomes,  early
identification of steatosis can significantly alter the management of MASLD and its outcomes at
hepatic and extrahepatic levels. In addition, there are notably fewer tests and biomarkers in the
context of steatosis evaluation than in fibrosis, a phenomenon that implies an open horizon for new
diagnostic perspectives.

Some of the limitation that have been reported regarding current biomarkers is the inclusion of
age as a parameter for their calculation. More particularly, age as a parameter can importantly
alter  the  interpretation  of  the  results,  a  phenomenon  that  is  mainly  correlated  with  the
significantly higher frequency of several diseases such as hyperlipidemia (increased triglyceride
and cholesterol levels), insulin resistance, and diabetes (altered fasting glucose levels) due to
aging [42]. 

Aging can also be implicated in the distribution of visceral fat, as well as in the noteworthy
reduction of muscle mass, resulting in a normal BMI, altering the interpretation of several tests
that include BMI [43]. Similarly, several enzymes can be influenced by aging and medication for
age-related  comorbidities,  such  as  transaminases  and  GGT  that  may  lead  to  inaccurate
conclusions regarding steatosis [44]. Interestingly, a normal BMI can be also presented in lean
patients with MASLD, which can lead to misinterpretation of the test, despite the presence of
steatosis [45]. Similarly, some other anthropometric measurements such as waist-to-hip ratio or
waist circumference also be normal in lean MASLD patients, leading to underestimated scores
[45].  Meanwhile,  it  is  reported  that  lean  MASLD  patients  have  a  lower  prevalence  of
hypertension, dyslipidemia, and T2DM, as well as lower levels of transaminases, higher HDL,
and lower levels of TG and total cholesterol [46].

The present study demonstrates the significant potential of EV as biomarkers for distinguishing
steatosis stages in MASLD. By employing XAI and ML we elucidated the diagnostic importance
of EV, particularly their size distributions and concentrations. The integration of advanced ML
models like CB-C1a and CB-C2h-21 provides a robust framework for non-invasive, accurate
diagnostics.

Our results underscore the central role of EV-related features in differentiating between various
stages of steatosis. For C1 EV independently achieved high diagnostic performance, with the
CB-C1a model achieving an AUROC of 0.70 in 5CV and 0.86 on the test set. Anthropomorphic

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted November 30, 2024. ; https://doi.org/10.1101/2024.11.30.24318233doi: medRxiv preprint 

https://doi.org/10.1101/2024.11.30.24318233
http://creativecommons.org/licenses/by-nc-nd/4.0/


and clinical features such as diabetes and advanced fibrosis did not improve diagnostic accuracy
in  this  scenario.  These  findings  highlight  the  potential  of  EV  as  standalone  non-invasive
biomarkers  for  early-stage  steatosis  detection.  Conversely,  for  C2  the  inclusion  of
anthropomorphic  and  clinical  features  significantly  enhanced  the  model's  diagnostic
performance, as evidenced by the CB-C2h-21 model's AUROC improvement from 0.81 to 0.89
in  3CV.  The  higher  prevalence  of  advanced  fibrosis  (3/19),  diabetes  (9/19),  and  their  co-
occurrence (3/19) in the S3 group suggests that these features are more relevant for identifying
advanced  stages  of  steatosis.  Importantly,  EV  remained  pivotal  predictors  in  this  context,
underscoring their physiological relevance in MASLD progression. The results using 10 times
iterative cross validation of C1 and C2 cases with AUROC +/- std of 0.71+/-0.03 and 0.81+/-
0.04, respectfully, as well as the performance regarding the specificity, sensitivity and F1 score
in Table 5, shows that even though the dataset volume was relatively low, the performance of the
two best models was very good and promising. From the explainability and the insights on the
associations of the most important features it is clear that VEs are potentially very strongly non-
linear correlated with steatosis stages.

The  observed  diagnostic  performance  aligns  with  the  established  role  of  EV  in  MASLD
pathogenesis.  EV, particularly  those with specific  size distributions,  are known mediators  of
intercellular communication, inflammation, and angiogenesis. These mechanisms are crucial in
the  progression  of  MASLD  from  simple  steatosis  to  advanced  fibrosis  and  hepatocellular
carcinoma. Our findings suggest that EV size distributions ("Mean," "50-150nm," ">150nm")
and concentrations ("Sum") could serve as reliable, non-invasive biomarkers for disease staging
and risk stratification.

By leveraging XAI tools such as SHAP analysis, we provided interpretable insights into the non-
linear relationships between EV, anthropomorphic, clinical features, and steatosis stages. This
transparency is critical for clinical adoption, as it enables healthcare professionals to understand
the  factors  driving  model  predictions.  The  high  sensitivity,  specificity,  and  AUROC values
achieved  by  CB-C1a  and  CB-C2h-21  models  demonstrate  their  robustness  and  potentially
clinical applicability.

Additionally, the use of a standardized protocol for EV analysis and rigorous validation of ML
models ensures the reliability and reproducibility of our results. While liver biopsy remains the
gold standard for steatosis assessment, our findings support the potential of ML-enhanced EV
metrics  as  non-invasive  alternatives.  Our  approach  could  reduce  the  reliance  on  invasive
procedures, making steatosis staging more accessible and patient-friendly. 

Despite the promising findings, the study has some limitations such as the variability in blood
sample processing and EV analysis that could possibly introduce bias [47-49]. More particularly,
the count of particles could be influenced and overestimated due to similar-sized contaminants or
lipoproteins  [48,49],  while  serial  centrifugations  and  freeze-  thawing  cycles  can  cause  EV
breakage [50]. Finally, another limitation of this study is the lack of biopsy validation for many
of  the  patients,  due  to  the  ethical  reasons,  incompliance,  and  high  cost  of  the  procedure.
However, we followed strict selection- criteria after excluding other causes of steatosis, other
chronic liver  diseases,  and several  conditions  that can significantly  alter  the total  circulating
levels and the size of EVs.

Future research should explore the in-depth characterization of EV cargoes and their specific
roles in MASLD progression, as well as the Apoptotic EVs (ApoEVs) that exceed 1000nm and
their  role  in  inflammation-related  condition,  such  as  lipotoxicity,  their  implication  in  tissue
regeneration  and their  possible  utilization  as  drug vectors  [51].  Combining EV metrics  with
advanced  imaging  techniques  and  other  non-  invasive  biomarkers  could  further  improve
diagnostic accuracy.
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5. Conclusion

This study highlights the diagnostic utility of EV-related combined with advanced ML techniques
in  MASLD.  The  CB-C1a,  and  in  particular  the  CB-C2h-21  models  achieved  exceptional
performance, demonstrating the feasibility of using EV as non-invasive biomarkers for steatosis
staging.  These  findings  pave  the  way  for  innovative  diagnostic  approaches  that  could
revolutionize  MASLD  management,  reduce  reliance  on  liver  biopsy,  and  enhance  patient
outcomes.  Finally,  our  biomarker  that  combines  the  circulating  plasma  EV,  combined  with
advanced  ML  methods,  anthropomorphic  and  clinical  features,  could  serve  as  an  effective
biomarker for diagnosing the presence of steatosis and assessing its severity in MASLD patients.
Nevertheless, further in- depth characterization of the EV-cargoes and their origin could open up
new horizons in the development of future MASLD non–invasive point of care tests.

6. Abbreviations

● Blood Processing Interval (BPI)

● Cross-Validation (CV)

● Data Science (DS)

● Explainable Artificial Intelligence (XAI)

● Extracellular Vesicles (EVs)

● Feature Engineering (FE)

● Feature Selection (FS)

● Interquartile Range (IQR)

● Liver Stiffness Measurement (LSM)

● Machine Learning (ML)

● Metabolic dysfunction-associated steatohepatitis (MASH)

● Metabolic dysfunction-associated steatotic liver disease (MASLD)

● Nanoparticle Tracking Analysis (NTA)

● Non-alcoholic Fatty liver disease (NAFLD)

● Non-invasive tests (NITs)

● Machine Learning Enhanced Non-invasive Tests (MLE-NITs)

● Steatotic Liver Disease (SLD).

● Type 2 Diabetes Mellitus (T2DM)

● Ultrasound Attenuation Parameter (UAP)

● Vibration-Controlled Transient Elastography (VCTE)
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  9. Tables
     

Feature Count Missing (%) Mean Std

Age 74 2.63 55.34 13.20

Height 75 1.32 1.68 0.09

Weight 75 1.32 80.81 14.30

Sex 75 0.59 0.50

Diabetes 76 0 0.20 0.40

S2, S2, S3 76 0 0.71 0.46

S3 76 0 0.26 0.44

Adv_Fibrosis 76 0 0.11 0.31

Mean  size 74 2.63 138.16 19.76

 50-150nm 74 2.63 8.27x10^1
0

4.37x10^10

>150 nm 74 2.63 5.84x10^1
0

4.85x10^10

Sum 

(50-1000nm)

74 2.63 1.41x10^1
1

7.04x10^10

Table 1.  Patient Characteristics.

 
Group Total Patients Advanced Fibrosis 

(n/%)
Diabetes (n/%) Advanced Fibrosis &

Diabetes (n/%)
S0 21 0/21 (0.0%) 0/21 (0.0%) 0/21 (0.0%)
S1-S3 53 6/53 (11.3%) 13/53 (24.5%) 5/53 (9.4%)
S3 19 3/19 (15.8%) 9/19 (47.4%) 3/19 ( 15.8%)
S0-S2 55 3/55 (5.5%) 4/55 ( 7.3%) 2/55 (3.6%)
S1-S2 34 3/34 (8.8%) 4/34 (11.8%) 2/34 (5.9 %)

Table 2.  Percentages of advanced fibrosis and diabetes in the groups of S0, S1-S3, S3, S0-S2 and 
S1-S2.
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Table 3. ML models of the C1: the name of the model, the number of features for each case, the
values of their tuned hyper-parameters, the classes’ weights, the specificity, sensitivity, ROC-
AUC, F1 scores, their mean and standard deviation as well as the 95% confidence interval for
the 5CV on the train set and on the test set.

Table 4. ML models of the C2: the name of the model, the number of features for each case, the
values of their  tuned hyper-parameters,  the classes’ weights, the specificity,  sensitivity, ROC-
AUC, F1 scores, their mean and standard deviation as well as the 95% confidence interval for the
5CV on the train set and on the test set.
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Table 5. Performance on the the CB-C1a (left) and CB-C2h-21 (right) using 10 times iterative
5CV and 3CV, for C1 and C2 accordingly. Here x_cv_m for x in {spec, sens, roc, f1} corresponds
to {specificity, sensitivity, AUROC, F1}.  

10. Figure Legends 

Figure 1. Plots of feature importance on the predictability of the ML model CB-C1a and on SHAP on the 
train set (ROC-AUC train: 0.70, test: 0.86).

Figure 2 .   Plots of feature importance on the predictability of the ML model CB- C2h-21 and on 
SHAP on the train set (ROC-AUC train: 0.89, test: 1.00)

Figure 3. Plots of EVs distribution above and SHAP scatter plots for the train set of the ML CB-C1a model.

Figure 4. Plots of features distribution above and SHAP scatter plots for the train set of the ML
CB-C2h-21 model.

11. Figures

Figure 1. Plots of feature importance on the predictability of the ML model CB-C1a and on 
SHAP on the train set (ROC-AUC train: 0.70, test: 0.86).
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Figure 2  Plots of feature importance on the predictability of the ML model CB- C2h-21 and on SHAP 
on the train set (ROC-AUC train: 0.89, test: 1.00)

Figure 3. Plots of EVs distribution above and SHAP scatter plots for the train set of the ML CB-
C1a model.
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Figure 4. Plots of features distribution above and SHAP scatter plots for the train set of the ML
CB-C2h-21 model.
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